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Preface

This book is intended for undergraduate or graduate students who have had a basic course
in ecology and who are ready for a more advanced examination of population ecology.
That is, junior and senior undergraduates and graduate students. My motivation for 
writing this book originated from 30 years of teaching population ecology to an audience
consisting mostly of MS and PhD students in our Environmental Science and Policy 
program. Most of these students work in environmental consulting or engineering firms,
county, national and international agencies (EPA, NASA, World Bank), and govern-
mental units such as the US Fish and Wildlife Service or the National Park Service. Other
students are technicians at the National Zoo or the Smithsonian Natural History Museum
who want to advance their careers. This is a challenging audience, most of whom bring
intense interest and real-life experience to the classroom. Yet few are headed for a
research career at a major university and their patience with theory for the sake of theory
is thin. Adapting to the situation, the goal of my course was not to train theoretical 
ecologists, but rather to develop in my students an appreciation for, and an understand-
ing of, the basic principles of population ecology and the application of these principles
to solving the problems faced by wildlife managers, environmental consultants, Fish 
and Wildlife bureaucrats and the like. Such individuals should be able to integrate the 
principles of population ecology with the challenges presented by their work in conserva-
tion or environmental biology.

I have never found a textbook that I felt hit the right level of topic coverage and 
mathematical sophistication. Most population texts have not yet done an adequate job of
integrating metapopulation biology into the study of population ecology. Furthermore,
most books still emphasize competition and predator–prey relationships as the only inter-
actions worthy of detailed consideration. I have always been a firm believer in giving more
coverage to herbivore–plant and mutualistic interactions. To that list I have now added
parasite–host interactions. In terms of topic coverage, some unique features of this book
are: (i) coverage of metapopulation ecology, including not only a separate chapter but also
an integration of metapopulation concepts into chapters on competition, parasite–host,
and predator–prey relationships; (ii) a discussion of stochastic, in addition to determin-
istic, models in several chapters; (iii) discussions of population viability analysis (PVA),
especially in Chapter 1.
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x PREFACE

With regard to mathematical sophistication, population ecology can be taught at many
levels, depending upon the mathematical background of the students (and of the pro-
fessor!). I am not attempting to produce a book for future mathematical or theoretical
ecologists. On the other hand, population ecology requires models and requires the use of
mathematics. Accordingly, although I have used advanced algebra, I have tried to keep it as
simple as possible. Although many ecological models are written as differential equations,
this book does not require extensive knowledge of differential equations or calculus. Wherever
possible I have provided graphs, simulations or other aids to help students understand
how the equations work. Students will be made aware of the assumptions of the models
and asked to evaluate how they could be applied to organisms or situations with which
they are familiar. The book includes sample problems to illustrate the models as well as
sample exercises. For example, Chapter 1 includes four sample exercises embedded in 
the chapter, several problem sets in Appendix 1, eight illustrative tables, and eight figures.
Sample simulations illustrating discrete, exponential, and stochastic population growth 
can be found at www.blackwellpublishing.com/rockwood. A key to symbols used in each
chapter has been provided for easy reference.

In Chapter 4 there are several sections on population projection of age- (or stage-) struc-
tured populations, in which the use of matrix algebra is necessary. Although it is possible
to understand population projection without knowledge of matrix algebra, students will
have a better understanding if they grasp the rudiments of matrices: how to multiply a
matrix by a column vector, for example. Therefore, you will find a description of the basics
of matrix algebra in Appendix 2, complete with examples.

This book was originally intended primarily for undergraduate and graduate students
at universities and colleges where the faculty must teach a wide variety of courses, or in
departments of environmental science where the students are oriented around solving 
practical environmental problems, as opposed to making their mark by developing new
theory. However, I now believe this book can be used for any population-oriented course
that goes beyond the general treatments found in ecology textbooks.

Finally, an ecology book devoid of field biology is an empty vessel. By that I mean that
most ecologists want to see how theory translates into a better understanding of the 
natural world. Therefore throughout the book I have included both laboratory and field
studies that illustrate population principles, from exponential growth to predator–prey 
population oscillations. I have attempted to draw these field examples from all types 
of ecosystems, from the tundra to the tropics, although I admit that the vast majority are
from terrestrial rather than aquatic ecosystems.

This book is designed for a typical 14-week semester found in most universities in the
United States. For shorter courses, the chapters on population regulation and life-history
strategies (Chapters 3 and 6) could be omitted from Part I. From Part II a shorter course
could omit the chapters on mutualism and parasite–host relationships without losing the
major themes developed in the remaining chapters.

The first part of the book examines the fundamental properties of single-species popu-
lations, focusing on the processes of birth, death, immigration, emigration, and local extinc-
tion. We begin with populations having simple life histories and no age structure. Chapter 1
examines the properties of population growth with no restraints (density-independent
growth), while Chapter 2 looks at the limitations on population growth resulting from
intraspecific competition and density dependence. The third chapter explores the concept
of population regulation. In Chapter 4 we examine populations with age (or stage) 
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PREFACE xi

structures and the suite of properties associated with age-dependent growth. Chapter 5 is
a relatively detailed examination of metapopulations and spatial ecology. The chapter 
concludes with a discussion of the major role metapopulation dynamics now play in the
field of conservation biology. Chapter 6 is an examination of life-history strategies and
introduces power laws and the controversial “metabolic theory of ecology.” This chapter
also reviews some of the classic life-history theories of Cole, MacArthur and Wilson, Lack,
and Grime.

The theme of Part II is interspecific interactions. Chapter 7, on competition, emphas-
izes resource and spatial competition as well as the usual treatment of Lotka and Volterra.
Chapter 8 emphasizes the “cost of mutualism” to each of the species involved. Chapter 9,
on host–parasite interactions, includes sections on metapopulations and on social para-
sites, as well as a description of the classic host–microparasite, or SIR, model. Chapter 10
includes an extensive historical review of predator–prey theory and brings the reader up
to date with some of the most well-known predator–prey interactions often described un-
critically in ecology textbooks, such as the hare–lynx and moose–wolf relationships. In 
Chapter 11 herbivore–plant interactions are dealt with from the perspective of both 
theoretical models and chemical ecology. The relationships among plant, herbivores, and
predators are explored in three-trophic-level models.

I would like to thank the many students and anonymous reviewers who have read 
and commented on this book. Specifically I wish to thank Thomas Wilson, Tom Akre, and
Helene Jorgensen. Both the content and organization have greatly benefited from their
suggestions. Portions of this book were developed while on study leave from George Mason
University at Oxford University; I thank Yehuda Lukacs for that opportunity. I would like
to thank Hannah Berry, Ward Cooper, and Rosie Hayden at Blackwell Publishing for their
patience and encouragement. Most of all I am grateful for the support of my family. My
wife Jane has provided me with emotional support, advice, and even logistical support
during this very long process. Without her you would not be reading this book.
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Part I
Single-species populations

What is population ecology? What distinguishes the study of populations from the 
study of landscapes and ecosystems? The answers lie in scale, focus and traditions. In 
population ecology the scale is a group or groups of taxonomically or functionally related
organisms. The emphasis is on fundamental properties of these populations: growth, 
survivorship, and reproduction. The tradition is based on the interplay of theory, laborat-
ory testing, and, ultimately, fieldwork. The competition and predator–prey equations of
Lotka (1925) and Volterra (1926, 1931) stimulated the laboratory work of Gause (1932,
1934), Park (1948, 1954), Huffaker (1958), and others. Elton (1924), Errington (1946),
Lack (1954), Connell (1961a, 1961b), Paine (1966), Krebs et al. (1995), and many others
brought population ecology into the field, where its theoretical underpinnings are 
constantly tested. In the age of personal laptop computers and the internet, data can 
now be analyzed, sent around the world, and experiments redesigned, without ever 
leaving the field site. Increasingly sophisticated experimental design and statistical rigor
constantly challenge new generations of scientists. Indeed, much of the training of modern
ecologists is in methodology.

Yet why do we become ecologists in the first place? Is it because of our love of com-
puter programs and statistics? For most of us, that would be, “No.” More likely it is because
of a love of the organisms that we find in natural (“wild”) places. We love the sounds, 
the smells, the feel, the being in nature. Perhaps it is also because of our love of the idea
of nature and of places not yet under the total domination of Homo sapiens. Nothing 
quite matches a day (or night) in the field for an ecologist, and we are usually eager to
communicate these experiences to other people. Contrast an ecologist to a typical urban
dweller like Woody Allen. In one of his movies Woody complains that he hates spending
nights in the country because of the “constant noise of the crickets.” Yet, he and his urban
counterparts find the constant traffic noises of New York City soothing. Most population
ecologists have a different view.

Population ecology is, in a primitive sense, an organized way of communicating our
ideas about nature to others. Population ecology, with its emphasis on groups of indi-
viduals and their survival and reproduction, their relationships with their competitors and
their predators, is rooted both in fieldwork and in natural history. As such it appeals to
us at a very fundamental level. Instead of (or perhaps in addition to) swapping tales around
the campfire at night, we communicate by publishing in journals or books.
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2 PART I

Furthermore, without the basic data from population studies, most landscape and 
ecosystem studies would either be impossible to carry out, or would lack fundamental 
meaning. The advantage of ecosystem studies is the comprehensiveness of the approach.
However, the disadvantage is the complexity of interactions among species and our lack
of understanding of community organization. Everyone can agree that we need a better
understanding of interspecific interactions, and this is the role of population ecology. 
To develop laws of ecosystem functioning, we first need to comprehend how individual
populations behave. From there we can develop an understanding of interactions among
populations. Therefore it seems to me that studies at the landscape and ecosystem level
must be informed by data first gathered by population ecologists.

But this all sounds rather grand and theoretical. In the real world, knowledge of 
population ecology is absolutely necessary for conservation biologists, wildlife managers,
and resource biologists. They are often faced with problems of preserving biodiversity or
a wild living resource without adequate information. How can they best decide whether
to limit or even shut down a fishery, and for how long? Is it necessary or wise to allow
wolf (Canis lupus) hunting in Alaska in order to increase the caribou (Rangifer tarandus)
herd? Has the introduction of wolves into Yellowstone actually decreased the elk (Cervus
elaphus) herds? What are the causes of reptile and amphibian declines throughout much
of the world? Although an ecosystem approach may be helpful and necessary to answer
many of these questions, basic population data are also necessary. But more than data are
necessary; we must understand how populations with different life histories grow and/or
are limited. We need a fundamental understanding of the roles of competitors, parasites,
and predators, and of their potential effects on a given population.

When John James Audubon was in the state of Kentucky in 1813, he witnessed the pass-
ing of a great flock of passenger pigeons (Ectopistes migratoris). This flock blackened the
sky for more than three days as they passed overhead. Later Audubon estimated their num-
bers at between 1.1 and 2.5 billion birds (Souder 2004). Yet the last passenger pigeon in
the wild was shot in 1900; the last individual in captivity died in 1914; and the species was
extinct. How can a population decrease so swiftly, even if one acknowledges the role of
hunting and habitat destruction?

Red grouse (Lagopus lagopus) go through population cycles every 4–5 years. The num-
bers oscillate over three orders of magnitude (Hudson et al. 1998), and these oscillations
are synchronized over large geographical areas (Cattadori et al. 2005). Yet the population
recovers regularly. On the other hand, when tawny owls (Strix aluco) were studied in Oxford,
the number of mating pairs remained steady, at 17–30 pairs, even though their major rodent
prey species oscillated from 10 to 150 per acre (Southern 1970). What are the differences
between red grouse and tawny owls? Differences in reproductive parameters, developmental
time, or survivorship? The fact that red grouse are primarily herbivores and owls primarily
predators? Their competitors, parasites, predators? These are questions that only know-
ledge of population ecology allows us to answer.

When the moose (Alces alces) population recently crashed on Isle Royale in Lake
Superior, Michigan, was the cause wolf predation? Parasites? Over-browsing of the vegeta-
tion? Wildlife scientists throughout much of the United States have complained for many
years that white-tailed deer (Odocoileus virginianus) are over-browsing their habitats 
and causing changes in the vegetation. If so, why don’t these deer populations crash? Is
the recent movement of coyotes (Canis latrans) into the eastern United States and puma
(Felis concolor) into the Midwestern United States the result of these large white-tailed deer
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SINGLE-SPECIES POPULATIONS 3

populations? If not, what explains these dispersals from the “wild west” to the more 
urbanized areas of the USA east of the Mississippi River? One goal of this book is to give
you the background and weapons that will allow you to address these questions.

In the twentieth century, the principles of population ecology, as we understood them,
were applied to agriculture, forestry, wildlife management, fisheries, and conservation bio-
logy. Exploitation of populations in the name of “maximum sustainable yield” was based
on the flawed logistic equation and/or inadequate data. Before the days of environmen-
tal impact statements, however, politicians and engineers largely ignored advice based on
ecological science. While this situation has changed, ecologists, in order to remain credible,
must work to develop better theoretical approaches and methodologies. And applied 
ecologists must be able to recognize which of several possible theoretical approaches applies
to the population or community of concern. The purpose of this book is to help guide
future wildlife refuge managers, EPA officials, or other applied ecologists through the work-
ings of basic population principles and theory so that they make wise decisions in the future.

In Part I of this book our goal will be to establish the fundamentals of population growth
for single-species populations. After determining these basic properties, we will examine
how intraspecific competition affects population characteristics. We will also consider the
evolution of different types of life histories and discuss whether a biological population is
naturally “regulated.”

Once we have an understanding of how single populations grow and sustain themselves
in particular environments, we can begin to examine how interactions with populations
of other species affect their life histories. In Part II we will progress to an examination 
of interspecific interactions such as competition, predation, parasitism, and mutualism.
As we move through these interactions, we can evaluate their relative importance in 
population growth and regulation.
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1

Density-independent growth

1.1 Introduction

What is a population?

The basic definition of ecology, the scientific study of the relationships between organ-
isms and their environment, is rather vague and the word environment requires an explicit
definition. An alternative definition of ecology, the scientific study of the distribution and
abundance of organisms (Krebs 1994, Andrewartha 1961), is more germane to popula-
tion ecology. In population ecology we want to know what factors most likely control the
growth rates, abundances, and distributions of biological populations.

As used here, a population (synonymous with biological population) consists of a group
of interbreeding organisms found in the same space or area (i.e. they are sympatric) at
the same time. It is presumed that these individuals form a functional unit in that they
interact with one another and there is interbreeding among the individuals of the popu-
lation. A closed population is one in which we expect no immigration or emigration of
individuals from outside of the population. In reality, unless we are considering a popu-
lation on a remote island, a mountaintop, or an isolated cave, populations are not closed
to immigration or emigration. And unless we have successfully marked all individuals in
a population, we are usually unaware of which individuals might be recent immigrants.
Turchin (2003) integrates these ideas in his definition of a population: “a group of indi-
viduals of the same species that live together in an area of sufficient size to permit 
normal dispersal and migration behavior, and in which population changes are largely deter-
mined by birth and death processes.”

• The general laws and fundamentals of population growth
• Density-independent versus density-dependent growth
• Discrete or “geometric” growth in populations with non-overlapping generations
• Exponential growth in populations with overlapping generations
• Applications to invasive species and human populations
• Stochastic models of population growth and population viability analysis
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6 CHAPTER 1

A local population differs from a species or a species population, in that we are dealing
with a group of individuals interacting in a particular time and space. White-tailed deer
(Odocoileus virginianus) from northern Wisconsin and the Piedmont of Virginia, according
to the biological species concept, are the same species as long as they produce viable 
offspring when they are interbred. But they would belong to different and distinct eco-
logical populations. Actually, a population is often defined by the investigator(s) and may
be somewhat arbitrary.

Fundamental principles and the use of mathematical models

What are the fundamental principles that dictate how populations grow? Population 
ecology is by necessity a quantitative discipline, and in order to answer questions about
populations, mathematically oriented ecologists have derived a variety of predictive 
models. The first section of this book will examine growth models for populations of 
single species.

The diversity of life has led to a fantastic array of life histories. Just as the mass of a 
single bacterium is several orders of magnitude smaller than the mass of an elephant, 
population characteristics, such as generation time, also differ by several orders of 
magnitude.

Accordingly, no one model of population growth suits all organisms or all environments.
This fact is both frustrating and stimulating. A search for a single set of models that applies
to all life forms is pointless. On the other hand, the construction of quantitative models
forces us to examine our assumptions about particular populations in an organized and
explicit manner. Models, whether quantitative or qualitative, often produce unexpected
results that may run counter to our intuitive sense of how things work. The work of
Copernicus, Galileo, and others that culminated in the formal quantitative models of Newton
showed that the solar system and the universe function in ways that were not at all 
intuitively obvious. A dissection of the life histories of both the emperor goose (Chen 
canagica) (Morris and Doak 2002) and the Amboseli baboon (Papio cynocephalus)
(Alberts and Altmann 2003) populations, using a matrix population model, have shown
us that adult survivorship has a greater impact on growth rates than either juvenile 
survivorship or fertility: a conclusion impossible to reach without the proper population
model. As Atkins (1999) commented, “Quantitative reasoning (gives) spine to otherwise
flabby concepts, enabling them to stand up to experimental verification.” Models stimu-
late observations and experiments that allow us to learn more about our natural world.

A general rule of systems is that as one progresses from lower to higher levels of 
organization, properties are added that were not present at the lower levels. Thus an indi-
vidual organism is not just a collection of physiological systems. Similarly, a population
has properties not evident from the study of individuals. Populations have growth rates,
age distributions, and spatial patterns. They also have allelic frequencies and other genetic
properties. The first list of properties is within the province of population ecology; the
latter is part of the discipline of population genetics. The two areas combined are known
as population biology. Although this book deals only with population ecology, much 
of what I have written is based on the theory of evolution, which relies on principles of 
population genetics.

The models used here will be largely based on relatively straightforward algebra. How-
ever, matrix algebra and differential calculus will be introduced. For more sophisticated
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DENSITY-INDEPENDENT GROWTH 7

mathematical treatments the reader should consult Roughgarden (1998), Case (2000),
Vandermeer and Goldberg (2003), or Turchin (2003). I will emphasize the assumptions
of the models and discuss them in qualitative terms. Proofs or derivations, where needed,
have been minimized, but sample problems and graphs are used to illustrate the work-
ings of the models.

A perfect model would be general, realistic, precise, and simple (Levins 1968). As dis-
cussed above, the diversity of life has ruled out the perfect model. In order to attempt
generality and simplicity, precision and reality are often sacrificed. If students are able 
to understand how population models are built, they will then be able to evaluate their
reality. It should become evident that most models, while lacking precision, do illuminate
basic population trends.

The general laws of population ecology

Sutherland (1996) wrote that “population ecology suffers from having no overall a priori
theory from which explanations and predictions can be devised.” He continued that “beha-
vioral ecology has such a theory – evolution by means of natural selection – which yields
the prediction that individuals will maximize fitness.” I take this to mean that the dis-
cipline loosely known as evolutionary ecology has an a priori theory. Population ecology,
however, should be treated as an extension of evolutionary ecology. Therefore, we should
ask ourselves under what circumstances might a characteristic such as the low fecundity
of the wandering albatross (Diomedea exulans), or a phenomenon such as the population
cycles known for snowshoe hares (Lepus americanus), have evolved.

By contrast to Sutherland, Turchin (2001, 2003) asserts that population ecology is a 
vigorous and predictive science and does have a set of foundational principles that are
almost equivalent to the laws of Newton. He has listed these three fundamental concepts:
(i) populations tend to grow exponentially, (ii) populations show self-limitation (or
bounded fluctuations), and (iii) consumer–resource interactions tend to be oscillatory. In
the first case, without density-dependent feedback from the environment, all populations
show a nonlinear, exponential growth pattern. Turchin (2001) calls this “the exponential
law,” and sees a direct analogue to the law of inertia proposed by Newton. The exponen-
tial law provides a starting point for more complex mathematical descriptions of popula-
tion dynamics. The second theorem or principle, self-limitation, is based on the idea 
that per capita population growth decreases with resource depletion. The usual form 
of this idea, the logistic equation, fails as a law because of its simplistic assumptions 
(see Chapter 2). Nevertheless, it remains useful as a starting point. Finally, the tendency
of consumer–resource interactions (such as predator–prey) to produce oscillations is
explored at length in later chapters.

1.2 Fundamentals of population growth

If we were trying to understand the growth rate and thus the potential rate of spread 
of an invasive species, or if we wanted to calculate the potential for long-term survival of
the Florida panther (Felis concolor coryi) (Seal and Lacy 1989), what sort of informa-
tion do we need? How do we gather it? What do we do with the data? What models are
appropriate? Here we begin to address these questions.
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As a first approximation, population growth is determined by a combination of four
processes: reproduction (sexual or asexual), mortality, immigration, and emigration. The
addition of new individuals through reproduction, termed fertility or fecundity, may 
be via sexual reproduction (i.e. live births, hatching of eggs, seed production) or through
asexual reproduction (i.e. binary fission, budding, asexual spores, clonal spreading of higher
plants). The distinction between fecundity and fertility is traditionally as follows.

1 Fecundity is the potential reproductive output under ideal circumstances. 
This limit is set by the genotype. That is, reproduction is limited by genetic
potential, not by the environment.

2 Fertility, by contrast, is the actual reproductive performance under prevail-
ing environmental conditions. The fertility rate, by definition, is less than the
fecundity rate.

The distinction between these two terms is often not rigidly adhered to, but it is useful
to keep it in mind.

Both fecundity and fertility are expressed as rates. That is, the mean number of off-
spring produced per individual (or per thousand individuals in human demography) in
the population, per unit time. Often these values are also expressed for a given unit of
area. For example, according to the Population Reference Bureau (Washington, DC), 
the fertility rate of the human population of the world declined from 28 per thousand 
in 1981, to 22 births per thousand in 2001. Meanwhile, the birth rate in North America
moved slightly downward from 16 per thousand in 1981 to 14 per thousand in 2001
(Anonymous 1981–2004). In populations such as humans, however, which breed over a
period of 30 years without respect to seasons, we need to know the fertility rate for each
age category in order to accurately predict population growth. All references to human
birth and death rates in this chapter are per year.

The second fundamental factor that affects population growth is mortality. Mortality
must also be expressed as a rate. That is, the mean number of deaths per individual (or
per thousand), per unit time, per unit area. As above, unless the population has a stable
age distribution (meaning that the proportion of the population in each age class
remains constant over time), in order to predict future population changes we would need
to know the death rate for each age category. Again, using data from the Population Reference
Bureau, the human death rate for the world in 2001 was 9 per thousand, a decrease from
11 per thousand in 1981. In North America, the comparable figures are 9 per thousand
in 1981 and 9 per thousand in 2001 (Anonymous 1981–2004).

In populations with age distributions (age structures), growth is also affected by the actual
number of individuals in the different age categories. We will explore the effects of age
distributions in detail in Chapter 4. At present it is sufficient to note that basic data on
the overall birth and death rates may not produce an accurate picture of population growth
in the short term. For example, examine the population figures for Europe and Asia in
2001 (Table 1.1), again data from the Population Reference Bureau. Not only are the birth
and death rates different, but also their age distributions are different. In Asia, 30 percent
of the population is under 15 years of age, while in Europe the comparable figure is a
mere 18 percent.

A measure of population growth is the intrinsic rate of increase, r. We will discuss r in
more detail later. For now, we define r as the growth rate per individual (or per capita)
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DENSITY-INDEPENDENT GROWTH 9

per time unit (for example, per year) in a population, estimated as b − d, where b is the
birth rate per individual per year, and d is the death rate per individual per year. The rate
of growth per individual is:

r = b − d (1.1a)

If the birth and death rates are expressed per thousand, as in human demography, the
growth rate is:

r = (1.1b)

From Table 1.1 we see that Asia had a positive growth rate, whereas Europe actually
had a negative projected growth rate in 2001. If the intrinsic rate of increase of these two
populations suddenly converged on the same value (a decrease in the Asian birth rate and
an increase in Europe’s fertility rate, combined with similar changes in the death rates),
the population growth of Asia would still be greater than that of Europe for several decades,
due to the higher abundance of reproductive individuals. Asia has a shorter generation
time, which would affect population growth for a number of years. The estimated growth
rate parameter, r (Eqn. 1.1), ignores the age distribution and generation time and actually
assumes a stable age distribution (defined above). By age distribution we simply mean the
proportion of the population in each age category, not the actual number per category.

Two other factors affect population growth: immigration and emigration.

1 The immigration rate is the number of individuals that join a population 
per time interval due to immigration. Ideally we should know the ages of indi-
viduals as they join the population.

2 The emigration rate is the number of individuals that leave the population per
time interval. Again, it would be useful to know the age of the individuals that
have left the population.

Unfortunately, gathering accurate information on immigration and emigration is
extremely difficult in biological populations, and these factors are often ignored. When 
a population is termed closed, it is thought of as having negligible immigration and 

b − d

1000

Table 1.1 Statistics for human populations of Asia and Europe in 2001. All data are
from the Population Reference Bureau (Anonymous 1981–2004). Birth and death
rates are per thousand; r is per individual.

Region Population Birth  Death Rate of Percent of 
size rate (per rate (per increase per population less 

(millions) thousand) thousand) individual (r) than 15 years of age

Asia 3720 22 8 0.014 30%
Europe 727 10 11 −0.001 18%
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emigration. In the last two decades, however, there has been a shift in emphasis from the
study of single populations to “metapopulation” ecology. Since the concept of a meta-
population was developed by Levins (1969, 1970), major advances in both theory and 
field studies have taken place, particularly within the past 15 years (Hanski 1999). Levins
originally defined a metapopulation as a “population of populations.” In his view, local
populations exist in a fragmented landscape of suitable and unsuitable habitats or
“patches.” Each local population is prone to extinction, but extinction may be balanced
by immigration from other populations in the metapopulation landscape. The long-term
survival of the metapopulation depends on the balance and interplay between extinction
and immigration. Immigration and extinction are also key elements of the MacArthur 
and Wilson (1967) theory of island biogeography. However, MacArthur and Wilson were
primarily concerned with the number of species in the community, while the meta-
population concept focuses on populations of single species. Another difference is that
MacArthur and Wilson were concerned with the relationship between islands, where 
extinction could occur because of small population size or stochastic events, and a source
of species (the mainland) in which extinction would not normally occur. By contrast, in
a metapopulation, extinction may occur in any patch and colonization can occur from
any one patch to another. The applications of metapopulation studies to conservation 
biology are obvious, and have resulted in an explosion of publications. We will explore
metapopulation dynamics in Chapter 5. Suffice it to say that, after decades of being ignored,
immigration, emigration, and local extinction are now the subject of many theoretical and
field studies (Hanski 1999).

As already noted, a population is rooted in a time and a place. This means that popu-
lation sizes or population growth rates are scaled for a particular time unit and for a 
specific spatial unit. When life histories of different organisms are compared (Chapter 6)
it becomes obvious that generation times vary across several orders of magnitude. The
space needed to sustain one population of elephants may support a metapopulation of
butterflies or several separate populations of lichens. Therefore, we are forced to ask, what
is the appropriate scale of an ecological investigation (Peterson and Parker 1998)? That is,
over what time spans and/or over what spatial scales should ecological investigations be
conducted? As we explore simple models of population growth we should be aware of their
limitations, and the extent to which they are applicable to long periods of time and/or to
large landscapes.

In summary, a population is affected by its rates of fertility, mortality, immigration, 
and emigration, by its recent history (through its age structure), and by its generation 
time, which is determined by its life history. Growth rate is also determined by the envir-
onment, and by how sensitive the population is to changes in the environment. By environ-
ment, we mean not only the physical environment, but also interactions of the population
with other species in its habitat.

1.3 Types of models

In developing a model of a population we usually begin with the present population; that
is, the population at time = 0, and project it t time units into the future. The populations
at these times are expressed as N0 and Nt, respectively. There are two types of population
equations. Each has advantages and disadvantages.
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In difference equations, populations are modeled using specific, finite, time units. The 
time units are usually realistic, in that populations are measured in the field once (or 
perhaps several times) per year, but not continuously. Difference equations are most 
often used to model populations that have “discrete,” rather than continuous, growth (see
below). A basic equation summarizing the ideas presented in the previous section might
look like this:

Nt+1 = Nt + (B − D) + (I − E) (1.2a)

where
Nt = the population size at time, t
Nt+1 = the population size one time unit later
B = the number of births and D = the number of deaths in the population during the time
interval between t and t + 1
I = the number of immigrants and E = the number of emigrants during this same time
interval

This equation can be rewritten as:

Nt+1 = Nt + (B + I) − (D + E) (1.2b)

In most population studies it is assumed that immigration and emigration rates are insigni-
ficant compared with birth and death rates (Turchin 2003, but see Hanski 1999). Equa-
tion 1.2b can be simplified, and the numbers of births and deaths are converted to per
capita (per individual) rates, b and d, respectively. The difference between b and d becomes
the single growth parameter, R, known as the net growth rate per generation or net 
reproductive rate. Alternatively, the difference between b and d also equals λ (lambda),
the growth rate per time period, usually per year. λ can be calculated for all types of 
population models and is known as the finite rate of increase. The usual form for the 
difference equation (using R) is shown as:

Nt+1 = Nt(b − d) = NtR (1.2c)

In differential equations, it is assumed that population growth is “continuous” and 
populations are being continuously monitored. Models based on differential equations 
have a long history in the biological literature, including the earliest models of compet-
itive, predator–prey, and host–parasite relationships (Lotka 1925). A simple differential 
equation for population growth is:

= rN (1.3)

Here dN/dt measures the instantaneous growth of the population, N. On the left side
of the equation, the symbol d is used to indicate change in N per change in the time inter-
val, t. The intrinsic rate of increase, r (Eqn. 1.1a), measures the per capita birth rate minus
the per capita death rate during these same small time intervals. In a sense, r measures
the probability of a birth minus the probability of a death occurring in the population
during a particular time interval.

dN

dt
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1.4 Density-independent versus density-dependent growth

If a population invades a new environment with “unlimited” resources, no competitors,
and no predators, fertility rates will be high (approximating fecundity rates) and 
death rates will be relatively low. Under these conditions, the population grows either 
“geometrically” or “exponentially” depending upon its life history. This is known as 
density-independent growth. This simply means that the growth-rate parameter of the 
population is not affected by its present population size. In both geometric and exponential
models, the growth rate is determined by a fixed parameter (R, λ, or r) that is not 
modified by competition for resources. Population growth is often curtailed by the 
environment even if the population is undergoing density-independent growth. Major 
disturbances or catastrophes such as fire, wind storms, landslides, and floods signifi-
cantly reduce certain populations and may even cause local extinctions. By contrast, in
Chapter 2 we will examine models of density-dependent growth. In these models, it is
assumed that the population encounters a limiting resource (food, water, nest sites, avail-
able nitrogen, space, etc.), which limits its growth. In these models the growth parameter
is modified and the net growth rate eventually approaches zero at a carrying capacity. The
realized growth rate is said to depend on the density of the population, hence the term
density-dependent growth.

1.5 Discrete or “geometric” growth in populations with non-overlapping
generations

The use of an appropriate model depends first on the life history of the organism. So you
first need basic information on the life cycle of the species. In this first model of density-
independent growth, the population has a life history with discrete, non-overlapping 
generations. That is, there are no adult survivors from one generation to the next.
Examples include annual plants, annual insects, salmon, periodical cicadas, century
plants, and certain species of bamboo. In most of these cases the organism passes through
a dormant period as a spore, a seed, or an egg, and/or a juvenile stage such as a larva 
or pupa. Once the adults reproduce, they perish, and the future of the population is 
based on the dormant or juvenile stage of the organism. As noted above, when modeling
such populations we usually collapse fertility and mortality into one constant, R, the net
replacement rate or net growth rate per generation – or λ , the finite rate of increase, when
measuring growth per specific time period. When we are discussing annual plants or insects,
λ , the growth rate per year, and R, the growth rate per generation, are identical, since 
generation time equals one year. However, in some populations, such as the periodical
cicada (Magicicada septendecim), generation time equals 13 or 17 years, and in these cases
it is useful to make a distinction between the growth rate per generation and a finite rate
of increase. That is, R ≠ λ , when T, the generation time, ≠ 1 year.

To find R we often count one life stage of the population in successive years. For gypsy
moths (Lymantria dispar) we estimate R by counting egg masses in successive years (see
Example 1.1). R is estimated from the ratio of egg masses at time t + 1 versus time t. For
the periodical cicada (Example 1.2), however, we would have to wait 17 years between
generations before we could estimate R. The overall model is based on finding successive
estimates of the growth rate based on:

ITP_C01.qxd  10/13/2005  10:33 AM  Page 12
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Example 1.1

Gypsy moths (Lymantria dispar) are annual insects in which breeding takes place
in early to mid summer. After the females lay their eggs, all adults die. The
eggs hatch the following spring into larvae that feed on the leaves of tree species,
especially species of oaks (Quercus). After a number of larval stages and a pupal
stage, the adults emerge. After mating, females lay their eggs and die. Since
generation time equals one year, Equations 1.4 or 1.5 may be used. In order
to determine population growth in this species, we need to determine R.
Assume that a local gypsy moth technician makes annual egg-mass counts in
a local forest. She finds that in 2003 there are, on average, 4 gypsy moth egg
masses per hectare and each mass contains an average of 40 eggs, for a total
of 160 eggs per hectare. When she returns to the same forest in 2004, she
finds 5 egg masses with an average of 40 eggs, or a total of 200 eggs per hectare.
The local spraying program regulations state that spraying with Bt® (Bacillus
thuringiensis) begins whenever egg masses reach 1000 per hectare. Assuming
egg-mass density continues to increase at a constant rate, what is the pre-
dicted population for the year 2006? In what year would spraying be required?

Answers

In order to determine the net growth rate R, we find the ratio of Nt+1/Nt =
200/160 = 1.25. In the year 2006, three years have passed since the original 
survey in 2003. Using Equation 1.4:

N2006 = N2003R3 = (160)(1.25)3 = 312.5

We therefore expect around 312 eggs per hectare in 2006.

We can now ask the question, if R continues at 1.25, in what year must spray-
ing commence? Since we wish to solve for t, and time is an exponent in Equation
1.3, it is more convenient to use Equation 1.6:

ln Nt = ln(1000) = ln(160) + ln(1.25)(t)

6.91 = 5.08 + 0.223t

1.83/0.223 = t

t = 8.2 years

Since the population only reproduces once a year, we cannot use a fraction of
a year in the answer. Eight years after 2003, that is, in the year 2011, the num-
ber of egg masses is expected to be 954. By regulation, this does not trigger
the spraying regime. One year later, however, the egg mass density would be
1192, and spraying would begin in 2012.
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Example 1.2

The periodical cicada (Magicicada septendecim) has a most unusual life history
(Borror et al. 1989). The juvenile stages spend 17 years underground feeding
on plant roots. The population in a given area emerges synchronously from
the ground as adults. After a great deal of racket, the males and females mate,
and females lay their eggs in slits they have made in small branches of trees
and shrubs in the forest. The adults then die, leaving the eggs as the next 
generation. The eggs hatch within a month. The nymphs drop to the forest 
floor and burrow underground, where they spend the next 17 years feeding and
growing. The periodical cicada is obviously affected by disturbances within the
forest habitat. Assume that in 1987 a survey found 500 adult female cicadas
per hectare. The forest was selectively logged in the 1990s and a survey in 2004
found that the cicada population had dropped to 200 per hectare. More log-
ging is planned during the next 20 years in this forest. Assume the population
continues to decline at the same rate. If we define the minimum viable popu-
lation for cicadas as 10 females per hectare, in what year is the population no
longer viable? By minimum viable population we mean that the probability of
extinction has become unacceptably high (Shaffer 1981, Miller and Lacy 2003).
Random environmental perturbations or inability of males and females to 
find each other would likely cause this population to become extinct. See the
section on population viability analysis in section 1.10 below.

Answer

First we must realize that only Equations 1.4 and 1.6, using net growth rate
per generation, are applicable. But we also need to remember that genera-
tion time is 17 years. To find R, take the ratio of 200/500 = 0.40. Since R < 1 we
note that this population is decreasing. In order to find when the population is
not viable, we solve Equation 1.6:

ln 10 = ln 500 + (ln 0.40)t

2.3 = 6.2 + (−0.9)t

−3.9 = −0.9t

t = 4.3 generations

Again, we cannot use fractions. After four generations, the population is pro-
jected to drop to between 12 and 13. After five generations, it declines to around
5 per hectare and is, by definition, no longer viable. Five generations, times 
17 years per generation, equals 85 years. The population is not viable 85 years
after the first survey in 1987. That is, in the year 2072. Evidently, however, action
to conserve this forest cannot wait until 2072.
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R1 = N1/N0

R2 = N2/N1

R3 = N3/N2 etc.

If we find that R remains more or less constant over time (that is, if these ratios of Nt +1/Nt

remain constant), then we have:

N1 = N0R

N2 = N1R = (N0R)R = N0R
2

N3 = N2R = (N0R
2)R = N0R

3

and so on, leading to Equation 1.4:

Nt = N0R
t (1.4)

or

Nt = N0λ
t (1.5)

Note that the population grows whenever R or λ > 1
the population is stationary (there is no growth) whenever R or λ = 1
the population decreases whenever R or λ < 1

The population grows according to the law of discrete or geometric growth (Fig. 1.1),
when R > 1. Equations 1.4 and 1.5 can be rewritten using logarithms to make the growth
curves linear. In Equations 1.6 and 1.7 we can use log to the base 10, or we can use 
natural logs (designated by ln) to the base e. Since other models use natural logs, we have
used them in the equations below (and in the examples above).

ln Nt = ln N0 + (ln R)t (1.6)

or

ln Nt = ln N0 + (ln λ)t (1.7)

In each case ln N0 is the y-intercept and ln R or ln λ is the slope of a linear relationship
between ln N and t (time), with time as the independent variable (x-axis). In Fig. 1.2, the
value of R = 1.2 and the slope is therefore ln(1.2) or 0.18.

1.6 Exponential growth in populations with overlapping generations

In the previous section we dealt with a special kind of life history, one in which gen-
erations were distinct and non-overlapping. If the adults and juveniles are present 
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simultaneously and they interact with one another, our previous model is inappropriate.
Instead we must use a model originally developed for a population capable of continuous
growth, such as a Paramecium or a human population. That is, a population in which there
is no distinct breeding season. Notwithstanding poetry about springtime and theories about
phases of the moon, human babies are born throughout the year. In spite of the fact 
that this growth model is not strictly applicable for seasonal breeders such as deer, it is 
general enough that it is used whenever a population has a stable age distribution. (Recall
that an age distribution refers to the proportions of the population belonging to different
age classes, and that a stable age distribution is one in which these proportions remain

P
op

ul
at

io
n 

si
ze

R = 1.2

R = 1.0

R = 0.8

0 2 4
Time units or generations

6 8 10

350

300

250

200

150

100

50

0

Figure 1.1 Discrete or “geometric” growth in a population with non-overlapping
generations.
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Figure 1.2 Natural log of growth in a population with discrete generations.
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constant from year to year.) In order to have a stable age distribution, fertility and 
mortality rates must remain constant for an extended period of time. We can approxim-
ate human population growth rates using the model, but we should recall that because
birth rates around the world increased following World War II and then decreased after
1960, few human populations are in a stable age distribution.

The basic form of this model is the differential equation shown earlier as Equation 1.3:
dN/dt = rN, where r is the intrinsic rate of increase or the instantaneous growth rate.

r is calculated by finding the difference between the instantaneous per capita birth 
rate and the instantaneous per capita death rate. The parameter r can be compared to the
interest rate in a bank account which is continuously compounded. Such a rate is the con-
tinuous growth rate per dollar in an interest-bearing account, while r is the continuous
growth rate per individual in a population.

The equation is easily solved by taking the integral from 0 to t of both sides of the 
equation, as follows:

= r dt

which becomes: ln N(t) − ln N(0) = rt − r0 = rt
After exponentiation of both sides of the equation, we have: N(t)/N(0) = ert

Rearranging, we get Equation 1.8. This solved form is the one usually used in making 
population projections to some arbitrary time t in the future.

Nt = N0e
rt (1.8)

where e is the base of natural logs.

In the above equations, the population grows if r > 0
the population is stationary if r = 0
the population is negative if r < 0

When r is positive, the growth is known as exponential; if r is negative the population is
in exponential decline (Fig. 1.3).

We can make the equation linear by taking the natural logs of both sides of Equa-
tion 1.8, yielding:

ln Nt = ln N0 + rt (1.9)

When we graph ln N versus time, we again have a linear relationship, with ln N0 as the
y-intercept and r as the slope of the line (Fig. 1.4).

Doubling time

A convenient statistic, often used by population ecologists and human demographers (demo-
graphy is the study of population statistics), is doubling time. That is, how long will it
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take a population to double from its present population size? Equation 1.8 can be 
rearranged to: Nt/N0 = ert. We want to solve for the time at which the ratio Nt/N0 = 2. 
So we have: 2 = ert. Taking the natural log of both sides of the equation yields, ln 2 = rt,
where t is now doubling time. Since ln 2 = 0.693, if we solve for t we end up with:
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Figure 1.4 Natural log of growth in a population with overlapping generations and
continuous breeding.
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Figure 1.3 Exponential growth pattern in a population with overlapping generations
and continuous breeding.
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Doubling time = 0.693/r (1.10)

Therefore if we know the intrinsic rate of increase we can easily find the projected 
doubling time of a population. Remember, however, that we are assuming that the popu-
lation is not affected by its age distribution, and that r is a constant during this time period.
That is, birth and death rates remain unchanged.

Doubling time probably has little meaning if r is very close to zero. Doubling time is
undefined if r = 0. An r-value of 0.001, for example, would predict a doubling time of 
693 time units; but it is extremely unlikely that r would remain a constant for such a long
period of time. For a negative r-value (d > b), the result will be a negative number. The
absolute value of this number is the time it will take the population to be reduced to half
of its present size. Instead of “doubling time” the result is “halving time.”

1.7 Exponential growth in an invasive species

During a hurricane in 1962, five captive mute swans (Cygnus olor) escaped into the
Chesapeake Bay, in Maryland. Since they were pinioned and therefore flightless, their chance
of survival during the winter was considered negligible and no attempt was made to cap-
ture them. One pair, however, successfully nested. By 1975 the descendents of this origi-
nal pair numbered approximately 200, and by 1986 totaled 264. By 1999 the estimated
population of mute swans in the Chesapeake Bay was 3955 (Anonymous 2003, Sladen 2003,
Craig 2003). In 2001 the Maryland Department of Natural Resources, in an effort to con-
trol the swan population, began shaking (addling) mute swan eggs or covering them with
corn oil to terminate embryo development. Mute swans were also removed from Federal
National Wildlife Refuges. The result was a decline to 3624 in 2002 (Anonymous 2003).
As shown in Fig. 1.5, prior to these control efforts, the population was growing exponentially
with an intrinsic rate of increase of 0.17 and a doubling time of four years! (As an exer-
cise, try using Equation 1.10 to verify the doubling time.)
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Figure 1.5 Mute swan (Cygnus olor) population in the Chesapeake Bay since 1962.
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So what’s the problem? Swans are considered graceful, even “majestic,” and are thought
of as harmless by their admirers. However, mute swans, in addition to being a non-native
species, have become permanent residents. That is, they do not migrate as do other 
swan species. Recent data show that an average adult swan eats 3.6 kg of submerged 
aquatic vegetation (SAV) a day (Craig 2003). This is occurring at a time when biologists
are struggling to re-establish SAV in the Bay. Is it necessary to control the mute swan 
population? If so, how?

The Fund for Animals took the US Fish and Wildlife Service to court to stop its plan
to kill 525 swans in 2003 (Craig 2003). The debate evidently will continue for the indefi-
nite future.

1.8 Applications to human populations

Few biological populations grow either geometrically or exponentially for long. As we will
explore in the sections on intraspecific competition and logistic growth, as populations
grow, resources become scarce. The resultant changes in birth and/or death rates slow growth.
The human population of the world, however, has continued to grow since around 1650;
it reached 6.0 billion by late 1999, and 6.3 billion by 2003 (Fig. 1.6a). Many scientists 
question how long this growth can be sustained. While most ecologists insist that human
population growth must cease in the near future, some economists (Simon 1996) see no
reason for limits to the human population. In the next section we will use data from the
Population Reference Bureau (Anonymous 1981–2004) to illustrate how Equations 1.8 to
1.10 may be used in population projections.

Recall from Equation 1.9 that if we graph natural log of population growth versus time we
can determine the intrinsic rate of increase by finding the slope of the graph. In Fig. 1.6b
we have plotted the natural log of human population growth against time. The slope of
this line, as determined by the statistical technique of linear regression and computed for
us in an Excel™ spreadsheet, is 0.007. This is the best fit for the intrinsic rate of increase
for the human population from 1650 to 2003.

If we examine Table 1.2, in which human populations in 2003 are broken down by con-
tinental regions, the strengths and weaknesses of this simple model become apparent. Most
striking are the immense differences among populations. While the human population as
a whole is growing twice as fast in 2003 as compared to the period of 1650 to the present
(contemporary r = 0.013, historical r = 0.007), Europe has a negative r, while that of
Africa is 0.024, almost twice the global growth rate. Secondly, over 60% of the human
population resides in Asia.

Clearly, although human population growth is of global concern, it is a highly regional
problem. From Table 1.2 you should be able to see that r is readily calculated as the dif-
ference between the birth and death rates. Secondly, you should try calculating projected
doubling times based on Equation 1.10. You will find that the data published by the
Population Reference Bureau differ slightly from your calculations. They are using more
sophisticated models and are taking age distributions into account. Nevertheless, the dif-
ferences in doubling times are remarkably minor. Finally, if you examine the last column
you will also notice another great difference among these populations. The percentage of
the population in the pre-reproductive years (15 years or younger) varies from 42% in
Africa to a low of 17% in Europe.
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In his book The Skeptical Environmentalist, Bjorn Lomborg (2001) is rather sanguine
about human population growth. He accepts the demographic transition model, which
states that rapid growth has occurred because of a rapid drop in the death rate (due to
modern methods of sanitation, improved food growth and distribution, better medical
care, etc.) and that eventually, with improved standards of living and wealth, birth rates
drop to match the low death rates. Indeed, in most European countries, human popula-
tion growth has slowed, and even gone negative. In 2003, 20 countries out of 43 in Europe
had a growth rate of zero or negative, including all 10 Eastern European countries. As
noted above, the population growth rate (r-value) for Europe as a continent is negative.
As for the future, Lomborg accepts a “medium variant forecast” from the UN. This pre-
diction is zero population growth for the world by the year 2100. However, by then the
world population is projected to be 11 billion. Consider that the world population was
only one billion in 1850, two billion in 1950, and 6.3 billion in 2003. Lomborg is correct
when he says that 60% of growth is from just 12 countries. Perhaps the world outside of
Africa and Asia will not necessarily suffer a catastrophe from human population density,
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Figure 1.6 Human population growth since 1650: (a) world population, in billions;
(b) natural log of population growth, in millions.
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but what will happen in China, India, Pakistan, Bangladesh, and Nigeria, for example, in
the next 100 years? The 2003 data sheet from the Population Reference Bureau predicts
that China’s population will stabilize at about 1.4 billion (compared to its present estim-
ated population of 1.289 billion) by 2050. By 2050, however, the PRB predicts a popu-
lation for India of 1.6 billion (compared to present population of 1.069 billion). The 
question on the mind of the concerned biologist: Will there be any room for natural 
habitats on a planet with 11 billion or, worse yet, 15 billion people?

Examine Table 1.3, which describes overall human demographic trends since 1981.
Lomborg (2001, p. 47) states that world population growth, in numbers per year, reached

Table 1.2 2003 human population data from the Population Reference Bureau
(Anonymous 1981–2004).

Region Population Birth rate Death rate Rate of Doubling Percent
size (per (per increase per time under

(millions) thousand) thousand) individual (r) (years) 15 years

World 6314 22 9 0.013 53 30%
Africa 861 38 14 0.024 29 42%
North America* 323 14 8 0.005 139 21%
Latin America† 540 23 6 0.017 41 32%
Asia 3830 20 7 0.013 53 30%
Europe 727 10 12 –0.002 NA 17%
Oceania‡ 32 18 7 0.011 63 25%

* North America = the United States and Canada.
† Latin America includes Central and South America and the Caribbean Islands.
‡ Oceania includes Australia, New Zealand and the South Pacific Islands.
Countries of the former USSR have been distributed between Asia and Europe.

Table 1.3 World human demographic trends since 1981. All data from 
the Population Reference Bureau (Anonymous 1981–2004).

Year World Birth Death r per Projected Actual average 
population rate per rate per individual growth in growth per year
estimate thousand thousand numbers during specified
(billions) per year time period 

(millions) (millions)

1981 4.492 28 11 0.017 77.0
1985 4.845 27 11 0.016 78.1 1981–85: 88.3
1987 5.026 28 10 0.018 91.3 1985–87: 90.5
1989 5.234 28 10 0.018 95.1 1987–89: 104.0
1991 5.384 27 9 0.018 97.8 1989–91: 75.0
1995 5.702 24 9 0.015 86.2 1991–95: 79.5
2000 6.067 22 9 0.014 85.5 1995–2000: 73.0
2003 6.314 22 9 0.013 82.6 2000–03: 82.3
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a peak in 1990 at 87 million per year. Population Reference Bureau data agree on the time
but not the number (over 100 million added in the period 1987–89). Absolute growth has
averaged about 87 million per year in the latter part of the twentieth century, according
to Population Reference Bureau data; Lomborg used the figure of 76 million, but this applies
only to the 1990s. The 2003 Population Reference Bureau data sheet projects world popu-
lation as 7.9 billion in 2025 and 9.2 billion in 2050. Lomborg’s comparable numbers are
“almost 8 billion” in 2025 and 9.3 billion in 2050.

Population growth in North America (Table 1.4) is rather variable, but reached a relat-
ive peak in 1991–92 when around two million people were added to the population per
year. The data from 2003, however, reflect the fact that the 2000 census for the United
States came in at almost seven million more than expected. Meanwhile, the US birth rate
has fallen to 2.034 births per female (replacement rate is 2.10 births per female) (PRB,
Anonymous 1981–2004).

Human population growth is greatest in Asia (Table 1.5). Peak absolute growth was in
the period 1989–91, when around 58 million people were added per year. It declined
unsteadily in the late twentieth century and is now about 50 million people per year. The
r-value has declined steadily to 0.013 in 2003.

1.9 The finite rate of increase (l) and the intrinsic rate of increase (r)

Both the intrinsic rate of increase (r) and the finite rate of increase (λ) are used commonly
to track population growth and to compare growth rates among populations of the same
species found in different environments, as well as among different species. Consequently
it is important to understand the relationship between λ and r. As defined in Equation
1.5, λ is the growth rate per time period (usually per year) and is based on the ratio Nt+1/Nt.
If the population lacks an age distribution or has a stable age distribution (SAD), the finite
rate of increase, λ, is a constant. The population as a whole and each age class will grow
as:

Table 1.4 Human demographic trends in North America since 1981. Data from the
Population Reference Bureau (Anonymous 1981–2004).

Year Population Birth Death r per Projected growth
estimate rate per rate per individual in numbers per 
(billions) thousand thousand year (millions)

1981 0.25 16 9 0.007 1.76
1985 0.26 15 8 0.007 1.83
1987 0.27 15 9 0.006 1.62
1989 0.27 16 9 0.007 1.90
1991 0.28 16 9 0.007 1.97
1995 0.29 15 9 0.006 1.75
2000 0.31 14 8 0.006 1.86
2003 0.323 14 8 0.005 1.62
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= λ (1.11)

Rearranging Equation 1.8 and setting t = 1, we have: Nt+1/Nt = ert = er. Thus, when t = 1
and when there is a stable age distribution we have:

λ = er (1.12)

and

r = ln λ (1.13)

1.10 Stochastic models of population growth and population 
viability analysis

All of the population models we have examined to this point are deterministic models.
The models specify conditions leading to an exact outcome based on the parameters of
the models. But natural systems are unlikely to be deterministic; rather they are more likely
to be stochastic. In particular, small isolated populations are subject to stochastic processes
because chance events can dominate their long-term dynamics. In stochastic models 
population parameters vary according to some kind of a frequency distribution. This dis-
tribution has a “central tendency” (a mean), but also has a range of variability around the
mean. For example, in a deterministic model, if we know the present population size and
the proper growth parameter, we forecast an exact expected population size for a specific
time in the future. In a stochastic model, we would instead predict a range of possible
population future sizes, with assigned probabilities.

Future population size in a small population is strongly influenced by demographic 
stochasticity, which is driven by variations in the fates of different individuals within a
given year. For example, although the average female within a population may have 2.0

Nt+1

Nt

Table 1.5 Human demographic trends in Asia since 1981. Data from the Population
Reference Bureau (Anonymous 1981–2004).

Year Population Birth Death r per Projected growth
estimate rate per rate per individual in numbers per 
(billions) thousand thousand year (millions)

1981 2.61 29 11 0.018 47.4
1985 2.83 28 10 0.018 51.4
1987 2.93 28 10 0.018 53.2
1989 3.06 28 9 0.019 58.7
1991 3.16 27 9 0.018 57.4
1995 3.38 24 8 0.016 54.5
2000 3.68 22 8 0.014 51.9
2003 3.83 20 7 0.013 50.1
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Example 1.3

A Paramecium caudatum population is cultured in the laboratory and sampled
on a daily basis. Population sizes, based on 0.5 ml samples, are shown below.
The population grows exponentially between days 0 and 3. Find the intrinsic
rate of increase (r) for the population

Growth of a Paramecium population. Numbers are based on daily 0.5 ml
samples.

Time in days Number (N) Natural log Per capita growth
per 0.5 ml of N ln N

0 14 2.64 –
1 41 3.71 0.66
2 116 4.75 0.65
3 193 5.26 0.40
4 244 5.50 0.21
5 290 5.67 0.16
6 331 5.80 0.12
7 363 5.89 0.08

Answer

Since we want to know the value of the maximal rate of increase (the density-
independent rate of increase), we examine growth only during the first three
days (see Fig. 2.1 in the next chapter). From Equation 1.9 (ln N = rt + ln N0) we
know that to find r we need only convert column 2 to natural logs (column 3).
Then find the slope between days 0 and 3. To find the slope we can use the
formula:

r = (y2 − y1)/(x2 − x1). Thus,

r = (5.26 − 2.64)/(3 − 0), and

r = 0.87

Using Excel™, a linear regression on the same data yields the value of r as
0.89.

Nt++1 −− Nt

Nt++1
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female offspring, some individuals may not reproduce at all, while others have a litter 
size of 4.0. Demographic stochasticity has effects not only on birth and death pro-
cesses, but also on sex ratio. In the above example, some females may give birth only to
males in a given year. Another important influence on population growth is environmental
stochasticity, which is temporal variation in the population due to unexpected events, often
tied to the physical environment, such as droughts, hail storms, fires, and landslides, but
which may also include diseases. Environmental stochasticity can affect both large and small
populations.

More realistic growth models, therefore, make forecasts based on probabilities, rather
than predicting a single outcome. For example, weather forecasters no longer simply 
predict rain, but instead predict a certain probability of rain. Similarly, it would be prud-
ent for population models to predict an expected population size, but allow for other 
population sizes to occur with particular probabilities. Again, this approach is especially
important in small populations, and over short time intervals. If the population is large
and the time frame is very long, the expected population sizes dictated by deterministic
models become highly probable.

Stochastic models are the basis for the quantitative approach to conservation biology
known as population viability analysis (PVA). Although it is beyond the scope of this book

Example 1.4

The birth rate for Latin America in 1978 was 33 per thousand, while the death
rate was 10 per thousand. (a) What was the intrinsic rate of increase, assum-
ing a stable age distribution? (b) If the population size was 344 million, what
was the projected population in 1982? (c) Between 1982 and 1990 the popula-
tion increased from 377 million to 415 million. What was the r during that time?
(d) Given this r-value, what was the doubling time? (e) What is l?

Answers

a Given r = b − d, we have r = 33/1000 − 10/1000 = 0.023
b From 1978 to 1982 is four years. Therefore:

N4 = N0 × (e0.023*4) = 344 million × (e0.092)

= 344 million × 1.096 = 377.15 million

c From 1982 to 1990 is 8 years. Therefore: 415 million = 377 million(e8r)

Simplifying: 415/377 = 1.10 = e8r

Taking natural logs: ln 1.10 = 8r

Or, 0.096/8 = r == 0.012

d Doubling time = 0.693/r = 0.693/0.012 = 57.7 years
e l = er = e0.012 = 1.012
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to explore stochastic models and PVA in detail, there are excellent discussions of these
models in Morris and Doak (2002) and Beissinger and McCullough (2002). For more 
information on stochastic models, see also Pielou (1977) and Nisbet and Gurney (1982).

PVA is so important because many wildlife populations that were once numerous,
widespread, and occupied contiguous habitats are now small, restricted in distribution,
and isolated from each other. The problem with small, isolated populations is that they
are increasingly subject to stochastic processes and increasingly likely to go locally, if not
globally, extinct. The purpose of population viability analysis is to predict the likely future
status of a population or collection of populations (Morris and Doak 2002). PVA is a set
of analytical and modeling approaches for assessing the future course and risk of extinc-
tion of a population (Beissinger and McCullough 2002). PVA examines how (i) genetic,
demographic, and environmental stochasticity, (ii) catastrophes and “bonanzas,” and (iii)
spatial variation affect the future of the population.

Demographic and environmental stochasticity were defined above. Small populations
are also affected by genetic processes such as (i) genetic drift resulting in the loss of genetic
diversity in the population, (ii) inbreeding depression, and (iii) monopolization by a small 
number of males in a polygynous mating system. The biggest concern is the rate of loss of
heterozygosity and its effects on the future fertility and mortality rates of the population.

PVA also attempts to anticipate how rare events which result in extremely low survival
and/or reproduction (catastrophes) or their opposite (bonanzas) might affect the future
course of a population. Catastrophes can be local or regional events of low probability
with significant density-independent effects. For example, one of two remaining whooping
crane (Grus americana) populations in the United States was decimated by a hurricane 
in 1940 and this population went extinct soon thereafter. The only remaining population
of the black-footed ferret (Mustela nigripes), at Shirley Basin in Wyoming, was being 
decimated by an outbreak of distemper, while the prairie dogs (Cynomys ludovicianus), 
its prey species, were suffering from the plague. In 1986, conservation biologists, fearing
extinction unless action was taken, captured the last remaining 18 ferrets to start a cap-
tive breeding program. The captive population grew rapidly, and by 1992 biologists deter-
mined the captive population was large enough to sustain a reintroduction program. Currently
black-footed ferrets have been reintroduced into six areas in their historic range.

Finally, variation in fertility and mortality can also be spatial. That is, if a population
is subdivided into different locations, vital statistics can vary depending on the location
of the subpopulation. Again, we cannot explore these topics in detail here. But the 
following paragraphs explore the consequences of demographic stochasticity for density-
independent growth.

In a simple stochastic approach we specify probabilities for births and/or deaths rather
than using an exact population average. For example, suppose the arithmetic average 
litter size of a small mammal population is 1.167 females per female per year, but the actual
number of females produced per year varies from zero to two (for simplicity, we follow
the traditional practice of only counting females). We then must determine the probabil-
ity that a given female produces zero, one, or two female offspring. For a given number
of females at time = zero, we can then make predictions as to the likelihood of various
numbers of offspring in the next year.

In the following simple example, assume that adults die after reproduction, but all indi-
viduals in a given litter survive. However, litter sizes (Bi) vary from 0 to 2 with the prob-
abilities shown in Table 1.6. The value of λ is based on the arithmetic average of the litter
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sizes = ∑ piBi. The expected finite rate of increase for the population as a whole is 
therefore the sum of the last column (λ = 1.167).

For N females, there are, therefore, finite probabilities that the next generation will 
produce anywhere between 0 and 2N female offspring in the next generation. The prob-
ability that a population of N females goes extinct in the next year, for example, is
(0.167)N. For a population of six females the probability that the population will go extinct
in the next year is (0.167)6 = 2.17 × 10−5. For a population of one female, the probability
equals 0.167. Similarly, the probability that the population will double in one year is (0.333)N.
A radical population shift such as extinction or doubling in one year is likely only in very
small populations.

In Fig. 1.7 the probabilities from Table 1.6 are applied to a population of three females
at time = 0. One time unit later (t = 1), the population size has a possible range of values
from 0 to 6. The most likely outcome is λN = 1.17 × 3, or 3.51. In reality there cannot
exist fractions of individuals, so the population, one time unit later, is equally likely to
remain at three or grow to four females.
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Figure 1.7 Stochastic growth in a population of three females, based on 
the parameters of Table 1.6.

Table 1.6 Probability that an individual female will have 0, 1, or 2 female offspring,
and the expected net reproduction.

Probability, pi, of having Litter size (Bi) == the number Expected net
a given litter size, Bi of female offspring per year reproduction == pi Bi

0.167 0 0
0.500 1 0.500
0.333 2 0.667

l = 1.167
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As noted by Pielou (1977) and others, the probability that a population will go extinct
can be estimated by Equation 1.14:

P0,t =
N0

(1.14)

where
P0,t = the probability of extinction at time t
d = per capita death rate and b = per capita birth rate

For any finite population there is a probability of one that the population will go extinct,
given enough time, unless the birth rate is higher than the death rate (b > d, λ > 0). Even
then, there is a finite non-zero probability of extinction in any generation. Again, this chance
of extinction is heavily influenced by the size of the population, with the smallest popula-
tions the most likely to go extinct.

As pointed out by Morris and Doak (2002), adding variability to population statistics
does not simply mean that population growth is more variable; it means that populations
do worse than they would without variation. The use of an arithmetic mean, as in the
example above, overestimates growth most of the time. As Morris and Doak (2003, p. 25)
state, “using simple arithmetic averages to characterize the population growth rate in a
variable environment is not just a simplification, it is actually wrong.”

When variation is added the most likely result is that the population will grow according
to the geometric mean, rather than the arithmetic mean. The geometric mean of a set of
numbers is always less than or equal to the arithmetic mean, and the difference between
the two increases as the variability in the data increases.

For example, assume that a population with an initial population size of 50 grows 
for 100 time periods (t = 100), with an arithmetic mean value for λ of 1.05. With no 
variation, using Equation 1.5, we get the predicted population size of:

N100 = N0λ
100 = 50(1.05100) = 6575.

Now assume that we allow λ to vary between 0.90 and 1.20, with equal probabilities 
(pi = 0.50 for each). We have:

N100 = 50(0.9050)(1.2050) = 50(0.005)(9100) = 2345

This is the most likely outcome and is based on the geometric, rather than the arith-

metic, mean. As shown in Table 1.7, the arithmetic mean = piλi where pi = probability

of a given λi. In the above case, p1 = 0.50 for λ1 (= 0.90), and p2 = 0.50 for λ2 (= 1.20).

Therefore the arithmetic mean = (0.50 × 0.90) + (0.50 × 1.20) = 1.050

However, the geometric mean = λ i
pi = 0.900.5 × 1.200.5 = 0.949 × 1.095 = 1.039

As stated above, the geometric mean is always less than or equal to the arithmetic mean,
and in this case the geometric mean of 1.039 is less than the arithmetic mean of 1.050. If
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we use the geometric mean instead of the arithmetic mean in Equation 1.8, we have the
most likely outcome when λ varies between 0.90 and 1.20 with equal probabilities:

N100 = (50)(1.039100) = 2345

which is the same result we found above, but is much less than the projected population
of 6575 using the arithmetic mean.

Let us try another example. Assume that λ = 0.60 25% of the time, λ = 0.80 25% of the
time, and λ = 1.40 50% of the time (Table 1.7). The arithmetic mean is, again, 1.05. Based
on the arithmetic mean, we expect the population to grow since λ > 1.00. However, the
geometric mean is less than one, and the most likely result is that this population will decline.

The geometric mean, however, provides us only with the “most likely” outcome when
population parameters vary. In fact, if the population parameters are allowed to vary ran-
domly, many different outcomes are possible. For example, in Fig. 1.8 we see the results

Table 1.7 Calculating the arithmetic versus the geometric mean for population
projections.

Probability, pi li pili l i
pi

0.25 0.60 0.15 0.880
0.25 0.80 0.20 0.946
0.50 1.40 0.70 1.183

Arithmetic mean Geometric mean

= pili = l i
pi

= 1.050 = 0.985
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Figure 1.8 Deterministic versus stochastic growth with high and low variance.
Initial population size = 50; l = 1.05, except where noted.
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of one simulation. A comparison of growth using the arithmetic and geometric means
yields the expected results. Stochastic growth with low variability (variance around the mean
is 0.01), shows growth, but with obvious variation. The end result of growth with high
variation (variance of 0.08 around the mean) is a population of only 178 individuals (N0

was 50) after 100 time units.
Although this result is “typical” there are many other possible outcomes. Table 1.8 pre-

sents the results of 20 different simulations of population growth for a deterministic and
two stochastic models (low versus high variability). The basic result is that the determin-
istic model, using the arithmetic mean for λ of 1.05, produced a larger final population

Table 1.8 Results of 20 simulations of population growth for a deterministic model
versus two stochastic models, one with low and one with high variability. In all
cases the initial population size was 50 individuals, the arithmetic mean finite rate
of increase (l) was 1.05, and the simulation was run for 100 time units. In the low-
variability simulations, l was allowed to vary between 0.90 and 1.20 (8 = 1.05 ± 0.1);
in the high-variability simulation, l was allowed to vary between 0.55 and 1.55 
(8 = 1.05 ± 0.3). In the stochastic simulations, growth rates were randomly
generated using the Excel™ RAND functions. Note that the deterministic result 
is greater than the stochastic result/low variability in 15 of 20 simulations and
greater than the stochastic result/high variability in 19 of 20 simulations.

Simulation number Deterministic Stochastic result Stochastic result
result (low variability) (high variability)

1 6575 3729 5772
2 6575 4156 28
3 6575 5972 1004
4 6575 3631 13
5 6575 5516 291
6 6575 5700 13
7 6575 2363 201
8 6575 3796 1
9 6575 5821 246

10 6575 2845 44
11 6575 7107 5244
12 6575 2113 3169
13 6575 19,561 106
14 6575 3910 640
15 6575 2509 122
16 6575 13,731 8
17 6575 3706 1917
18 6575 6304 53
19 6575 15,570 4
20 6575 12,972 8450

Average for the 
20 simulations 6575.0 6550.6 1366.3
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size than did the stochastic/low-variability model in 15 of the 20 simulations. The final
population size for the deterministic model was greater than that of the stochastic/
high-variability model in 19 of 20 simulations. The low-variability result is larger than 
the high-variability result in 18 of 20 simulations.

In summary, a stochastic model generates a frequency distribution of probabilities that
particular population numbers will appear in the next generation. There will always be a
finite probability that the population will go extinct, but the most likely outcome (i.e., the
highest probability) will be that Nt+1 = Ntλ, using the geometric mean for λ.

1.11 Conclusions

In this chapter we have explored models illustrating the Turchin (2001) 
first law of population ecology. That is, biological populations tend to grow
exponentially. Populations with discrete or continuous generations, as well
as populations with age structures, all obey the exponential law. As will be
detailed in Chapter 4, populations with age structures must first achieve 
a stable age distribution before growing according to the exponential law.
The exponential law even applies to populations undergoing demographic
stochasticity as described in section 1.10 above (Turchin 2001). And we do
not have to assume a constant environment. If the environment varies such
that per capita birth and death have a stationary probability distribution, 
we still obtain exponential growth or decline in the population (Maynard 
Smith 1974).

Accordingly, if the environment does not affect the population in a sys-
tematic manner, all types of biological populations show exponential
growth. Traditionally, ecologists have treated populations with discrete
generations differently from those with overlapping generations. Difference
equations such as 1.4 and 1.5 have been used in the first case. By contrast
differential equations (1.3) and their solved forms (1.8) have been employed
to describe populations with overlapping generations. In both cases we 
use the finite rate of increase, l, or the intrinsic rate of increase, r, as a 
common currency for comparing population growth potentials.

However, populations do not grow forever. Eventually individuals begin to
run out of space, food, water, or other resources and/or become increas-
ingly subject to predation or disease. This is where the second principle, 
that of self-limitation, comes into play. In the next chapter we will examine
this principle, and the models, traditionally known as density-dependent 
models, that attempt to implement it.
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Density-dependent growth and
intraspecific competition

2.1 Introduction

One of the great philosophical divides between ecologists and many economists is the appli-
cation of the ecological principle of self-limitation to human populations. The late
University of Maryland economist Julian Simon, long the bête noir of the environmental
movement, was no believer in the ecological notion of a carrying capacity for humans. 
In his book The Ultimate Resource, Simon (1996) proposed that human ingenuity and 
technology would always triumph over any limiting resource. He had public disputes with
ecologists such as Norman Myers and Paul Ehrlich. Simon famously won a series of 
ongoing bets with Ehrlich on whether certain raw materials would run out by specific 
dates. Now, as human population growth has ceased or gone negative in many European
countries (Anonymous 1981–2004), publications decrying the coming “population crash”
and its ramifications have materialized in the popular media. Basically, ecologists see 
self-limitation of all biological populations as inevitable, while most economists, especially
those in the United States, see economic growth as both certain and beneficial.

The concept of a carrying capacity for biological populations is connected with the 
logistic equation, found in all ecology text books, and also introduced formally as
Equation 2.8 later:

dN/dt = rN .D
F

K − N

K

A
C

• Density dependence in populations with discrete generations
• Density dependence in populations with overlapping generations
• Nonlinear density dependence of birth and death rates and the Allee effect
• Time lags and limit cycles
• Chaos and behavior of the discrete logistic model
• Adding stochasticity to density-dependent models
• Laboratory and field data
• Behavioral aspects of intraspecific competition
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The logistic was originally formulated by the French mathematician Verhulst in pre-
Darwinian times (1838), but was not applied routinely to biological populations until 
Pearl and Reed (1920) rediscovered it. Pearl (1927) then promoted the application of the
logistic to a variety of biological populations. See Kingsland (1995) for an interesting review
of this history.

Yet Turchin (2003) and many other population biologists now assert that, though the
logistic is useful as a general framework, this equation is fundamentally flawed when applied
to biological populations. The logistic model is not a general law of population growth,
but is rather a special case. If an ecologist wants to win the argument with an economist
about human (or any) population limitation he/she needs to understand the assumptions
and flaws of logistic or logistic-like models. The goals of this chapter are: first, to describe
density-dependent growth models for both discrete and continuously breeding popula-
tions; second, to examine the assumptions of these models; third, to investigate how 
violations of these assumptions shape the behavior of populations.

In the first chapter we assumed density-independent growth: that is, population
growth unlimited by competition for resources. Most biological populations, however, 
do not long sustain such growth. Even in an isolated laboratory population, growing 
without competing species or predators, realized growth slows and ceases. Examine 
the Paramecium population history presented as Table 1.6 and plotted in Figure 2.1. 
Population growth slows after day 2 and almost ceases by day 7. Our experience in the
laboratory is that a Paramecium caudatum population will stop growing at about 400 per
0.5 ml sample. Based on data such as this, one of the basic assumptions of most ecological
models is that populations do not have unlimited resources, and that eventually the 
population encounters a limiting resource (or perhaps a parasite or predator) which re-
stricts population growth. This is by no means a new idea. In 1840 Liebig, in his law of
the minimum, asserted that under steady-state conditions the population size of a species
is constrained by whatever resource is in shortest supply. According to the logistic model,
population growth ceases when the population reaches the carrying capacity of the 
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Figure 2.1 Population growth in a Paramecium population.
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DENSITY-DEPENDENT GROWTH AND INTRASPECIFIC COMPETITION 35

environment for that population. This is a density-dependent growth model in which the
carrying capacity is identified by the symbol K. For a given species, in a specific environ-
ment, carrying capacity is defined as the number of individuals that can be maintained
indefinitely.

One way to visualize density-dependent growth is to graph the per capita growth rate
versus population size. Figure 2.2 plots the growth rate per individual in the Paramecium
population versus population size. From Table 1.6, per capita growth is found by divid-
ing the growth between time intervals t and t + 1 by the population size at time t + 1. Notice
that even though the population is growing through day 6, the trend per individual is steadily
downward in a more or less linear fashion. Where this line intersects the x-axis, per capita
growth has fallen to zero. The value of this point (N, 0) is an estimate of the carrying
capacity, K. Note that the linear regression on these data indicates that K should equal
around 390, which is in agreement with Fig. 2.1. The R2 value means that the model has
explained 95% of the variance in the data.

Since the logistic model is really based on competitive interactions, we should define
competition before proceeding further. A formal definition of competition is: a bio-
logical interaction between two or more individuals for a resource in short supply. 
When the interaction is between individuals of the same species it is termed intraspecific
competition; when between individuals of different species it is known as interspecific com-
petition. A resource is any substance or factor in the environment that determines growth,
survivorship, or reproduction of individuals in the population. Therefore, depletion of this
resource decreases growth, survivorship, or reproduction. For competition to be mean-
ingful, the resource must be in short supply now, or in the immediate future. Plants may
compete for space, light, water, or nutrients, while animals often compete for food, nesting
sites, hiding places, or mates. Certain aspects of the environment, such as temperature,
are not resources per se, and cannot be competed for. On the other hand, if a lizard needs
to raise its body temperature it will seek out a rock on which to bask in the sun. If there
are limited numbers of basking sites, they become resources in short supply, and may be
competed for.
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Figure 2.2 Per capita growth in a Paramecium population.
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Paradoxically, perhaps, the ultimate effect of competition is a decrease in fitness. Thus
competition is said to be a reciprocally negative interaction. All individuals that engage in
competition may lose energy and/or time that they could have invested in their own growth,
survivorship, or reproduction. When sports teams or animals engage in competition, we
identify a winner and a loser (throwing out the occasional tie). Male elk (Cervus elaphus)
and bighorn sheep (Ovis canadensis) engage in some amazing combats. The winner mates
with the female(s) and his fitness is increased, relative to the losing male. But, if that male
had been able to mate with the females without combat, his long-term fitness would be
greater still, since he would have conserved the energetic costs (and risks of injury) asso-
ciated with combat. This theoretical point, however, ignores situations where competitive
interactions between males are necessary for stimulation of reproductive activities.

Competition also differs in its manifestations. We recognize here two basic forms of
competition: interference and depletion. The term interference competition seems to have
originated with Park (1962). A similar concept is encounter interference (Schoener 1983).
In interference competition access to the resource is blocked by behavioral or chemical
means. Interference competition applies to territoriality, guarding behaviors, and, by 
this definition, allelopathy. In allelopathy, plants secrete chemicals that accumulate in the
environment and prevent other plants from germinating or growing within this area. 
A similar phenomenon is the secretion of antibiotics by fungi that prevent growth of bac-
teria within a certain radius of the colony. In ants, when a high-quality bait such as a chunk
of tuna is placed on the forest floor, one species often recruits soldiers to form a ring around
the tuna. If they deny access to all workers and soldiers except those from their own colony,
they are engaging in interference competition.

Depletion competition involves the simple removal of the resource without active
interference. This is the same idea as exploitation competition (Park 1962) and consumption
competition (Schoener 1983). All of these terms refer to situations in which plants or 
animals consume resources to the detriment of competitors, but without directly inter-
fering with access to the resources. This is a sort of “first come, first served” type of com-
petition. Sutherland (1996) compares depletion competition to “drinking the pub dry.”
We will avoid here the terms “scramble” and “contest” competition (Nicholson 1954), 
neither of which is biologically realistic.

Intraspecific competition manifests itself through density-dependent modifications in
(i) birth and death rates, (ii) growth rates, and (iii) adult size, especially in organisms with
determinant life cycles. That is, the eventual size of an adult beetle, for example, is largely
determined by the feeding rates and sizes of the larval stages (within genetic constraints).
Finally, intraspecific competition is reflected in complex behavior patterns such as male–
female interactions. These latter topics will be explored near the end of this chapter.

In the following sections (2.2 and 2.3) we will do a simple derivation of equations that
describe density-dependent growth for populations with discrete and with continuous growth.
We will analyze how these equations work and what they might tell us about how popu-
lations behave in nature.

2.2 Density dependence in populations with discrete generations

As we saw in Figs 2.1 and 2.2, in a density-dependent population we expect growth to
slow and eventually stop as a population increases, and reaches the carrying capacity. For
populations with discrete generations, we can begin with Equation 1.4: Nt = N0R

t.

ITP_C02.qxd  09/27/2005  02:05PM  Page 36



DENSITY-DEPENDENT GROWTH AND INTRASPECIFIC COMPETITION 37

To incorporate intraspecific competition into a model, we simply modify the growth-
rate factor, R. One approach is to graph the reciprocal of increase per generation, Nt /Nt+1

versus Nt (Fig. 2.3). If a population is very small (virtually zero), the population is
assumed to grow at the maximal rate, R. Rearranging Equation 1.3, we have Nt/Nt+1 = 1/R.
Point A is therefore (0, 1/R). The carrying capacity, K, occurs when Nt/Nt+1 = 1.0: that is,
when there is no population change from one generation to the next. Point B, then, is 
(K, 1). If we assume that population growth per generation follows a straight line between
points A and B, we have the y-intercept at 1/R and the slope is therefore:

=

The general linear equation y = a + mx becomes:

Nt /Nt+1 = 1/R + Nt

Rearranging and providing the common denominator RK,

Nt /Nt+1 =

Therefore: Nt = Nt+1

And, Nt+1 = (Nt)

If we divide the numerator and the denominator of the right side of the equation by
K, we get:

RK

(Nt)(R − 1) + K
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Figure 2.3 Reciprocal of growth per generation versus population density.
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Nt+1 = (Nt)

Finally:

Nt +1 = (2.1)

Equation 2.1 is known as the Beverton–Holt (1957) model, well known among fishery
scientists, and is very similar in behavior to the traditional logistic equation (Gurney and
Nisbet 1998).

By convention, and to simplify Equation 2.1, we let a′ = (R − 1)/K. Equation 2.1
becomes:

Nt+1 = (2.2a)

A good way to see how this equation encompasses density dependence is to distin-
guish RI, the density-independent growth parameter, from RA, the density-dependent or
“actual” growth parameter. In this case, Equation 2.2a becomes:

Nt+1 = Nt RA (2.2b)

RA = RI(1 + a′Nt)
−1 = = (2.3a)

RA = RI 1 +
−1

(2.3b)

Equation 2.3b tells us that the maximal or density-independent growth rate, RI, is 
modified by the population size at time t relative to the carrying capacity, K. For 
example, if N is very small, the actual growth rate, RA, is virtually equal to RI.

If N = K, however, and if we replace Nt by K, the expression inside the bracket collapses
to RI. Therefore, RA = RI × R I

−1 = 1.0. This means that Nt+1 = Nt(1.0) = Nt. So if N = K there
is no growth in the population and Nt+1 = Nt.

In Table 2.1 notice how Equation 2.3b modifies the RA and the actual population size
with time. The population size after 13 generations for the density-dependent population
is about half that of the density-independent population, and the actual R steadily drops
toward the no-growth value of 1.00.

We must remember, however, that equation 2.3b is based on the two points, (0, 1/R)
and (K, 1), from Fig. 2.3. Furthermore, we assumed a straight line would connect 
these two points. This, in turn, is based on the assumption of exact density dependence
or “exactly compensating” density dependence (Silvertown and Doust 1993). This
assumption appears unrealistic. Hassell (1975) therefore proposed that we could relax this
assumption of exact or linear density dependence by simply modifying equation 2.3b 

J
L

D
F

Nt RI − Nt

K

A
C

G
I

R

N
R

K

R

N R N

K
t

t t

I

I

I

I1
1

1  
  

  

  
  

+
−⎛

⎝⎜
⎞
⎠⎟

=
+

−⎛
⎝⎜

⎞
⎠⎟

RI

1 + a′Nt

Nt R

1 + a′Nt

  

N R

N R

K

t

t1
1

  
( )(   )+ −

(RK/K)

[(Nt)(R − 1)/K] + (K/K)

ITP_C02.qxd  09/27/2005  02:05PM  Page 38



DENSITY-DEPENDENT GROWTH AND INTRASPECIFIC COMPETITION 39

and replacing −1 with the exponent: −b* (Eqn. 2.4). Exact compensation (linear density
dependence) occurs when b* = 1, producing a slope of −1, but overcompensation
(b* > 1, implying a slope < −1) is the result when plant yield, for example, drops more
rapidly than expected with increases in density.

RA = RI 1 +
−b*

(2.4)

Undercompensation occurs when b* < 1, and means that population size drops more
slowly than expected (as compared to exact compensation) as density rises. From Fig. 2.4
you can see that while the actual value of R declines in the density-dependent model, it
declines fastest when b* > 1 (that is, overcompensation), and declines more slowly when
b* < 1 (undercompensation). The thick line in Fig. 2.4 is a linear regression showing how
R is reduced along a linear path when b* = 1.

Figure 2.5 illustrates the time path of population growth under the conditions specified
in Fig. 2.4. Population growth is obviously most rapid with density-independent growth
and is slowest with density-dependent growth and overcompensation (b* = 1.6).

The preceding model can be applied directly to the law of the constant final yield, 
well known from botanical and agricultural research. The law essentially states that 
agricultural yield per area will increase with plant density up to the maximum or “final”
yield. Thereafter, increasing the number of plants per area simply reduces the average 
size per plant (or animal) without increasing total yield (Fig. 2.6). In simple terms we 
can write:

J
L

D
F

Nt RI − Nt

K
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Table 2.1 Density-independent growth compared to density-dependent growth
using Equation 2.3b. N0 = 100, RI = 1.2, K = 1000 in all cases.

Time, t Density- Density- Nt in the case Nt in the case 
independent net dependent net of density- of density-

reproductive reproductive independent dependent 
rate, RI rate, RA growth growth

0 1.20 1.20 100 100
1 1.20 1.17 120 118
2 1.20 1.17 144 138
3 1.20 1.16 173 161
4 1.20 1.16 207 187
5 1.20 1.15 249 217
6 1.20 1.14 299 249
7 1.20 1.14 358 285
8 1.20 1.13 430 323
9 1.20 1.12 516 364

10 1.20 1.11 619 408
11 1.20 1.10 743 452
12 1.20 1.09 892 498
13 1.20 1.08 1070 543
14 1.20 1.07 1284 588
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C = NW (2.5)

where
C = the final constant yield in kilograms per area,
N = the density of plants, that is, the number per unit area, and
W = mean mass per plant in kilograms.
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This equation, however, only provides information about the end point of a dynamic
process. Just as RA = RI(1 + a′Nt)

−1 in Equation 2.3a, the actual mean mass per plant, 
W, can be expressed as a function of its maximum potential mass when grown under 
density-independent conditions.

W = wm(1 + a′N)−b* (2.6)

where
wm = maximum potential mass per plant
a ′ = a carrying capacity parameter.

In this case, a′ is often interpreted as the amount of area needed for each individual plant
to achieve its maximum growth potential, and b* provides a mechanism for different 
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after which there is no increase in total yield. (b) As density increases, mass per
individual decreases linearly on a log–log scale.

ITP_C02.qxd  09/27/2005  02:05PM  Page 41



42 CHAPTER 2

reaction rates to density. As before, when b* = 1, there is exact density-dependent 
compensation and the law of the final constant yield is obeyed in a linear fashion. Com-
bining Equations 2.5 and 2.6, we have an equation that describes the effects of density-
dependent growth on yield under a variety of conditions. Plant populations may vary between
plots, and different plant parts (grain yield or above ground biomass, for example) may
respond differently to changes in density. Equation 2.7 produces different-shaped curves
as the value of b* is varied.

C = Nwm(1 + a′N)−b* (2.7)

The shapes of the curves would be similar to those of Figure 2.5, except that the y-axis
would be output in mass rather than population density. Part of the dynamic process 
leading to the law of the constant yield involves an increase in mortality (self-thinning)
over time as populations increase in density. As a new population is established in a suit-
able habitat, self-thinning follows several steps. (i) As individuals grow, they increase in
size (mass). (ii) When a critical density is reached, known as the thinning limit, density-
dependent mortality begins; this step occurs earlier in populations with higher initial 
density. (iii) Eventually the population reaches a stage where any increase in the mass of
some individuals is offset by mortality of other members of the population. Total mass
no longer increases and the final constant yield in mass per unit area has been reached
(Figure 2.6). The point of final yield is reached more quickly in populations with higher
initial densities.

Although the increase in mortality with population density is usually assumed to be 
linear in models such as the logistic (see below), we can introduce nonlinear responses,
as shown in Equations 2.4, 2.6, and 2.7 above, and in Equations 2.11 and 2.13 below.

2.3 Density dependence in populations with overlapping generations

The logistic equation

The more familiar treatment of density dependence is to examine growth curves such as
Figure 2.1, and apply a modification of the differential equation: dN/dt = rN. The result-
ant equation, known as the logistic, can be derived as follows. Examine Fig. 2.2 once more.
The y-axis is per capita growth rate (dN/dt)(1/N). Since the per capita growth rate = r when
N is very small, we can identify a point A as the y-intercept (0, r). When N = K, accord-
ing to theory, per capita population growth stops. Therefore point B, along the x-axis,
would be the point (K, 0). As in the previous example, if we assume that populations respond
in a linear manner to population density, we use these two points to describe a straight
line. The slope of this line is:

(0 − r)/(K − 0) = −r/K

The y-intercept is r and we have:

(dN/dt)(1/N) = (−r/K)N + r

Rearranging, we now have:
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dN/dt(1/N) = r 1 − = r

Multiplying both sides of the equation by N reveals the usual form of the logistic.

dN/dt = rN (2.8)

Although the logistic is in the form of a differential equation, it is fairly easy to under-
stand how it affects population growth. Again, it is useful to examine what the equation
does to the growth rate, r. As above, we will distinguish between ra, the actual growth rate
as modified by carrying capacity, and rm, the density-independent growth rate. rm has also
been called r-max or the Malthusian parameter. r-max represents the maximal growth rate
of a genotype as it interacts with the environment without competition.

ra = rm (2.9)

When the population is very small, N ≈ 0, and ≈ 1. Therefore, ra ≈ rm.

When N = 0.5K, then the expression = 0.5, and ra = (0.5)rm.

When N = K, the expression = 0 and ra = 0.

Finally, when N > K, the expression < 0. Therefore ra is negative and the 

population drops back toward K.

The differential form of the logistic equation can be integrated and solved, resulting in
the following:

Nt = (2.10a)

where a is a constant of integration.
Dividing both sides of the equation by K yields:

=

Taking the inverse:

= 1 + ea−rtK
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Manipulating, we get:

= ea−rt

Finally, taking the natural log of both sides gives us:

ln = a − rt (2.10b)

This expression is useful because it becomes the equation for a straight line with a =
y-intercept and the slope equal to −r (see Fig. 2.7). When t = 0 the y-intercept, a, becomes:

a = ln

This gives us another form of Equation 2.10a, in which a, the constant of integration, is
replaced by the y-intercept:

(2.10c)

Furthermore, if we graph ln versus t (Fig. 2.7), the absolute value of the 

slope of the line approximates r. This allows us to estimate the actual value of r over a 
specified time period. For example, if we use the example, once again, of the Paramecium
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Figure 2.7 Estimate of actual r for a Paramecium population using 
the logistic equation.
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population in Table 1.3 and Figure 2.1, we can determine its actual growth rate, ra, over 

the eight days of the experiment. We simply add a column for the expression ln

(Table 2.2). To do this, however, we must have an approximation for the carrying capa-
city, K. In Table 2.2, K is estimated as 400.

In Fig. 2.7 a linear regression identifies the slope as −0.73 (R2 is the proportion of the
variance explained by the linear model). The actual r is therefore 0.73, as compared to the
rmax of 0.89 calculated in Chapter 1.

In understanding how the logistic affects population growth, it is instructive to 
examine population growth, dN/dt, as a function of population size. Since dN/dt =

rN , it also equals rN 1 − , which equals rN − (rN2) . If we set dN/dt

equal to zero, there are three solutions to this equation: r = 0, N = 0, or N = K. If we assume
that r > 0 we are left with two solutions (N = 0 and N = K). That is, dN/dt = 0 when N = 0
and when N = K. The result of plotting dN/dt versus N results in a parabola (Fig. 2.8).
Maximum growth (dN/dt) occurs where N = K/2, which is 500 in this case, since we have
set K = 1000. The problem with this solution is that, since maximum growth theoretically
occurs at half carrying capacity, harvesting of wild living resources was managed with that
number as a goal. This has led to the decimation of many populations since stochastic
and density-independent mortality were not accounted for.

Assumptions of the logistic equation

How much trust can we put in either the traditional logistic equation or the Beverton–
Holt equations? Is the typical logistic growth curve actually found in biological populations?
Laboratory studies on growth of protozoan populations such as Paramecium caudatum,
yeast, Drosophila, grain beetles and diatoms (Gause 1932, 1934, Vandermeer 1969, Pearl
1927, Crombie 1945, Park et al. 1964, Tilman 1977), do consistently show a logistic growth
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Table 2.2 Estimating ra, (r actual) from the solved form of the logistic equation.
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See Figure 2.7.

Time in days Number per 0.5 ml sample, N ln

0 14 3.32
1 41 2.17
2 116 0.90
3 193 0.07
4 244 −0.45
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8 375 −2.71
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curve. A number of field populations have also followed logistic growth fairly closely. Examples
include Tasmanian sheep (Ovis aries) (Davidson 1938), wildebeest (Connochaetes tauri-
nus) (Deshmukh 1986), willows (Salix cinerea) (Alliende and Harper 1989) and barnacles
(Balanus balanoides and Chthamalus stellatus) (Connell 1961a, 1961b). However, there 
are many more cases where populations grow cyclically or unpredictably and generally do
not display logistic growth. An examination of the assumptions of the logistic equation
explains why many populations display non-logistic growth patterns.

Assumptions of the logistic equation:

1 The carrying capacity is a constant;
2 population growth is not affected by the age distribution;
3 birth and death rates change linearly with population size (it is assumed that

birth rates and survivorship rates both decrease with density, and that these
changes follow a linear trajectory);

4 the interaction between the population and the carrying capacity of the environ-
ment is instantaneous: that is, the population is “sensitive” to the carrying
capacity with no time lags;

5 abiotic, density-independent factors do not affect birth and death rates (no 
environmental stochasticity);

6 crowding affects all members of the population equally.

Considering all of the above, it is not surprising that populations in the field do not
often stay at a given density for long periods of time. In the laboratory, when we grow 
a Paramecium population, its growth curve often fits the logistic since: (1) it is main-
tained in a constant environment, which should have a constant carrying capacity; (2) it
reproduces via binary fission and has no age structure; (3)–(6) are seemingly irrelevant or
satisfied. Once we step into the field and work with insects, vertebrates, or plants, several
of these assumptions are violated.
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Figure 2.8 Population growth as a function of N based on the logistic equation.
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Because these assumptions cannot be met, a natural population is unlikely to long remain
“at equilibrium” with the environment. In the next two sections we will examine assump-
tions 3 and 4 in some detail, since their effects on population growth are less obvious and
more interesting than might be expected.

2.4 Nonlinear density dependence of birth and death rates and 
the Allee effect

As mentioned above, density-dependent birth and death rates are assumed to vary lin-
early with density (Fig. 2.9). Although it is known from both laboratory (Smith and Cooper
1982) and field studies (Arcese and Smith 1988) that birth and death rates are often non-
linear (Fig. 2.10), such differences seem to have a minimal impact on natural populations.
One major exception, however, is known as the Allee effect (Allee 1931). Allee proposed
that many species have a minimum viable population (MVP) size. As described in
Chapter 1, although Allee may have had a specific number in mind, below which death
rates rise and/or birth rates collapse, a more modern view is that the probability of extinc-
tion has become unacceptably high when a population becomes small (Shaffer 1981, Miller
and Lacy 2003), but there is no one specific number described as a MVP.

Why should there be higher death rates in very small populations? Proposals include:
(i) group cooperation reduces losses from predators; (ii) group foraging for food is more
efficient (foraging facilitation); and (iii) small populations are more subject to density-
independent or stochastic extinctions as well as genetic effects such as inbreeding depres-
sion. Low birth rates in small populations could result from pollination failure in plants,
male and female animals unable to locate each other, or the chance of a very unequal sex
ratio (large number of males, few females).
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Figure 2.9 Linear response of birth and death rates to population density. b, birth
rate; d, death rate; r, intrinsic rate of increase; K, carrying capacity.
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For example, the common guillemot or murre (Uria aalge) nests in colonies. Breeding
success in south Wales was found to be only 25% in the least dense populations as com-
pared to an average of 75% in the densest populations (Birkhead 1977). The reason for
this appears to be that predation on eggs and chicks by gulls is reduced in dense guille-
mot populations. A similar result was obtained in a study on lapwings (Vanellus vanellus)
in which egg clutches lost to avian predators declined with an increase in the number of
close neighbors (Berg et al. 1992). Nest parasitism also appears to increase in low popu-
lations. For example, small dickcissel (Spiza americana) populations are particularly hard
hit by brown-headed cowbirds (Molothrus ater) (Fretwell 1986).

Other studies have found that cooperative hunters such as lions, hyenas, wolves and
various fish species have much higher success rates when hunting in large groups and do
poorly when population sizes fall (Caraco and Wolf 1975, Major 1978). This translates
into a higher mortality rate in the smaller groups. From the perspective of the prey, a dense
population is harder to surprise, and mortality from predation is lower in larger prey 
populations (Kenward 1978, Jarman and Wright 1993). Colonial nesting sunfishes have
even been found to suffer lower rates of fungal infections on their eggs as compared to
solitary sunfish (Cote and Gross 1993). Therefore higher density leads to higher, not lower, 
survivorship.

Although this is an oversimplification, we can illustrate the Allee effects graphically by
identifying a minimum viable population size, MVP (Fig. 2.11). Below point MVP, the
population declines to extinction. Above point MVP the population increases rapidly before
slowing down as it approaches K. The value of r is positive above MVP and below K, but
is otherwise negative (Figure 2.11).

The extinction of the heath hen (Tympanuchus cupido) is a likely example of the Allee
effect. By 1870, hunting and habitat loss had restricted it to Martha’s Vineyard off the coast
of Massachusetts. In 1908 a 650 ha refuge was established and the population grew to about
2000 birds. In 1916, however, a fire swept across the island, destroying nests, eggs, and
females on the nests. The following winter was severe and an unusually heavy concentration
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Figure 2.10 Nonlinear response of birth and death rates to population density.
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of goshawks (Accipiter gentilis) arrived. The population was reduced to less than 150, of
which most were probably males. By 1928 the population had declined to a single male
that died in 1932. In this case, abiotic effects contributed significantly to the extinction 
of the heath hen. Although we can never be sure, it appears likely that something of 
a similar nature happened to the passenger pigeon (Ectopistes migratoris) described 
in the introduction to Part I. They were mercilessly hunted and no one imagined the 
possibility of extinction. But once their flocks were drastically reduced, they appeared 
unable to recover (Souder 2004).

Nonlinear modifications to the logistic

In order to evaluate the potential for a nonlinear feedback on the logistic population response,
we can modify Equation 2.10c by adding the term b*, as we did in Equation 2.4 and 
Figs 2.4 and 2.5. Recall that a value for b* of 1.0 describes “exact compensation” and 
depends upon the linear response by the population to a carrying capacity. A b* > 1 illus-
trates overcompensation and a b* < 1 describes undercompensation. We can modify
Equation 2.10c by adding a b*-value:

(2.11)

Figure 2.12 illustrates the effect of a nonlinear feedback on logistic growth. The popu-
lation with the b*-value of 0.6 grows the most rapidly, whereas the population with 
the b*-value of 1.6 grows the most slowly. As in Fig. 2.4, when b* > 1, small increases 
in density result in a rapid drop in the actual value of the growth rate, r, as a result of
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Figure 2.11 Birth and death rate versus population density, showing the Allee
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overcompensation. Similarly a b*-value < 1 results in undercompensation and a higher
actual r-value.

The theta logistic model

As illustrated by Figs 2.22–2.26 in section 2.8, the life history of a population frequently
does not respond to increases in density in a linear fashion, as assumed by the logistic
equation. A well-known variation of the logistic model, known as the theta logistic, more
elegantly introduces nonlinear density dependence than we did in the previous section.
First, we must introduce another model from fishery science, the Ricker (1952) model,
which is a useful discrete form of the logistic.

To find the Ricker, we begin by making a distinction between the actual rate of increase,
ra and the exponential rate of increase, rm or rmax, as we did above in Equation 2.9.

ra = rm = rm 1 −

Now let us substitute ra for r in the equation for exponential growth (Eqn. 1.8), which
gives us:

Nt = N0 erat

Next we transform this to a simple difference equation for adjacent time intervals Nt+1

and Nt. Since this is one time step and t = 1, we can remove t from the exponent in the
above equation.
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Figure 2.12 Effect of nonlinear feedback on logistic growth.

ITP_C02.qxd  09/27/2005  02:05PM  Page 50



DENSITY-DEPENDENT GROWTH AND INTRASPECIFIC COMPETITION 51

Simultaneously we will substitute rm[1 − (N/K)] for ra. The result is Equation 2.12, the
Ricker equation:

Nt+1 = Nt e
r

= Nt e
r 1−

(2.12)

This equation can be modified with the parameter θ (theta) as a superscript of the ratio
N/K (Eqn. 2.13). The theta logistic was originally proposed by Gilpin and Ayala (1973).
When θ = 1.0, we have the traditional logistic growth response to density. When θ < 1.0
density dependence is strong even when the population is far below the carrying capa-
city. By contrast, when θ > 1.0 density dependence is weak until the population is close to
the carrying capacity.

Nt+1 = Nt e
r 1−

θ

(2.13)

For example, in Fig. 2.13, we can examine the effect of θ on an actual or realized 
r-value. In each case the rmax is 0.25, the carrying capacity is 1000 and the initial popula-
tion size equals 10. As predicted from the logistic, when θ = 1 the decline in the actual 
r-value is linear as the population increases. When θ is less than 1.0 the actual r-value 
decreases rapidly with population size. By comparison, if θ is greater than 1.0 we can see
that r remains close to rm until the population gets much closer to the carrying capacity.

If we examine population growth versus time for the same theta values, the expecta-
tion is that growth will be suppressed at low population levels when theta is less than 1.0,
but that the population will approach the carrying capacity quickly when theta is greater
than 1.0. These predictions are borne out by Fig. 2.14.

As shown by Saether et al. (2002) the theta logistic is a powerful model for analyzing
variation in density dependence among bird populations, and is the basis for other 
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population models (for example, predator–prey interactions) in which we do not want to
assume a linear relationship between population density and survivorship, fertility, or r.

2.5 Time lags and limit cycles

Assumption 4 of the logistic equation, in which populations are assumed to respond imme-
diately to carrying capacity, is highly unlikely for populations with great reproductive poten-
tial. In order to explore this possibility, we can introduce a “lag time” effect into the logistic
equation. Using the discrete time form of the logistic (Eqn. 2.1), substituting λ for R, and
remembering that λ = e r, Equation 2.12 is an equivalent to Equations 2.1 and 2.10c. To
introduce time lags, Equation 2.14 is modified as shown in Equation 2.15 (Pielou 1977).

(2.14)

(2.15)

A more familiar form of this same equation is simply:

dN/dt = rNt (2.16)

in its continuous form, and

D
F

K − Nt−T

K

A
C

  

N
N

N

K

t
t

t

+
−

=
+

−
1

1
1

  

  
(   )

λ

λT

  

N
N

N

K

t
t

t

+ =
+ −

1

1
1

  

  
(   )

λ

λ

P
op

ul
at

io
n 

si
ze

1200

1000

800

600

400

200

0

Theta = 5.0

Theta = 2.0

Theta = 1.0

Theta = 0.50

Theta = 0.25

0 10
Time

20 40 5030

Figure 2.14 Behavior of the theta logistic. In all cases rmax = 0.25 and K = 1000.
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Nt+1 = Nt e
r

(2.17)

in its discrete form. This is a simple modification of equation 2.12, the Ricker model.
Where Nt appears, it is modified by the Greek letter tau (T). The population responds

to the carrying capacity based on what the population size was tau time-units in the past.
Robert May and others (May and Oster 1976, May 1981a) have shown that lag time, com-
bined with the intrinsic rate of increase (r), produces a predictable and interesting series
of modifications to logistic growth. The product of r and T determines the behavior of
the population. As summarized below, long time delays before the population reacts to
carrying capacity, combined with a high growth potential, lead to population behaviors
that wander further and further from the stable point at K predicted by the logistic 
equation.

If 0.37 > rT > 0, the population follows the logistic equation, and the population
achieves a stable number (or stable point) at the carrying capacity with no
oscillations.

If 1.57 > rT > 0.37, the population is temporarily oscillatory, but the oscillations
dampen to a stable point at the carrying capacity.

If 2.0 > rT > 1.57, the population undergoes permanent oscillations around the
carrying capacity. This is called a limit cycle.

If rT > 2.0, the oscillations are so violent that the population goes extinct.

Figure 2.15 displays five simulations based on Equation 2.17. In series 1, tau = 0 and we
have the usual logistic growth curve. In series 2 the product of rT = 0.90, and in series 3
the product is 1.20. We expect temporary oscillations converging on a stable point at the
carrying capacity in both of these cases. In series 4 the product of rT = 1.80 and we have
a stable limit cycle. Finally, in series 5, the product of rT = 2.70. We expect extinction, and
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although the simulation shows two population cycles, in reality the population is extinct
after 30 time units.

2.6 Chaos and behavior of the discrete logistic model

Time lags are implicit in the discrete logistic model. We can actually remove tau from
Equation 2.17 and return to Equation 2.12:

Nt+1 = Nt e
r

= Nt e
r 1−

As May (1975a, 1975b, 1981a), and May and Oster (1976) have shown, if the growth
rate (r or λ) is very large, populations behave in unusual and unexpected ways.

Recall that if b* > 1, the population shows overcompensation. That is, there is a larger
than expected reduction in growth rate or biomass due to density dependence. As shown
in Table 2.3, if the combined values of r and b* produce a net rate of increase with a large
reproductive potential, the population moves from a stable equilibrium at the carrying
capacity to fluctuations which ultimately reach chaos when the net r is large enough. 
For example, when r is less than 2.0 (R or λ < 7.39), the population moves to a stable 
point (Fig. 2.16), although note that when r = 1.5 there is a small oscillation before the
population settles in at the carrying capacity. At r-values between 2.0 and 2.53 (Fig. 2.17,
Table 2.3) the population regularly cycles between two points. For r-values between 2.53
and 2.66, the population cycles among four points (Fig. 2.18). An eight-point cycle is 
produced by r-values between 2.66 and 2.69. Finally, at r-values > 2.69 (R or λ > 14.761)
the behavior of the population is known as chaos (Fig. 2.19). That is, the population never
enters into a predictable pattern. Over short periods, these chaotic fluctuations would be
indistinguishable from seemingly random responses to the environment. A deterministic
model, then, can produce results that appear to be stochastic and, if one were looking for
biological causation for the behavior of such populations, one would be confused indeed.

D
F

Nt

K
A
C

D
F

K−Nt

K
A
C

P
op

ul
at

io
n 

si
ze

600

500

400

300

200

100

0

r = 0.50

r = 1.5

0 10
Time

20 50 6040 7030

Figure 2.16 Behavior of the discrete logistic model: stable equilibrium point 
when r < 2.0.
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Figure 2.17 Behavior of the discrete logistic model: two-point cycle when r = 2.20.
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Figure 2.18 Behavior of the discrete logistic model: four-point cycle when r = 2.60.

Table 2.3 Behavior of the discrete logistic model based on the net growth
parameter, r, with equivalent values of R or l. Net growth is influenced by the
nonlinear feedback parameter b*, when b* ≠ 1. Adapted from May (1975b), May 
and Oster (1976), and Alstad (2001).

Net growth rate, r Equivalent value of R or l Behavior of the discrete
logistic model

2.000 > r > 0 7.389 > l > 1.000 Stable equilibrium point
2.526 > r > 2.000 12.503 > l > 7.389 Two-point cycle
2.656 > r > 2.526 14.239 > l > 12.239 Four-point cycle
2.685 > r > 2.656 14.658 > 14.239 Eight-point cycle

r > 2.692 14.761 Chaos
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2.7 Adding stochasticity to density-dependent models

Just as we did in Chapter 1, we can perform stochastic simulations with density-dependent
models. Using the Beverton–Holt model (Eqn. 2.1), Fig. 2.20 shows a deterministic
growth curve for an initial population size of 100, a carrying capacity of 1000, and a deter-
ministic value for lambda of 1.1. In order to simulate the effects of demographic stochasti-
city, we can add a random function in Excel™ that allows lambda to vary with a mean 
of 1.1 but with a variance of 0.03. One such result is shown in Fig. 2.20. In this particu-
lar case, when the population is small it does not grow very quickly, but it eventually reaches
the carrying capacity. Notice that it takes over 100 time units to reach carrying capacity
even though the deterministic population reaches K at around 50 time units. Running 25
stochastic simulations in this manner produces a range of population sizes after 100 time
units of 128–1000 with a mean of 904 individuals. The lessons are basically the same as
in the previous chapter: adding variability leads, in most cases, to a smaller population
than that expected from a deterministic model.

Using the Ricker model (Eqn. 2.12), we next simulate both demographic stochasticity
(adding variability to r) and environmental stochasticity (by allowing K to vary with time)
in Fig. 2.21. In all cases the initial population size is 50, the deterministic r is 0.1, and the
carrying capacity is 1000. We have also allowed both r and K to vary simultaneously 
in one series of simulations. In Fig. 2.21 we see that the population in which both r and
K are allowed to vary goes extinct. The population with the stochastic r eventually 
reaches carrying capacity and the population with the stochastic K goes through several
crashes. The results of these simulations depend on how much variability we allow for
demographic versus environmental stochasticity. Suffice it to say to the combined effects
of demographic plus environmental stochasticity raise the probability of extinction and,
as above, variability normally produces smaller populations.
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Figure 2.19 Behavior of the discrete logistic model: chaos when r = 2.75.
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Figure 2.20 Deterministic versus stochastic growth in a population with an initial
population size of 100, a carrying capacity of 1000, and a deterministic l of 1.1. In
the stochastic model, the deterministic average l is 1.1 with a variance of 0.03.
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(K ) on behavior of the Ricker model. Initial population size = 50, deterministic 
r = 0.1, carrying capacity K = 1000.

ITP_C02.qxd  09/27/2005  02:05PM  Page 57



58 CHAPTER 2

2.8 Laboratory and field data

According to the assumptions discussed above, an increase in population density should
lead to one or more of the following:

1 a linear increase in mortality;
2 a linear decrease in fertility;
3 a reduction in average growth rate; and
4 a reduction in the average size of adults.

Crombie (1942, 1944) showed that flour beetles (Rhizopertha dominica) raised in the
laboratory were negatively affected by density. Both survivorship (Fig. 2.22) and fertility
(Fig. 2.23) decreased with density, although in both cases the effects were nonlinear. Moreover,
many large mammal populations have fertility and mortality patterns that show density
dependence but are also nonlinear (Figs 2.24 and 2.25; Fowler 1981). Nonlinearity
extends to bobwhite quail (Colinus virginianus) (Roseberry and Klimstra 1984) and clado-
cerans (Smith and Cooper 1982). On the other hand, both elk (Cervus elaphus, called red
deer in Europe) (Fig. 2.26, Houston 1982) and grizzly bears (Ursus arctos) (McCullough
1981) show a linear decrease in fertility with population density.

Two examples of reduction in growth rate with density will suffice here. The first is that
of the growth of tadpoles of the frog Rana tigrina. Whereas it takes only two to three weeks
for tadpoles to develop into mature frogs at densities of 5 to 10 (in a 2-liter aquarium),
it takes almost ten weeks when there are 160 frogs in the same space (Dash and Hota 1980).
In harp seals (Phoca groenlandica) sexual maturity is achieved when an individual reaches
87% of mean adult body weight. In low populations this occurs at between 4 and 5 years,
whereas in dense populations sexual maturity is reached at between 6 and 7 years (Lett 
et al. 1981).
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Figure 2.22 Survivorship of the grain beetle Rhizopertha dominica versus initial
density of first-instar larvae.
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The body size of adults is also affected by density in many populations. For example,
in highly dense reindeer (Rangifer tarandus) populations, mean jaw size of adults is 23
cm, whereas at low density the mean size is between 24 and 25 cm (Skogland 1983). As
we saw in Section 2.2, the response to an increase in density among plant populations is
a reduction in mean weight per individual. The same principle applies to sessile animal
populations. When Branch (1975) examined populations of limpets (Patella cochlear), the
most common diameter was 60 mm when there were 125 individuals per square meter.
When the density was increased to 1225 per square meter, the most common size class
was 20 mm. The total biomass obeyed the law on the constant final yield (Fig. 2.6a). Biomass
increased with density up to 400 individuals per square meter, but then leveled off at 
125 g per square meter for all densities from 400 to 1225.
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Figure 2.23 Fertility versus density in Rhizopertha dominica.
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Figure 2.24 Survivorship of northern fur seal (Callorhinus ursinus) pups as a
function of pups born. After Fowler (1981).
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2.9 Behavioral aspects of intraspecific competition

Castes in social insects

Passera et al. (1996) have shown that intraspecific competition may affect the ratio of castes
among social insects. Colonies of the ant Pheidole pallidula increase their relative invest-
ment in soldiers when exposed to other colonies of the same species. The worker force is
divided into two basic castes: small-headed minors (workers) who do most of the labor,
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and large-headed majors (soldiers) specialized for defense. In a laboratory experiment, when
colonies were exposed to odors from a conspecific colony, they increased the number of
soldier pupae. After seven weeks, those colonies exposed to conspecific odors averaged 
40.1 soldiers as compared with an average of 22.6 soldiers in the control colonies.

Male–male competition in horned beetles

The complexities of intraspecific competition are illustrated through elegant work on horned
beetles (Emlen 2000). Beetle horns are rigid extensions of the exoskeleton and have
evolved repeatedly within this order of insects. These horns are generally only expressed
in males and are used in combat with other males for access to resources and/or females.
These resources are in discrete, readily defensible patches, and the horns allow males 
to defend these sites and to mate with the females found there. The jousting contests 
between males can be dramatic and the winner is rewarded with mating privileges.

These horns, however, do not come without cost. They constitute a large investment
in energy, and as much as 10% of body mass may be devoted to them. Horn growth pro-
longs development time and risk of larval mortality, and there is a trade-off between horn
development and the ability to fly. Finally, the development of horns leads to lowered visual
acuity and to smaller eyes. Nevertheless, it appears that since larger horns are useful in
gaining access to females, the reproductive benefits gained from large horns offset the costs
of production and maintenance.

The ability of males to grow horns is based on larval nutrition. Both final adult body
size and the size of horns in males depend on the amount of food they consume as 
larvae. Males exposed to poor conditions as larvae are small and do not produce horns,
whereas well-fed males become large adults able to produce horns. Horn production shows
an insignificant level of heritable genetic variation (Moczek and Emlen 1999).

These complexities and trade-offs are illustrated through studies of dung beetles of the
genus Onthophagus. The basic life history of these beetles is as follows. After finding a patch
of dung, a female digs a tunnel in the soil beneath the dung. She then buries dung below
ground to provide nutrition for the larvae. Females spend days inside a single tunnel, pulling
down pieces of dung to various blind ends of tunnel branches, each with its “brood ball”
of dung. A single egg is laid at the top of a brood ball, and a single larva develops in 
isolation within the brood ball.

Females mate repeatedly with males during the time of egg laying. Male reproductive
behavior consists of securing their unique access to females in the tunnels. The large, horned
males guard the tunnels and fight other males trying to approach the females. Larger males
with larger horns win these fights. For two males of the same size, the one with the larger
horns usually wins. Thus long horns provide males with significant advantages.

However, all is not lost for a small male. Although they are not adept at guarding entrances
to tunnels or winning jousts, small males have other tactics. They attempt to slip un-
detected past the large males, or they dig side tunnels that intercept a guarded tunnel 
well below ground. Thus hornless males may manage to sneak undetected into guarded
tunnels and mate with the female. If such a “sneaker” male is caught, he is chased out 
by the resident male, who then returns to the female and mates with her. This dilutes or
displaces sperm from the sneaker male. Sneaker males actually do best when they have no
horns at all, since horns get in the way of sneaking! Success for a small male depends on
rapid and undetected entry into tunnels, and horns cause vibrations as they scrape against
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tunnel walls, which would alert the resident male. Finally, as mentioned earlier, beetles
with very large horns tend to have undeveloped eyes and/or a diminished flying ability
due to smaller wing size and greater body weight. Since dung is a temporary resource,
another component of fitness is the ability to disperse and locate new dung heaps. As the
dung resource diminishes, some of the males, as larvae, will receive a less-than-optimum
amount of food. They will be small and lack horns. Thus, although they would be poorly
equipped to defend a female in a burrow, they are well adapted to disperse and find a new
dung pile.

Both intraspecific competition and sexual selection are played out on the fields of manure.

Male–female competition in dunnocks

Another aspect of intraspecific competition is competition between the sexes as expressed
through mating systems. Obviously ecological conditions can influence the mating 
behavior of individuals. As conditions change, a cooperative pair or an animal society may
quickly dissolve into a set of competing individuals. The following study (Davies 1992,
1995) illustrates some of the complexities in what appears to be a simple pair-bonded 
mating system.

The dunnock (Prunella modularis), formerly known as the hedge sparrow, is not a true
sparrow but an accentor. In Old English “dun” means brown and “ock” means little. 
Thus P. modularis is the archetypal little brown bird. It seems unremarkable as it shuffles
about under the bushes collecting tiny insects for its young. The impression gained is 
of harmonious cooperation. The Reverend Morris (1856, in A History of British Birds) 
admired this species so much that he urged his parishioners to emulate its behavior. 
The Reverend, as quoted by Davies (1992), found this bird to be “unobtrusive, quiet and
retiring, without being shy, humble and homely . . . sober and unpretending in its dress
. . . while still neat and graceful . . .” Due to its extraordinary mating system, however, 
the Reverend Morris would hardly have been pleased had his congregation followed the
example of these birds. Although a dunnock territory can contain one seemingly har-
monious pair, a female in the territory next door may be mating with two males, or a
male may be mating with two females.

The conventional view of pair formation in songbirds is that males first set up ter-
ritories and advertise for mates by singing. Females then choose among male territories.
However, in dunnocks females defend their own territories against other females, 
occupying exclusive areas with little overlap among neighbors. Females settle independently
of the males, based on the quality of the territory. Males then compete to defend the females
from other males.

The fact that males and females set up territories independently results in a wide 
variety of mating behaviors. In some cases, a single male defends one female territory 
(producing monogamy); at other times a male defends two adjacent females (producing
polygyny). In other cases two males share the defense of one female (polyandry), or 
several adjacent females (polygynandry).

If two males share a territory with a single female, the dominant or alpha male (usu-
ally the older one) tries to evict the beta male. If he is unsuccessful, the two share defense
of the joint territory. Some males wander for weeks before finding a permanent home.
Sometimes a beta will overlap with two alphas. The larger the territory of the female, the
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harder it is for a male to monopolize her. The larger the male territory, the more likely
he is to have two females.

Once a female has built her nest, she solicits copulations from males. Mating begins
3–7 days before the first egg is laid, and lasts up to completion of the clutch of 3–5 eggs.
One egg is laid per day during this period. Monogamous males chase off neighboring males
who are interested in mating. When two males share a territory, the alpha male follows
the female everywhere to prevent her from copulating with the beta male. A female often
maneuvers to throw off the alpha male. She then solicits the beta for mating. Females have
many tricks, and seem intent on preventing exclusive mating by the alpha.

The act of copulation was described by Selous (1933) as “bizarre.” “The hen elevated
her rump and stood still, when the male, hopping up, made little excited and very wanton-
looking pecks in this region, that is to say the actual orifice. There was actually no 
mistaking the nature and significance of the actions, rather lecherous, as it seemed to me.
This is a very remarkable thing . . . but I do not understand it” (Selous 1933, pp. 107–9).
During the pecking described by Selous, the female cloaca makes pumping movements,
resulting in the ejection of a small droplet of fluid. As soon as this occurs the male 
copulates with her.

Davies (1992) analyzed the droplets and discovered that they contain masses of sperm
from the previous matings. Like other birds, female dunnocks store sperm. Females with
two males may copulate up to six times per hour. As a result, there will be a pool of sperm
in the female’s cloaca and vagina for much of the mating period. The male’s pecking 
stimulates the female to eject this pool of sperm to make way for his insemination and
give his own sperm a better chance of being stored.

After the excitement of the mating period, life on a dunnock territory becomes peace-
ful during incubation. Females incubate the clutch of eggs alone for 11–12 days. Males
help with chick feeding for 11–12 more days in the nest and for two weeks after fledging
until the young become independent.

The results of DNA tests on the blood of the chicks and the parents showed that the
female is the mother of all chicks in the nest. In monogamous and polygynous territories,
the male was the father of all chicks. When two males guarded a territory with one female,
however, if the female mated with both males, paternity was mixed. The alpha male fathered
55% of the brood and the beta male 45%.

From the female perspective, when both males mated with her they both helped feed
the brood. If she mated exclusively with the alpha male, only he helped feed the brood.
Males, however, cannot recognize their own young. If they have mated with the female,
they will help raise the young, even in cases where they did not happen to father any of
the chicks. If a beta male gained a large share of the copulations he more readily helped
with feeding of the chicks. Similarly, if an alpha male was removed experimentally, allow-
ing the beta a larger share of the matings, the beta male worked harder to feed the chicks
than did the alpha. Thus, males varied their parental effort in relation to their chance of
paternity, not simply according to dominance rank.

For a female, polygyny is the least desirable situation. She must share the help of one
male with another female, and some of her chicks often starve to death. A polyandrous
female was the most successful because she had the help of two males in raising her young.
This explains why the females sneaked around and tried to get the beta males to mate
with them. They hoped for future help in rearing of the young.

ITP_C02.qxd  09/27/2005  02:05PM  Page 63



64 CHAPTER 2

For a male, the situation is reversed. In polygyny, although each female is less produc-
tive, the combined output of two females often exceeds that of one female in monogamy.

Thus the mating system reflects an intraspecific competitive battle between the sexes 
in dunnocks. Behavioral and genetic studies of other bird species show that the dunnock
mating system is not unusual. However, extra-pair copulations and fertilizations vary across
species for reasons only poorly understood (Petrie and Kempenaers 1998, Blomquist 
et al. 2002). Extra-pair paternity is much less frequent in non-passerine than in passerine
birds (Birkhead et al. 2001). For example Blomquist et al. (2002) found that in western
sandpipers (Calidris mauri) only 5% of all chicks were the product of extra-pair matings.
Nevertheless the application of molecular techniques to behavioral studies has allowed us
to ask new questions about the mechanisms of intraspecific competition.

Competition versus cooperative behavior within a group

Research on lions by Heinsohn and Packer (1995) illustrates the behavioral complexities
displayed by animals that are simultaneously territorial and cooperative group-foragers.
African lions (Panthera leo) engage in a wide variety of group-level activities from hunt-
ing to communal cub rearing. At the same time, the group defends a territory from other
groups of lions. When prey is difficult to capture they hunt cooperatively, but coopera-
tion breaks down when prey is easy to catch. Female lions nurse each other’s young, 
but, more importantly, they jointly protect their young from males that are intent upon
infanticide. The threat of attack by conspecifics is a driving force in lion sociality. Large
prides dominate smaller ones, and solitary lions are often killed or injured during attacks
by lions of the same sex.

Using playbacks of recorded roars, Heinsohn and Packer found that lions are able to
distinguish pride members from strangers. They also found that certain females show a
consistent behavior of lagging behind their companions during group activities, includ-
ing hunting.

Female lions live in social groups (prides), which contain 3–6 related adults, their 
dependent offspring, and a group of immigrant males. The males defend the pride against
incursions by other males; females defend their young against infanticidal males, and 
the territory from other females. At least two females are needed for a territory, and they
advertise ownership by roaring. Using broadcasted roars, the investigators showed that 
some females become “laggards” early in life, and this behavior persists into adulthood.
Laggards were those individuals that hung back, and approached the audio speaker only
after the leaders had already responded. The order in which the individuals approached
the speaker was the same throughout the playbacks. Because territorial fights often lead
to injury or death, laggards were ensuring their safety, at least from initial attacks. They
typically followed the leaders by 30 to 120 seconds.

In the theoretical game or model known as “prisoner’s dilemma,” in any single task
two individuals benefit when they work together (mutual cooperation) but both lose when
neither contributes (mutual defection). However, in this game, the greatest payoff for one
individual comes from providing no help (cheating) to a partner who cooperates, while
the lowest payoff results from helping out (cooperating) while the partner cheats. In a repeated
series of encounters, however, cheaters are eventually punished by withdrawal of further
cooperation by other individuals. In large groups the game gets more complicated, but
cheaters can eventually be detected and punished.
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In the case of the lion pride, female leaders approached the speaker slowly and stopped
to look behind at the laggards. The leader females mistrust the laggards, but they do not
directly punish them. Although lions might be tempted to reduce their risk of injury from
territorial defense by withdrawing or not cooperating, they still need companions for 
territorial defense, to share the protection of the young from males, and for the capture
of large prey. In addition, females are often closely related, usually sisters. Given their shared
genes, laggards appear to be tolerated, and leaders continue to arrive alone at the speaker
30 seconds to two minutes before the laggards arrive.

Heinsohn and Packer classified the behavior of individual female lions as: (i) uncon-
ditional cooperators, who always led the response; (ii) unconditional laggards, who 
always lagged behind; (iii) conditional cooperators, who lagged least when needed 
most; (iv) conditional laggards, who lagged most when needed most.

The parallels with human societies are evident. How these behaviors developed and why
they are tolerated in animal (as well as human!) societies will remain a fascinating topic
for future investigations.

2.10 Conclusions

Models can be derived for density-dependent populations using both dif-
ference and differential equations for populations with discrete and over-
lapping generations. Although the equations differ in detail, all presume 
that the growth-rate parameter is dampened as the population approaches
a carrying capacity. Modifications of the logistic include the introduction of
the Allee effect and the inclusion of time lags. In populations with discrete
generations there is an inherent time lag which produces an overshoot of
the carrying capacity when the net growth rate is large enough. In continu-
ously breeding populations, if we introduce a time-lag variable (tau), a large
value of r combined with even a modest time lag can cause populations to
exhibit a variety of behaviors commonly found in nature. These include limit
cycles and dramatic growth phases followed by spectacular population
crashes (“boom and bust” cycles). Therefore, when we study populations 
in nature we should never be surprised when many of them, particularly 
those populations with high growth potentials, do not remain constant from
one year to the next. Finally, the logistic equation is merely a starting point
for encompassing the idea of limitation to population growth. It is, as sug-
gested by Turchin (2001), a special case assuming a linear relationship between
population density and vital rates. Most importantly it does not allow for 
time lags, which we have seen have powerful effects on the behavior of 
populations.

Intraspecific competition has a major influence on the life history of a 
population. Fertility, mortality, growth and developmental rates, as well as
behavior characteristics are all shaped by intraspecific competition, often in
subtle and surprising ways.
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Population regulation

3.1 Introduction

Are populations regulated? If so, how? What does population regulation really mean? 
These questions have been debated for many years and were at the core of a hotly 
contested difference of opinion between ecologists who emphasized the importance of 
density-dependent factors versus those who emphasized density-independent factors in 
population regulation (Turchin 1995). The logistic equation is, of course, based on density
dependence. But how do we differentiate density-independent from density-dependent 
causation in populations with time lags, or in those dominated by stochastic processes?

The ecologists who emphasized the primary role of density-independent factors in 
population regulation were often those who worked with small animals, especially insects
and rodents, and/or in habitats characterized by drought or short growing seasons.
Among them were early influential ecologists such as Andrewartha and Birch, who
worked on Australian grasshoppers, the distribution of which was determined by the length
and intensity of the wet season. The northern boundary was determined by conditions
that were too dry for their food plants, and the southern boundary was said to have too
much moisture for the grasshoppers.

In the first major ecology textbook, Andrewartha and Birch (1954) concluded that abund-
ance of a population was limited by the same conditions that limited its distribution. 
A major example used by Davidson and Andrewartha (1948) was the distribution and abund-
ance of thrips (Thrips imaginis), tiny insects that feed on pollen and soft tissues of flowers
in southern Australia. Populations were said to increase unchecked in the spring, with a
sharp decline during the summer drought when flowers were scarce. Andrewartha and
Birch (1954) asserted that thrip populations were checked by rainfall, not by their food
supply, a potentially density-dependent factor. Advocates of density dependence, such as

• What is population regulation?
• Combining density-dependent and density-independent factors
• Tests of density dependence
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Nicholson (1957), Solomon (1957), and Lack (1954, 1966), often cited the importance of
competition in population regulation, especially in vertebrate populations.

Turchin (1995, 1999, 2003) and others (Ricklefs 1990) have asserted that this debate is
largely artificial and that density dependence has been repeatedly and convincingly
demonstrated (see examples from Chapter 2). At the same time, we know that the phys-
ical environment and other stochastic factors often reduce population size before density-
dependent factors become operational.

When population regulation takes place, what is the dominant mechanism? Com-
petition? Predation? Parasites? We will explore this question in the second half of the 
book. Note, however, that the answer may differ by trophic level. For example, Hairston
et al. (1960) proposed that while herbivore populations were mainly limited by predation,
producers (green plants), decomposers, and predators were usually limited by com-
petition. This is such a broad generalization that is difficult to imagine how to test it.
Nevertheless, this theory resurfaces regularly in modified forms.

3.2 What is population regulation?

One of the problems with this debate is a lack of agreement as to what a “regulated 
population” is. Given what we learned in the previous two chapters about the behavior
of populations with time lags, with high reproductive potentials, or under the influ-
ence of demographic and environmental stochasticity, it is not realistic to expect a popu-
lation to show a simple attraction to a specific number called the carrying capacity. In
Chapter 2 we defined a stable point as a stable number at the carrying capacity with no
oscillations. But we also recognized that the population could be temporarily oscillatory
with oscillations dampening and moving toward a stable number or point. We also dis-
cussed populations that show regular oscillations around the carrying capacity (stable cycles),
oscillations between two, four, and eight points, and chaotic behavior. All of these popu-
lation behaviors are based on variations of the density-dependent logistic model.

Population regulation does not depend on a specific stable equilibrium point, but rather
on a “long-term stationary probability distribution of population densities” (Turchin 1995)
or a “stochastic equilibrium probability distribution” (May 1973). The key concept is that
there is some mean population level around which a regulated population fluctuates. In
addition, over time the population does not wander increasingly far away from this level.
The variance of the population density is bounded (Royama 1977). All of these definitions
relieve us of the expectation of a fixed carrying capacity or of a fixed stable point. The
population is not expected to seek a stable point from which it does not wander. Instead,
we allow for stochastic variation around the carrying capacity, which can itself vary over
time. Hence, an ecological equilibrium is not a fixed or stable point, but a cloud of points.
However, since it is often difficult to distinguish density dependence from stochastic noise
(see below), many populations have been described as “density vague” (Strong 1986).

Fluctuations in the Dow Jones Industrial Average have been used as an example 
of an unregulated system, with rainfall patterns on Barro Colorado Island in Panama as 
an example of a regulated system (Turchin 1995). Some economists and meteorologists
might argue with these examples, but the general idea is that the Dow Jones average, in
spite of short-term ups and down, shows a trend upward over long time spans. A better
example might be the carbon dioxide content of the atmosphere from 1850 to the present.
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Although there are annual fluctuations, CO2 concentration has steadily increased from 
around 280 parts per million (ppm) to over 360 ppm. By contrast, ice cores have shown
that carbon dioxide concentration in the atmosphere from the year 1000 to 1750 was a
good example of a regulated system. With regard to rainfall, records from 1900 to 2000
showed that rainfall fluctuated from year to year in Panama, but showed no overall 
pattern of increase or decrease.

Population regulation does not occur in the absence of density dependence. Thus a 
population showing pure exponential growth or decline would be unregulated. If popu-
lation density had no effect on the per capita growth rate, there could be no range of 
population densities to which the population would return. In this context, Turchin (1995)
uses the Murdoch and Walde (1989) definition of density dependence as “a dependence
of per capita population growth on present and/or past population densities.” While 
density dependence is a property of the overall population dynamics, which may involve
time lags, no specific mechanism is necessarily responsible (Turchin 2003). That is, one
aspect of the life history, such as birth rates, may not be density-dependent.

Although density dependence is necessary for population regulation, it is not a sufficient
condition. For regulation to occur the following must also be true: (i) density dependence
must be of the right sign (there must be a tendency to return to a carrying capacity); 
(ii) the return tendency must be strong enough to counteract potential disruptive effects
of density-independent or stochastic factors; and (iii) the lag time over which the return
tendency operates must not be too long (Turchin 1995).

Given more precise definitions of population regulation, and density dependence,
Turchin (1995) found that the other remaining pieces needed are: (i) an acceptable 
statistical test of density dependence, and (ii) time-series data long enough to detect 
density dependence. From a review of the literature, Turchin (1995) concluded that
whenever adequate data have been gathered for an appropriate period of time and tested
with an appropriate method, density dependence has been found. This does not mean 
that all populations are regulated at all times. Lack of regulation doubtless occurs tem-
porarily, but the probability of detectable density dependence will increase with the length
of time that data are collected on a population.

3.3 Combining density-dependent and density-independent factors

In Section 2.7 we added stochasticity to density-dependent models. To simulate density-
independent effects we simply added environmental stochasticity by allowing the carrying
capacity to randomly vary. We can more explicitly add a stochastic density-independent
factor by modifying the Ricker equation (2.12). Let us assume that a certain level of 
density-independent mortality happens every year, but it varies randomly. We can 
modify the Ricker equation as shown below (Eqn. 3.1) by simply subtracting the number
of deaths from density-independent factors:

Nt+1 = Nt e
r

(3.1)

We can also select different levels of density-independent death rates. As shown in 
Fig. 3.1, the population growth is increasingly affected as we move from zero to increas-
ingly higher amounts of density-independent growth.
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Instead of assuming that density-independent effects are uniformly negative, let us now
assume that some years are good years (bonanza years) and others are bad years. That is,
environmental stochasticity does not always have a negative effect on our population. 
We will simply introduce a certain amount of “environmental noise.” That is, density-
independent effects that can be either beneficial or detrimental. To simulate this we can
still use Equation 3.1, but we now introduce stochastic variations that can be positive 
or negative, but with an average value of D = 0. In Fig. 3.2 compare the four stochastic
simulations with the deterministic growth curve with no density-independent mortality.
Obviously, if we increase the variations around D, the “cloud” of points around K gets
larger. The density-independent factors would get increasingly important and obscure the
density dependence of the population.

3.4 Tests of density dependence

How can we detect density dependence in the field? For a density-independent popu-
lation, Tanner (1966) proposed that we can simply use the equation for discrete growth,
Nt+1 = λNt. After taking natural logs of both sides of the equation we can write:

ln Nt+1 = ln λ + ln Nt = (1.0)ln Nt + ln λ (3.2)

When we plot ln Nt+1 versus ln Nt , if λ is a constant, we should have a straight line with
the slope of 1.0 and a y-intercept equal to ln λ = r. But if there is density dependence and
the growth rate slows with population size, when ln Nt+1 is graphed against ln Nt, a linear
regression through the data should yield a slope less than 1.0.
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Figure 3.1 Effect of different levels of stochastic density-independent mortality on
population growth, based on the Ricker equation (Eqn. 2.12). In all cases r = 0.25,
N0 = 10, and K = 1000. Population growth is increasingly affected as the strength 
of stochastic density independent mortality increases.
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For example, consider Figs. 3.3 and 3.4. In Fig. 3.3 we have an exponentially growing
population with ln λ = r = 0.50 and an initial population size of 10. In Fig. 3.4 we have
graphed ln Nt+1 versus ln Nt. Since this population is not showing density dependence we
get what we expect, a positive slope equal to 1.0. Now contrast this with a hypothetical
yeast population showing density-dependent growth (Fig. 3.5, based on Pearl 1927). If we
take natural logs and graph the data as we did in Fig. 3.4, we find that the slope of the
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Figure 3.3 Exponential growth. Initial population size = 10 and r = 0.50.
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Figure 3.2 Effect of stochastic “environmental noise” on population growth. 
The deterministic growth curve has no density-independent effects. In all 
cases r = 0.25, N0 = 10, and K = 1000.
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line is indeed less than one (Fig. 3.6). The question remains, however, how far less than
one should a regression slope be before we consider it significantly different?

Tanner (1966) examined 70 data sets for animal populations and found slopes signi-
ficantly different from one in 63 of them. However, this method for detecting density 
dependence is fundamentally flawed. First, a linear regression assumes data points are 
independent. In this analysis the x-value in one time series becomes the y-value in the
next time series. Second, measurement error in the population estimates inevitably leads
to a slope of less than one. Therefore a slope of less than one is often just an artifact of
measurement error and not evidence for density dependence. Finally, the expected rela-
tionship between Nt+1 and Nt is not necessarily linear if there is environmental variability
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Figure 3.4 Density-dependence test for data from Fig. 3.3.
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Figure 3.5 Hypothetical yeast population growing in the laboratory. Adapted from
Pearl (1927).
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or if the population has such a high growth rate that it approximates chaos (as described
in Chapter 2).

A better test for density dependence is to examine the per capita growth rate versus
population size (Turchin 1995, Case 2000). In the logistic equation we expect the per capita
growth rate to have a negative slope when graphed against population number (Fig. 2.2
from Chapter 2). By contrast, in exponential growth, the per capita rate remains steady.
For example, examine Figs 3.7 and 3.8. In Fig. 3.7 (based on exponential-growth data 
from Fig. 3.3), the slope equals zero, indicating no change in the per capita growth rate
with population density. By contrast, for our yeast population graphed in Fig. 3.5 we find
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Figure 3.7 Per capita growth test for density dependence in a population with
exponential growth and no carrying capacity. Based on data from Fig. 3.3.
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a significant negative slope for the same analysis (Fig. 3.8). Examining plots of per capita
growth versus N have many advantages, including the detection of density dependence in
populations with environmental noise (Case 2000).

Let us now look at some field data. The following is based on long-term Christmas Bird
Counts of waterfowl populations in the Chesapeake Bay area of Maryland and on the
Piedmont of Virginia. These data were obtained by Heath (2002) from the United States
Fish and Wildlife Service and from the Virginia Society for Ornithology. Christmas Bird
Counts (CBC) were initiated in the late 1800s as a replacement for the traditional
Christmas hunt, and may be the oldest wildlife census in the world. The CBC, however,
depends on volunteers, many of whom are not professional biologists, and the use of CBC
data in scientific studies is problematic. Nevertheless, the CBC often represents the only
long-term data on waterfowl in regions such as the Virginia Piedmont. In addition,
Maryland and Virginia waterfowl populations have been affected by habitat loss, hunting
pressure, and environmental degradation in the Chesapeake Bay. On the other hand, due
to land-use changes including the creation of new reservoirs and wetlands, waterfowl 
populations may be increasing on the Virginia Piedmont (Heath 2002).

Indeed, if we examine CBC estimates of Canada geese (Branta canadensis) populations
from 1958 to 2001, there is a distinct increase (estimated r = 0.17) in the Piedmont 
population, while the Coastal Plain population has no distinct trend other than that of
increasing oscillations (Fig. 3.9). In Fig. 3.10 we have tried to test for density dependence
in the Piedmont population by the first method, graphing ln Nt+1 versus ln Nt. The resultant
regression is so close to one that the conclusion is inescapable that the Piedmont goose
population is not density-dependent at this time. By contrast, in Fig. 3.11 we see that 
the regression slope departs radically from one in the Coastal Plain population. In fact the
regression is so weak that the slope is not significantly different from zero. How do we
interpret this? On the one hand we might conclude that the Coastal Plain population is
very density-dependent. Or we might conclude that this is just an unreliable set of data.
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Figure 3.8 Per capita growth test for density dependence in a yeast population.
Based on data from Fig. 3.5.
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Figure 3.9 Canada goose (Branta canadensis) population on the Coastal Plain of the
Chesapeake Bay and on the Virginia Piedmont. Based on Christmas bird counts.
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Now, let’s try the second method for determining density dependence, using per 
capita growth rates. From Fig. 3.12 we learn that the regression line for the Piedmont 
population is not significantly different from zero. This means that the Piedmont 
goose population has shown no decrease in per capita growth through 2001. Therefore,
both tests tell us that the Piedmont population is not density-dependent at this time.

On the Coastal Plain (Fig. 3.13), although the slope is very small, it is negative and the
regression is significant. Therefore, although the data are rather weak, it does appear that
this population shows density dependence.
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3.5 Conclusions

Populations are affected by their own life histories and vital rates, and by
feedback from the environment. Such feedback components, which may involve
time lags, are termed endogenous by Turchin (2003). As we have reviewed
before, demographic stochasticity can also seriously affect population
behavior in spite of density-dependent feedback. By contrast, exogenous
factors refer to environmentally related density-independent factors that 
affect population density, but are not, in turn, affected by it (Turchin 2003).

Our main conclusions are:

1 The per capita rate of change, r, is affected by both endogenous and exo-
genous factors, and both should be examined when attempting to under-
stand population behavior (Turchin 2003).

2 As stated above, negative feedback between the realized growth rate of
the population and its density is a necessary but not sufficient condition
for population regulation.

3 Population dynamics are nonlinear, and exogenous (density-independent)
factors may dominate population behavior.

4 A more reliable method for detecting density dependence is to plot per
capita growth against N, as opposed to ln Nt+1 versus ln Nt.

Assuming we can reliably demonstrate population regulation, is it due 
primarily to competition or to predation/parasitism? Is regulation in many
populations simply a reflection of habitat loss? How often is regulation due
to local processes as opposed to metapopulation dynamics (see Chapter 5)
(Murdoch 1994)? Are populations under the influence of stochastic environ-
mental factors to the extent that density-dependent population regulation
is largely irrelevant?

Leirs et al. (1997) have shown that the population of the African rodent
Mastomys natalensis is regulated by an interaction between stochastic and
deterministic seasonality and nonlinear density-dependent factors. Using 
a variety of statistical techniques, they analyzed population data based on a
multiple mark–recapture method. The best fit to the data came from a model
encompassing both density-independent factors (previous three months’ rain-
fall data), and density-dependent factors (a nonlinear demographic model).
This example affirms that population regulation is often a combination of
stochastic density-independent as well as density-dependent factors oper-
ating simultaneously.
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4

Populations with age structures

4.1 Introduction

In the previous two chapters we either examined populations without distinct age classes
or we specified that these populations had stable age distributions. We also assumed that
models for continuous breeders would apply to seasonal breeders such as white-tailed 
deer (Odocoileus virginianus). We danced around the problem of forecasting population
growth for populations with complex age distributions and the fact that the age distribu-
tion itself can govern the behavior of the population, at least in the short term. Knowledge
of the age-specific survivorship and fertility patterns of a population allows us to under-
stand what age categories are most important to the future survival of the population. 
If you wanted to help conservation biologists ensure the long-term survival of a sea 
turtle population, for example, what recommendations would you make? Would it be most
effective to protect the beaches where the females lay their eggs? Limit predation on the
eggs? Gather up the hatchlings, sequester and feed them for a year before releasing them?
Or take steps to reduce the mortality of adults through monitoring and regulating fishing
fleets? To answer these questions we will need to learn a number of skills that will allow
us to extract growth rates from basic life-history data and to project population growth
using different assumptions.

• Survivorship
• Fertility
• Mortality curves
• Expectation of life
• Net reproductive rate, generation time and the intrinsic rate of increase
• Age structure and the stable age distribution
• Projecting population growth in age-structured populations
• The Leslie or population projection matrix
• Reproductive value
• Sensitivity analysis
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When age-specific fertility and survivorship data are gathered, we put them together 
in the form of a life table. From the information in the life table we are then able to 
calculate a variety of interesting statistics that acquaint us with the characteristics of the
population. In addition to age-specific fertility and survivorship, we need information on
the current number of individuals in each age class, since population growth in the short
term is also strongly influenced by the latter.

The following example might fix in your mind the potential importance of age distribu-
tion on population growth. Imagine a group of several thousand young people attending
a concert by the latest pop icon on an island off the coast of California. Suddenly a 
catastrophic series of earthquakes eliminates the entire local population while simultan-
eously California splits off from the rest of North America. Assume further that a few of
the concertgoers are able to colonize the original island off California, and future popu-
lation growth is now based on this group. Most of the concertgoers would obviously have
been teenage girls (assume a few teenage boys also were dragged along). Further, assum-
ing an abundance of food, this California island would rapidly be repopulated. Growth
would, however, be irregular, since all of the girls would be the same age and reach menopause
more or less simultaneously in the future. Growth would slow until their daughters began 
to reproduce. Now imagine the same scenario, except that survivors of the disaster were
individuals attending an AARP (American Association of Retired Persons) convention.
Presumably all, or almost all, of the females at the convention are over 55. What would
the future of the California island population be in this case? Evidently age distribution
can contribute to extinction of a population!

Many of the techniques we will examine in this chapter were developed for the life 
insurance industry and applied to human populations. For example, actuaries need to 
calculate the risk of insuring the life of their clients. Life tables were developed so that the
probability that a 50-year-old pharmacist would live another 10 years could be determined;
policy rates were then set accordingly. Such techniques were easily translated to animal
populations, and the comparative study of survivorship among different groups of animals
was initiated (Deevy 1947).

More problematic has been the application of life tables to plant populations. Rates of
growth, reproduction, size, and mortality are not distinctly related to age in plants, as is
the case for animals, but are highly variable and highly dependent on the local environ-
ment. This “phenotypic plasticity” can be demonstrated by growing genetically identical
clones in different environments. Growth, size, and fertility, when measured against age,
will be dramatically different (Silvertown and Doust 1993). The recommended solution
is to develop a life-history table in which stages are used instead of age classes (Werner
1975, Werner and Caswell 1977, Hubbell and Werner 1979). For example, in her study
of teasel (Dipsacus sylvestris), Werner (1975) used the following stages instead of age classes:
(1) first-year dormant seeds; (2) second-year dormant seeds; (3) small rosettes; (4) medium
rosettes; (5) large rosettes; (6) flowering plants. In teasel, plants die after flowering.
Instead of calculating the probability that an individual would survive from one age class
to the next, she calculated the probability that an individual of one life stage would survive
to the next stage. We will also take a look at stage-based methods for animal populations
later in this chapter.

Another problem in applying life tables to plants is that plant populations often spread
through vegetative propagation. Grasses, for example, spread horizontally via rhizomes.
New shoots arise from rhizomes and often separate from the original plant. A complex
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terminology has been developed to explain this phenomenon. For example, a genet is an
individual that has arisen from a seed. A ramet is a new plant that is a clone but which
has arisen through vegetative propagation and is now a completely independent plant 
with its own roots and shoots. Thus a population of grasses may consist of several genets,
each of which has several ramets. Clonal populations may proliferate indefinitely without
flowering. This has led to some fascinating life cycles such as that of the giant bamboo
(Phyllostachys bambusoides), in which clones of perennial ramets proliferate, forming
large populations that flower only once every 120 years (Janzen 1976). All of the clonal
ramets flower simultaneously and then the entire population dies, leaving behind only seeds
with which to found the next population. Studies conducted since the great 1988 fire in
Yellowstone National Park have forced biologists to revise the conventional wisdom that
aspen (Populus tremuloides) does not reproduce by seed, but spreads by cloning. Instead
Turner et al. (2003) suggest that new genets of aspen as well as some of the perennial herbs
of the forest floor are produced after fires, but recruitment of new individuals (ramets)
during fire-free intervals is primarily through asexual reproduction.

In the sections below, as we refer to age-specific traits of survivorship or fertility, keep in
mind that many plant and animal populations would often require a rather different approach
in which we examine survivorship and fertility by size class or by stage in the life cycle.

4.2 Survivorship

The construction of a life table begins by gathering information on survivorship by age
class. This sounds simple, but is easier described than actually done. For example, one
method is to study a cohort of individuals all born at the same time, and follow the 
survivorship of these individuals until the last member of the cohort dies. At the begin-
ning of such a study, it would be necessary to locate and mark all newborn individuals.
Subsequently, one would need to verify when each individual died. Individuals that simply
disappeared could not be assumed to have died; they might have emigrated. Studies of
cohorts are obviously best done on small populations and on populations that move about
in a predictable way. The advantage of studying a cohort is that one knows the exact age
of each individual. The disadvantage is that such a study lacks generality, in that cohorts
born in different years may have different survivorship schedules. In addition to the 
difficulties one might encounter in actually marking and gathering information on all 
members of a cohort, there are also practical problems. A cohort study on most species
of turtles, for example, would require the entire professional life span of the investigator
(picture a student waiting 50 years to finish her PhD dissertation). A life table developed
in this manner is known as a fixed-cohort, dynamic, or horizontal life table.

A second approach is to locate and examine all of the dead individuals in a population
during some defined period of time. We would need a method for estimating the age of
the animals or plants at death. This approach to the construction of a life table assumes
that the rates of survival in the population are fairly constant. If this is not the case, 
age-specific mortality rates will be confused with year-to-year variation in mortality of 
the overall population. Data gathered in this manner produce a static, vertical, or time-
specific life table.

A third approach is to collect life-history data for several cohorts over as long a period
as possible. In most populations there is a large difference between juvenile and adult 
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survivorship. Therefore, even though survivorship data on adults are often relatively easy
to gather, such data do not apply to the juvenile age classes. Depending on the age when
reproduction begins, it is possible to find the growth rate of the population without 
specific data on juvenile survivorship, as described later in the chapter.

No matter how the data are gathered, the objective is to produce an estimate of age-
specific survivorship and fertility. In human demography, age-specific survivorship is based
on a theoretical cohort of 1000 individuals. If we let Sx equal the number of individuals
surviving to age x, we set S0 equal to 1000. Then, S1 = the number of individual surviving
to age 1, S2 = the number surviving to age 2, etc. Table 4.1 is based on data gathered by
an ecology laboratory from the Fairfax City (Virginia) cemetery. In this case 207 male grave-
stones were examined and the ages at death calculated. (Data were gathered only from

Table 4.1 Survivorship data for males born between 1800 and 1890, taken from the
Fairfax City Cemetery, Fairfax, Virginia.

Age category Number who Number alive at Sx based on Survivorship, lx.
died in the the beginning a cohort of (Proportion of

age category of the age class 1000 original cohort
alive at  the

beginning of the
age category)

0–1 0 207 1000 1.000
1–4 1 207 1000 1.000
5–9 0 206 995 0.995

10–14 2 206 995 0.995
15–19 2 204 986 0.986
20–24 4 202 976 0.976
25–29 0 198 957 0.957
30–34 1 198 957 0.957
35–39 0 197 952 0.952
40–44 5 197 952 0.952
45–49 2 192 928 0.928
50–54 12 190 918 0.918
55–59 9 178 860 0.860
60–64 18 169 816 0.816
65–69 24 151 729 0.729
70–74 33 127 614 0.614
75–79 33 94 454 0.454
80–84 35 61 295 0.295
85–89 20 26 126 0.126
90–94 3 6 29 0.029
95–99 2 3 14 0.014

100–104 1 1 5 0.005
105–109 0 0 0 0.000

Total
population 207
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graves in which the birth date was between 1800 and 1890. Why was this done?) Because
humans are so long-lived, the data were placed into five-year age intervals. The first step
is to use the number who died in each age interval (column 2) to produce column 3, the
number of survivors by age class. Next, we normalize the population to a theoretical cohort
of 1000 by dividing each number by 207 and multiplying by 1000. This produces the Sx

column. However, in most ecological studies we do not, in fact, use the Sx data. Instead,
each number in the Sx column is divided by 1000 to produce the survivorship function,
lx. Each value in the lx column stands for the proportion of the population that survives
to a given age, x. It is measured from birth until the last or oldest member of the 
population dies. lx is known as age-specific survivorship and can be thought of as 
the probability, at birth, of living to a specific age class. By definition, l0 = 1.00.

The survivorship table is used to construct the survivorship curves found in all ecology
textbooks. In a survivorship curve, age (x), the independent variable, is graphed against
survivorship. The y-axis may be on a straight arithmetic scale; however, many authors 
prefer a log (base 10) scale for survivorship. Pearl (1927) introduced the idea that biolog-
ical populations routinely fit one of three “types” of survivorship curves (Fig. 4.1a). The
type I curve, known as the “death at senescence” curve, is characterized by excellent survivor-
ship at all ages from birth until “old age,” at which time the death rate rapidly accelerates
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and survivorship plummets. The type II curve is linear and assumes that either a constant
number or a constant proportion of the population dies in each age interval. Examine 
Fig. 4.1. When survivorship is expressed on an arithmetic scale, a constant number of 
deaths per age interval produces a linear curve. When log to the base ten of survivorship
is used (Fig. 4.1b), the constant probability of death per age interval produces a straight
line. Finally, the type III curve applies to the vast majority of biological populations. 
In this curve there is very high mortality among the juvenile age classes while adult 
survivorship is relatively high. This is illustrated most dramatically in Fig. 4.1a, using the
arithmetic scale for survivorship.

How realistic are these three survivorship “types?” Probably few populations exactly match
any particular one. Furthermore, as found by Petranka and Sih (1986) for the salaman-
der species Ambystoma texanum, survivorship curves may vary from year to year and place
to place for the same species. (Recall our discussion in Chapter 1 of population viability
analysis, in which we emphasized that demographic traits are subject to both temporal
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Figure 4.2 Dall sheep (Ovis dalli) in Denali National Park, Alaska. (a) Survivorship
(lx); (b) log of survivorship (Sx). After Deevy (1947).
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and spatial variability.) However, we can make some general comments. The least realistic
of the three types is type I. A type I curve applies to laboratory populations of animals
such as Drosophila. If provided with ample food, the population has a high rate of 
survivorship until the end of its maximum life span, when individuals die more or less
simultaneously (Hutchinson 1978).

Natural populations of mammals such as Dall mountain sheep (Ovis dalli) (Deevy 1947),
and many African ungulates (Caughley 1966), have a type I survivorship curve, although
notice that 20% of the Dall sheep die in the first year of life (Fig. 4.2).

While modern human populations have a type I survivorship curve, in the not-so-
distant past, living to a ripe old age was not assured (Fig. 4.3). By looking for the age where
500 of the original 1000 in a population are still alive, we have an idea of the average life
expectancy at birth (Fig. 4.3a). For the modern (1985) US population, this figure is after
the age of 80 (Peters and Larkin 1989). By contrast, for US males living early in the 
twentieth century, this figure was less than 60 (Lotka 1925). For eighteenth-century Eng-
lish populations, average life expectancy was less than 10 years in Northampton and 
around 40 years in Carlisle (Lotka 1925)! When these same values are plotted on a log
scale, however, they all approximate a type I survivorship curve (Fig. 4.3b).

In order for an organism to have a type II survivorship curve, all stages of the life his-
tory must be more or less equally vulnerable to predation or other causes of death. Birds,
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especially the adult stages, are most commonly cited as having a type II survivorship curve.
For example, when Gibbons (1987) examined longevity records of vertebrates in captiv-
ity, only birds displayed a type II survivorship curve on an arithmetic scale. In a study of
white-crowned sparrows (Zonotrichia leucophrys) (Fig. 4.4) Baker et al. (1981) found a type
II survivorship curve on a log scale, which indicates a more or less constant probability
of death, irrespective of age. The maximum life span was 49 months in this species. Botkin
and Miller (1974), however, argued that birds do not, in fact, have an age-independent
mortality rate. The survivorship curve for the sooty shearwater (Puffinus griseus), based
on an arithmetic scale, appears to be type II. However, Botkin and Miller showed that, on
closer examination, while the mortality rate in the early age classes was 0.07 per year, there
was an increase in the mortality rate of 0.01 per year. They concluded that mortality was
not in fact age-independent in the sooty shearwater, nor indeed in most species of birds.
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Figure 4.4 Log survivorship for two cohorts of white-crowned sparrows (Zonotrichia
leucophrys). Based on Baker et al. (1981).
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North Carolina. Based on Barkalow et al. (1970).
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The type III survivorship curve, which features heavy mortality among young age
classes followed by good to excellent adult survivorship, applies to most biological 
populations from barnacles to sea turtles to plants (Hutchinson 1976). Even medium-sized
mammals, such as gray squirrels (Sciurus carolinensis) (Fig. 4.5; Barkalow et al. 1970) and
golden lion tamarins (Leontopithecus rosalia) (Fig. 4.6; Jonathan Ballou, personal com-
munication) have type III survivorship curves, as do most amphibians such as Ambystoma
tigrinum (e.g. Anderson et al. 1971).

Actually, most species do not follow any one of the type curves precisely, especially when
an arithmetic scale is used. For example, in Phlox drummondii (Leverlich and Levin 1979)
survivorship drops from 1.00 to 0.67 in the first 63 days after germination. After 124 days
survivorship is down to less than 0.30. Mortality is minimal thereafter until the plants 
are almost a year old (Fig. 4.7). Yet this plant, when its survivorship is plotted on a logar-
ithmic scale, has been used as an example of a type I curve (Smith 1996). Therefore, 
although survivorship curves are extremely useful in order to visualize the large amount
of data in a life table, there is little agreement as to what constitutes a survivorship “type,”
and nothing is gained by attempting to fit a life table to any of the three “type” curves.
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Figure 4.6 Survivorship in captive female golden lion tamarins (Leontopithecus
rosalia). From J. Ballou (personal communication).
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4.3 Fertility

The other half of the life table is the fertility column, mx. Here each value represents the
average number of female offspring produced per female of a given age. Again, gathering
accurate data on fertility in the field is problematic for many populations. In order to 
simplify calculations, we count only the number of females. That is, the values are mean
numbers of females by age class. Fertility, like survivorship, can be graphed as a function
of age, and the resultant fertility curve is usually triangular or rectangular in shape. For
example, Table 4.2 illustrates human fertility based on 1985 United States Vital Statistics
(Peters and Larkin 1989). Age classes until age 15 are usually termed, “pre-reproductive.”
Ages 15 to 45 are considered the reproductive age classes. Figure 4.8 illustrates the usual
triangular shape, with maximum reproduction occurring in the 25- to 30-year age classes.
After age 45, fertility falls back to zero. These are the post-reproductive age classes (modern
medical science, however, is pushing the normal boundary of reproduction past 45 years).
On the other hand, the North Carolina gray squirrel population (Table 4.3) would have
a rectangular shape if fertility were graphed against age.

As usual, when populations are sampled, data do not necessarily follow generalized trends.
For example, in a study by Grant and Grant (1992) on the cactus ground finch (Geospiza
scandens), the fertility schedule had a very irregular shape, dropping radically in the 
seventh year and showing an unexpected spike in the twelfth year (Fig. 4.9). In this 

Table 4.2 Fertility data from 1985 US Vital Statistics. Fertility is based on the
average number of daughters born in five-year age intervals.

Age class Mean number of female offspring per female, mx

0–1 0
1–5 0
5–10 0

10–15 0
15–20 0.025
20–25 0.250
25–30 0.500
30–35 0.150
35–40 0.100
40–45 0.010
45–50 0
50–55 0
55–60 0
60–65 0
65–70 0
70–75 0
75–80 0
80–85 0
85–90 0

ITP_C04.qxd  10/10/2005  10:12 AM  Page 86



POPULATIONS WITH AGE STRUCTURES 87

case, environmental variation dominated the fertility schedule. Amboseli baboons (Papio
cynocephalus) also have an irregular fertility schedule (Alberts and Altmann 2003).

The sum of the mx column defines the gross reproductive rate (GRR). This number is
the average number of female offspring produced by a female that survives at least
through the last reproductive age class:

GRR = ∑ mx (4.1)

The two pillars of a life table are the survivorship (lx) and fertility (mx) columns. Long
hours of fieldwork are necessary to gather the data in order to produce such a life table.
Once the table is produced, many other calculations and projections are possible,
although all of them assume that the survivorship and fertility columns remain constant.

M
ea

n 
nu

m
be

r 
of

 d
au

gh
te

rs
 p

er
 fe

m
al

e

60 70 80

Age classes
Pre-reproductive

Reproductive

Post-reproductive
20 30 40 500 10

0.6 

0.5 

0.4 

0.3 

0.2 

0.1 

0

Figure 4.8 Human fertility for the population of the United States, 1985. From
Peters and Larkin (1989).

Table 4.3 Life table for a gray squirrel population from North Carolina 
(Barkalow et al. 1970). (For explanation of symbols see text.)

Age lx mx px qx lxmx

0 1.000 0 0.253 0.747 0
1 0.253 1.28 0.458 0.542 0.324
2 0.116 2.28 0.767 0.233 0.264
3 0.089 2.28 0.652 0.348 0.203
4 0.058 2.28 0.672 0.328 0.132
5 0.039 2.28 0.641 0.359 0.089
6 0.025 2.28 0.880 0.120 0.057
7 0.022 2.28 0 1.00 0.050
8 0 0 – – 0

R0 = 1.119
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From the lx column we can develop two parallel columns, which provide information
on how survivorship and mortality rates change with age. Consider Table 4.3. The lx

column is based on the probability, at birth, of surviving to a given age class. The 
px column, by contrast, is the age-specific probability of surviving to the next age class.
That is, p2 tells us the probability that an individual who has survived to the age of two
will survive to be three years old. Similarly, p4 would tell us the probability that a four-
year-old lives to age five. These px values are critically important when we want to project
future population growth, as will become clear later in this chapter. px is calculated
according to the formula:

px = (4.2)

For example, in Table 4.3, we see that p0 = l1, since p0 = 0.253/1.000 (l0) = 0.253. 
p1 = 0.116/0.253 = 0.458, and so on. Notice that p7 = 0, since no seven-year-old squirrel
lives to be eight years old. p8 is undefined and is the equivalent of dividing zero by zero.

The companion value to px is qx, which is the proportion of the population that 
has survived to a given age, x, but which will die in the next time or age interval. qx is
simple to calculate since it is equal to 1 − px (Eqn. 4.3). This is based on the idea that 
px + qx = 1.0. We recognize only two states of being, alive or dead.

qx = 1 − px (4.3)

4.4 Mortality curves

Caughley (1966, 1977) and others found that mortality curves (qx) for female mammals,
such as Orkney voles (Microtus arvalis) (Leslie et al. 1955), toque monkeys (Macaca sinica)
(Dittus 1977), buffalo (Syncerus caffer) (Sinclair 1977), Himalayan thar (Hemitragus 
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Figure 4.9 Fertility schedule of the cactus ground finch (Geospiza scandens). From
Grant and Grant (1992).
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jemlahicus), domestic sheep (Ovis aries), Dall mountain sheep, and elk (Cervus elaphus) all
follow a U-shaped pattern (Fig. 4.10). The U-shape is the result of the fact that juvenile
phases usually have high mortality, but they are coupled with adult phases that have low
mortality. In the final phases of life mortality increases (the senescent phase). Ralls et al.
(1980) suggested that in polygynous species, although females show the U-shaped pattern,
males have a spike of mortality in sub-adult to young adult age classes. Impala (Aepyceros
melampus) and toque monkeys, for example, illustrate this pattern. These higher male 
mortality rates are due to male–male competition for mates, and the tendency for males
to leave the natal group in many species (Ralls et al. 1980).

Interestingly, a similar pattern can be found for the United States human population
(Fig. 4.11). United States Vital Statistics for 1986 (Anonymous 1988) have a U shape for
females, with high mortality in the first year of life, followed by a low rate of mortality
until age 15. Thereafter the mortality increases throughout life. Males show higher mort-
ality rates from the age of one onwards. More striking, however, is that the largest separa-
tion in mortality rates between the sexes occurs from the ages of 15 to 30. These age 
classes are exactly those discussed by Ralls et al. (1980), in which male mammals suffer
greater mortality in the sub-adult to early-adult age classes. Do human males, like other
mammals, suffer these higher mortality rates due to male–male competition for females
and/or due to dispersal away from the parental home, as Ralls et al. (1980) have suggested?
Or are there other reasons, such as the suggestion that human male brains mature at a
slower rate than those of females (Thompson et al. 2000)?

4.5 Expectation of life

Another statistic of interest to demographers, ecologists, and even to non-scientists is the
age-specific expectation of life. The question to be addressed is, what is the average life
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Figure 4.10 Mortality curves for male and female impala (Aepyceros melampus).
Data from Jarman and Jarman (1973); analysis from Ralls et al. (1980).
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expectancy of an individual of a given age, x? The survivorship table allows us to directly
read the average life span at birth. We simply look for the age at which lx equals 0.50.
However, average expectation of life is age-specific. Obviously, if life expectancy at birth
for a human male is 75 years, a male who has survived to be 65 years old should, on aver-
age, live well beyond 75. In fact recent data suggest that a 65-year-old human male can
look forward to an average of at least 15 more years of life.

Age-specific life expectancy is measured by taking the area under the survivorship curve
beyond an age x, and dividing by the number or proportion of survivors of that age, x.
In theory, using integral calculus, expectation of life, ex to the last age class (w) is found
using the formula:

ex = (4.4)

In practice we use discrete age classes. The survivorship between ages x and x + 1, if the
age interval is reasonably small, is estimated as follows:

Lx = (4.5)
lx + lx+1

2

w

� lx dx
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Figure 4.11 Mortality curves for United States human population, based on 1986
vital statistics (Anonymous 1988).
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Lx is the mean survivorship for any particular age interval, and assumes that, on aver-
age, an organism dies halfway between two age classes. The area under the survivorship
curve for an individual of a given age, x, to the age, w, at which the oldest individual dies,
is estimated as:

Tx = Lx = (4.6)

Therefore expectation of life is estimated by Equation 4.7:

ex = (4.7)

In the hypothetical example in Table 4.4 we see that at birth the expectation of life is
two years (lx = 0.50). But the average two-year-old individual can expect to live another
1.46 years.

4.6 Net reproductive rate, generation time, and the intrinsic rate 
of increase

Once we have the basic life table, we are in a position to calculate the same types of growth-
rate statistics we discussed in the first two chapters. The first of these is the net repro-
ductive rate, R0. This is an equivalent to the R (Eqn. 1.4) we developed for populations
with discrete generations. The net reproductive rate represents the increase in the popu-
lation per generation, and is defined as the mean number of female offspring produced
per female in the population per generation. This value is found by incorporating both
the fertility and survivorship functions of the life table. For each age class the product of
lx × mx is found. This product is the contribution a particular age class is making toward
population growth per generation. The net reproductive rate for the population as a whole
is the sum of these products for all age classes:

Tx

lx

lx + lx+1

2

w

∑
x

w

∑
x

Table 4.4 Calculation of average age-specific life expectancy.

Age, x lx Lx Tx Expectation of life, ex

0 1.000 0.850 2.180 2.18
1 0.700 0.600 1.330 1.90
2 0.500 0.400 0.730 1.46
3 0.300 0.200 0.330 1.10
4 0.100 0.075 0.130 1.30
5 0.050 0.035 0.055 1.10
6 0.020 0.015 0.020 1.00
7 0.010 0.005 0.005 0.50
8 0 0 0 0

∑ = 2.18
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R0 = ∑ lx mx (4.8)

In Table 4.3 the calculated net reproductive rate for the gray squirrel population is 1.119.
This means that the average female squirrel replaces herself with 1.119 female squirrels
per generation. As in the case of the net reproductive rate for non-overlapping popula-
tions, an R0 > 1 means that the population, according to the life table, has the potential
to increase every generation. The opposite is also true: an R0 < 1 means that the popula-
tion is decreasing every generation.

Although the net reproductive rate is an important statistic, we usually want to know
the growth rate per year (or some other defined period). When we compare growth rates
among different types of populations, the usual currency is r, the intrinsic rate of increase,
or the finite rate of increase (λ), since both are measured for a specific unit of time. The
intrinsic rate of increase can be extracted from life history data using an equation devel-
oped by Euler, although some authors give credit to Lotka (see Mertz 1970, or Case 2000
for its derivation). It is most often known as the Euler equation; but in any event, it is
considered to be a “characteristic equation” of demography (Dingle 1990).

∑ lx mx e−rx = 1 (4.9)

This equation is useful because it allows us to determine the intrinsic rate of increase
from the life table. However, since r is an exponent in a summation, it cannot be expli-
citly solved for if there are more than two age classes. Values of r must be estimated and
tried in the Euler equation until a value is found that satisfies it. However, Laughlin (1965)
and May (1976a) showed that there exists an excellent approximation for r. Assuming a
stable age distribution, the approximation is based on the following:

If G = generation time, we can write: = R0.

It is also true (Eqn. 1.8) that = erG.

Therefore, we can set R0 = erG.

Taking natural logs of both sides of the equation gives us ln R0 = rG and therefore:

r = (4.10)

This tells us that the intrinsic rate of increase can be found by dividing the natural log
of the increase per generation by the generation time. We now have an approximation for
r, but we must calculate G, the mean generation time. Mean generation time is actually a
somewhat slippery concept, and can be defined in various ways. Here we will use the
definition, the mean age of the mothers at the time of their daughter’s birth. This is 
the same definition as, “the average interval between reproductive onset in two successive
generations” (Dingle 1990). Generation time is estimated according to the following
equations, in which the age, x, is weighted by its realized fecundity, lxmx. In the second
equation, discrete age intervals are used:

In R0

G

NG

N0

NG

N0
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G = � xlxmxdx (4.11a)

G = ∑ xlxmx (4.11b)

These equations, however, can only be used if the population is not growing. In order
to account for the number of offspring being produced per individual female, the right
side of the equation must be divided by the net reproductive rate, R0. Therefore we use
Equation 4.12 in estimating G:

G = (4.12)

Once we have approximated the value of G, r can be estimated using Equation 4.10.
Note that all approximations of r gained using Equation 4.10 must be verified by the Euler
equation! Since Equation 4.10 simply approximates r, the value of r must be verified, or
the approximation adjusted using Equation 4.9, the Euler equation. The way r is estimated
and confirmed is illustrated in Example 4.1.

4.7 Age structure and the stable age distribution

In the next sections, we are ready to begin examining the interactions between the age
distribution of a population and its life table. As stated previously, the actual age dis-
tribution of a population has potentially dramatic effects on population growth in the short
term. The age distribution of a population is defined as the proportions of the population
belonging to various age categories at a given point in time. The proportion belonging 
to a given age category, x, is calculated by dividing the number of individuals in that age
category by the total population size, N, producing cx :

cx = = (4.13)

cx is the proportion of the population belonging to an age category, x, and nx equals the
number of individuals in that age category.

Whenever survivorship and fertility remain constant for long enough, a population will
converge on a particular age distribution, known as the stable age distribution, which is
unique for each combination of survivorship and fertility. Once this stable age distribu-
tion is achieved, the age distribution no longer changes unless and until survivorship or
fertility change in the life table. Furthermore, the population will grow or decline at the
steady rate, λ (unless the r-value = 0, in which case the population is unchanging and 
λ = 1), and each age class will change at the same rate as the population as a whole. If 
a population has a stable age distribution, λ is easy to calculate, since Nt+1/Nt = λ. Since 
r = ln λ (Eqn. 1.13), it is also simple to calculate r.

The stable age distribution itself can be calculated from the survivorship column of the
life table. In order to predict the stable age distribution, however, it is also necessary to
know the value of r as well as the survivorship function, lx. Since the Euler equation requires

nx

∑ nx

nx

N

∑ xlxmx

R0
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the knowledge of fertility (mx), we actually must know both survivorship and fertility. The
formula for predicting the stable age distribution is as follows:

cx = (4.14)

4.8 Projecting population growth in age-structured populations

Examine Table 4.5. The basic information on survivorship and fertility by age class 
would have been gathered through fieldwork. In order to project population growth into
the future, we also must know the actual number of individuals belonging to each age
class, again based on data we have obtained in the field. Once these data are available 
we can do a year-by-year projection not only of the population size as a whole, but also
of the expected number of individuals in each age class. We must assume, however, that
the survivorship and fertility functions do not change.

In Table 4.6 we have done some basic calculations that will tell us generally what to
expect from this population. The net reproductive rate tells us that we expect this popula-
tion to grow every generation (R0 > 1). In the ensuing projection we will need the age-
specific probability of surviving to the next age class (px); accordingly we have devoted a

e−rxlx

∑ e−rxlx

Table 4.5 Hypothetical life table for a population. This table will be used to
illustrate a simple population projection (Table 4.6).

Age, x lx mx px qx lxmx

0 1.00 0 0.50 0.50 0
1 0.50 2.0 0.40 0.60 1.0
2 0.20 1.0 0.50 0.50 0.2
3 0.10 1.0 0 1.00 0.1
4 0 0 – – –

Sums GRR = 4.0 R0 = 1.3

Table 4.6 Projected population growth based on life history from Table 4.5 and
starting with 200 individuals in age class zero (newborn).

Age, x nx at cx at nx at cx at nx at cx at nx at cx at Calculated
t == 0 t == 0 t == 1 t == 1 t == 2 t == 2 t == 3 t == 3 stable age

distribution

0 200 1.00 200 0.67 240 0.63 300 0.625 0.625
1 0 0 100 0.33 100 0.26 120 0.250 0.258
2 0 0 0 0 40 0.11 40 0.083 0.082
3 0 0 0 0 0 0 20 0.042 0.035
4 0 0 0 0 0 0 0 0 0

Sums 200 1.00 300 1.00 380 1.00 480 1.00 1.00
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column in Table 4.5 to px as well as to its opposite (qx), the age-specific probability of
dying in the next age class. The last column allows us to calculate R0.

We begin this projection by assuming that we have founded this population with 200
newbom females at time t = 0 (Table 4.6). We have completed the first two columns based
on that assumption (nx = the number in an age category, cx = the proportion of the popu-
lation in that age category). To project the population, the number of individuals in each
of the non-zero age categories is found by multiplying the number of individuals in the
appropriate age category by the suitable px value. For example, to find the number of 
one-year-old individuals at time t = 1, we multiply the number of newborn individuals 
at time t = 0 by p0. The number of two-year-olds at time t = 1 is found by multiplying the
number of one-year-olds at time t = 0 by p1, and so on. In this case, to find the number
of one-year-old females at time t = 1, we simply multiply 200 by p0 (0.50), giving us 100.
Since we lack one-, two-, or three-year-old individuals at time t = 0, there can be no 
two-, three-, or four-year-old individuals at time t = 1.

To find the number of newborn individuals at time t = 1, multiply the appropriate mx

values by the number of individuals in each age class at time t = 1. In this example, to find
the number of newborn individuals we multiply the number of one-year-olds by the appro-
priate mx value. In this case, m1 = 2.0; that is, each of the 100 females that has survived
has 2.0 female offspring, on average. Therefore there are 200 newborn females at time 
t = 1. The total population is 300 and our cx values are based on that number (Table 4.6).
To find the number of one-year-old females at time t = 2, we repeat the procedure out-
lined above, giving us 100 again. The number of two-year-old females at time t = 2 is found
by multiplying p1 (0.40) by 100, giving us 40 two-year-old individuals. The number of
newborn individuals is found by multiplying 100 one-year-old females by 2.0 and 40 two
year old females by 1.0. That is, multiply by the appropriate mx values. The number of
newborn individuals is therefore 240 and the total population is 380. Confirm the values
for t = 3. The last column in Table 4.6 is the calculated stable age distribution, based on
Equation 4.14. Notice that after only three time periods the population proportions (cx)
have moved to within a few tenths of the stable age distribution, even though we started
at time t = 0 with only one age class (200, x = 0).

In the above exercise, the finite rate of increase can be calculated for each of the time
periods t to t + 1 as Nt+1/Nt . The results are as follows:

λ from t = 0 to t = 1: 300/200 = 1.50
λ from t = 1 to t = 2: 380/300 = 1.27
λ from t = 2 to t = 3: 480/380 = 1.26
λ from t = 3 to t = 4: 586/480 = 1.22

Notice how quickly λ moves to 1.22. The calculated r from the Euler equation for this life
table is 0.206 and therefore the predicted value of λ at the stable age (er) distribution is 1.23.
Exercises like this show us three things: (i) in the short term the growth of a population
is heavily influenced by its age distribution; (ii) nevertheless, a population with a short
generation time can move rapidly to its stable age distribution; and (iii) the finite rate of
increase is influenced by the actual age distribution, but it settles in at the predicted value
from the life history table (= er) as the population reaches the stable age distribution.

In Example 4.1, find the necessary information to project the population. As you 
do that, test yourself to see if you understand how to calculate generation time, G, the
intrinsic rate of increase, and the stable age distribution (SAD) from the life history table.
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4.9 The Leslie or population projection matrix

This process of projecting the population one age class and one year at a time, as done
above, is time-consuming and tedious. Leslie (1945) showed that populations could 
easily be projected through the use of matrix algebra. If you are not familiar with matrix

Example 4.1

Find GRR, R0, and G. Estimate r and then find its true value with the Euler equa-
tion. Verify the predicted stable age distribution (SAD). Project this population
as described above. After reading the next section, use the Leslie matrix to
project the population.

Age lx mx px qx lx ×× mx x ×× lx ×× mx Euler Euler lx ×× e−rx cx of
based on based on SAD
r = 0.152 r = 0.154

0 1.00 0 0.250 0.750 0.00 0.00 0 0 1.000 0.733
1 0.25 0 0.400 0.600 0.00 0.00 0 0 0.214 0.157
2 0.10 7.0 0.800 0.200 0.70 1.40 0.517 0.514 0.073 0.054
3 0.08 7.5 0.500 0.500 0.60 1.80 0.380 0.378 0.050 0.037
4 0.04 5.0 0.250 0.750 0.20 0.80 0.109 0.108 0.022 0.016
5 0.01 0 0.000 1.000 0.00 0 0 0 0.005 0.003
6 0 0 – – 0.00 0 0 0 0.000 0.000

∑ GRR = R0 = 1.50 4.00 1.006 1.000 1.364 1.000
19.5

G = Estimated Predicted
4.00/1.50 value of value of

= 2.67 r = 0.152 l = er

= 1.17

Population projection

Age nx at cx at nx at cx at nx at cx at nx at cx at nx at cx at 
t == 0 t == 0 t == 1 t == 1 t == 2 t == 2 t == 3 t == 3 t == 4 t == 4

0 250 0.714 318 0.743 359 0.729 420.6 0.733 492.10 0.733
1 60 0.171 62.5 0.146 79.5 0.162 89.75 0.156 105.15 0.157
2 20 0.057 24 0.056 25 0.051 31.8 0.055 35.90 0.054
3 12 0.034 16 0.037 19.2 0.039 20 0.035 25.44 0.038
4 6 0.017 6 0.014 8 0.016 9.6 0.017 10.00 0.015
5 2 0.006 1.5 0.004 1.5 0.003 2 0.003 2.40 0.003
6 0 0.000 0 0.000 0 0.000 0 0.000 0 0

N = 350 1.000 N = 428 1.000 N = 492.2 1.000 N = 573.75 1.000 N = 670.99 1.000

l = l = l = l =
428/350 492/428 574/492 671/574
= 1.22 = 1.15 = 1.17 = 1.17
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algebra see the primer in Appendix 2. The matrix approach allows quick calculations of
changes in the age structure and total population size as well as a quick method for 
finding λ when there is a stable age distribution. The survivorship and fertility columns
are placed in matrix form |A|. The population itself is considered a column vector which,
when multiplied by the matrix, produces a new column vector representing the popula-
tion at time t + 1:

Nt+1 = | A |Nt (4.15)

The format for the matrix is as shown in Table 4.7. The px values (the probabilities 
of surviving from age x to age x + 1) appear in the matrix in the off diagonal. The first
row consists of the products px × mx+1. The matrix must be a square matrix, with the final
column consisting of zeros. In this example, with five age classes, we have a 5 × 5 matrix.
Given the rules of matrix multiplication, the product of the matrix times the column 
vector (representing the population by age classes at t = 0) results in a column vector at
time t = 1.

If we use the life table from Table 4.5, the resultant matrix is as shown in Table 4.8. If
we then multiply this matrix by the column vector for time t = 2 from Table 4.6, we can
calculate the column vector for time t = 3. The result is identical to the projection we did
above in Table 4.6.

4.10 A second version of the Leslie matrix

To this point, in constructing our life tables we have assumed that the year begins with
the reproductive season. For example, if we are developing a life table for white-crowned
sparrows we might assess the number of eggs that have hatched and assign the hatchlings
to age class zero. However, in some studies this approach is not practical and the study
begins with counts of animals that have completed at least one year of life. The count is
done before the production of newborn individuals, but there is no count of the number
of newborn individuals. Assume it is possible, however, to estimate both fertility and 

Table 4.7 General matrix format for projecting a population with five age classes
for one time period (t = 0 to t = 1).

× =

For age class 0 the number of individuals is based on: p0m1n0 + p1m2n1 + p2m3n2 + p3m4n3 + 0.
For age class 1 the number of individuals is calculated as: p0n0 + 0 + 0 + 0 + 0.
For age class 2 the number of individuals is calculated as: 0 + p1n1 + 0 + 0 + 0.
For age class 3 the number of individuals is calculated as: 0 + 0 + p2n2 + 0 + 0.
For age class 4 the number of individuals is calculated as: 0 + 0 + 0 + p3n3 + 0.

t = 1

n0

n1

n2

n3

n4

t = 0

n0

n1

n2

n3

n4

Matrix

p0m1 p1m2 p2m3 p3m4 0

p0 0 0 0 0

0 p1 0 0 0

0 0 p2 0 0

0 0 0 p3 0

Age classes

0

1

2

3

4
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survivorship for age classes from year 1 onward. For example, see Table 4.9, which is based
on Table 4.5. The life table simply begins with age class 1. Note that in this version of the
matrix all of the fertility values in the first row are simply multiplied by p0, since in order
to find the number of one-year-old individuals we are multiplying the total number of
newborn by the probability of surviving to age class 1.

We end up with the same result by either method, but we do not have exact data on
age class zero in this second method. Interestingly enough, since age-class-zero indi-
viduals do not reproduce, the identical finite rate of increase (λ) can be derived from either
method. And since the second method requires a smaller matrix, calculations can be vastly
simplified, as shown in the next section.

Table 4.8 Matrix projection based on life-history data found in Table 4.5. Column
vectors are based on time periods t = 2 and t = 3 in Table 4.6

Age classes Matrix Column vectors

× =

Age, x Calculations for column vector, Resultant column vector
time t == 3 for time t == 3

0 (1.0*240) + (0.40*100) + (0.50*40) 300
1 0.50*240 120
2 0.40*100 40
3 0.50*40 20

Total 480

t = 3

300

120

40

20

480

t = 2

240

100

40

0

380

0.5 × 2 = 1.0 0.4 × 1 = 0.4 0.5 × 1 = 0.5 0

0.5 0 0 0

0 0.4 0 0

0 0 0.5 0

0 0 0 0

0

1

2

3

Total

Table 4.9 A population projection matrix, based on Table 4.5, in which the year
begins prior to reproduction and no count is made of the zero-year age class. 
The population is projected from time t = 2 to 3 as in Section 4.9.

t = 2 t = 3 t = 2 t = 3

  

m p m p m p m p

p

p

p

n

n

n

n

n

n

n

n

1 0 2 0 3 0 4 0

1

2

3

1

2

3

4

1

2

3

4

0 0 0

0 0 0

0 0 0

1 0 0 5 0 5 0

0 4 0 0 0

0 0 5 0 0

0 0 0 0

100

40

0

0

120

40

20

0

      

. . .

.

.
   × = ⇒ =
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4.11 The Lefkovitch modification of the Leslie matrix

Lefkovitch (1965) noticed that for many organisms the yearly fertility and survivorship
functions remain relatively constant once adulthood is reached. Instead of specific age classes,
he proposed using “stage classes” based on life stages such as juvenile, young adult, adult,
etc. Recall our discussion in the first part of this chapter of the necessity to use such a
method for plant populations. Now review Table 4.3 in section 4.3 above for the North
Carolina gray squirrel population. Notice that by using method two (Section 4.10 above)
the gray squirrel life table can be simplified to two stages as shown in Table 4.10. To do
this we have eliminated some of the variability in year-to-year adult survivorship, using
0.80 for pA (adult survivorship). Further, we have estimated survivorship in the first year
of life as pY = 0.25.

Lefkovitch showed that in spite of this lumping the growth rate λ is conserved. In 
setting up the projection matrix based on this lumping, we must realize that adults from
many of the age classes that we have placed together are simply recycled back into 
the same stage class from which they came for many years. That is, a three-year-old 
that survives is placed back in the “mature adult” stage class. Therefore, when placing pA

(mature adult survivorship) into the matrix, it ends up in the bottom right-hand corner
of this 2 × 2 matrix.

Using Y = “young adult” and A = “Mature adult” stages, the gray squirrel matrix can
be simplified as follows:

= =

Let us now project this population and determine its growth rate, λ. We will start with
50 “young adults” and 90 “mature adults” (Table 4.11). The yearly calculated value of 

λ = = 1.28 (180/140, 230/180, 294/230, etc.). By contrast, if you were to use all eight 
Nt+1

Nt

0.57

0.80

0.325

0.80

2.28 × 0.25

0.80

1.28 × 0.25

0.80

mA p0

pA

mYp0

pA

Table 4.10 Simplified life table for the gray squirrel.

Age or stage class mx px

Y = young adult 1.28 0.25
A = mature adult 2.28 0.80

Table 4.11 Projection of the gray squirrel population using the 2 × 2 simplified
matrix.

Stage class

Y

A

Matrix

0.325 0.570

0.80 0.80

t = 0

50

90

∑ = 140

t = 1

68

112

∑ = 180

t = 2

86

144

∑ = 230

t = 3

110

184

∑ = 294

= = =
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age classes, including age class zero, the λ-value turns out to be 1.26 (you can prove this
to yourself using Table 4.3 and projecting the population). Given that we assumed one px

for all adult age classes, and given the uncertainties of actual survivorship and fertility data
we might gather in the field, these two estimates of the finite rate of increase are adequately
close. As Lefkovitch (1965) emphasized, the reduced matrix has the same λ as its larger
counterpart using all age classes.

4.12 Dominant latent roots and the characteristic equation

Following the rules of matrix multiplication, if the matrix does not change (meaning that
lx and mx remain constant), we can write:

N1 = |A |N0

N2 = |A |N1 = |A | |A |N0

N3 = |A |N2 = |A | |A ||A |N0

This generalizes to:

Nt = |A |tN0 (4.16)

Therefore a population can be projected to any time in the future. We can also pro-
ject a population backwards in time. The advantage of this is that we can examine 
properties a population might have had in the past, assuming the present life table. The
backwards projection requires the “identity matrix.” The identity matrix is equivalent to
the number one in algebra and is such that one can write the following:

I |A | = |A |I = |A | (4.17)

Each number has an inverse in algebra (except zero) such that (x) × (1/x) = 1. The inverse
of a matrix is such that |A | |A |−1 = I (the identify matrix). If the inverse of |A| is |B | then
|A | |B | = I.

For example, if |A| = , then |B | = . The result of multiplying |A | |B | is the

two-by-two identity matrix: (See Appendix 2).

The inverse of a matrix only exists when the matrix is square and when the matrix 
has a “determinant.” A determinant for a square matrix is a particular scalar number 
(see Appendix 2) that is easy to calculate for a 2 × 2 matrix, but becomes increasingly 
complicated for larger matrices. The projection matrix has an inverse if [A][B] = I. We
can then use [B] to project the matrix backwards from time = 0 to t = −1, −2, −3, etc:

Nt = |B |tN0 (4.18)

This allows us to compare the actual population of 1955, for example, with the poten-
tial population in that year, based on present-day survivorship and fertility values.

1 0
0 1

8 −5
−3 2

2 5
3 8
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As discussed earlier, when a population has a stable age distribution, each age group
grows as the same rate as the population as a whole; that is, at the finite rate of increase,
λ. Thus: nx(t+1) = nx(t)λ for all age classes (x). And Nt+1 = Nt λ. In matrix form, we have:

Nt+1 = λNt = λ(I Nt) = λI(Nt)

Since Nt+1 = |A |Nt = λI Nt, we can write:

|A | − λI = 0 (4.19a)

Zero is a column vector consisting of all zeros.
Equation 4.19a is known as the characteristic equation for a matrix. It only exists for

square matrices, and λ is known as the “latent root,” “the characteristic root” or the Eigen-
value of the characteristic equation. When the matrix |A | is of the order n (that is, a four-
by-four matrix is of the order 4), the characteristic equation is a polynomial of degree n,
and has n solutions. But for the Leslie matrix, there is only one positive root (or domin-
ant latent root). This dominant latent root = λ and Leslie has shown that λ = er. Thus matrix
algebra can be used to solve for r from basic life history data.

As explained in detail by Case (2000), one way of solving for λ is to find the deter-
minant of the expression |A | − λI and setting it equal to zero. In other words, instead of
projecting the matrix to find λ as we did above, we can find λ if we solve the expression:

det(| A | − λI) = 0 (4.19b)

For more information on determinants and basic matrix operations, see Appendix 2.
For a 2 × 2 matrix, we start by multiplying λ by the identity matrix, giving us:

× λ =

Now we subtract this from our 2 × 2 matrix (see rules of subtraction, Appendix 2), 
yielding:

− =

The determinant of a simple 2 × 2 matrix is found by taking the difference between the
cross products, resulting in the following:

(a11 − λ)(a22 − λ) − (a21)(a12) = λ2 − λ(a11 + a22) + (a11a22) − (a21a12) = 0 (4.20)

Solving for λ looks difficult, and finding the determinant for more complex matrices 
is extremely tedious without computer software. As discussed above, thanks to Lefkovitch
(1965), many matrices can be simplified to this 2 × 2 form.

Now let’s return to the 2 × 2 matrix for the gray squirrel population we found in the
previous section:

a12

a22 − λ

a11 − λ

a21

λ 0

0 λ

a11 a12

a21 a22

λ 0

0 λ

1 0

0 1
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Solving for λ using the method outlined above (Eqn. 4.20) we have:

(0.325 − λ)(0.80 − λ) − (0.80 × 0.57) = 0.

This gives us:

λ2 − 1.125λ + 0.26 − 0.456 = λ2 − 1.125λ − 0.196 = 0

We can solve this equation using the formula for the solution of a quadratic equation
(ax 2 + bx + c = 0, recall your high school algebra!):

λ =

λ = = = 1.28

Although there is another solution, the positive or dominant root for λ is 1.28, which
is the same value we found above by projecting population growth and finding λ after
evaluating Nt+1/Nt.

4.13 Reproductive value

As biologists and conservation biologists evaluate life histories, they are often interested
in which age classes contribute most heavily to present and/or future population growth.
For this analysis they calculate a parameter known as the reproductive value. One applica-
tion of the reproductive value focuses on whether natural selection can regulate events
late in the life span of an organism when reproductive value is very low. Behavioral bio-
logists have suggested that in dominance hierarchies, individuals with the greatest repro-
ductive potential or value will be supported by their mothers or others in the population
(Alberts and Altmann 2003). Conservation biologists attempting to evaluate what inter-
vention strategy will give them the biggest bang for their buck (in terms of long-term sur-
vival of the population) may use reproductive value in determining which age classes are
likely to produce the desired increase in growth rate.

To evaluate reproductive potential, simply examining the fertility column is usually 
misleading. For example, if one-year-old females have, on average, two female offspring,
but two-year-old females have four female offspring, one might conclude that the two-
year-old individuals contribute more to population growth. However, suppose that the
survivorship value for l1 = 0.1 and for l2 = 0.01. The products of lxmx tell us that one-year-
old females produce 0.2 females and two-year-olds only 0.04 females per generation. 
Evidently an evaluation of reproductive potential of a given age class must take into account
both survivorship and fertility. Furthermore, the value of a given female depends not on

1.125 ± 1.432

2 
1 125 1 266 0 784 2.   .   .± +( )

− ± −b b ac

a

   2 4

2

0.57

0.80

0.325

0.80
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just her present reproduction, but the potential for future reproduction. For example, in
many species females become more fecund and more adept at successfully raising offspring
as they mature, leading to an increase in mx with age, followed by a decrease as they senesce.
On the other hand, in mammals that suckle their young for more than a year, repro-
ductive rates may be suppressed in the year following a birth, leading to oscillations 
in birth rates by age class across the population. For example, in Amboseli baboons 
m10 = 0.816, m11 = 0.649, m12 = 0.818, and m13 = 0.554 (Alberts and Altmann 2003).

Reproductive value is a number that measures the relative reproductive potential of an
individual of a given age. It can also be thought of as the weighted average of present and
future reproduction by a female or male of age x. It is the relative value of a daughter
born i time-units in the future when the population size will be Nt+i. Reproductive value
is scaled so that the value for the first age class equals 1.0 (Fig. 4.12). There are several
different ways of computing reproductive value (Lanciani 1998). In Example 4.2 I present
the traditional equation for reproductive value as method one (Lanciani 1998). A second
method produces reproductive values that are closer to the original concept of 
R.A. Fisher (1930) and to that derived from the matrix-algebra approach (Caswell 1989).
Conceptually, the second value is defined as “the present value of future offspring” of a
female of age x, and ignores reproduction by the present age class (method two). In other
words, values from age x + 1 to the end of life are used. Reproductive value can also 
be found in the Populus computer simulations developed by University of Minnesota 
ecologist Don Alstad (2001). In method one, as in Populus, values from age x to the end
of life are used.

The differences between the two approaches can be gleaned by working through
Example 4.2. In the formula for reproductive value, the survivorship functions lx, mx, and
r are as usual. In Equation 4.21, the numerator is simply the Euler equation. In method
two the summation is from the age x + 1 to the end of life. The summation in the numer-
ator is from the age class in question (x) to the end of the life span (z).

V x

Age classes

2 430 1

5

4

3

2

1

0

Method one

Method two

Populus

Figure 4.12 Three methods of computing reproductive value.
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Vx = (4.21)

Sample calculations are found in Example 4.2. Note that you should be able to confirm
that r = 0.371 and λ = 1.449, assuming a stable age distribution.

∑z
x e−rxlxmx

e−rxlx

Example 4.2

To calculate reproductive value, we need the following information:

Age, x lx mx e−−rx ×× lx ×× mx e−−rx ×× lx

0 1.00 0 0 1.000
1 0.60 0 0 0.414
2 0.50 3.0 0.714 0.238
3 0.40 2.0 0.263 0.132
4 0.10 1.0 0.023 0.023
5 0 0 0 0
Sum 1.000

Calculation of reproductive value, Vx:

Age, x Method one Method two

0 (0 + 0 + 0.714 + 0.263 + 0.023)/1.000 (0 + 0.714 + 0.263 + 0.023)/1.000
= 1.000 = 1.000

1 (0 + 0.714 + 0.263 + 0.023)/0.414 (0.714 + 0.263 + 0.023)/0.414
= 2.42 = 2.42

2 (0.714 + 0.263 + 0.023)/0.238 = 4.20 (0.263 + 0.023)/0.238 = 1.20

3 (0.263 + 0.023)/0.132 = 2.17 0.023/0.132 = 0.17

4 0.023/0.023 = 1.000 0/0.023 = 0

All methods produce the typical triangular shape when reproductive value,
Vx, is graphed against age (Fig. 4.12). See Fig. 4.8 of Alberts and Altmann
(2003) for an example of triangular reproductive values of male and female
Amboseli baboons. If you run Populus and bring up reproductive value for
this life table it produces a hybrid. The values for method 1 are identical for
ages 0–3. However, instead of assigning a value of 1.00 to the last age class,
it drops it to zero, as in method 2.
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4.14 Conclusions: sensitivity analysis

We have learned that age- or stage-structured growth is common in most
plant and animal populations, but the details of both survivorship and 
fertility differ greatly across species. For example, natural populations 
display many variations in survivorship, although a type III survivorship
schedule is most common. Most of the “charismatic megafauna” of inter-
est to conservation biologists and the general public shows age structured
growth. Thus the techniques outlined in this chapter are necessary before
we can make predictions about the potential for growth and recovery of an
endangered population. We must understand the effects that age-specific
survivorship and fertility have on the behavior of a population before we are
in a position to implement a management plan that would actually be effec-
tive in promoting its long-term survival.

For example, examine Table 4.12. These data were gathered by Schmutz
et al. (1997) on a population of the emperor goose (Chen canagica) (analysis
from Morris and Doak 2002). Given this information, is this population grow-
ing or declining? What aspects of its life history are most important to its
long-term growth rate? To answer these questions, we will use the matrix
format from Section 4.10. It turns out that the long-term l for this popula-
tion is 0.989.

We now ask, “How sensitive is population growth (or extinction risk) to
particular demographic changes?” Specifically, will a particular change in
survivorship or fertility have a large impact on the growth rate, l? Using the
above matrix, we have substituted survivorship values from 0.136 to 1.00 for
both hatchlings (S0) and older birds (S≥1), and fertility rates of 0.136–2.000
for two-year-old (F2) and three-year-old and older birds (F≥3). Figure 4.13 
summarizes this analysis. Obviously survival, especially that of the older birds,
has the greatest effect on the growth rate (l). Increases in fertility have vir-
tually no effect. A related point is that, since adult survival is so critical to
population growth, errors in our estimates would have a very large impact
on our conclusions about this population. As it stands now, from this matrix
our estimate of l is 0.989 < 1.000, and we expect this population to slowly
decrease. A small change in our estimation of survivorship, however, would
lead us to believe that this population is stable or growing. For example, a

Table 4.12 Survivorship and fertility of an emperor goose population 
(Schmutz et al. 1997).

Survival of Survival of Fertility of Fertility of three-
hatchlings ==  S0 one-year-old two-year-old year-old and 

and birds == S≥≥1 birds ==  F2 older birds == F≥≥3

0.136 0.893 0.639 0.894
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change in adult survival from 0.893 to 0.905 changes lambda from 0.989 to
1.001. A change in juvenile survivorship from 0.136 to 0.155 changes the
expected lambda to 1.000.

An examination of this sort is known as a perturbation or “sensitivity 
analysis.” Although Fig. 4.13 is convincing, conservation biologists have
sought to summarize the kind of analysis we have done above into a single
number that would summarize the sensitivity of lambda to particular vital
rates. The most common basic measure of sensitivity is the slope of the 
tangent taken on the curve of lambda as a function of each vital rate.
Problems with this approach include the possibility of nonlinearity in the 
relationship between lambda and a particular vital (survivorship or fertility)
rate. A second issue is the scaling of sensitivity values. Obviously survivor-
ship scales on a strict 0.0–1.0 scale, while reproduction can scale to very
large numbers (number of acorns produced by an oak tree). These com-
parisons can be made more meaningful by examining the proportional
change in lambda as a proportion of change in the vital rates. These 
calculations result in a measure known as elasticity. Elasticity, then, is a 
standardized sensitivity that measures the effects of proportional changes
in vital rates. That is, elasticities tell us the effect of perturbations in vital
rates that are all of the same relative magnitude. Elasticities are standard-
ized to sum to 100%.

For the emperor goose population discussed above the vast majority
(92% of elasticity) of sensitivity was in the survival of the one-year-old 
and older birds (Morris and Doak 2002). An analysis of the Amboseli baboon

Figure 4.13 The effect of changing vital rates on the value of lambda in an
emperor goose (Chen canagica) population. An increase in survivorship of
adults (one-year-old and older birds) has the greatest effect. Increases in
fertility have a negligible effect on l.
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population by Alberts and Altmann (2003) led to similar conclusions. That
is, fertility represented just 9% of the total elasticity for both males and
females. Survival of the pre-reproductive age classes accounted for 37% of
the total elasticity for females and 62% for males. Details on the calcula-
tion of both sensitivity and elasticity values can be found in Morris and Doak
(2002) or Alberts and Altmann (2003).

What should be done to promote the long-term survival of these two 
populations, or of other populations described in the first paragraph of this
chapter? What evolutionary forces have led to a particular life history in the
first place? These are just two of many questions for which there are no easy
answers. Still, the analyses outlined in this chapter should have given you
the tools necessary to at least begin to address these issues.
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Metapopulation ecology

5.1 Introduction

On August 27, 1883 Krakatau, an island about the size of Manhattan located between Sumatra
and Java, underwent a series of volcanic eruptions releasing as much energy as 100 
megatons of TNT (Wilson 1992). Magma, ash, and rock flew 5 km into the air and fell 
back into the sea, creating a tsunami 40 m in height, washing away villages in Java and
Sumatra, killing 40,000 people. Waves were still a meter high when they came ashore in
Sri Lanka. A total of over 18 cubic kilometers of rock and ash was thrown into the air
with dust and sulfuric acid aerosol reaching 50 km into the stratosphere, where their effects
were seen as brilliant sunsets for several years thereafter. All of this airborne material 
produced “darkness at noon” in areas near the former Krakatau.

Only the southern end of Krakatau remained. This island, which became known as Rakata,
was covered by pumice 40 m thick. The pumice had been heated to between 300 and 
850 °C, and all living things had been destroyed; Rakata was a sterile island. Yet living things
soon began colonizing this lifeless rock. Nine months after the explosion a visitor found
a small spider spinning its web. In the fall of 1884, a year after the eruption, biologists
found a few shoots of grass. By 1886 there were 15 species of grasses and shrubs; by 1897
there were 49 species; and in 1928 300 species of plants were found. In 1919 there were
patches of forest; by 1929 most of the island was forested, forcing the grasses into small
pockets (Wilson 1992).

• Metapopulations and spatial ecology
• MacArthur and Wilson and the equilibrium theory
• The Levins or classical metapopulation
• Extinction in metapopulations
• Metapopulation dynamics of two local populations
• Source–sink metapopulations and the rescue effect
• Non-equilibrium and patchy metapopulations
• Spatially realistic models
• Assumptions and evidence for the existence of metapopulations in nature
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What Wilson described, as outlined in the preceding paragraphs, sounds like a typical
successional sequence, proceeding from a community of colonizing species to a mature
or “climax” forest. What we want to emphasize, as we consider the topic of metapopula-
tions, is the two processes at work on Rakata. Obviously one of those processes is 
colonization. New species continually arrive on the island from the nearby mainlands. The
other process is local extinction. Many species that arrived on this island, and were recorded
early in the twentieth century, are no longer present. Again, this may not be surprising to
students of succession. So-called climax species are supposed to outcompete and elimin-
ate earlier successional species. But is that what happened? At least one animal species 
that we would associate with the more mature community, the reticulated python (Python
reticulatus), was present as early as 1933, but was gone by the 1980s. The bird community
is perhaps more to the point. In 1908, 13 species of birds were recorded on Krakatau; 
by 1920 there were 31 species; and in 1933, 30 species were found. Wilson (1992) believed
that an “equilibrium” number for Krakatau was approximately 30 species of birds, and
that number had been reached by about 36 years. More important, however, is that the
actual composition of the bird community has not remained stable. During the interval
between the 1920 and 1933 surveys, five species of birds went extinct on Krakatau, to be
replaced by four new species (MacArthur and Wilson 1967). For example, the sooty-headed
bulbul (Pycnonotus aurigaster) and the long-tailed shrike (Lanius schach) had become extinct
on Rakata between 1920 and 1933.

The history of Krakatau illustrates two major points: (i) local populations are continu-
ously subject to the twin processes of colonization and extinction; and (ii) communities
are continuously changing. Even when the number of species in the community is static,
the composition of the community is not.

5.2 Metapopulations and spatial ecology

Many of the population models we have examined, particularly the deterministic models,
have underlying assumptions that natural populations are numerous, widespread, and occupy
contiguous habitats. The reality is that these assumptions may never have been true for
certain populations, and that the natural world is now increasingly fragmented due to human
activities. Wildlife populations are now more likely to be small, restricted in distribution,
and increasingly isolated from each other. Partially as a reaction to these realities and 
partially because of increasingly sophisticated theoretical developments, ecologists have 
begun stressing the importance of the spatial context in populations, communities, and
ecosystems. What we can broadly call spatial ecology is the progressive introduction of
spatial variation and complexity into ecological analysis, including changes in spatial 
patterns over time. Krakatau is an example of both temporal and spatial complexity. Not
only have its communities and populations changed over time, but the community found
on present-day Krakatau is still very different from that of the nearby mainland forests of
Java and Sumatra. The local community of Krakatau remains distinct from those of the
mainland (Wilson 1992).

Spatial ecology is distinguished by two different approaches: (i) landscape ecology and
(ii) metapopulation ecology.

Landscape ecology usually focuses on a larger geographic scale than traditional 
ecological studies; it was founded largely by community- or ecosystem-oriented ecologists,
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geographers, and landscape planners. Landscape ecology explicitly recognizes the hetero-
geneity or “patchiness” of the environment both spatially and over time. It provides a large-
scale perspective that describes the physical structures of patchy environments as well 
as the movements of both individuals and resources among them. Generally, landscape
ecologists focus at the community, as opposed to the population, level. Furthermore, 
landscapes have a more complex structure than usually allowed in simple metapopulation
models, with habitat suitability being on a continuous scale, rather than simply “suitable”
or “unsuitable” (Hanski 1999). Landscape ecologists do not usually work on population
dynamics (Turner et al. 2001), but much of their work is relevant to metapopulations.
For example, both landscape and metapopulation models often attempt to incorporate
the roles of edge habitats, movements of individuals between patches via habitat cor-
ridors, spatial location of the patches, habitat fragmentation, landscape disturbance, and
spatial and temporal variation in the quality of the habitat.

The metapopulation approach begins by stressing that local populations are influenced
by immigration/emigration and extinction, as well as by birth and death processes. Until
the 1960s, the idea that populations might routinely go locally extinct was rarely discussed
in the literature. However, the population geneticist Sewall Wright (1940), as well as eco-
logists such as Andrewartha and Birch (1954), introduced the notions that populations 
are connected by migration and that local extinctions might be commonplace (Hanski 
1999). The importance of immigration and emigration to the long-term persistence of a
local population, however, was first emphasized by Levins (1970), who coined the term
metapopulation. For Levins a metapopulation was a population consisting of many local
populations. He asserted that all local populations have a finite probability of extinction,
and long-term survival of a species was at the regional or metapopulation level (Hanski
1999). Beginning in the 1990s, as it became obvious that the natural world was becom-
ing increasingly fragmented, the metapopulation approach became standard in the 
world of conservation biology. An understanding of metapopulations, the probabilities 
of local extinctions in different-sized natural reserves, and the rates of immigration and
emigration between these preserves, became one of the fastest-growing research areas 
in population, community, landscape, and conservation biology. As currently defined,
metapopulations are regional assemblages of plant and animal species, with the long-term
survival of the species depending on a shifting balance between local extinctions and 
re-colonizations in the patchwork of fragmented landscapes.

Whereas in landscape ecology we begin with the assumption of complex environ-
mental heterogeneity, in a simple metapopulation analysis, the landscape, from the per-
spective of a given species, is assumed to consist of discrete patches of suitable habitat,
surrounded by unsuitable areas. All of these patches are of the same quality and size, and
while these patches are isolated from each other there is no special recognition given to
how far apart they are or any measure of ease of movement from one patch to another
(connectivity). Nor are local population dynamics emphasized. The concern is simply whether
a patch is occupied or not, the extinction rate on patches, and the overall colonization
rate among patches. From this simple approach, more complex spatially realistic models
have been developed to recognize differences in habitat quality and size, local population
dynamics, and differences in connectivity among local patches.

Spatial ecology includes a variety of approaches, including so-called lattice models. 
In patch or lattice models, the habitats occupied by local populations are represented in
continuous space or made up of a series of spatially subdivided cells or “lattice” segments.
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These models include explicit spatial locations for the habitats. In patch models the 
habitats have just two states, occupied or empty, and no effort is made to estimate the size
of the population in the occupied patches. Cells change states according to simple rules,
and stochastic extinctions and colonizations take place. Many of these simplifying rules
can be relaxed in a spatially explicit variation of this approach known as the incidence
function model, examined later in this chapter (Hanski 1999).

The spatial distribution of a species is based on environmental patchiness. However,
the recognized patterns of spatial distribution (clumped, random or regular) only
describe the current spatial pattern; they do not address the underlying causation of the
pattern, or the long-term persistence of the population at that site.

The term “metapopulation” has been used for any spatially structured population and
“metapopulation dynamics” has been used to refer to any population dynamics involving
spatial patterns (Hanski 1998). Furthermore, as Harrison (1994) has pointed out, several
different types of metapopulations exist: classical metapopulations, mainland–island
metapopulations, non-equilibrium metapopulations, and patchy metapopulations. We will
explore these later in this chapter.

As pointed out by Tilman and Kareiva (1997), we must recognize that an individual
organism only interacts with its local environment and with the competitors and/or
predators present in that local environment. Such realities have been largely ignored by
ecologists in the past, particularly when deriving theoretical models for competition or
predation. Both classical and modern studies of competition and predator–prey inter-
actions can be easily integrated into a simple metapopulation (spatial) context. For example,
envision the environment as a series of patches and apply the competitive-exclusion 
principle (to be elaborated in a later chapter). If we have a superior competitor that drives
other species extinct on a given patch, the inferior competitors are only driven locally extinct.
They can remain in the region as long as they can have a higher dispersal rate than extinc-
tion rate and there are empty habitat patches. Similarly, a predator may drive a prey species
locally extinct, but the prey population remains regionally present as long as it continues
to colonize empty habitat patches faster than its predator. Although this is an over-
simplification of models presented later, consider the following two examples.

Huffaker (1958) worked with orange mites and their predators in the laboratory. He
found that coexistence of the two species was impossible on any given orange. Here one
orange represents a small homogeneous habitat or patch. Through the addition of spatial
complexity, however, as well as barriers to limit the rates of movements between patches,
the orange mite and its predator coexisted in the laboratory for many months. A higher
dispersal rate and environmental complexity allowed the prey species to remain region-
ally present, even though it was continually driven locally extinct on a given orange once
the predator arrived. Notice the parallels to epidemiological and host–parasite interactions.
An unoccupied, but suitable, habitat patch is the equivalent of an individual susceptible
to a parasite, yet not infected. An infected individual is the equivalent of an occupied 
habitat patch.

Spatial complexity can also have important effects on competitive interactions. For 
example, spatial complexity can help explain the coexistence of more species than
expected based on the theory that the number of coexisting species should not exceed the
number of limiting resources (Hutchinson 1961). As pointed out by Lehman and Tilman
(1997), usually there is a trade-off, often expressed in terms of energetic investments, between
competitive ability and colonization ability. While a superior competitor may take over
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a given site, if the less competitive species is a better colonizer, it may simply escape to a
new site before competitive exclusion can occur. For example, Hubbell et al. (1999) pro-
posed that high tree diversity on Barro Colorado Island in Panama is due, at least in part,
to the low dispersal ability in competitively dominant species. Through a combination of
low local abundance, low dispersal, and chance events, many plant species are absent from
the local neighborhood in which a tree is located. Many sites are colonized by “default”
species that were not the best competitor for the site. For example, an individual tree sapling
competes with only 6.3 neighbors on average. Thus, plants compete only with those indi-
viduals sufficiently nearby to shade them or whose roots overlap with theirs in the soil.
In order to “win” locally, a tree must only compete with those species that have “shown
up” in the local neighborhood. Inferior competitors “win” by default. Because winners
are only the best competitors that happen to have colonized a specific site, this process
can lead to an almost unlimited diversity (Tilman 1994, Hubbell et al. 1999).

While landscape ecology and metapopulation ecology have started at different scales and
with different assumptions and traditions, these two branches both ask similar questions.
Many landscape ecology courses include sections on metapopulations. An important
future task will be the reconciliation of these two approaches and the establishment of
common methodologies and principles.

5.3 MacArthur and Wilson and the equilibrium theory

Spatial ecology has its roots in the MacArthur and Wilson equilibrium (or dynamic) 
theory of island biogeography. MacArthur and Wilson (1963, 1967) brought a quantitative
theoretical framework to the study of biogeography. Even before Darwin carried out 
his pioneering work on the Galapagos, islands and island examples have been of great 
importance in biology, and islands have been analyzed as natural laboratories and experi-
mental systems. They are small, contained ecosystems in which certain species found in
continental ecosystems may be missing. The lessons learned from examining islands can
also be applied to those continental areas that are comparable to islands. That is, streams,
lakes, tidal pools, caves, and mountaintops can be thought of as habitat islands in a “ter-
restrial sea.” The approach of island biogeography has also been applied to host animals
as habitat patches for parasites. Finally, as noted above, the natural world is increasingly
fragmented, surrounded by roads, agricultural crops, shopping malls, industrial sites, and
urban development. As conservation biologists became increasingly aware that wildlife 
preserves were essentially islands, a set of rules for the design of natural areas was inferred
from the MacArthur and Wilson theory (Diamond 1975, Terborgh 1975, Wilson and Willis
1975, Willis 1984).

The basic principles derived from the MacArthur and Wilson theory are:

1 There is a relationship between habitat island area and the number of species
found there (the species–area curve);

2 local extinction is a normal, common occurrence, particularly on small
islands with small populations;

3 local diversity is based on an interplay between colonization from a 
“mainland” source of species and local extinction, resulting in an “equilibrium”
number of species;
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4 island size and distance from the source of species will affect the “equilibrium”
number of species. That is, large islands that are close to the mainland will
have more species than small islands far from the mainland.

The relationship between number of species on an island and the area of the island is
one of the cornerstones of island biogeography theory. The species–area relationship has
been discussed since the nineteenth century, and MacArthur and Wilson (1967) proposed
that the number of species on an island could be approximated by the equation:

S = CAz

where S = the number of species on the island, A = the area of the island, C = a constant
(the y-intercept, see below), and z = a constant which remains fairly consistent within a
taxonomic group and/or the types of islands being considered.

The above equation can be log-transformed as follows:

Log S = Log C + z Log A (5.1)

This is an equation for a straight line with a slope = z, with log C as the y-intercept.
Thus, if data are gathered on the area of islands of different sizes and on the number of
species on each island, a regression of the log-transformed data will produce a linear equa-
tion with slope z. The slope is relatively consistent within a taxonomic group but also depends
on the type of island system. That is, the z-value depends on whether we are dealing with
true oceanic islands, recently isolated islands (“land-bridge” islands), or habitat islands.
According to MacArthur and Wilson (1967), z-values range from 0.20 to 0.40 for oceanic
islands, 0.1 to 0.25 for arbitrary portions of the mainland, and greater than 0.26 for 
habitat islands (Gould 1979, Quinn and Harrison 1988). Preston (1962) showed that a 
z-value 0.26 is expected when the log of species abundance versus the number of species
has a normal distribution.

Gould (1979) pointed out that a slope of 0.25 is extremely common for species–area
curves. What is of interest are those z-values differing significantly from 0.25. When we
simply sample larger and larger areas of habitats not isolated from each other, the z-values
are theorized to be smaller than the expected 0.25. When small areas are sampled they
include a number of transient species passing through the area, raising the number of species.
The result is a smaller-than-expected rise in the number of species with increasingly large
sample areas. Thus, ants from non-isolated continental areas in New Guinea (Wilson 1961)
have a z-value of 0.17, mammals from the Sierra Nevada in California have a z-value of
0.12 (Brown 1971b), and birds from the Great Basin of the USA a z-value of 0.17 (Brown
1978). By contrast, larger-than-expected z-values arise when islands contain great habitat
diversity, with semi-isolated unique biota encountered as sample areas are increased. Examples
include terrestrial invertebrates found in caves (z = 0.72, Culver et al. 1973), mites on 
cushion plants (z = 0.42–0.69, Tepedino and Stanton 1976), and mammals on isolated 
mountaintops (z = 0.43, Brown 1971b, and z = 0.33, Brown 1978). Lawrey (1991, 1992) has
suggested that pollution, by reducing interspecific competition, produces larger-than-expected
z-values for lichen species on rocks of differing sizes. Whereas z-values varied from 0.16
to 0.21 for six undisturbed sites, a site disturbed by air pollution near the Capital Beltway
in Maryland yielded a species–area curve with a z-value of 0.28.
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Some scientists have asserted that as islands get larger the topography becomes more
complex, there are more habitats, and therefore we have more species. In their study of
red mangrove islands, however, Simberloff and Wilson (1969, 1970) found that species
number increased with island size alone and was unrelated to habitat diversity.

The number of species found on an island, according to MacArthur and Wilson, was
due to two contrasting processes of (i) immigration and (ii) extinction. Extinction 
was envisioned as a normal, locally common event, while new species were added through
immigration form the mainland. Diversity was the result of the equilibrium between immi-
gration and extinction. Furthermore, the theory indicated that once the “equilibrium” 
number of species was reached, the only constant was the number of species in the com-
munity, not the identity of the species involved (Fig. 5.1). Since extinction is a locally 
common process, there should be a regular “turnover” in the species found on the island.

The expected number of species on an island is affected not only by the area of the 
island, but also by the distance of the island from the source of species. Immigration 
rates are lower on smaller islands and on islands further from the “mainland” source of
species. By contrast, immigration rates are higher on larger islands and on islands closer
to the “mainland.” Extinction rates are expected to be higher on small islands, since 
average population sizes are smaller (Wilson 1992).

The rate at which new immigrant species establish themselves on the island falls as the
number of species on the island increases. As more species become established on the island,
fewer individual immigrants will belong to a species not already present; moreover it will be
harder for a new species to successfully colonize due to competition with the already estab-
lished species. Species with high dispersal rates are those that arrive quickly, while those with
lower dispersal rates arrive more slowly. Because of the proposed colonization–competition
trade-off, the species with lower dispersal rates are likely more competitively dominant.
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Figure 5.1 Immigration and extinction curves from the island biogeography model
of MacArthur and Wilson (1967). S is the equilibrium number of species, where the
two curves intersect.
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The extinction curve rises as more species arrive on the island. The more species that
are present, the more that can become extinct. But again, as more species are present, com-
petition increases and the average population size per species declines, leading to an increased
probability of extinction. Finally, if succession proceeds to a “climax” stage, the com-
munity will be saturated with species. At equilibrium, the number of species will be constant
on the island, though some new species will continue to arrive while others will go extinct.

The MacArthur and Wilson equilibrium theory captured the imagination of ecologists,
conservation biologists, and biogeographers, making it the leading paradigm for the 
spatial dynamics of species during the 1980s. It shares much of the conceptual framework
of metapopulation biology. Both view nature as subdivided into discrete fragments of 
suitable habitat; both view local populations as subject to stochastic processes and prone
to extinction; and both stress the importance of movements of individuals between 
habitats (or islands). A key difference is that island biogeography stressed the community
property of diversity rather than focusing on the dynamics of individual populations.
Furthermore, island theory was developed to explain patterns at large spatial scales as opposed
to fragmentation of landscapes at small scales (Hanski 2002).

The MacArthur and Wilson model is now categorized as a mainland–island 
metapopulation. There is a constant source of species, the mainland. The mainland 
population is seen as permanent, with no chance of extinction. Furthermore, dispersal is
one-way. Species move from the mainland to the island; the reverse is not significant. Finally,
no movement from one island to another is included in this type of metapopulation.

5.4 The Levins or classical metapopulation

According to the Levins model, metapopulation persistence is due to a stochastic balance
between local extinction and re-colonization of empty habitat patches. The rate of change
in occupied habitat patches is a function of colonization rates (c) and extinction rates (ε)
as shown in Equation 5.2 (Levins 1969). P is the proportion of patches occupied by the
population under consideration.

= cP(1 − P) − εP (5.2)

As described by Hanski (2001), if we define P′ as the number of habitat fragments 
occupied by the species (rather than the proportion), and define T as the total number of
habitat patches available, the equation can be modified as follows:

= cP ′(T − P ′) − εP (5.3)

Both of these models are deterministic descriptions of the rate of change of metapopu-
lation size, even though the models are based on stochastic events. Assumptions include:

1 The local populations are identical and have the same behavior;
2 extinctions occur independently in different patches and therefore local

dynamics are asynchronous;

dP ′
dt

dP

dt
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3 colonization spreads across the entire patch network and all patches are equally
likely to be “encountered;”

4 furthermore, all patches are equally connected to all other patches.

In the Levins model we are not concerned with population dynamics within each popu-
lation. We do not attempt to assess the number of individuals in each patch; we simply
record a patch as occupied or not occupied. For this reason we also do not assess the size
or quality of the patches.

The equilibrium value of P can be obtained by setting dP/dt = 0. This produces the expected
proportion of patches to be occupied and amounts to a carrying-capacity term such as is
found in the logistic equation.

0 = cP(1 − P) − εP = P(c − cP − ε)

Since P = 0 is not an interesting solution, we have:

0 = c − cP − ε, and ε = c − cP

The equilibrium value of P, defined as P̂ and found by solving the above for P, is shown
in Equation 5.4:

P̂ = = 1 − (5.4)

The implication here is that colonization must be greater than extinction or the equi-
librium proportion of patches occupied will be zero, and the colonization rate must 
be greater than the extinction rate for persistence of the metapopulation. If we consider
colonization a “birth” event and extinction a “death” event (thereby using c − ε as the 
equivalent of the growth rate, r, in the logistic equation) and we use 1 − ε/c to represent
a “carrying capacity” term (equivalent to K in the logistic equation) as mentioned above,
we can model metapopulation dynamics as a modification of the logistic (Equation 5.5).
No matter what the starting patch frequency is (assuming 1 ≥ P > 0), over time it moves
to the expected value based on P̂ = 1 − ε/c (see Fig. 5.2).

= (c − ε)P 1 − (5.5)

This simple model has helped ecologists develop insights into the consequences of 
habitat destruction and fragmentation. For example, imagine a fragmented landscape in
which a fraction of the habitat patches is destroyed. The extinction rate is not affected,
but the colonization rate is. This is because there are fewer local populations and fewer
empty patches. If the patch connectivity is reduced, it can be modeled by reducing the
value of c. Habitat destruction can therefore lead to a reduction in the proportion of patches
that are occupied. Alternatively, if no patches are destroyed but they are reduced in area,
this would result in lower average population sizes, which would increase the extinction
rate. Simultaneously, colonization rate would be reduced due to the smaller population
sizes in the occupied patches. The net result again is a reduction in the fraction of 
occupied patches (Fig. 5.3).
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dP

dt

ε
c

c − ε
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Figure 5.2 Expected proportion of habitat patches occupied, based on 
Equation 5.5. In this example P0 = 0.50 and 0.15, the colonization rate c = 0.75, 
and the extinction rate e = 0.55. The expected proportion of patches occupied at 
equilibrium = 1 − e/c = 0.27.
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Figure 5.3 (a) The effect on patch occupancy of a lowered colonization rate due 
to a reduction in the number of habitat patches. (b) Expected changes in patch
occupancy with lower colonization rate and increased extinction rate. Colonization
rate is reduced by loss of habitat number; extinction rate is increased by reduction
in patch area. Adapted from Hanski (1999).
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5.5 Extinction in metapopulations

In metapopulation dynamics, as well as in the MacArthur and Wilson theory, the 
extinction of a local population is not uncommon. But we are more interested here in 
the extinction of the metapopulation. Table 5.1 (Hanski 1998) summarizes the potential
causes of both local and metapopulation extinctions.

We need only comment on the comparison of stochastic processes in local versus meta-
population extinctions. One of the assumptions for long-term metapopulation persistence
is that the expected number of new populations generated by one existing population 
during its lifetime must be greater than one. That is, the replacement rate must be greater
than one, as is true for a local population to persist. In a small metapopulation, however,
all local populations may go extinct by chance. This is known as “extinction–colonization
stochasticity” (Hanski 1998). This is an exact analogue to demographic, stochastic extinc-
tion of a local population (Chapter 1). This may happen even if the replacement rate is
greater than one in both local populations and metapopulations. Regional stochasticity 
is due to processes such as large-scale weather patterns, which produce synchrony among
the independent local populations. This effectively reduces the number of independent
populations and makes metapopulation-level persistence less likely.

5.6 Metapopulation dynamics of two local populations

Recall that in the discrete-time population model, when r was set > 2.69 (Fig. 2.19) the
population underwent chaotic behavior (May 1974, 1976b). However, if two such popula-
tions are connected to each other by migration a number of interesting and unexpected
changes occur (Hanski 1999).

In this example the Ricker model, is used:

Nt+1 = Nt e
r 1−

(5.6)

In populations one and two, shown in Fig. 5.4, r = 3 and K = 3. Population one is 
initiated with one individual (N0 = 1), while for population two N0 = 2. Each population
and the metapopulation (Fig. 5.5) behave chaotically. The metapopulation is simply the
sum of populations one and two. At time = 49 the two populations are connected by allow-
ing 30% of the individuals to emigrate. The emigrants are divided equally between the

D
F

Nt

K
A
C

Table 5.1 Potential causes of local and metapopulation extinctions (Hanski 1998).

Local extinction Metapopulation extinction

Stochastic processes (a) Demographic (a) Extinction–colonization 
interaction

(b) Environmental (b) Regional processes

Extrinsic causes Habitat loss Habitat loss and fragmentation
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two populations. The migrations calm the chaotic behavior, and by time = 55 the two 
populations (Fig. 5.4) have moved to a two-point limit cycle. The two populations go through
cycles out of phase with each other, and the metapopulation (Fig. 5.5) is completely stab-
ilized (Hanski 1999).

Gyllenberg et al. (1993) have confirmed that migration can help stabilize local popula-
tion dynamics, although some mortality must occur during migration to have a stabil-
izing effect. Similarly, migration from a permanent (mainland) population or from a 
population with a low growth rate also has a stabilizing effect. Movement of individuals
between local populations has, at least theoretically, a stabilizing effect on the local 
populations themselves as well as on the metapopulation. We are well advised, however,
not to push this theoretical point too far in field populations (Hanski 1999).
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Figure 5.4 Two local populations. (a) Population one: N0 = 1, r = 3, K = 3. 
(b) Population two: N0 = 2, r = 3, K = 3. The two populations are connected 
at t = 49.
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5.7 Source–sink metapopulations and the rescue effect

The concept of source–sink metapopulations was put into the literature by Pulliam
(1988), and is based on the fact that habitats are not uniform but differ in quality. High-
quality patches produce large populations with positive growth rates, and are likely to be
a source of emigrants. These high-quality areas, where r > 0, are known as source patches.
Other habitat patches are of low quality, have small populations, and consistently have
negative growth rates. That is, populations in sink patches have a negative r in the absence
of immigration (Hanski 1999). If and when migrants from source populations arrive at
sink patches, they become either founders of new populations, or new members of estab-
lished populations. The rescue effect is based on the idea that emigrants from source areas
regularly supplement these small, extinction-prone populations. If the expected size of the
small population is increased through this supplementation it becomes less prone to, or
is rescued from, extinction (Brown and Kodric-Brown 1977). In a true sink habitat a 
population would decline to extinction if cut off from its source population. A pseudo-
sink population is one in which the population would decline to a lower equilibrium, but 
not go extinct, if cut off from its source population (Watkinson and Sutherland 1995). 
In practice it is difficult to distinguish between a true sink and a pseudo-sink population
in the field.

The MacArthur and Wilson (1967) island biogeography theory, a mainland–island
metapopulation, has much in common with source–sink metapopulations in that main-
lands are large compared to islands and, in theory, not prone to extinction, while islands
are small and there is always a finite probability of extinction. The mainland is the source,
while the islands are, collectively, sink populations. While MacArthur and Wilson (1967)
emphasized that extinction is a normal process in a community, they envisioned the main-
land as a more or less uniform patch when compared to the island populations, and that
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Figure 5.5 Metapopulation of populations one and two from Fig. 5.4. The two
populations are connected at t = 49. The metapopulation is stabilized at t = 55.

ITP_C05.qxd  09/27/2005  02:07PM  Page 120



METAPOPULATION ECOLOGY 121

the mainland would function as a source indefinitely. Moreover, while extinction was assumed
to occur on islands, the island populations were also assumed to have positive growth rates
in a normal year (Elmhagen and Angerbjörn 2001).

One of the best illustrations of the source–sink concept comes from the study by Hubbell
and Foster (1986a, 1986b) of a 50-hectare plot of tropical moist forest on Barro Colorado
Island in Panama. They mapped over 238,000 individual trees and shrubs of 314 species
over a 13-year period. They found that at least one-third of the rare species were not self-
maintaining populations. They were not reproducing effectively and their presence in the
plot was a result of immigration from outside of the 50-hectare plot.

Sink populations can be important to the long-term survival of a source population.
Assume that the source population is prone to chaotic behavior, or shows great fluc-
tuations in size because of disease or sensitivity to environmental fluctuations such as 
drought or fire. In this case the source population itself could be rescued if connected to
a sink (Gyllenberg et al. 1993).

5.8 Non-equilibrium and patchy metapopulations

In examining the literature on metapopulation studies, Harrison (1991, 1994) found 
that the term has also been used to describe two other kinds of situations. In a non-
equilibrium metapopulation the rate of extinction among the populations exceeds the 
colonization rate. Without some change in the dynamics of the system, including perhaps
restoration of functioning habitat patches, the ultimate fate of such a metapopulation is
extinction.

By contrast, in a patchy population the migration rate is so high that the so-called 
subpopulations function effectively as one single population. Hanski (1999) has asserted
that patchy populations should be excluded from metapopulation theory since they lack
distinct breeding subpopulations. The classical metapopulation of Levins is found
between the extremes of patchy and non-equilibrium metapopulations (Elmhagen and
Angerbjörn 2001).

5.9 Spatially realistic models

The Levins model assumed that local populations were identical; extinctions occurred 
independently in different patches; all patches were equally likely to be found; and patches
were equally connected to each other. He did not try to describe how individuals move
from one population to another, nor did he allow for differences in patch size or quality,
in spite of the importance assigned to island size by MacArthur and Wilson.

Most metapopulation models also assume unconditional emigration. That is, there are
no consequences to the source population from losing individuals. This seems to be a 
reasonable assumption in most populations since emigrants are often pictured as “extra”
individuals when a population has reached or exceeded its carrying capacity. In many species
non-breeding males venture away from the family group looking for an empty territory
or an existing group that they may join in order to become breeders. Females of 
butterflies and other insects emigrate in order to find newly available host plants for egg
deposition. Male and female dung beetles emigrate when the dung pile they were born
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into has become depleted. If the mortality rate of dispersers, however, is much higher than
that of individuals who remain “home,” a very high population dispersal rate (large per-
centage dispersing) can lead to local, and sometimes metapopulation, extinction (Hanski
2002, J. Mickelberg, personal communication).

The rate and the scale of re-colonization of an empty habitat depend on the shape of
the dispersal curve of the population. A simple model of animal movement is based on a
random walk, using a coefficient of diffusion (D) and a normal distribution for move-
ments, the variance of which increases with time (2Dt) (Okubo 1980). Studies of animal
emigration, however, indicate that more individuals move very short and very long dis-
tances than predicted by random walks (Johnson and Gaines 1990). In metapopulation
models emigration distances are usually modeled using a negative exponential function,
which is a reasonable approximation of reality (Hanski 2002) (Eqn. 5.7, Fig. 5.6). Two
characteristics determine the dispersal efficiency of a species. One is the number of 
individuals dispersing (here equal to β) and the dispersal ability of each individual (α).
Species differ a great deal in the amount of energy invested in reproduction each year.
Obviously the more energy invested in reproduction, the greater the number of dispersal
units. But for a given reproductive effort, species also differ in whether they produce a
smaller number of large offspring or a larger number of small offspring. The smaller the
dispersing unit, the greater distance it is likely to travel. Many highly dispersed organisms
are so small that the wind can carry them hundreds or even thousands of miles. On the
other hand, acorns only move as far as gravity or squirrels will take them. In Equation 5.7
α is directly associated with a greater colonizing ability per unit of dispersal, while 
β is associated with the number of colonists produced per individual from the source 
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Figure 5.6 Number of colonists arriving at different distances, based on a negative
exponential model, Ci = b e−adi, and using different a values. Ci = the number of
colonists arriving at a distance di from the source population. In all cases b = 500.
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population. Ci is the colonization probability per unit time for population i and di is the
distance from the source population.

Ci = β e(−αdi) (5.7)

where α and β are site- and species-specific parameters.
What is most important to a metapopulation is the proportion of individuals that move

long distances. The exact shape of the distribution of migration distances among emigrants
is therefore of great importance, but it is very hard to estimate in most populations 
(Hanski 2002).

We will discuss one approach that has been proposed to make metapopulation models
more realistic, the incidence function model (IFM) championed by Hanski and his 
colleagues (Hanski 1994a, 1994b, 1999, Hanski and Gilpin 1997). The IFM is a stochas-
tic patch model in which the population in each patch has one of two states, presence or
absence. The IFM includes: (i) a finite number of habitat patches; (ii) patches of different
sizes (sometimes including differences in quality and shape); and (iii) each patch having
a unique spatial coordinate so that interactions among patches are localized in space. Since
habitat patches are simply occupied or not, there is usually no estimation of population
sizes or dynamics within patches. The major virtue of the IFM is that it is constructed so
that parameters can be estimated from field data. This allows the application of this model
to real populations.

The IFM begins with the assumption that for an empty habitat patch, i, there is a con-
stant probability, Ci, of re-colonization per unit time. If a patch is occupied, there is 
a constant probability, Ei, of extinction per unit time. One event, either colonization or
extinction, is allowed per time period. The long-term probability of the patch being 
occupied is called the “incidence” or Ji (Eqn. 5.8). The incidence function model is 
based on discrete time intervals, and is a stochastic rather than a deterministic model 
(Hanski 2001).

Ji = (5.8)

There are a number of difficulties if we are modeling a true metapopulation with no
“mainland” source of species. With no external mainland, metapopulation extinction is
the only true steady state (Hanski 1999). However, a metapopulation may theoretically
persist for very long periods of time.

Recall that in the rescue effect the probability of extinction on a habitat patch is
reduced through immigration of individuals from other patches. In order to allow for the
rescue effect, Hanski modified the probability of extinction between times t and t + 1 by
substituting (1 − Ci)Ei for Ei. This modified equation is:

Ji = (5.9)

Hanski (1999) then derived a relationship between extinction probability, Ei, and the size
of the patch area, Ai, using the basic reasoning of the species–area curve. That is, extinction
probability depends on population size, which is a function of patch area. The general
relationship is as expressed below (Eqn. 5.10) in which e and X are estimated from the

Ci

Ci + Ei − CiEi

Ci

Ci + Ei
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data. The value e is a parameter related to the probability of extinction per unit time in
a patch of a given size. The parameter X is a measure of environmental stochasticity (Hanski
1999).

Ei = (5.10)

Colonization probability, Ci, is a function of the number of immigrants, Mi. In a 
simple mainland–island metapopulation, the colonization probability is a function of 
distance (di) from the mainland, which was expressed above as Equation 5.7.

For a true metapopulation, however, Mi is the sum of individuals arriving from all of
the surrounding habitat patches. Mi can be written as a summation for all patches:

Mi = βSi = β e(−αdij)pj Aj (5.11)

In this equation dij represents the distance between patches i and j; pj is 0 for an 
unoccupied patch and 1 for an occupied patch; and Aj is the size of the patch. The 
summation term is represented by Si, which becomes a measure of patch isolation or, to
put it positively, patch connectivity. If population sizes (Nj) are known for each patch, 
Si can be written as:

Si = e(−αdij)Nj (5.12)

As above, the term α describes how fast the immigration rate from patch j declines with
distance. Hanski suggests that this term can be found through mark–recapture data.

If interactions among immigrants are negligible, Ci increases exponentially with Mi.
However, there is often a sigmoid relationship between the number of immigrants and
successful re-colonization by a given species. Therefore Ci can be written as:

Ci = (5.13)

where y is a parameter fitted from the data. In the sections below the terms y and β are
combined simply as y (Hanski 1999).

Once equations were developed for the dependence of extinction on patch size and 
colonization on patch connectivity, Hanski combined them into the usual form of the 
incidence function model:

(5.14)

As before, Ji is the probability that a patch, i, is occupied; y is a parameter related to
successful immigration; Ai represents the area of the patch i; X is the rate of change of
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extinction per unit time with increasing patch size (a measure of environmental stochas-
ticity); and Si describes the connectivity between patches, that is, the effect of distance on
immigration rate. Equation 5.14 can be rewritten as:

Ji = (5.15)

If we manipulate and take natural logs of both sides of this equation we come up with
a linear relationship between the expected patch occupancy ( Ji) and the two independent
variables, connectivity (Si) and size (Ai) of the habitat patches:

In = −In(ey) + 2 In Si + X In Ai (5.16)

Hanski (1999) has described how to estimate all of these parameters from field data,
and has applied the model to simulate metapopulation dynamics in butterflies (Hanski 
et al. 1995, Wahlberg et al. 1996), the American pika (Ochotona princeps) (Moilanen et al.
1998), and a number of other species. The basic information needed in order to apply
this model in the field is simply the area of each habitat patch and the inter-patch 
distances (dij). Subsequently, model parameters must be estimated. First α is estimated
from mark–recapture data or estimated from patch-occupancy data. The parameters y
and e are fitted to empirical data using nonlinear regression techniques. The value of X is
fitted from the data and can be modified to include the rescue effect.

In Table 5.2, from Kindvall (2000), are the results of fitting the incidence function model
to field data gathered from a fragmented population of the bush cricket Metrioptera bicolor.
Kindvall (1995) found that using occupancy data from a single year did not result in real-
istic predictions about the metapopulation. When parameters for the IFM were estimated
from patch occupancy over a five-year period, better results were obtained.

D
F

Ji

1 − Ji

A
C

1

1 + eIn(ey)−2 InSi −X In Ai

Table 5.2 Results of fitting the incidence function model to occupancy data of the
bush cricket Metrioptera bicolor for two areas of Sweden during the period 1989–94.
P is mean proportion of available habitats actually occupied from 1990 to 1994.
Predicted mean proportion of patches occupied is based on 100 replicates. 
Adapted from Kindvall (2000).

Parameters Western area Eastern area

Number of available patches 66 50
Actual P 0.82 0.71
Predicted P 0.80 0.62
Multiplier of X
for the rescue effect 0.05 0.001
a 2.0 6.0
X 0.876 0.514
y 7.278 2.571
e 0.072 0.029
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Kindvall (2000) compared the incidence function model to three other spatially 
realistic models, including a logistic regression model (Sjögren-Gulve and Ray 1996), and
found the logistic regression model performed best in its ability to predict regional occu-
pancy, local occupancy, and the number of colonizations and extinctions. Nevertheless 
he found the IFM did a reasonable job of predicting the actual outcomes for the bush
cricket in Sweden.

The application of the IFM to mainland–island populations can be simpler since there
are fewer parameters to estimate. One example is a study on the occurrence of small mam-
mal populations on islands in lakes and in the sea (Peltonen and Hanski 1991, Hanski
1993). The IFM was based on the occurrence of three species of shrew (Sorex) on 68 islands.
Using parameters estimated from this study, Hanski (1993) predicted the annual colonization
and extinction probabilities on 17 additional islands. The observed and the predicted rates
were well matched (Table 5.3). In this study only the extinction parameters (X and e) were
estimated since colonization was from the mainland and was assumed not to differ
among islands (Hanski 1999). The value X is inversely related to the strength of environ-
mental stochasticity: a large value of X means weaker environmental stochasticity. The value
of X is directly correlated with body mass in the shrews described in Table 5.3, as well as
in birds from four different areas (Cook and Hanski 1995). What this implies is that species
with larger mass (such as Sorex araneus) are less affected by environmental stochasticity
as compared with species with a smaller mass (Hanski 1999). Table 5.3 also suggests that
only Sorex araneus has a long-term metapopulation survivorship, since it is the only species
with a C > E.

5.10 Minimum viable metapopulation size

As discussed in Chapter 1, conservation biologists introduced the concept of minimum
viable population size (Soule 1980), although this approach has been replaced by various
population-viability analyses. The MVP size was intended to estimate the minimum num-
ber of individuals necessary for a population to have a specific probability of surviving for
a fixed period of time. When applied to metapopulations the analogous concept would

Table 5.3 The predicted and observed annual extinction and colonization 
rates for three species of shrews (Sorex) on small islands. Parameters for this
mainland–island incidence function model were from 68 islands and applied to a
different set of 17 islands. X and e are annual extinction parameters. C = annual
colonization rate; E = annual extinction rate. Adapted from Peltonen and Hanski
(1991), Hanski (1993).

Species Body size Parameter Predicted Observed
(g) estimates

X e C E C E

S. araneus 9 2.30 0.20 0.26 0.04 0.20 0.04
S. caecutiens 5 0.91 0.53 0.03 0.28 0.05 0.33
S. minutus 3 0.46 0.73 0.18 0.53 0.13 0.46
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be defined as the minimum number of local populations necessary for the long-term per-
sistence of the metapopulation. Gurney and Nisbet (1978) and Nisbet and Gurney (1982)
developed a stochastic version of the Levins model with a finite number of habitat patches
and local populations. In the analysis of their results they defined long-term persistence
of the metapopulation, TM, as at least 100 times the expected time of local extinction, TL.

If P̂ is the fraction of occupied patches at equilibrium, and H is the total number of
habitat patches, Gurney and Nisbet (1978) found that the product of P̂ must be 
greater than 3:

P̂ > 3 (5.17)

For example, if there are 50 habitat patches, this equation says that colonization and
extinction rates must be such that P̂ > 0.42 for a metapopulation to persist more than 
100 times TL. This relationship does not take into account the size and quality of the 
habitat patches, but does demonstrate that long-term metapopulation persistence benefits
from a large number of habitat patches.

5.11 Assumptions and evidence for the existence of metapopulations 
in nature

The different types of metapopulations described above (mainland–island, classical, source–
sink, patchy, and non-equilibrium) are all variations on the same themes. Local extinc-
tions are commonplace, there is an equilibrium involving colonization and extinction 
rates, and so on. They differ in the levels of detail, whether they allow for patches to be
of different quality, whether they allow for differing levels of connectivity between
patches, and whether they include local population dynamics.

What are the general assumptions we are making in all of these models? How can 
we demonstrate that the long-term persistence of a species in a landscape is due to
metapopulation, rather than local population, processes? One difficulty is that long-term
population data on patch occupancy are hard to gather. For this reason, many studies of
population persistence in a fragmented landscape, meeting the criteria for a metapopula-
tion, come from short-lived, easily monitored organisms. Accordingly, there has been an
emphasis on populations of butterflies such as the Glanville fritillary (Melitaea cinxia) and
the bay checkerspot (Euphydryas editha) (Hanski 1999, Ehrlich and Hanski 2004). On the
other hand, metapopulation theory was famously, though perhaps inappropriately, used
in designing a conservation plan for the northern spotted owl (Strix occidentalis) (Boyce
2002), and is being implemented in the management of both black and golden lion tamarin
(Leontopithecus chrysomelas and L. rosalia) populations in South America (J. Mickelberg,
personal communication).

Assumptions that metapopulation dynamics are decisive to the structure of the regional
population include (Hanski and Kuussaari 1995, Hanski 1999):

1 The species has local breeding populations in relatively discrete habitat
patches. This condition stresses that the population is spatially structured 
and therefore most individuals interact with others only in the local habitat
patch.

H

H
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2 No single local population is large enough to have a longer expected lifetime
than the expected lifetime of the metapopulation itself. This excludes 
mainland–island populations.

3 Empty habitat patches are common. In the Glanville fritillary butterfly study
in Finland, for example, 70% of approximately 1600 habitat patches have been
empty at a given time (Hanski et al. 1995).

4 The habitat patches are not too isolated to prevent re-colonization. Long-distance
movements may be facilitated by habitat corridors or other mechanisms.

5 Local dynamics are sufficiently asynchronous to make simultaneous 
extinction of all local populations unlikely. With complete synchrony, the
metapopulation only lasts as long as the local population with the lowest chance
of extinction. The greater the asynchrony, the longer the metapopulation is
likely to last. In a recent review of the literature, Elmhagen and Angerbjörn
(2001) found eight studies (four insect species and four small mammal species)
in which asynchrony of population dynamics among patches was confirmed.

6 Population turnover, local extinctions, and the establishment of new popula-
tions form the basis for metapopulation dynamics, and metapopulations persist
despite population turnover. Elmhagen and Angerbjörn (2001), in a review of the
literature, found 22 studies confirming turnover. See supportive data below.

7 Population size or density is significantly affected by migration. This is the basis
for source–sink populations and the rescue effect (Pulliam 1988, 1996).

8 Population density, colonization rate, and extinction rates are all affected by
patch size and isolation.

9 Metapopulations can affect competitive, predator–prey, and parasite–host
interactions. These ideas were discussed at the beginning of this chapter and
will be elaborated in later chapters.

Reviews of metapopulation studies by Elmhagen and Angerbjörn (2001) and Harrison
(1991, 1994) found that many of these criteria are frequently not met in the published
metapopulation literature. Nevertheless, there is an extensive literature, particularly from
studies of butterflies, supporting most of these assumptions (Ehrlich and Hanski 2004).

Supportive field studies

1 Boycott (1930) studied freshwater mollusk populations in 84 ponds in England.
Over a 10-year period he recorded 64 extinctions and 93 colonizations of 
18 species.

2 In their study of arthropod populations on red mangrove islands, Simberloff
and Wilson (1969, 1970) removed all arthropod species by fumigation. After
re-colonization of the mangroves by the arthropods, they found an equilib-
rium of between 20 and 40 species per island, depending on island size. But
the turnover rate of species was approximately 2% of the species pool per day.

3 As described at the beginning of this chapter, after the explosion on Krakatau
the number of bird species on Rakata seemed to reach equilibrium at 30 by
1934. Yet a consistent turnover has continued.

4 Hanski et al. (2004) described an experiment with the Glanville fritillary in 
which 10 local populations, derived from 72 larval groups, were transported
from the Finnish island of Åland to the island of Sottungia in August 1991.
Sottungia is a 4 km by 2 km island containing 20 small meadows suitable for
this butterfly, although there were none at the time of the introduction. An
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examination of Table 5.4 shows that this metapopulation has persisted, in spite
of the fact that none of the original 10 populations lasted for the entire 11 years
of the study. These data confirm the persistence of the metapopulation as a
stochastic balance between local extinctions and re-colonizations of available
habitat patches. Note that we are only keeping track of presence or absence
of the population in a habitat; we are not making an assessment of local 
population numbers or local population dynamics, and there is no assessment
of habitat quality.

5 Long-term work on the same species of butterfly on the Åland archipelago
(Nieminen et al. 2004) over an eight-year period found: (i) the number of extinct
populations varied from 131 to 234 per year; (ii) the number of colonizations
ranged from 97 to 230 per year; (iii) the total number of extant populations
varied from 303 to 496 per year; and (iv) the number of empty patches varied
from 749 to 3507 per year.

6 Crone et al. (2001) examined the six-year data gathered by Pokki (1981) on
vole (Microtus agrestis) populations found on the Tvärminne archipelago in
Finland. Extinction and re-colonization of local island subpopulations were 
common, and a spatially explicit model such as the incidence function 
model provided reasonable predictions of the structure and function of this
metapopulation. However, contrary to assumptions, the mainland did not
prove to be a significant source of dispersing animals; in fact, an important
source of immigrants to the larger islands came from tiny, ephemeral popu-
lations found on small islands. While these small populations were unlikely
to persist, they were an important source of immigrants to larger islands 
on the archipelago. Crone et al. also found that the parameters fitted to the
incidence function models varied dramatically from year to year. Most import-
antly, this study suggests that the “rescue effect” can be turned around 
such that a small ephemeral population may help stabilize a larger, more 
permanent population.

Table 5.4 The number of surviving local populations, the number of extinctions,
and the number of colonizations per year for the metapopulation of Melitaea 
cinxia on Sottungia island in the Baltic Sea off the coast of Finland. Extinctions +
colonizations = turnover events. Larvae were transported in August 1991. 
Adapted from Hanski et al. (2004).

Year Number of Number of Number of Total number of
local populations extinctions colonizations turnover events

1991 10 – – –
1992 5 5 0 5
1993 5 1 1 2
1994 6 2 3 5
1995 3 3 0 3
1996 6 0 3 3
1997 10 0 4 4
1998 14 0 4 4
1999 2 12 0 12
2000 11 0 9 9
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5.12 Conclusions

Metapopulation biology and spatial ecology have provided a new framework
for both population and conservation biology. Spatial locations of populations
and the interactions among local populations have as great an effect as 
the traditional parameters of birth and death rates, age structures, and 
interspecific interactions. Although a metapopulation was originally just 
a “population of populations” (Levins 1970), many of Levins’ simplifying
assumptions have been relaxed in modern models. As we have seen, the
persistence of the metapopulation is highly influenced by: (i) the number of
patches; (ii) the size and quality of the patches; and (iii) the connectivity between
the patches. Spatially explicit models attempt to encompass these variables.

We have not specifically discussed the topic of corridors between patches.
The usefulness of corridors to metapopulation persistence has been widely
discussed. The general idea is that, since movements between populations
have the potential to stabilize both the local population and the meta-
population, a corridor between habitat patches would increase connectivity
and facilitate these movements. Yet in spite of intuitive appeal and 
theoretical support, the benefits of corridors remain a controversial topic in
metapopulation and conservation biology. Although corridors have not yet
been proven irrefutably to be beneficial to wild populations, Laurance and
Laurance (2003) concluded that the preponderance of available evidence 
is positive. They recommended that corridors be regarded as beneficial in
fragmented landscapes unless specific local evidence suggests otherwise.

The metapopulation approach has challenged the dogma that populations
only exist in locations where they are optimally adapted. Rather, we know
that local populations go extinct on even the best-quality habitats, and that
so-called sink populations hang on in areas of marginal habitat. Further-
more, most natural populations are small enough to be subject to stochastic
extinctions. Metapopulations, in which populations in different patches have
independent growth and decline dynamics, may therefore be necessary for
the long-term persistence of the regional population (Hanski 1999). Foppen
et al. (2000) have even demonstrated that sink populations can be essential
to the preservation of the populations found in larger patches.

Within a decade of the publication of MacArthur and Wilson’s theory of
island biogeography it dominated conservation biology to the extent that “rules”
of refuge design were based on it. In the 1990s there occurred a shift, and
now metapopulation theory has replaced island biogeography as the major
theoretical basis for conservation biology, although its applications to
specific situations should not be undertaken lightly (Doak and Mills 1994).
Metapopulation theory may be replaced by some other paradigm in the future.
But the overall message is clear. Spatial dynamics matter.
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Life-history strategies

6.1 Introduction

To the uninitiated, nothing could be worse than accompanying a bunch of “birders” on
a field trip. They keep stopping, peering through their binoculars, whispering to each other,
and motioning you to keep quiet. Why are they so fascinated with birds? Aren’t they all
pretty much the same?

Of course not. Even the most naive non-biologist knows that birds come in an amazing
variety of colors and sizes; amateur birders are legion. What we are interested in exploring
in this chapter, however, is the variety and potential adaptive value of life histories found
in all groups of organisms. Since ornithologists such as David Lack have contributed so
much to our understanding of life histories, we begin by using birds to illustrate the com-
plexity and diversity of life histories. These accounts are mostly based on Janzen (1983).

1 The groove-billed ani (Crotophaga sulcirostris) is a common and conspicuous
bird found in the lowlands and mid-elevations of Central America. Females
are about 65 g in mass, but lay extremely large 11 g eggs. Since each female
may deposit 4–8 eggs in the nest, the combined total mass of her eggs may
exceed her body weight. What is more extraordinary, however, is that this species
engages in a communal breeding system. The birds live and breed in a group
ranging from two to eight adults, with an equal number of males and
females. The group defends a common territory, year-round. A single nest is

• Diversity of life histories
• Power laws
• The metabolic theory of ecology
• The pioneering work of Cole and Lewontin
• The MacArthur and Wilson r- and K-selection theory
• Cost of reproduction, allocation of energy, and clutch sizes
• Predation and life histories
• The Grime model of life histories for plants
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constructed and all females deposit their eggs in it, forming a communal clutch.
All members of the group contribute to incubation and feeding of the
nestlings. Anis are highly social, roosting and sleeping in close contact with
each other while engaging in mutual grooming. However, Vehrencamp (1977,
1978) found that there are specific costs and benefits to the individuals par-
ticipating in this group endeavor. For example, there are individual differences
in the number of eggs that get into the nest, in the amount of time and effort
put into incubation, and in the care of the nestlings. Furthermore, the eggs
and offspring of the dominant females and males benefit the most. Dominant
females lay their eggs last and actually remove eggs laid by other females
from the nest. These dominant females then behave like brood parasites in
that they actually put less effort into incubation and feeding than do the sub-
ordinate females. On the other hand, so-called alpha males, who have the most
eggs in the nest (and the most to lose), perform a large share of the incuba-
tion. What is the advantage of communal nesting, especially for the sub-
ordinate birds? How do the dominant females get away with dumping the 
subordinates’ eggs while they do less of the work?

2 The northern jacana (Jacana spinosa) is found from Costa Rica northward in
Central America wherever there is floating aquatic vegetation. Jacanas have
reversed the usual roles of the genders. Males build the nests and incubate
and care for the young. Females lay one egg a day for four days in a typical
clutch. Females are able to lay a second clutch of eggs elsewhere within 7 to
10 days, if necessary. The eggs are quite small (7.9 g) as compared with the
average weight of the females (160.9 g). Males are smaller (mean weight of
91.4 g) than females. The mating system is polyandrous. Each male defends
a small territory while each female defends a territory containing one to four
males. Once chicks reach 12–16 weeks of age the females often provide a 
second clutch for the males to care for. The ratio of males to females varies
seasonally and from place to place, but is often skewed in favor of the males.
For example, the long-term average at Turrialba, Costa Rica was 2.3 males
per female (Jenni 1983). Jacanas have a very high reproductive potential, but
the hatching and fledging survivorship rates are very low.

3 The frigatebird (Fregata magnificens) is a large (800–1700 g) seabird with a life
history that is unusual because of its low reproductive potential. Both sexes
do not become mature until 5–8 years of age. Females breed only every other
year and lay one egg in a clutch. The egg takes 55 days for incubation and
the nestlings grow very slowly. They are fed primarily by the females for as
long as 14 months. Given a 50 : 50 sex ratio, a new female is produced, on
average, only every four years! The potential r-value for this species is
extremely low, but by contrast survivorship of adults is very high. The life span
is 40 or more years. What selective pressures resulted in a life history so 
radically different from that of most bird species?

4 Brown pelicans (Pelecanus occidentalis) are one of the best-known birds in the
western hemisphere. They are found on both the Atlantic and Pacific coasts
from North Carolina to Brazil and from British Columbia to Chile. Breeding
colonies may contain as many as 500 pairs. An adult brown pelican weighs
between 2 and 5 kg; it takes 3–5 years to attain adult plumage. Males and
females share chick-raising duties equally, and the normal clutch size is three
eggs. Incubation takes 30 days and the nestlings need 10–12 weeks to fledge.
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Schreiber and McCoy visited a pelican colony four times during the breeding
season of 1979 on Isla Guayabo in Costa Rica. Of 430 nests surveyed, most
had three eggs, but the average was 2.42. By their fourth visit the number of
surviving fledglings was 506, which was an average 1.18 per nest. The brown
pelican is much larger than the frigatebird, has a much higher reproductive
potential, but also has a lower survival rate.

5 Oropendolas (Zarhynchus wagleri), which are related to blackbirds and orioles,
nest in colonies. Males weigh twice as much as females (212 versus 110 g)
and they have been shown to take twice the energy to fledge as opposed to
a female. As a result, male mortality among chicks is much higher during times
of food scarcity. The sex ratio at colonies is normally 5 : 1 in favor of females.
In Costa Rica, nesting begins with the dry season (December) and three 
complete breeding cycles are possible before the beginning of the rainy 
season in May. The normal clutch size is two, but breeding success is very
low. The average number of chicks fledged per nest is 0.40. On the other hand,
survivorship of adults is very high. Adults have been recorded living beyond
the age of 26 in the field. By contrast to frigatebirds, which also have very
long adult life spans, this species has a much higher reproductive potential.

So what have we learned about life histories from these birds? Nesting ranges from 
communal to colonial to pair-wise. Breeding systems vary from communal to polyandrous
to simple pair bonds. Fecundity varies from one egg every other year to as many as eight
in one clutch. Survivorship of the chicks is as low as only 0.40 per nest, but adult 
survivorship is as high as 40 years. What accounts for all this variation in life histories?
Under what conditions do we find high versus low fecundity and/or survivorship? These
are questions we want to attack in this chapter.

Another set of questions we wish to address concerns the relationship between the 
body size of an organism and its reproductive potential. Although body mass does not
determine all aspects of life history, it is a powerful influence. For example, Fig. 6.1 is 
based on data for 24 species of mammals found in Costa Rica. The log of the length of
the pre-reproductive period was graphed against the log of adult body mass. The obvious
conclusion is that there is a higher likelihood of delay in reproductive maturity in the larger
animals. Similarly, Fig. 6.2 demonstrates that animals with larger mass also have a longer
interval between births. Litter size and total reproductive output per year were negatively
associated with body mass, though the relationships were weak in this set of data.

Basic life-history equations were available early in the twentieth century (Lotka 1925).
But a serious comparison of life-history parameters across a large number of species did
not begin until 1954. In that year Frederick Smith and L.C. Cole published important 
papers that have become the foundation of life-history analysis.

Smith (1954) surveyed the literature and published what was known about r, R0, and
G (generation time) at that time. Using the well-known relationship:

Nt = N0 ert

and setting t = the generation time, G, we have:

NG = N0 erG and = erGNG

N0
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Taking an equation from Chapter 1 we have:

NG = N0R0 and = R0

The result is:

R0 = erG (6.1)

or

ln R0 = rG (6.2)

If two of these variables are known, the third can be determined, as least for a popula-
tion with a stable age distribution. However, there is no necessary relationship among all
three of these variables.

Smith (1954) and a number of more recent surveys of life histories have shown that:

1 r is inversely related to generation time, G. r-values respond very strongly to
generation time, as we will show later in this chapter.

2 Generation time is directly related to size. Since generation time is highly 
influenced by the length of the pre-reproductive period and by intervals
between births, Figs 6.1 and 6.2 illustrate the relationship between these 
parameters and size (mass).

NG

N0
Lo

g 
of

 th
e 

pr
e-

re
pr

od
uc

tiv
e 

pe
ri

od

Log of mass

y = 0.275x − 0.811

R2 = 0.464

Figure 6.1 Log length of the pre-reproductive period versus log of mass in 
24 species of Costa Rican mammals. Data from Janzen (1983). Note that the slope 
is close to the predicted value of 0.25. Linear regression is significantly positive.
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Points 1 and 2 lead to point 3:

3 r is inversely related to size (mass);
4 life span and growth rate are negatively associated (Stearns 1992);
5 high individual growth rates are positively correlated with r;
6 growth rate is inversely related to body mass.

In summary, small size is associated with fast growth rates, high r-values and short 
generation times, while organisms with large mass have slower growth rates, small 
r-values and long generation times (Smith 1954, Enquist et al. 1999).

Smith also speculated that r is related to the harshness of an animal’s environment, and
that large organisms live in a more benign world. That is, small environmental changes
are less catastrophic for large organisms. This is a point made by Hanski (1999; see Chap-
ter 5). He speculated that environmental stochasticity was reduced for larger organisms.
By contrast, organisms with high r-values have the ability to recover more quickly from
events that decimate their populations. Furthermore, over evolutionary time, the fossil record
shows many lines of organisms continually increasing in size until they go extinct. This is
known as “Cope’s rule” (Southwood 1976).

The general questions are: Under what conditions is it advantageous to have a high 
r-value, combined with small size? Under what conditions will evolution select for large
size, with its presumed lower r-value? Is it inevitable that large size must be combined
with a low r-value?
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Figure 6.2 Log interval between births in years as a function of the log of mass
based on 24 species of Costa Rican mammals. Data from Janzen (1983). Note that
the value of the slope is close to the predicted value of 0.25. Linear regression is
significantly positive.
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6.2 Power laws

The relationship between size (mass) and a wide variety of metabolic, physiological, and
ecological functions (everything from skeletal muscle contraction rate to incubation
period to maximum life span) have been shown to follow general power or scaling laws:

Y = Y0M
b (6.3a)

M is mass; b is an allometric constant; Y is a physiological rate or some other variable
dependent on mass; and Y0 is the normalization constant.

Taking the log of both sides of Equation 6.3a leads to Equation 6.3b, which shows us
that on a log–log scale we can expect a linear relationship between mass and a dependent
variable, with the slope equal to b.

Log Y = log Y0 + b log M (6.3b)

Amazingly, despite the fact that size ranges over 21 orders of magnitude (from bacteria
to whales), these scaling laws consistently apply, and it has been asserted that b is a 
multiple of 1/4 (Brown et al. 2004). For example, heart rate versus mass scales as −0.25,
life span versus mass as 0.25, and the length of both mammalian aortas and tree trunks
versus mass as 0.25 (West et al. 2000). These are known as allometric relationships
because the scaling factor, b, is not equal to one. If b = 1 the relationship would be iso-
metric and plot as a straight line on both an arithmetic and a logarithmic axis. However,
in these allometric relationships b is not equal to one. Kleiber (1932) showed long ago
that the relationship between mass and basal metabolic rate followed an allometric rela-
tionship with b = 3/4. Figure 6.3 shows us that, in fact, the 3/4 relationship between metabolic
rate and mass appears to apply to everything from unicellular organisms to both poikilo-
thermic and homeothermic vertebrates. More recently West et al. (2000) claimed that M 3/4

also “coincides with the respiratory rate . . . of mammalian mitochondria . . . [and] . . . even
with that of the molecular respiratory complex and terminal oxidase molecular units within
mitochondrial membranes!”

The 3/4-power scaling relationship for animals was, and still is, known as Kleiber’s law.
But a different scaling power was rooted in the botanical literature based on geometric or
Euclidian principles. The basic idea is that “resources are acquired by surfaces and used
by volumes” (Horn 2004). For example, a cell acquires nutrients across a two-dimensional
surface area, but must distribute those resources throughout its three-dimensional volume.
For a forest, the area of ground that a tree covers scales as the square of the diameter 
of ground area covered or shaded (canopy “footprint”). The volume scales according to
volume or the cube of this same diameter. The number of individuals that can fit into a
given area is assumed to be the reciprocal of the area covered. Plant volume and biomass
were therefore proposed to be proportional to negative 3/2 (Equation 6.4a) of population
density.

This is the basis, for example, of the “geometric model” of self-thinning. Agronomists
and plant ecologists had proposed that mortality during the intraspecific self-thinning pro-
cess followed a −3/2 power law (Yoda et al. 1963). This law asserted that the mean weight
per plant increased faster than density decreased. During the thinning process, if density
(N) and mean weight per plant (W) are points on a graph, over time these points will 
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produce a linear relationship in which the slope will be −3/2 (Eqns 6.4a and 6.4b). Total
mass continues to increase until the constant final yield (C) is reached.

W = CN −3/2 (6.4a)

Log W = Log C − (3/2) Log N (6.4b)

The −3/2 power law, however, began to be questioned late in the twentieth century
(Lonsdale 1990), since thinning exponents were shown to be highly variable among
species. In a recent series of papers (West et al. 1997, Enquist et al. 1998) a different model
was proposed. This model assumes that growth continues until it is limited by a resource,
and that resources are acquired through branching, linear, or “fractal” networks that dis-
tribute resources throughout the organism. In plants, Enquist et al. (1998) used whole-
plant xylem transport as an estimate of resource use. They found that resource use scales
as the 3/4 power of mass, the same exponent that Kleiber found. West et al. (1997) and
Enquist et al. (1998) therefore asserted that the real exponent in Equations 6.4a and 6.4b
should be −4/3, not −3/2.

Again, the quarter-scaling rule has many applications in both animal and plant popula-
tions. Calder (1984) showed that maximum life span, reproductive maturity, incubation
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Figure 6.3 Allometric scaling of metabolic rate for organisms ranging from
unicellular Protista to homeothermic mammals. The regression lines all have 
a slope of 0.75. After Hemmingsen (1960); reprinted with permission from the
Steno Diabetes Center.
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time for birds, and a large number of metabolic functions scaled to the 1/4 power against
body mass on a log–log scale. For example a regression line through ln(density) versus
ln(mass) in terrestrial mammals has a slope of −0.77 (b ≈ −3/4) (see fig. 6 of Brown et al.
2004). Enquist et al. (1998) showed that the population densities of both plant and 
animal populations scale as M −0.75. From such similarities, they suggested that plants 
and animals share a similar scaling law that “reflects how resource requirements of 
individual organisms affect competition and spacing among individuals within ecological
communities.”

West et al. (1997) and Enquist et al. (1998, 2000) have proposed the existence of a 
common mechanism underlying the scaling or power laws in both plants and animals.
They assert that living things are sustained by the transport of materials through linear
networks that branch to supply all parts of the organism. These networks include mam-
malian blood vessels and bronchial trees, plant vascular systems (xylem and phloem), as
well as tracheal tubes in insects. Most of these distribution systems can be described 
as a branching network in which the size of the tubes decreases. This “vessel-bundle” struc-
ture is characteristic not only of plant vascular systems but also of vertebrate and inverteb-
rate circulatory systems. These networks vary in the properties of the tubes, in the type of
fluid transported (liquid to gas), and in the nature of the pump. A pulsating compression
pump is found in cardiovascular systems, a bellows in respiratory systems, diffusion in
insect tracheae, and osmotic and vapor pressure in plant vascular systems. In spite of 
these differences, West et al. (1997) proposed that they all follow the same scaling laws.
The scaling laws are based on the following principles, to which all biological networks
should adhere. (i) The system must fill the volume of the organisms so as to distribute
essential nutrients to all of its cells. (ii) The terminal branches of these networks should
be roughly the same size, regardless of body size. Indeed, capillary size does not vary much
among animals, and the same is true of petioles or terminal xylem in plants. (iii) Supply
networks should be so efficient that fluids move through them with a minimal loss of energy.
Models of fluids flowing through networks lead to the conclusion that the summed 
cross-sectional areas of the “daughter” branches at each level should be equal to that 
of the “parent” branch. Such an area-preserving pattern is found in trees and in artery–
arteriole branches. Enquist et al. (2000) have modeled the physical structures of the 
networks and substituted them into equations describing fluid volume and rate of flow in
a system. The end result is a formula for metabolic rate versus mass with a scaling expon-
ent of 0.75. In other words, their model successfully confirms the 3/4-power scaling law.

In plants, Enquist et al. (1998, 2000) predicted that if the log of average mass per plant
is graphed against density, the slope would be −0.75. However, since the independent 
variable is density, and mass is the dependent variable, the expected slope is the inverse
of −3/4, or −4/3. Enquist et al. (1998) then gathered data on plants ranging from Lemma
to Sequoia and showed that the slope is as predicted, −4/3 with an R2 = 0.963 on the regres-
sion model. The slope of −3/2, predicted by the geometric model, was not found.

Enquist et al. (1998) concluded that both animals and plants share a common set of
allometric relationships involving body mass, growth rates, life spans, and densities. Like
all grand theories, there are likely to be complications and exceptions. Darveau et al. (2002)
raised doubts about any “single cause” explanation for scaling of basal metabolic rates,
since metabolic rates are controlled by a number of steps and not by any single rate-
controlling factor. They believe that the scaling constant b in Equations 6.3a and 6.3b 
is based on the sum of multiple metabolic factors, not on a limit based on any one 
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metabolic rate. As Agutter and Wheatley (2004) point out, not everyone is convinced that
a uniform scaling constant exists, and many other models of metabolic scaling have been
proposed. Nevertheless, the group lead by Brown, Enquist, and West have gone so far as
to propose a “metabolic theory of ecology.”

6.3 The metabolic theory of ecology

The metabolic theory is based on the 1/4-power law. Brown et al. (2004) begin by link-
ing basic metabolic processes to body mass and temperature. Since metabolism determines
the rate of acquisition of energy and nutrients by organisms, it determines the rate of resource
use and sets constraints on the allocation of resources to growth, reproduction, and other
components of fitness.

Given Kleiber’s finding that metabolic rate scales according to b = 3/4, we can write 
an equation for whole-organism metabolic rate (I) as a function of mass (M) and a norm-
alization constant, I0. Again, the justification for the 1/4-power scaling is based on West
et al. (1997, 1999a, 1999b), in which “whole-organism metabolic rate is limited by rates
of uptake of resources across surfaces and rates of distribution of materials through
branching networks. The fractal-like designs of these surfaces and networks cause their
properties to scale as 1/4 powers of body mass or volume, rather than 1/3 powers that
would be expected from Euclidean geometric scaling” (Brown et al. 2004).

I = I0M 3/4 (6.5)

Next, Brown et al. (2004) introduce the effect of temperature on biological processes.
Biological activity increases exponentially with temperature, and a general equation 
for the kinetics of this process is described in Equation 6.6. In this equation E is the 
activation energy, k is the Boltzmann constant, and T is absolute temperature in degrees
Kelvin. The Boltzmann factor describes how temperature affects reaction rate by chang-
ing the proportion of molecules with sufficient kinetic energy.

e−E /kT (6.6)

What interests us here is that nearly all biological rates are temperature-dependent, includ-
ing population growth rates, development time, and life span (Brown et al. 2004).

The effect of mass and temperature on metabolic rates can be combined into one 
equation as shown below (Eqn. 6.7a), where i0 is a normalization constant independent
of both body size and temperature. After taking the natural log of both sides of Equation
6.7a we have 6.7b:

I = i0M
3/4 e−E/kT (6.7a)

In(IM −3/4) = −E(1/kT) + In(i0) (6.7b)

Equations 6.7a and 6.7b essentially predict that mass-corrected whole-organism meta-
bolic rate is a linear function of the inverse of absolute temperature (1/kT). Metabolic rate,
in turn, determines the rate of resource acquisition from the environment. Brown et al.
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(2004) then showed how these metabolic relationships can determine life-history charac-
teristics such as population growth rate, development rate, age at maturity and life span.
For example, based on a variety of data, they showed that maximum growth rate (rmax) 
is dependent on both temperature and mass. The slope (b = −0.23) seems to confirm the
−1/4 allometric relationship between mass and rmax that has been previously reported
(Slobodkin 1962, Blueweiss et al. 1978).

The “metabolic theory of ecology” has already generated a great deal of commentary
and controversy (see volume 85, issue 7 of Ecology), and it is highly likely to become a
significant theme for ecological research in the twenty-first century.

One question we posed in the introduction (“is it inevitable that large size must be com-
bined with a low r-value?”) has been answered in the affirmative. But other questions remain.
Under what conditions is it advantageous to have a high r-value, combined with small
size? Under what conditions will evolution select for large size and/or high adult survivorship
combined with a low r-value? How do we explain all of those mating systems that have
been evolved by the birds we looked at in the introduction?

6.4 Cole and Lewontin

Cole (1954) reviewed the basic equations of population ecology and noted that it was easy to
visualize situations where natural selection would tend to increase the value of r (after all,
fitness is measured in terms of differential production of offspring). However, there exist
many life histories in which the value of r is quite low. For example, California condors
(Gymnogyps californianus), like frigatebirds, lay one egg every two years, and one female egg
once every four years. What ecological or evolutionary conditions lead to these life histories?

Cole broke down life histories into components. He analyzed each separately in order
to determine which were most crucial to the r-value and therefore to the life history of
the organism. In his simple models he analyzed three of them. What is remarkable about
Cole’s work is that he did it without the aid of modern calculators or computers. In 1954
computers were available to few individuals, and hand calculators, as we know them, did
not exist.

Cole recognized that since r = b − d, a species may increase r by reducing mortality.
However, he chose to limit his investigations to factors that might influence b. In most 
of his models, therefore, he assumes no mortality! Next he broke his investigation of 
reproduction down into three areas:

1 What are the advantages of “repeated breeding” or iteroparity, as opposed
to “one-time breeding” or semelparity? This basic dichotomy in life histories
had neither been widely discussed nor previously investigated. Cole appears
to have invented these two terms.

2 What is the effect of the length of the pre-reproductive period on r?
3 How does litter size (B) or clutch size (defined as the number of offspring 

produced at one time) affect r?

Cole made several simplifying assumptions, which he asserted did not seriously alter
his general conclusions. Furthermore, he wanted to show the maximum gains a species
might realize from altering a life-history pattern. These assumptions were:
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1 No mortality (indefinite survival);
2 the litter size does not change with age;
3 iteroparous species continue to breed indefinitely.

It is unfortunate that the first part of the paper became more famous than the remain-
der. What became known as “Cole’s result” is really due to his first assumption, which
was corrected in the literature by Charnov and Schaffer (1973). “Cole’s result” centers on
his discussion of semelparity versus iteroparity. In the following analysis Cole is trying to
determine what the advantage of iteroparity is in terms of its effect on r.

Consider an annual plant or animal. If it matures in late summer and dies in the fall
at the time of reproduction, then, B = λ = er. For a semelparous organism we have:

r = ln B (6.8)

where B = the litter size in terms of the number of female offspring.

By how much would r be increased if the organism lived for another year? First of all,
if the litter size is only 1, since ln 1 = 0, no growth would be possible and the species would
have to be iteroparous for the population to grow.

Cole next developed an equation involving α = the age at first reproduction, ω = the age
at last reproduction, and B = litter size.

Starting with the Euler equation (1 = ∑(lxmx e−rx) ), assume that: lx = 1 for all ages, and
m equals b and is a constant for all ages after α. Then the number of litters beginning at
age α and including age ω is n = (ω − α) + 1. Cole showed that the Euler equation could
be approximated under these conditions by:

1 = e−r + B e−rα − B e−r(n+α) (6.9)

Now consider the extreme case of α = 1 with n infinitely large. That is, reproduction
begins in the first year after birth, and there is an infinite life span. The final term becomes
zero, and we have:

1 = e−r + B e−r = e−r(1 + B)

Taking natural logs:

0 = −r + ln(1 + B)

which results, for an iteroparous organism, in:

r = ln(1 + B) (6.10)

Compare this with r = ln B for the semelparous organism.
This is “Cole’s result.” “The absolute gain in intrinsic population growth which could

be achieved by changing to the perennial habit is equivalent to adding one individual to
the average litter size” (Cole 1954, p. 118).

In other words, a litter or clutch size of 101 in an annual organism would serve the same
purpose as a clutch size of 100 forever in a perennial. Therefore, why would organisms
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evolve mechanisms for adults to survive winter if the same result is obtained through adding
one individual to the litter size?

The answer, as was shown by Charnov and Shaffer (1973), is that there is great dif-
ference for most species between juvenile and adult survivorship. Organisms with high
juvenile mortality, small litter sizes, or long pre-reproductive periods (slow maturity) have
a great deal to gain by repeated reproduction (iteroparity). Similarly, if organisms live in
an unpredictable environment, such that reproduction can fail completely in some years,
selection would strongly favor adult survivorship and repeated reproduction. This is
sometimes called a “bet hedging” life history. Recall the life histories of the frigatebirds,
pelicans, and oropendolas described in the introduction to this chapter.

“Cole’s result” is based on his assumption of complete survivorship of all life stages. 
If, on the other hand, juvenile survivorship is superior to adult survivorship, then semel-
parity should be favored. Examples include dragonflies, mayflies, and periodical cicadas
(Magicicada septendecim).

Cole (1954) then analyzed the relative gains on r of (i) age of first reproduction, 
(ii) litter size, and (iii) iteroparity. As was hinted at in the introduction to this chapter,
for mammals found in Costa Rica, r is most sensitive to changes in the pre-reproduction
period (maturation time) (Figs. 6.1 and 6.2). The r-value is somewhat sensitive to litter
size, and is least influenced by changes from semelparity to iteroparity (but see above).

For example, examine Table 6.1. Presented are four life histories. In each case the sur-
vivorship function is held constant. The fertility columns reflect differences either in the
maturation time, or in the amount of reproduction which is “front loaded” to an earlier
age class. In scenario one, reproduction begins at age 2 and the majority of reproduction
takes place in this age class. The result is an r of 0.102 and a generation time of only 
2.2 years. In scenario two the gross reproductive rate (GRR) is greater than that of 
scenario one, while R0 remains at 1.25. The pre-reproductive period is also the same as 

Table 6.1 Four fertility scenarios demonstrating the importance of early
reproduction on the value of r. lx, survivorship; mx, fertility; GRR, gross reproductive
rate; R0, net reproductive rate; G, generation time; r, intrinsic rate of increase; 
l, finite rate of increase.

Age lx Scenario one Scenario two Scenario three Scenario four
mx mx mx mx

0 1.00 0 0 0 0
1 0.100 0 0 0 0
2 0.050 20 10 0 0
3 0.025 10 30 40 50
4 0.010 0 0 0 0
5 0 0 0 0 0

GRR = 30 GRR = 40 GRR = 40 GRR = 50
R0 = 1.25 R0 = 1.25 R0 = 1.00 R0 = 1.25
G = 2.2 G = 2.6 G = 3.0 G = 3.0
r = 0.102 r = 0.086 r = 0.000 r = 0.074
l = 1.11 l = 1.09 l = 1.00 l = 1.08
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in scenario one. However, because reproduction is mostly “back loaded” onto age class 3,
the generation time is 2.6 years and the resulting r-value is only 0.086. In scenario three,
by increasing the pre-reproductive period to age three, even though we increase the GRR
to 40, the net reproductive rate falls to 1.00 and r = 0. In scenario four, we see that, because
reproduction does not start until age 3, we must raise the GRR to 50 in order for the 
population to grow. This produces an R0 of 1.25, but since generation time is 3 years, 
the r-value is only 0.074.

In Table 6.2 we apply Cole’s ideas to a human population. The survivorship column is
based on 1985 Vital Statistics from the United States (Peters and Larkin 1989). The four
fertility scenarios are based on a population in which the average female has a gross repro-
ductive rate of 1.5 females. In scenario one, the average female has 1.0 female offspring
between the ages of 15 and 20, the remainder between 20 and 25. In each of the other
scenarios, the females delay reproduction by five years, ten years, and finally fifteen years.
The result is that when reproduction begins at the age of 15, the r-value is 0.091, as com-
pared to an r-value of 0.052 when reproduction begins at 30. Generation time is obvi-
ously almost doubled when reproduction begins at 30 as compared to 15 years. If a population
had a stable age distribution, it would grow from 1000 to 2500 in 10 years if r = 0.091,
whereas it grows to only 1600 if r = 0.052.

R. C. Lewontin (1965) further developed the themes of Cole in his paper, “Selection
for colonizing ability.” He was concerned with the problem of the establishment of a popu-
lation in a new geographic or ecological space. Lewontin was able to examine more subtle
changes in the life cycle, and illustrated how changes in fecundity, longevity, and length
of pre-reproductive period affect r. Using more sophisticated mathematical techniques,
he was able to relax some of Cole’s simplifying assumptions.

In his analysis, Lewontin summarized lx and mx into a function he called Vx. Vx = lxmx .
He removed Cole’s assumptions concerning infinite life span and constant fecundity with

Table 6.2 Four population scenarios for a hypothetical human population.

Age lx Scenario one Scenario two Scenario three Scenario four
mx mx mx mx

0 1.00 0 0 0 0
1 0.991 0 0 0 0
5 0.989 0 0 0 0

10 0.988 0 0 0 0
15 0.987 1.000 0 0 0
20 0.985 0.500 1.000 0 0
25 0.982 0 0.500 1.000 0
30 0.979 0 0 0.500 1.000
35 0.975 0 0 0 0.500
40 0.970 0 0 0 0
45 0.961 0 0 0 0

R0 = 1.48 R0 = 1.48 R0 = 1.47 R0 = 1.47
G = 16.6 G = 21.6 G = 25.6 G = 31.6
r = 0.091 r = 0.073 r = 0.061 r = 0.052
l = 1.095 l = 1.076 l = 1.063 l = 1.053
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age. He then showed that a common form of Vx is a basic triangle with Vx on the y-axis
and age on the x-axis (Fig. 6.4). He identified four important parameters, α (age at which
reproduction begins), ω (age at which reproduction ends), δ (the age of maximum 
reproductive output), and S (the total reproductive output, which equals the area of the
triangle).

The integral form of the Euler equation was modified as shown below. Since the func-
tion Vx has the shape of a triangle, Lewontin was able to solve the integral and devised
expressions relating r to α, ω, δ, and S.

1 = � lxmx e−rxdx

1 = � Vxdx /erx (6.11)

Lewontin manipulated the triangle sizes and shapes by varying the values along the 
x-axis. His findings can be summarized by the following examples. In each case he invest-
igated how basic life-history changes affect the value of r.

1 Rigid translation. This means moving the entire triangle along the x-axis 
(varying by age classes), leaving S constant. In this case, a, d, and w are moved
simultaneously to younger (to the left along the axis), or older (to the right)
age categories.

V x
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Figure 6.4 Summary of the Lewontin analysis of the effect on r of changes in life-
history parameters. Vx = the product of lx and mx. a = age at which reproduction
begins. d = the age of maximum reproduction. w = age at which reproduction ends.
S = area under the triangle, which equals the total lifetime reproductive output. In
the Lewontin analysis, the area S is held constant, while the other parameters are
manipulated.
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2 Change the age to sexual maturity (pre-reproductive period) only. This means
moving a to earlier or later ages without changing d, w, or S.

3 Change the age of maximum reproduction only. That is, move d to earlier or
later ages while all else remains constant.

4 Change the age of last reproduction, w, leaving all else constant.

Lewontin’s results can be summarized as follows. Let us assume r = 0.300 and we wish
to know what life-history changes will increase r to 0.330. Lewontin showed that doubling
the lifetime fecundity from 780 to 1350 would produce such a change in r, all else being
held constant. However, holding fecundity constant at 780, a similar increase in r was achieved
through one of the following:

1 Rigid translation of the life history. That is, by simultaneously decreasing a,
d, and w by 1.55 days, the value of r increased from 0.300 to 0.330. This is 
a change of approximately 13%, over the total span of the life history.

2 If only a, the pre-reproductive period, is changed, it takes a decrease of 
2.20 days (approximately an 18% change), to produce the desired value of r.

3 If only d is decreased, it must be shortened by 5.55 days (a 24% change).
4 If the only change is in w, it must be decreased by 21.0 days (a 38% change).

In other words, a simultaneous reduction of 13% in the three measured aspects of the
fertility schedule was roughly equivalent to a 100% change in fecundity. Furthermore, redu-
cing the single parameter, α, by 18% resulted in the increase of r from 0.300 to 0.330. As
was proposed by Cole, a reduction in the pre-reproductive period is the single aspect of
the life history with the greatest influence on the value of r.

Lewontin pointed out that development time or rate is closely regulated by natural 
selection and varies little among geographic races, whereas less important factors such as
fecundity and longevity show substantial variation.

6.5 The theory of r- and K-selection

We discussed MacArthur and Wilson’s theory of island biogeography extensively in the
last chapter. Another application of their findings was the theory of r- and K-selection as
applied to life histories. MacArthur and Wilson (1967) asserted that for “colonizing
species” the ability to grow rapidly and to disperse was the major component of fitness.
They theorized that new, unpopulated environments would be colonized first by these 
“r-selected” species. On the other hand, once an environment, either an island or the main-
land, was completely colonized, it became densely populated (crowded or saturated), with
all populations near their carrying capacities (K). They reasoned that such populations
were exposed to “K-selection.” The major component of fitness in a crowded environ-
ment was the ability, not to grow quickly, but to survive under these highly competitive
conditions.

According to the theory, in an environment with no crowding (an r-selecting environ-
ment), those genotypes which harvested the most resources and produced the most off-
spring in the shortest period of time, even if they were not efficient at using their
resources, would be favored. In the crowded, K-selecting environment, those genotypes
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which replaced themselves at low resource levels would survive and reproduce. Evolution
was said to favor efficiency in these K-selecting environments.

Thus r-selected species would be favored in areas where there has been a disturbance
of the established community. K-selected species would be favored in areas, such as mature
communities, where competition is high. It is natural to think of r- and K-selection in
terms of ecological succession, in which colonization and competition are assumed to be
the primary forces determining the appearance of plant communities over time. r-selected
species appear early in succession, to be eventually replaced by K-selected species in the
later stages.

Biologists were led to consider what aspects of life histories and of the physical environ-
ment would be correlated with r- or K-selection. In 1970 Pianka published a paper entitled
“On r- and K-selection,” which laid out general expectations of r- and K-selection for a
number of life-history traits. Table 6.3 is adapted from that paper with modifications and
embellishments.

In evaluating the theory of r- and K-selection, we should recognize that it is based on
the assumption that life histories have evolved as a response to the twin selective pres-
sures of competition and colonizing or dispersal ability. As described in section 6.9, life
histories that appear to be r-selected may have evolved in response to predation or to the
uncertainties of the physical environment (Wilbur et al. 1974). Caution must therefore be
used in making assumptions about the selective pressures that have shaped a particular
life history. Nevertheless, the terms r- and K-selection are ingrained in the ecological 
lexicon and have retained a certain utility as handy shorthand for a particular suite of life-
history traits.

Table 6.3 Correlates of r- and K-selection. Adapted from Pianka (1970).

Trait

Climate
Mortality
Survivorship
Population size
Recolonization frequency
Competitive ability
Investment in defense

Parental care
Length of life
Stage of succession
Rate of development
rmax

Pre-reproductive period
Body size
Number of offspring
Size of offspring
Dispersal ability

r-selection

Variable or unpredictable
Density-independent
Type III
Variable, below K,
Re-colonization common
Usually poor
Little energetic

investment
Minimal
Short
Early
Rapid
High
Short
Small
Many
Small
Excellent

K-selection

Predictable, less variable
Density-dependent
Type I or II
Fairly constant; at or near K,
Re-colonization uncommon
Usually keen
Great energetic investment

Usually great
Long
Late
Slow
Low
Long
Large
Few
Large
Fair to poor
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In a review of the r- and K-selection theory, Reznick et al. (2002) gave it credit for 
stimulating a great variety of empirical and theoretical work on life-history evolution. 
An important aspect of the theory was its focus on density-dependent selection as an 
important force in the shaping of life histories. But r- and K-selection was a starting point.
Now it is clear that age-specific mortality, resource limitation, predation, environmental
variation, metabolic rate, and density-independent factors all must be included in models
of life-history evolution.

6.6 Cost of reproduction and allocation of energy

The theory of r- and K-selection illustrated that as life-history traits evolve, trade-offs have
taken place among growth, maintenance, and reproduction. Another way of approaching
life-history evolution is to examine the allocation of energy devoted to reproduction over
a life span. This is known as reproductive effort. Energetic trade-offs are found in all aspects
of a life history. When the parent organism devotes energy to reproduction it has less energy
to devote to growth and maintenance. The energy devoted to reproduction can be parti-
tioned in various ways: large versus small offspring, small versus large litter size, the amount
of energy devoted to parental care, etc.

Cole (1954) described the dichotomy of semelparous versus iteroparous reproduction.
In semelparity, reproduction is channeled into one major reproductive effort. Most
insects, many invertebrates, fish, and many plants (annuals, biennials, and some bamboos)
have this life cycle. A semelparous life history in a disturbed habitat offers no mystery.
More interesting are organisms which are long-lived, yet have semelparous reproduction.
For example, mayflies often spend several years as larvae, and periodical cicadas live 13
or 17 years below ground as juveniles, but the adult phases are only a few hours or days
in mayflies and a few weeks in periodical cicadas. Hawaiian silverswords (Argyroxiphium
spp.) live 7 to 30 years before flowering once and dying. Some bamboo species delay flower-
ing for 100–120 years before producing a massive seed crop and dying. Janzen (1976) and
others have proposed that this life history allows escape of highly vulnerable juvenile 
stages through predator satiation.

Iteroparity is common among most vertebrates and perennial plants. Iteroparous
species, nevertheless, are extremely diverse in their life histories: (i) short versus long 
pre-reproductive periods; (ii) annual versus periodical reproduction; (iii) small versus 
large amount of reproductive effort; and (iv) many small offspring versus a few large 
offspring.

Since energy devoted to reproduction is not available for growth and maintenance, repro-
duction itself has a “cost” in terms of increased mortality or decreased growth of the adult
organism. Thus, an individual that reproduces in a given year often has reduced survivor-
ship and/or may reproduce at a lower rate in the near future. In addition, there is usually
a limit to the number of offspring that an adult or pair of adults can successfully produce
without causing harm to themselves, their survivorship, their future reproduction, or the
survivorship of this year’s brood.

Therefore, an organism may have greater evolutionary fitness over the long term if 
it postpones reproduction or limits the allocation of energy to current reproduction. 
This will be true if the energetic allocation to growth and maintenance (as opposed to
reproduction) produces a sufficient gain in future reproduction to compensate for losses
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in the present. According to this argument, an organism may have greater evolutionary
fitness over the long term if it postpones (or limits the allocation of energy to) reproduction
in the current year.

Field studies documenting the effect of reproduction on growth, survival, and future
reproduction are not abundant. Primack and Hall (1990) showed that reproduction in
pink lady’s slipper orchids (Cypripedium acaule) is limited by bee pollination, but seed
production could be greatly increased through hand pollination. As seed production
increased, the cost of reproduction took effect in the third and fourth years. Hand-
pollinated plants had lower growth and flowering rates than controls. For example, an 
average-sized hand-pollinated plant lost 10–13% of leaf area and had a 5–16% lower 
flowering rate as compared to control plants. In red deer (American elk) (Cervus elaphus)
(Clutton-Brock 1984, Clutton-Brock et al. 1982, 1989) and in lizards (Tinkle 1969) it has
been shown that great reproductive effort leads to declining fecundity and reduced 
survivorship. In American bison (Bison bison) sons suckle longer than daughters (up to
15 months). Cows that have produced sons breed later and are more likely to be barren
in the next year as compared with cows that had females in the previous year (Wolff 1988).

Experimental field studies are often done with birds, in which the clutch size can be
manipulated. Reid (1987) studied the optimal brood size of the glaucous-winged gull (Larus
glaucescens) in which the natural range of chicks per nest is 1–3. Reid added and subtracted
eggs, producing broods of from one to seven chicks per nest. He found that when more
than three chicks were present in the nest, adult survivorship declined significantly.

A study by Beissinger (1990) on snail kites (Rostrhamus sociabilis) at two field sites is
also instructive. Brood size was manipulated with similar results. The normal brood range
is 1–3 eggs. With only one egg in a nest, since one parent can raise one young success-
fully, both females and males often deserted the nest and tried to start another one. Desertion
rates were almost 100% with one egg per nest, with females deserting twice as often as
males. With two young per nest, desertion rate was about 50%. With three young in the
nest there was no desertion. All broods with one or two young were 100% successful at
fledging. However, the kites had difficulty raising three young and were unable to raise
four young. Desertion is an adaptive response that allows the kites to adjust their parental
investment to the number of chicks present in a nest.

In the Venezuela field site, Beissinger found that no parents raised four young, and only
40% of nests with three young raised them all. At control nests no broods of three young
occurred naturally (205 nests). In Florida, however, 22% of the control nests fledged three
young. The investigators found that total food delivery rates increased up to three young
per nest, but there was no further increase with four per nest. Thus, natural selection closely
controls the clutch size and the amount of parental effort per nest in snail kites.

6.7 Clutch size

To produce viable offspring, a certain amount of energy must be devoted to each young.
Lack (1954, 1966) hypothesized that clutch size in birds evolved through natural selection
to correspond to the number of young that could be fed. Although this idea is appealing,
there are a number of exceptions and complications. For example, in 35 out of 60 stud-
ies, an increase in brood size resulted in an increase in the number of young fledged, 
without affecting parental survival (Lessells 1991). However, very often the juveniles had
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lower survivorship and fertility than in normal broods. In other studies, birds with larger
clutches bred later the next year.

Although the Lack hypothesis is generally supported over the long run, there are many
cases where clutch size is modified through brood reduction after egg laying. Studies of
red-winged blackbirds (Agelaius phoeniceus) (Forbes et al. 1997), for example, confirm the
“insurance hypothesis,” which states that hatching asynchrony creates “marginal” offspring
that serve as replacements for failed earlier-hatched “core” offspring. Forbes et al. showed
that “marginal” offspring had very high mortality rates in control nests, but survived well
if broods were experimentally or naturally reduced. In asynchronous hatching the older
siblings beg more vigorously for food and/or the older siblings may simply kill the weaker
sibling. If food shortages arise, the late-hatched young usually die of starvation. In such
cases, the parents, who cannot predict food resources, can use brood reduction to adjust
reproduction to actual food availability.

6.8 Latitudinal gradients in clutch size

Lack (1966), Cody (1966), and Ashmole (1963) all developed hypotheses to explain
observed latitudinal gradients in clutch sizes. Most groups of birds show a gradient in which
clutch sizes increase from the tropics to higher latitudes (see Table 6.4). Lack proposed
that particular clutch sizes are adaptations to food supplies, and that increasing day length
allows more foraging time in the higher latitudes. Cody developed an allocation-of-energy
argument. He believed that both competition and predation were more intense in the 
tropics, and that tropical birds invested more energy both in competitive interactions 
and in predator avoidance. Therefore they had less energy to allocate to reproduction than 
their temperate counterparts. Ashmole believed that clutch size varies in proportion to
the seasonal variation in resources. In birds, population density in the higher latitudes is 
regulated by winter mortality, when resources in the temperate zone are scarce. Higher
winter mortality produces a high ratio of available food per breeding adult. This results
in large clutch sizes. Migratory birds can also be thought of as annual colonizers, whose
reproductive styles tend to be r-selected. In addition, plant productivity per day is very
high in the short growing season of the higher latitudes. Thus, it is not too surprising that
clutch sizes are high. Limited data from plants and insects reinforce the general trend of
higher reproductive effort at higher latitudes.

Martin et al. (2000) monitored 1331 nests in Argentina and 7284 nests in Arizona. They
found that clutch sizes of passerine birds in Argentina averaged 2.41, similar to averages
from the humid tropics. As expected, the Arizona site averaged 4.61 eggs per clutch.

Table 6.4 Clutch size in passerine birds in relation to habitat. Data from 
Lack (1968), as summarized by Southwood et al. (1974).

Habitat Number of species Average clutch size

Tropical forest 82 2.3
Tropical grass and shrub lands 260 2.7
Tropical deserts 21 3.9
Middle Europe 88 5.6
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However, although predation rates were significant at their sites, Martin et al. concluded
that nest predation does not explain the smaller clutch sizes at the Argentina site.
Furthermore, they concluded, contrary to Ashmole’s theory, that clutch size was not related
to food delivery rates, and food limitation is not greater in the South American site. Martin
et al. (2000) favor the idea that adult mortality is reduced in the tropics. This leads to a
life history involving a reduction in reproductive effort and/or an allocation of a greater
amount of energy to a smaller number of offspring.

Another interesting pattern is that many island populations have lower clutch sizes than
their mainland counterparts. Litter sizes among mammals also follow this pattern (Fons
et al. 1997). Islands often have fewer predators, so both juvenile and adult survivorship is
higher. With fewer predators and fewer competing species, densities of the island popu-
lations will be higher. Since adults live longer it is likely to be hard for young of the year
to find vacant territories, and selection appears to favor lowering the number of young
thorough a lower clutch size. For example, on Santa Cruz Island scrub jays (Aphelocoma
insularis) have a clutch size of 3.71, which is significantly lower than that of the mainland
(4.34). Adult survivorship on the island is 0.935 as compared to 0.833 per year on the
mainland (Atwood et al. 1990). Johnston et al. (1997) have shown that tropical passerine
birds have higher adult survivorship than do comparable temperate-zone species. This pro-
vides additional support for the theory that reproductive effort is based on age-specific
mortality patterns.

6.9 Predation and its effects on life-history characteristics

Predation also plays a role in the shaping of life histories. Studies by Reznick and Endler
(1982) and Reznick et al. (1997) on guppies (Poecilia reticulata) have confirmed the effect of
predation on life histories. Reznick and Endler (1982) came to the following conclusions:

1 When a predator prefers mature fish, the guppies devote a high percentage
of their body weight to reproduction, there are short inter-brood intervals, and
they mature at a small size.

2 When a predator prefers immature stages, or no predators are present, the
guppies devote a low percentage of body weight to reproduction, there are
long inter-brood intervals, and they mature at a large size.

In an experimental test of their predictions, Reznick et al. (1997) compared the life 
histories of two populations of guppies living in upstream versus downstream habitats.
The upstream habitats lacked several species of fish, many of which prey upon adult gup-
pies, which were present downstream. The upstream, low-predation, population had later
sexual maturity, lower fecundity, less frequent litters, and larger offspring as compared
with the high-predation, downstream population. In other words, lack of predation pro-
duced the suite of traits listed under point 2 above. If we knew nothing about predation,
we might conclude that such traits were consistent with the K-selection syndrome, and
that these life histories were shaped by competitive interactions. In a transplant experi-
ment, Reznick et al. (1997) moved guppies from the high-predation to the low-predation
habitat. After 11 years the transplanted guppies had evolved life histories similar to the
resident populations.
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In a similar study, Crowl and Covich (1990) showed that freshwater snails (Physella 
virgata virgata) also shift their life-history characteristics when exposed to their major 
predator, the crayfish Orconectes virilis. When exposed to water-borne cues released 
when crayfish fed on other members of the population, the snails exhibited rapid growth
and delayed reproduction until they reached a size of 10 mm after eight months. In the
absence of the cue, snails typically grew to about 4 mm in 3.5 months and then began
reproduction. Since crayfish selectively prey on the smallest individuals, juvenile mortal-
ity is high. By delaying the onset of reproduction and growing to a larger size, snails decrease
mortality from size-specific predation.

In both of these studies, when predators concentrated their efforts on immature or smaller
stages, the life history of the prey species shifted to a “K-selected” syndrome. Obviously
caution must be used when evaluating the potential causes of a particular life history.

6.10 Bet hedging

When the environment is unpredictable, selection may favor the concentration of 
reproduction early in life. Alternatively, it may favor spreading reproduction over several
seasons or years. If recruitment of offspring is unpredictable from year to year, selection
should favor adult survival at the expense of present fecundity (Stearns 1992). When
Sandercock and Jaramillo (2002) examined survivorship rates of six species of winter-
ing sparrows in California they found that the life histories were consistent with a bet-
hedging hypothesis.

6.11 The Grime general model for three evolutionary strategies 
in plants

Grime (1977) developed a life-history model specifically for plants. In this model Grime
categorized factors that limit plant biomass or productivity into:

1 Stress. Stress is any condition that restricts plant production. Examples
would be shortage of light, water, or nutrients, or low temperatures.

2 Disturbance. A disturbance is partial or total loss of plant biomass arising
from the activities of herbivores, pathogens, man, or from environmental 
factors such as wind, frost, desiccation, soil erosion, or fire.

Grime then put together a chart (Table 6.5) in which stress and disturbance are placed
into categories by intensity (low or high), and the result is a 2 × 2 table. Each of the four
possible interactions is a possible life-history strategy, but he claims that there is no viable
strategy for high stress combined with high disturbance. This leaves three ecological life-
history strategies for plants.

A Competitive strategy. Competition is the tendency of neighboring plants to
use the same quantum of light, ion of mineral nutrient, molecule of water,
or volume of space. A wide range of studies has shown that while compe-
titive ability is important in productive conditions, it declines in importance in
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unproductive habitats. During periods of high stress, characteristics related
to rapid potential growth become disadvantageous.

B Stress-tolerant strategy. This strategy is best represented in unproductive
habitats. Examples are: (i) low-temperature Arctic or alpine areas (here, import-
ant life forms are low evergreen shrubs, small perennial herbs, bryophytes,
and lichens); (ii) arid habitats (plants with small hard leaves, succulents, 
or other water-conserving mechanisms are favored); (iii) shaded habitats 
(shade tolerance is important); (iv) nutrient-deficient habitats (plants with slow
growth rates and mechanisms for conserving leaves and other plants parts
have been selected for).

C Ruderal strategy (= r-selected strategy of MacArthur and Wilson). This 
strategy is common in severely disturbed, but potentially productive habitats.
In this case, rapid colonization, rapid growth, and high reproductive rates are
favored.

During succession, Grime sees the plant community changing over time from ruderal
to competitive to stress-tolerant. However, a highly productive habitat may stay in the com-
petitive mode. Grime displays the three strategies on an equilateral triangle (Fig. 6.5) with

Relative
importance of
stress

Stress-tolerant
strategy

Ruderal
strategy

Relative
importance of
competition

Relative
importance of
disturbance

Competitive strategy

100
100

100

0

0

0

Figure 6.5 The Grime model for three evolutionary strategies in plants.

Table 6.5 Grime model for three basic life histories for plants.

Intensity of disturbance Intensity of stress

Low High

Low Competitive strategy Stress-tolerant strategy
High Ruderal strategy No viable strategy
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each corner representing maximum importance of one strategy or another. The apex is
the competitive strategy, the right corner is ruderal, and the left corner is stress-tolerant.
Life forms are organized along these three axes. Annual herbs are basically ruderals, lichens
are usually stress-tolerant, trees and shrubs are a combination of stress-tolerant and com-
petitive, and bryophytes are a combination of stress-tolerant and ruderal (Grime 1977).

6.12 Conclusions

An amazing diversity of life histories can be found in almost any ecological
community. Since at least 1954 ecologists have been attempting to under-
stand and explain this diversity. A wide range of organisms in a wide 
variety of environments have shown us that there exists a basic dichotomy
between the reproductive rate and the size or life span of an organism. The
metabolic theory of ecology emphasizes that mass and temperature heav-
ily influence life-history traits, producing an inverse relationship between 
mass and r. Another dichotomy is between dispersal ability and competitive 
ability, which is emphasized in the theory of r- and K-selection.

Early theorists, such as Cole and Lewontin, emphasized life-history char-
acteristics that would be most effective in increasing r. As a result they focused
their attention on generation time and the fertility aspects of the life table.
In many environments, however, we have found that the major adaptive syn-
drome revolves around reduction in adult mortality. Tropical environments,
islands, and unpredictable survivorship of juvenile stages all have selected
for long-lived adults with low mortality rates and iteroparous reproduction.
The Grime stress-tolerant strategy for plants can be viewed as a set of adap-
tations for environments in which resources are limited, and recruitment 
of juveniles is uncertain. The result is mature plants that are long-lived 
and iteroparous, exactly what we normally find in climax stages of vegeta-
tion. It will always be difficult to distinguish among selective factors that might
have produced an observed life history: a stochastic physical environment,
predation, competition, mating system, or some other factor we haven’t
thought of yet. The amazing variety of life histories will keep ecologists and
evolutionary biologists busy for a long time.
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Part II
Interspecific interactions

At this point we are ready to consider interactions among populations of different species.
These interactions may be at the same trophic level (interspecific competition) or between
different trophic levels (predator–prey, parasite–host, parasitoid–host, and plant–herbivore
interactions). Some of these interactions are considered “symbiotic.” A symbiosis is the
intimate biotic association of phylogenetically unrelated species, and is thought to develop
as a consequence of coevolution. While symbiosis is sometimes considered exotic or rare
in nature, it is actually a rather common phenomenon. For example, the eukaryotic cell
appears to be a coevolved symbiotic complex involving organelles such as mitochondria
and chloroplasts that were originally free-living organisms. Lichens consist of a symbiotic
complex of algae living inside fungi, and the roots of higher plants have symbiotic associ-
ations with fungi (mycorrhizae). Moreover, the roots of leguminous plants have nodules
within which bacteria (Rhizobium and related genera) live. Corals have a symbiotic 
relationship with algae known as zooxanthellae, and many species of flowering plants 
have complex relationships with ants.

Types of interactions

The following are symbolic representations of interactions between two species. In each
case the symbol indicates whether the interaction is positive (+), negative (−), or neither
(0) for each of the two species involved.

−/− Competition, which is considered to be a reciprocally negative interaction
for both of the species involved.

+/− A biological association in which one individual benefits while the other is
harmed. Such interactions include predator–prey, herbivore–plant, and
parasite–host relationships.

+/0 Commensalism. One partner benefits from the interaction, while the other
experiences no particular benefit or harm. Examples include: (i) seeds 
with barbs that stick to the fur of animals and are thereby dispersed; 
(ii) organisms (mites, bacteria, etc.) that live on the skin of animals but 
do no harm to the host; (iii) a bird’s nest in a tree; or (iv) a cattle egret
(Bubulcus ibis) which feeds more efficiently in the company of a cow.
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+/+ Mutualism. Both partners benefit from the interaction. Examples include:
(i) “cleaners” and their hosts such as oxpeckers and ungulates, or cleaner
shrimp and fish; (ii) pollinator–plant interactions; (iii) frugivore–plant 
relationships; (iv) a variety of ant–plant interactions; and (v) relationships
between higher plants and fungi (mycorrhizae) or bacterial (Rhizobium)
nitrogen fixers.

We do not usually consider the above mutualistic associations to be “symbiotic” unless
there is a definite “living together” of the associates. Thus the algae and fungi that make
up lichens are symbiotic, as are Rhizobium bacteria that live in the roots of legumes. But
plant–pollinator and bird–seed-dispersal interactions are not symbiotic.

Predator–prey, parasite–host, and plant–herbivore interactions

These interactions are of fundamental importance in that they have effects at the 
population, the community, and the ecosystem level:

1 At the population level, predation, herbivory, and parasitism often control or
help regulate animal and plant populations. Predators and parasites may also
change the demographic structure of the prey/host population and thereby
drive population cycles (Dobson and Hudson 1992).

2 At the community level, a predator, parasite, or herbivore can decimate a 
community, eliminating certain species entirely, and fundamentally changing
the community (Fritts 1988, Rodda et al. 1992). Alternatively, it may have a
positive effect on community diversity by allowing the coexistence of less 
competitively dominant species (Paine 1966).

3 At the ecosystem level, predator–prey, plant–herbivore, and parasite–host 
interactions provide means of energy flow from one trophic level to another.

Terminology

Terms used in discussing interactions among species are explicitly defined below.

Facultative. Term applied to an interaction or association among species that
is not required for the survival of the individuals involved. A parasite or an
herbivorous insect often has several hosts, and a mutualist may be able to
survive without its partner.

Obligatory. Term applied to an interaction or association that is required for the
survival of the organisms involved. In this case, the specialized pollinator, 
parasite, herbivore, or mutualist cannot survive without the other species with
which it is associated.

Carnivorous predators kill living prey and usually consume them immediately.
Parasitoids, on the other hand (examples are certain wasp species), lay eggs

on their prey. The parasitoid larva that hatches from the egg eventually
devours the prey species (caterpillars, for example) from the inside. The prey
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may be paralyzed or may continue feeding for some time as it is being 
consumed. The host (prey) is eventually killed by the time the wasp larva
pupates.

Parasites do not usually kill their hosts, but harvest energy from the hosts over
a period of time. During this time the parasites, reproduce copiously.

Herbivores are similar to parasites in that they consume plant parts, but usu-
ally not entire plants, and they do not usually kill the plants they feed upon.

Seed predation, on the other hand, is an example of true predation if the seed
embryo is consumed. On the other hand, fruit eating is usually an example
of mutualism. The fruit is consumed, but individual seeds are dispersed with-
out the embryo being killed. Scatter hoarding, such as a squirrel–acorn
interaction, is a fascinating combination of seed predation and seed dispersal.

Types of parasites

Parasites that live outside the host are termed ectoparasites, while those that live 
inside the host are endoparasites. Parasites also differ with regard to: (i) the level of 
harm caused to the host (virulence); (ii) their ability to move from one host to another
(transmissibility); and (iii) the degree to which they are restricted to a given type of host
species (specialization or host-specificity).

The table overleaf summarizes ecological characteristics of parasite–host, herbivore–
plant, and predator–prey relationships. In the next few chapters, we will first discuss 
interspecific competition before moving on to mutualism, followed by parasite–host,
predator–prey, and herbivore–plant relationships.
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7

Interspecific competition

7.1 Introduction

The ecological niche

Our understanding of interspecific competition and the development of the concept of
the niche have shared an interesting history. The term ecological niche can be traced both
to the American ecologist Joseph Grinnell and to the British ecologist Charles Elton. In
his book Animal Ecology, Elton (1927) defined niche in the context of trophic position
and feeding habits of an animal. Elton viewed the niche as a subdivision within the 
traditional trophic grouping of herbivore, carnivore, etc. Grinnell, however, described 
the niche in terms of the potential distribution of a species over habitat types, and in his
paper on the feeding habits of the California thrasher he connected competitive exclusion
to the term niche: “It is, of course, axiomatic that no two species regularly established 
in a single fauna have precisely the same niche relationships” (Grinnell 1917, p. 433). 
However, because various authors used the term niche differently, and because there 
was no formal definition of the niche, many ecologists used the term informally. For 
example, in his ecology text Krebs (1994) defined niche as “the role or ‘profession’ of an
organism in the environment; its activities and relationships in the community.” In their
ecology text, Begon et al. (1986) defined the niche more formally as “the limits, for all
important environmental features, within which individuals of a species can survive, grow
and reproduce.”

• The ecological niche
• The competitive exclusion principle
• The Lotka–Volterra competition equations
• Resource-based competition theory
• Spatial competition and the competition–colonization trade-off
• Evidence for competition from nature
• Indirect evidence for competition and “natural experiments”
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Ricklefs (1997) used both the informal and the formal definition of the niche: “the eco-
logical role of a species in the community” (informal) and “the ranges of many condi-
tions and resource qualities within which the organism or species persists, often conceived
as a multidimensional space” (formal).

The second, formal, definition is based on the concept, devised by G.E. Hutchinson (1957),
of the niche as an N-dimensional hypervolume. In Hutchinson’s definition, important 
environmental features such as temperature, pH, nutrient availability, food types and/
or sizes are depicted as niche dimensions. For each dimension the limits are identified.
For example, what are the minimum and maximum temperatures within which the
species can survive? Or, what are the smallest and largest food particles upon which a species 
can feed? The range within which the species can survive represents the fundamental 
niche for the species, for that niche dimension. All of these niche dimensions combined
represent the overall fundamental niche of the species. If we take three niche dimensions
into account, the niche can be represented as a three-dimensional volume. If we consider
N dimensions, the resultant niche was described by Hutchinson as an N-dimensional 
hypervolume.

The fundamental niche is the largest ecological niche that an organism or species can
occupy. It is based mostly on interactions with the physical environment and is always 
in the absence of competition. The realized niche, on the other hand, is that portion of
the fundamental niche that is occupied after interactions with other species. That is, the
niche after competition. The realized niche must be part of, but smaller than, the funda-
mental niche.

7.2 Interspecific competition: early experiments and the competitive
exclusion principle

Early in the twentieth century, Tansley (1917) experimentally demonstrated the poten-
tial power of interspecific competition in shaping ecological communities. Tansley had
observed that closely related plant species living in the same region were often found in
different habitats or different soil types. For his experiment he selected two species of an
herbaceous perennial, bedstraw, in the genus Galium (Rubiaceae). One species, G. saxatile,
is normally found on peaty, acidic soils, while the second species, G. sylvestre, is an inhab-
itant of limestone soils. Tansley obtained soils from both areas, planted each species singly
in each soil type and then placed the two species together in each soil. He found that each
species, when planted alone, was able to survive in both soils. Therefore the fundamental
niche for both species includes both acidic, peat-rich soil and limestone soil. However,
growth and germination were best on the soil where the Galium species was normally 
found. When grown together on limestone soil, G. sylvestre overgrew and outcompeted
G. saxatile. The opposite was true in the acidic peat soil. At this early date, Tansley had 
established that competitive exclusion could be demonstrated, and that the results differed
by environment.

The work by Tansley, however, was not developed further until the publication by Gause
(1934) of The Struggle for Existence. Through a series of experiments with yeast (Gause
1932) and protozoans, Gause found that competitive exclusion is observed most often between
two closely related species (two species in the same genus, for example), when grown 
in a simple, constant environment. For example, see Fig. 7.1. Gause prepared organic extracts

ITP_C07.qxd  09/27/2005  02:08PM  Page 160



INTERSPECIFIC COMPETITION 161

and introduced bacteria as food. When either Paramecium caudatum or P. aurelia was 
introduced alone, each flourished and grew logistically, leveling off at a carrying capacity
(Fig. 7.1a). When placed together, however, P. caudatum diminished and eventually went
extinct, while P. aurelia grew to a steady level (Fig. 7.1b). There are two lessons from this
experiment. First, two closely related species were unable to coexist in the simple test-tube
environment. Second, even though we declare P. aurelia the “winner,” notice that its steady
state of approximately 300 per 0.5 ml sample (Fig. 7.1b) is less than the carrying capacity
of 500 when this species was grown alone (Fig. 7.1a). Recall the definition of competition
as a reciprocally negative interaction, meaning that competition has a negative effect, even
on the winners.
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Figure 7.1 Population dynamics of Paramecium aurelia and P. caudatum: (a) when
grown separately; (b) when grown together. Adapted from Gause (1934).
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Gause’s laboratory work inspired many others who worked with yeast, grain beetles,
fruit flies, and other organisms easily grown in the laboratory. Crombie (1945, 1946, 1947),
Thomas Park (1948) and others did some particularly interesting work with grain beetles.
Different species were grown together in vials or other simple environments, usually result-
ing in competitive exclusion. Crombie, however, showed that the species excluded could
change depending on the temperature under which the experiment was run. And when
he added glass tubing as a refuge, he found that a grain beetle in the genus Oryzaephilus
was able to coexist with a related species in the genus Tribolium. Without the glass tub-
ing, Tribolium drove Oryzaephilus extinct. All of this work suggested that closely related
species, whose niches are very similar, are unlikely to coexist in a simple environment.
From his research with Paramecium, Gause (1934) proposed what became known as Gause’s
theorem or principle:

A Two species cannot coexist unless they are doing things differently.

This was eventually rephrased such that competition and the niche concept became 
integrated.

B No two species can occupy the same ecological niche.

Based on such results, Hardin (1960), three years after the publication of Hutchinson’s
definition of the niche as an N-dimensional hypervolume, proposed the competitive
exclusion principle:

Species which are complete competitors, that is, whose niches overlap completely, cannot 
coexist indefinitely.

When comparing the fundamental niches of competing species it becomes obvious that
their niches overlap on many, if not all, dimensions. On the other hand, if we look at enough
niche dimensions, since all species are genetically differentiated from one another, each
species will have a unique niche. Therefore, complete niche overlap between two species
is virtually impossible. Yet competitive exclusion does occur. A question we might pose
is: how closely can niches overlap before competitive exclusion occurs? The other side of
that question is: under what conditions do potential competitors coexist?

7.3 The Lotka–Volterra competition equations

The first important attempts to model interspecific competition were devised by Lotka
(1925) and Volterra (1926). They based their models on the logistic equation, which is,
of course, a model of intraspecific competition.

In modeling interspecific competition, Lotka and Volterra assumed that the growth rate
of each species would be decreased as the population of its competitors increased. Thus
the impact of species 2 on the growth rate of species 1 is expressed as a modification 
of the logistic equation. Simultaneously, the number of individuals of species 1 modifies
the growth of species 2. To model competition between two species, Lotka and Volterra
wrote two simultaneous equations, one for each species. Each equation is based on the
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logistic, but includes a new term, the competition coefficient (αij), which describes the effect
of one species on another. In the equations which follow:

N1 = the number of individuals of species one;
N2 = the number of individuals of species two;
r1 = the intrinsic rate of increase of species one;
r2 = the intrinsic rate of increase of species two;
K1 = the carrying capacity of species one;
K2 = the carrying capacity of species two;
α12 = the competition coefficient: effect of species two on species one;
α21 = the effect of species one on species two;
t = time.

dN1/dt = r1N1 (7.1)

dN2/dt = r2N2 (7.2)

The competition coefficients try to model the impact of adding one individual of
species i on species j. The value of the competition coefficient is usually between 0 and 1,
for the following reasons. (i) A competition coefficient of zero would mean that there is
no competition between the two species. If that were the case, there is no reason to try to
model this interaction. (ii) If the competition coefficient were negative, the implication
would be that species two actually benefits the growth rate of species one. The interaction
between species one and two would then be mutualistic. (iii) Notice that the number of
individuals of both species one and two decreases the carrying capacity. N1 (taken directly
from the logistic equation) is unmodified and represents intraspecific competition. N2 is
modified by the competition coefficient and represents interspecific competition. The implied
α-value for intraspecific competition is therefore 1.0. To express this for the numerator
on the right side of the equation, we could write K1 − α11N1 − α12N2. Thus, when we say
that the usual value of the interspecific competition coefficient is usually less than 1, we
are saying that interspecific competition is almost always less intense and diminishes growth
less than intraspecific competition, to which we have assigned the coefficient value of 1.0.

If we analyze this assumption in terms of niche overlap, the preceding makes intuitive
sense. That is, in intraspecific competition a species is competing with members of its own
species, with which is has total niche overlap (Actually, since there should be genetic varia-
tion within the species there would not be total niche overlap, and in some species males
and females have different niches, particularly when it comes to food sizes or prey taken.)
In interspecific competition, by contrast, the two species should have different niches. Thus
an individual of species two should compete less intensely with an individual of species
one than with an individual of its own species. Growth rate should be diminished less by
inter- than by intraspecific competition. Hence the αij-values are normally less than one
and greater than zero.

Solving the Lotka–Volterra equations presents a number of problems. In addition 
to the large number of parameters that would have to be estimated (r, K and alpha for
each species) we would be assuming that changes with density were linear in both sets of 
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differential equations. However, it is possible to do an “equilibrium analysis.” That is, we
can analyze the equations after the results of competition are complete and both species
are no longer growing. At equilibrium, the left sides of the equations, which represent growth,
can be set to zero. These equations can then be written as:

dN1/dt = 0 and dN2/dt = 0 (7.3)

0 = r1N1 and 0 = r2N2 (7.4)

These equations, again, have no interesting explicit solutions. They can be solved if 
r1 or r2 = 0, but that simply means one of the species is not viable in this environment. 
If N1 or N2 = 0, then we have competitive exclusion. If K1 or K2 = 0, we have an undefined
situation. What is left is to analyze the following expressions:

0 = K1 − N1 − α12N2 (7.5)

0 = K2 − N2 − α21N1 (7.6)

An ensuing graphical analysis, based on the steps outlined below, produces four 
possible solutions.

First we solve Equation 7.5 for N1 and for N2, producing Equations 7.7a and 7.7b:

N1 = K1 − α12N2 (7.7a)

N2 = (7.7b)

If species one wins in competition and species two goes extinct, we have Equation 7.7c:

N1 = K1 (7.7c)

If species two wins and species one goes extinct, we have 7.7d.

N2 = (7.7d)

From Equation 7.6, we get the following two equations:

N1 = (7.8a)

N2 = K2 − α21N1 (7.8b)

If species two wins and species one goes extinct, we get:

N2 = K2 (7.8c)

K2 − N2

α21

K1

α12

K1 − N1

α12

K2 − N2 − α21N1

K2

K1 − N1 − α12N2

K1
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If species one wins and species two goes extinct, we get:

N1 = (7.8d)

Therefore, if species two is extinct, Equations 7.7c and 7.8d tell us that: N1 = K1 = K2/α21

and:

α21 = (7.9)

Similarly, if species one is extinct, Equations 7.8c and 7.7d tell us that:

N2 = K2 = K1/α12

and:

α12 = (7.10)

According to these results, the competition coefficients are determined by the ratio of
the carrying capacities.

To begin the graphical analysis, we start with Equation 7.5. As we have seen from Equation
7.7c, when species two = 0, then N1 = K1. Similarly, when species one = 0, N2 = K1/α12 (7.7d).
If we graph N1 versus N2 (Fig. 7.2), we can use the two points (K1, 0) and (0, K1/α12) 
to produce a line that represents saturation levels for species one. Combinations of 
populations 1 and 2 below (to the left of) the line are such that population 1 continues
to increase. Combinations above the line (to the right) lead to a decrease in the size of
population 1 (Fig. 7.2). The line itself is known as the zero isocline for population 1.
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Figure 7.2 Zero isocline for species 1.
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In a similar fashion, from Equation 7.8c we know that if population 1 = 0, then 
N2 = K2. From Equation 7.8d, we have that if population 2 = 0, then N1 = K2/α21. From 
the resultant points (0, K2 and K2/α21, 0), we can draw a second line or zero isocline, 
representing saturation levels for species two. Again, combinations of populations 1 and 2
to the left or below the line result in increases toward the carrying capacity for popula-
tion 2; combinations above the line lead to a decrease in population 2 (Fig. 7.3).

We now place these zero isoclines or saturation levels on the same graph. Four com-
binations are possible when drawing these lines:

1 K1/a12 > K2 combined with K1 > K2/a21 (Fig. 7.4);
2 K2 > K1/a12 combined with K2/a21 > K1 (Fig. 7.5);
3 K1 > K2/a21 combined with K2 > K1/a12 (Fig. 7.6); and
4 K1/a12 > K2 combined with K2/a21 > K1 (Fig. 7.7).

In Fig. 7.4, both populations increase when their numbers are below both saturation
lines. However, when combinations of species one and two are above the species-two zero
isocline, but below the species-one zero isocline, the resultant vectors move the combined
number of individuals toward only one equilibrium point, and that is when N1 = K1. In
case one, then, we have competitive exclusion and species one is the winner.

Figure 7.5 illustrates the opposite situation. When combinations of species one and two
are between the two saturation lines, the resultant vector moves the combined number of
individuals toward an equilibrium at N2 = K2. Again we have competitive exclusion, but
now species two is the winner.

Figure 7.6 represents a more complex, ambiguous situation. If the combination of N1

and N2 is along the line 0–S, the resultant vector moves along the line to a temporary,
unstable equilibrium at S, where both species coexist. However, if anything in the envir-
onment moves the combinations of individuals to the right or the left of the line 0–S,
then the resultant vectors move rapidly toward competitive exclusion. However, in this
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N2 = K2 − a21N1

(K2/a21, 0)

Figure 7.3 Zero isocline for species 2.
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case there are two stable equilibrium points. If the combinations of the two species pro-
duce points to the left of the line 0–S, the result is competitive exclusion with species two
as the winner. If the points are to the right of the line 0–S, species one is the winner. Therefore
this set of conditions will produce an unstable equilibrium or competitive exclusion with
an indefinite winner (a stochastic result).

Finally, in Fig. 7.7 we have a situation in which each species slows its own growth more
than that of its competitor. This allows a stable equilibrium with coexistence of the two
species at point E.
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Figure 7.4 Species 1 wins.
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Figure 7.5 Species 2 wins.
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7.4 Laboratory experiments and competition

The classic works of Thomas Park and his colleagues (Park 1954, Neyman et al. 1956)
illustrate cases 1–3, as well as the fact that competitive outcomes are not necessarily deter-
ministic (see Table 7.1). In Park’s most often cited study, he raised two species of flour
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Figure 7.6 Unstable equilibrium (S) or competitive exclusion with an 
indefinite winner.
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Figure 7.7 Coexistence of both species at the stable equilibrium, E.
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beetles, Tribolium castaneum and T. confusum, in vials of sifted flour under different 
temperature and humidity regimes (Table 7.1).

In these experiments the initial numbers of individuals were equal. That is, N1 = N2 at
t = 0. In the top and bottom rows of the chart we have typical deterministic results, illus-
trating the first two graphical analyses (Figs 7.4 and 7.5) in which competitive exclusion
occurs. The other four results are stochastic in that the result of any single experiment is
unpredictable. Neyman et al. (1956) conducted further experiments using the cold–moist
regime. They found that one species or the other was a deterministic winner when given
a large initial numerical edge (Fig. 7.6). But there still existed an “indeterminate” zone (in
the region of N1 ≈ N2) where either species could still win.

A natural extension of these two-species competitive interactions was the work of
Vandermeer (1969). Building on the work of Gause (1934), Vandermeer raised four species
of protozoans in monocultures, thereby determining their rm and carrying capacities. 
Next he grew each of the species in pair-wise combinations. From these experiments 
he estimated the pair-wise competition coefficients. The general results were as follows:
Paramecium aurelia depressed the growth of P. caudatum, drove P. bursaria extinct, and
depressed the growth of Blepharisma sp. P. caudatum also drove P. bursaria extinct 
and drove Blepharisma sp. to a very low population level. Blepharisma and P. bursaria 
had little effect on each other and coexisted.

Based on the pair-wise competition coefficients and K-values, Vandermeer predicted the
outcome of placing all four species together in a community, including predicted growth
rates and carrying capacities. His predictions and the actual outcomes were surprisingly
similar, leading to the conclusion that higher-order interactions (the combined effects of two
species on a third) and nonlinear relationships were not significant in this community.

Other multi-species studies, however, did not confirm Vandermeer’s findings. For
example, Neill (1974) conducted a series of replicated removal experiments in a labor-
atory microcosm containing four species of microcrustaceans and associated algae and 
bacteria. Each species of crustacean was grown in pairs and estimates of population 
density were made under each regime. Computation of competition coefficients showed

Table 7.1 Results of competition between two species of flour beetles (Tribolium
confusum and T. castaneum) in six different temperature and humidity combinations.
Based on Park (1954).

Temperature Percent relative “Climate” Percent of replicates in 
(°C) humidity which one species or

the other wins

T. confusum T. castaneum

34 70 Hot–moist 0 100
34 30 Hot–dry 90 10
29 70 Warm–moist 14 86
29 30 Warm–dry 87 13
24 70 Cold–moist 71 29
24 30 Cold–dry 100 0
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that the α-values depended on the community composition. The joint effects of two species
on a third (in a three-species community) were not as predicted from the separate inter-
actions in the two-species systems. Such results helped push ecologists to look for a dif-
ferent theoretical approach to competition.

7.5 Resource-based competition theory

David Tilman (1976, 1987) and others pointed out that the Lotka–Volterra equations were
“phenomenological” and not “mechanistic.” That is, competition coefficients were merely
measures of the effect of one species on the growth rate of another. They are estimated
from experiments in which two species are grown together. Therefore they are not an inde-
pendently derived value that allows one to predict coexistence or competitive exclusion,
or, in the latter case, which of two species should win. Furthermore, a competition coeffi-
cient does not help determine the mechanism of competition; we have no information 
on what resource the species might be competing for. If competition is really concerned
with a resource in short supply, we need to understand what the resource is and how each
species is using it before we can understand the potential competitive interaction.

Tilman, a particularly strong advocate of a mechanistic approach to competition (1976,
1981, 1982), developed what is now known as resource-based competition theory. In so
doing he brought together ideas from a variety of disciplines, including microbiology, enzyme
kinetics, and agricultural chemistry. For example, the idea that population growth is con-
strained by the depletion of critical resources can be traced to the agricultural chemist Liebig
(1840) and his law of the minimum. Liebig asserted that a population increases until the
supply of a single critical resource becomes limiting. For example, plant growth may con-
tinue until the amount of phosphorus, nitrogen, light, or soil moisture becomes limiting.
According to Liebig’s law, if plant growth is constrained by phosphorus and a farmer adds
phosphorus fertilizer, plant growth will continue until another resource, such as nitrogen,
becomes limiting. If the farmer adds nitrogen, then soil moisture may become the limit-
ing factor. Liebig’s law is overly simple in that two or more resources may interact to limit
a population, but it puts resource supply into the context of population regulation, and
therefore competition.

In the resource-based approach to competition, we need to couple the availability of
resources to population growth. We begin by considering a renewable resource. If the 
supply rate is not affected by the population of potential consumers, the rate of supply
(for example, phosphorus arriving at a small lake via a local stream) could be considered
a constant (Eqn. 7.11), where Ri is the quantity of the resource i and kRi is the supply rate:

dRi /dt = kRi (7.11)

If this one resource sets the limit of growth for a population (as in Liebig’s law 
of the minimum), the growth rate depends on both the resource level and the density of 
the population itself. That is, dN/dt is a function of both the resource supply rate, kRi, and
population size, N. Assume that each individual must consume the resource at rate q to
maintain itself. We ignore the possibility of storing the resource for later use. The popu-
lation of N individuals will consume the resource at the rate qN. The remaining resources
may eventually be lost downstream or in the lake sediments. Alternatively, they may be
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taken up by the consumers and used for the production of new individuals in the popu-
lation. The supply rate of the resource available for reproduction is therefore kRi − qN. 
Suppose each individual converts the resource into new individuals with efficiency b.
Population growth can now be written as:

dN/dt = bN(kRi − qN) (7.12)

We can rearrange this equation to:

dN/dt = bkRiN 1 − (7.13)

Equation 7.13 is a form of the logistic equation with r = bkRi and the carrying capacity
equal to kRi/q. We have now coupled resource supply with population growth rate. The
growth rate of the population is proportional to the supply of the critical resource and
the carrying capacity is the resource supply divided by the amount needed for mainten-
ance per individual.

Now envision the relationship between resource availability and population growth. As
described earlier, in a density-dependent population, the per capita growth rate declines
with population size, yielding a negative slope. Logistic-like equations assume that the
resources become scarcer as populations grow. However, if we graph per capita growth
versus an increasing supply of resources, the predicted slope is positive (Fig. 7.8). As the
resource becomes more abundant, the population growth rate increases. Per capita
growth, however, finally levels off and declines to zero when some other resource limits
the population (as proposed by Liebig).

The next step is to introduce a mortality rate, m. Instead of assuming that resources
are simply turned into births, we assume instead that a certain minimum level of the resource
is needed to maintain the population. Therefore, as shown in Fig. 7.9, we introduce the
concept of R*, the level of the resource needed to balance mortality. If the resource is
provided at the rate R*, then dN/dt = 0, growth just balances mortality, and the population
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Figure 7.8 Per capita growth as a function of resource availability.
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maintains itself. If the resource is provided at a level less than R*, growth is less than 
mortality, and the population declines. Conversely, if the resource is provided at a level
greater than R*, we have growth (dN/dt > 0).

Examine Fig. 7.10. As the population grows, the resource is increasingly depleted, 
and once the resource declines to the level R*, the population should stop growing. The
population thereafter remains steady at a size determined by the resource quantity R*.

Tilman (1976) realized that an independently derived R* could be used to predict 
population dynamics and, ultimately, competitive interactions. He first used the

P
er

 c
ap

ita
 g

ro
w

th

Population growth

Mortality rate

Resource supplyR*

Figure 7.9 Per capita growth as a function of resource availability, but with a
constant mortality rate. R* = the amount of resource producing a per capita growth
rate of zero.
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Figure 7.10 Population and resource dynamics.
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Michaelis–Menton enzyme kinetics equation, which is normally employed to describe the
relationship between cellular metabolism and substrate concentrations. This equation 
had also been used by microbiologists to describe the growth rate of bacteria on organic
substrates (Monod 1950).

In the Michaelis–Menton equation, the growth rate, µ, on a given substrate or re-
source, R, is set equal to the maximum growth rate modified by the concentration of the
resource and by a value known as Kµ, the half-saturation constant for the resource in ques-
tion. Kµµ is the concentration of the resource that produces half the maximum growth rate.
If µmax is the maximum growth rate of the population, and R is the resource or substrate,
the resultant growth rate (µ) according to the Michaelis–Menton equation is:

µ = µmax (7.14)

In Monod’s version of this equation, instead of µ we substitute dN/dt, and we use b
instead of µmax. We will also now define the half-saturation constant for any given
resource as Ki, rather than Kµ. The result is Equation 7.15:

dN/dt = (7.15)

Per capita growth is shown in Equation 7.16

dN/Ndt = (7.16)

This equation tells us that at very high resource levels, the expression R/(Ki + R) is 
very close to one and the per capita growth is simply b. This is the maximum growth rate,
ignoring the mortality rate, m, and is equivalent to the unmodified intrinsic rate of
increase rmax. We can add a constant mortality rate to Monod’s equation as follows:

dN/Ndt = − m (7.17)

We can set dN/Ndt (per capita growth) equal to zero and solve for R*, which is the
resource level at which growth stops. The solution, as shown in Equation 7.18, allows 
us to predict R* if we know three variables: (i) the half-saturation constant, Ki, (ii) the
maximum growth rate, b, and (iii) the mortality rate, m. The advantage of this approach,
as opposed to that of the Lotka–Volterra equations, is that a resource is identified and 
a variable, R*, can be derived from simple experiments, which can then be used to 
compare how populations of different species respond to different resource levels.

R* = (7.18)

For example, Tilman (1976) identified critical resources for which two species of plank-
tonic algae were likely to be competing. Two freshwater diatom species were grown under
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different levels of the important limiting nutrients, phosphate (PO 4
−3) and silicate (SiO4

−4).
Using a growth vessel known as a chemostat, he determined the growth rates of each species
cultured singly and also determined the limiting concentrations of phosphate and silicate.
From these experiments he determined the values of the half-saturation constants for each
species for both phosphate and silicate. By examining the ratios of silicate to phosphate
utilizations he was able to establish boundaries for competition. He found that when 
both species were limited by phosphate, the diatom Asterionella won in competition with
Cyclotella. When both species were limited by silicate, Cyclotella won. However, when 
both nutrients were simultaneously in short supply, the two species coexisted. Tilman 
minimized mortality rates and was able to predict which species would win based on 
growth rates and the half-saturation constants. He found that the species with the lower
half-saturation constant (and therefore lower R* in this case) would win if both species
were limited by a single nutrient. However, if each species was limited by a different 
nutrient, the density of each species was held in check through intraspecific competition
and the two species coexisted. The incorporation of the equations originally developed by
Michaelis/Menton and Monod, and the use of half-saturation constants, allowed Tilman
to predict the results of competition involving two species and two resources.

Subsequent papers by Tilman (1981), Tilman et al. (1982), Hansen and Hubbell (1980),
and a book by Tilman (1982), have become the foundations for “resource competition”
as a distinct theory and an important area of inquiry. Tilman’s work expanded from the
laboratory work on diatoms and other algae to competition studies of terrestrial plant 
communities at the Cedar Creek Natural History Area in Minnesota. Hansen and Hubbell
(1980) and Tilman (1982) elaborated on the Monod equation, but they still emphasized
the critical parameter, R*. This parameter can be used to predict which one species will
survive in a mixed-species culture when there is a single limiting nutrient. According 
to what is now known as the R*-rule, for any given resource (R), if we determine the 
R*-value for each species when grown alone, the species with the lowest R* should com-
petitively exclude all other species, given enough time and a constant environment.

In deriving their version of the R*-rule, Hansen and Hubbell (1980) assumed that two
competitors are grown in a continuous culture with a continuous input of a nutrient (R)
as well as an effluent rate, which is equivalent to a death rate, m. The growth rates for two
competing species were defined as:

dN1/dt = − mN1 (7.19)

and

dN2/dt = − mN2 (7.20)

where
bi = maximum cell division rate (= rmax);
R = the concentration of the one limiting resource in the culture;
Ki = half saturation constant for the limiting resource;
m = death rate, here due to outflow;
Ni = concentration of cells in the culture (population size).

b2RN2

K2 + R

b1RN1

K1 + R
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If we do an equilibrium analysis, and set dNi/dt = 0, the result is:

− m = 0

If we set Ki = R, then bi /2 = m.
Thus one solution is that growth stops when the concentration R equals the half-

saturation constant. At that time the cell division rate is at half of its maximum level 
(ra = 0.5rm) and just equals the death rate. Thus, as explored above in a graphical ana-
lysis, the equilibrium resource availability, R*, occurs when the growth function intersects
the line m representing mortality. This is the amount of resource needed to just sustain
the population (growth just offsets mortality).

When Hansen and Hubbell (1980) analyzed Equations 7.19 and 7.20, they found that
they are globally stable when either: (i) all competitors die out, or (ii) one species survives
while the second species dies out – that is, when competitive exclusion occurs. Which species
survives depends on the critical parameter, R*, which we already saw in Equation 7.18 as
R* = mKi /(b − m).

R* must be less than R0, otherwise all species die out because of lack of resources. If all
R*-values for all species are less than R0, then, according to the R*-rule, the species with
the lowest R* wins. Again, three parameters, the half-saturation constant, the intrinsic 
rate of increase, and the death rate, combine to determine which species wins in com-
petition for any given resource. This is not predicted from classical Lotka–Volterra 
competition theory. A species with a high affinity for the resource can still lose if it has 
a low growth rate (r-value) and a high death rate.

Hansen and Hubbell (1980) confirmed the expected results with several species of bac-
teria auxotrophic for tryptophan. In the example in Table 7.2, based on Hansen and Hubbell
(1980), we expect population two to outcompete the other three species for this resource.
Species three is expected to outcompete both populations one and four, and population
one should win in competition with population four.

Tilman and others have tested the R*-rule on algae, other microorganisms, higher plants,
and zooplankton. For example, Tilman (1982) grew two species of diatoms, Asterionella
formosa and Synedra ulna, which require SiO2 for cell-wall structure, in a laboratory chemo-
stat. The R*-values for A. formosa and S. ulna were 1.0 µM and 0.4 µM, respectively. When

biR

Ki + R

Table 7.2 Example of R* calculations based on Hansen and Hubbell (1980). K, half
saturation constant; m, mortality rate; b, maximal growth rate; ra, actual growth
rate = b − m. R* = mKi/(b − m) = mKi /ra.

Population, i Ki m b ra R*
(g L−−1 ×× 10−−6) per hour per hour (== b −− m) (g L−−1 ×× 10−− 6)

per hour

One 4.0 0.05 0.25 0.20 1.00
Two 4.1 0.05 0.50 0.45 0.46
Three 6.5 0.05 0.50 0.45 0.72
Four 20.0 0.05 0.25 0.20 5.00
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grown together, as the silicate levels eventually were reduced to 0.4 µM, Synedra hung on
at its equilibrium number, whereas Asterionella went extinct.

See Grover (1997) for a relatively recent review covering both the status of the theory
and relevant field and laboratory studies.

Resource competition: conclusion

Applying the R*-rule and resource models to higher animals has proved less useful and,
as usual, theories developed for simple laboratory settings run into a number of problems
and complications when applied to field situations. In addition, we should recognize that
other modes of competition, such as interference competition, do not follow the simple
rules of resource-based models. Moreover, competition on any given site does not neces-
sarily involve all species in the community. The R*-rule would only apply to the species
which have “shown up” in a given habitat patch. Therefore, as elaborated below (also see
Tilman 1994, 1999, Hubbell 2001), a community is not limited to the species that are the
superior competitors.

7.6 Spatial competition and the competition–colonization trade-off

The idea that multiple species can coexist in a community without yielding to the supe-
rior competitors can traced to the competition–colonization trade-off idea first proposed
by Levins and Culver (1971), and elaborated by Hastings (1980), Tilman (1994), Yu and
Wilson (2001), and others. Recall that in a metapopulation, two species can coexist if one
is a superior competitor and the other is a better colonizer. Remember also that in a meta-
population the increase in the proportion, P, of sites occupied by a species was based on
the colonization rate, cP, times the proportion of sites occupied and available (1 − P), minus
the local extinction or mortality rate, εP. When Equation 7.21 is set equal to zero and we
solve for P̂ , we have the proportion of habitat sites occupied at equilibrium (Eqn. 7.22).
The colonization rate necessary for equilibrium is displayed as Equation 7.23.

= cP(1 − P) − εP (7.21)

P̂ = 1 − (7.22)

c = (7.23)

We can generate equations for two species, one for the superior competitor, P1 

(Eqn. 7.24, based on Eqn. 7.21), and one for the superior colonizer, P2 (Eqn. 7.25). c1, c2,
ε1, and ε2 represent colonization and mortality rates for species one and two, respectively.
Equation 7.24 is the same equation as if the species lived by itself, since it is assumed to
be unaffected by the inferior competitor. On the other hand, the inferior competitor can
only colonize sites occupied by neither species (1 − P1 − P2). Thus its successful coloniza-
tion of new sites is a product of c2P2 × (1 − P1 − P2). This success rate is decreased by its

ε
1 − P̂

ε
c

dP

dt
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natural patch extinction rate (ε2P2) and its displacement through competition with species
one (c1P1P2).

= c1P1(1 − P1) − ε1P1 (7.24)

= c2P2(1 − P1 − P2) − ε2P2 − c1P1P2 (7.25)

As noted in Equation 7.23, in order to attain its equilibrium, the colonization rate of
the superior competitor must satisfy. c1 ≥ ε1/(1 − P̂1). To find the equivalent value for species
two, set Equation 7.25 = 0, and divide all terms by P2. The result is Equation 7.26a. The
equilibrium value of P2 is found by following steps 7.26b to 7.26d:

0 = c2 − c2P1 − c2P2 − ε2 − c1P1 (7.26a)

c2 − c2P2 = c2P1 + ε2 + c1P1 (7.26b)

c2(1 − P2) = c2P1 + ε2 + c1P1 (7.26c)

P̂2 = 1 − (7.26d)

For species two to remain viable P̂2 must be greater than zero. Therefore we set the right
side of Equation 7.26d > 0, and set P1 = P̂1, producing the inequalities in Equations 7.27a
to 7.27d:

1 > (7.27a)

c2 > c2P̂1 + ε2 + c1P̂1 (7.27b)

c2(1 − P̂1) > ε2 + c1P̂1 (7.27c)

c2 > + (7.27d)

By using Equation 7.23 and replacing 1 − P̂1 with ε1/c1 on the far right term, we obtain
Equation 7.28:

c2 > c1 + (7.28)

Based on Equation 7.23, c1 = ε1/(1 − P̂1), we know that for P̂1 to be positive, 1 > ε1/c1.
Therefore, c1 must be greater than m1 (Eqn. 7.29a) for the equilibrium abundance of species
one to be stable. Similarly, if we take Equation 7.28 and substitute 1 − (ε1/c1) for P̂1, we
end up with Equation 7.29b:
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c1 > ε1 (7.29a)

c2 > (7.29b)

As stated by Tilman (1994), these are the “necessary and sufficient conditions for 
the stable coexistence of a superior competitor and an inferior competitor in a subdivided
habitat.”

If the mortality rates were equal for the two species, Equation 7.29b simplifies to 
c2 > c 1

2/ε found by Hastings (1980). Since we know that c1 > ε1, it follows that the ratio
c1/ε > 1. Therefore c2 must be greater than c1. If the mortality rate of the inferior com-
petitor (m2) is greater than or equal to that of the superior competitor, an examination
of Equation 7.29b should demonstrate to you that species two only persists if c2 > c1. If
the inferior competitor has a lower mortality rate, however, Nee and May (1992) have
shown that it may coexist with the superior competitor, but only if at least half of the
habitat is left available for colonization. This becomes clear if we assign P̂1 = 0.5 in 

Equation 7.28, resulting in c2 > c1 1 + . No matter how small the mortality rate 

of ε2, we must still have c2 > c1.
These basic equations have been generalized to multi-species situations by Tilman (1994)

and others. Termed the “spatial-competition hypothesis,” this theory proposes stable 
coexistence for inferior competitors in a diverse community. Coexistence by spatial 
competition does assume a two- or even three-way trade-off among competitive ability,
colonization ability, and longevity. Since there is actually little evidence for a trade-off 
between longevity and competitive ability, the major trade-off is assumed to be between
competitive ability and colonizing ability. This is, of course, not inconsistent with the
MacArthur and Wilson (1963, 1967) proposal for r- and K-selected species, in which 
r-selected species were assumed to sacrifice competitiveness for colonizing capacity.

As pointed out recently by Yu and Wilson (2001), the displacement-competition model
(equals the “spatial-competition hypothesis” of Tilman 1994), assumes that a propagule
of the superior competitor will displace an adult of the inferior competitor. Second, the
displacement of the adult occurs rapidly enough to prevent reproduction of the inferior
competitor. Yu and Wilson stressed that in many ecosystems neither of these assumptions
is true. Rather, the juveniles compete among themselves, while waiting for an adult to die.
In a forest, for example, seedlings have little, if any, effect on the death rates of adult trees.
Once an opening in the canopy occurs, these juveniles compete with each other for the
light gap. Yu and Wilson (2001) designated this replacement or “lottery” competition,
and asserted that the competition–colonization trade-off is not sufficient to produce
coexistence of inferior with superior competing species. We will not elaborate on their
models here. However, they propose that in a lottery system, all that is necessary to allow
coexistence of inferior with superior competitors is some form of environmental hetero-
geneity in patch density combined with either the competition–colonization trade-off 
or a trade-off between dispersal and fecundity. Since many highly competitive species 
produce small numbers of large offspring with low dispersal abilities (plants with a small
number of large seeds, for example), the basic idea is that spatial variability is essentially
a “niche-axis” (Yu and Wilson 2001) that facilitates the high species richness found in many
ecosystems.
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7.7 Evidence for competition from nature

Connell’s barnacles

The classic experimental demonstration of competition in the field was done by Joseph
Connell (1961a, 1961b) on the barnacle species Chthamalus stellatus and Balanus balanoides.
These two species are found growing in the rocky intertidal zone off the coast of Scotland.
Intertidal zones frequently show vertical zonation of species based on their abilities to sur-
vive periods of exposure to the air during low tides, and wave action followed by sub-
mersion during high tides. Balanus is consistently found on lower rock surfaces, usually
near mean tide level or slightly above. Chthamalus, however, is found on the upper rocks,
between mean high neap tide and mean high spring tide. While the adults of these two
barnacle species have non-overlapping distributions, the larvae of both species settle over
a wide variety of rock surfaces, showing a great deal of overlap. The question Connell posed
was, is the distribution of adults the result of competition, or is there a difference in the
fundamental niches of the two species? Connell performed a variety of experiments in which
he moved the barnacles to different levels of the intertidal zone. He also experimentally
removed one species or the other where the two were growing together, and observed the
results of putting the two species together. He found that whenever he removed Balanus,
Chthamalus was able to survive in the lower regions of the intertidal zone. However, in
the presence of Balanus, Chthamalus was overgrown and eventually displaced. In the upper
regions of the intertidal zone, however, Balanus was unable to survive the long exposures
to air during low tides. Since Chthamalus was able to survive this exposure, it survives in
the upper intertidal zone. Thus the two species occupy mutually exclusive microhabitats
due to a combination of competition and differences in their fundamental niches.

Direct observations of competition in ants

Because both worker and soldier ants are numerous, easy to observe, and usually diurnal,
aggressive interactions among ant species, demonstrating interference competition, can be
documented throughout the world (Holldobler and Wilson 1990). Placing a food bait of
tuna or sugar water will provoke competitive interactions in a matter of minutes to hours.
Once bait is put out in the West Indies, where there are few ant species, there is a kind
of predictable sequence, reminiscent of ecological succession (a kind of “ant succession”).
As described by Holldobler and Wilson (1990), first to arrive are workers of Paratrechina
longicornis, known locally as “hormigas locas” (crazy ants). These workers are very adept
at locating food and often are the first to arrive at newly placed baits. They fill their crops
rapidly and hurry to recruit nestmates with odor trails laid from the rectal sac of the hindgut.
But they are also very timid in the presence of competitors. As soon as more aggressive
species begin to arrive in force, the Paratrechina withdraw and search for new, un-
occupied baits. Paratrechina is an example of an “opportunist” species. They are poor com-
petitors, but excellent dispersers. Next to arrive are species known as “extirpators.” These
species recruit other workers by odor trails and fight it out with competitor species. Examples
include species in the genera Pheidole and Crematogaster, the fire ant (Solenopsis geminata),
and the “little fire ant” (Wasmannia auropunctata). Some of these species have well-
developed soldier castes that play a key role in the aggressive interactions. Injury and death
are commonplace, and one species eventually dominates the bait. Pre-emption is usually
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the deciding factor. The colony whose foragers arrive first typically wins; foragers recruit 
nestmates, who surround the bait. When worker scouts encounter a large number of 
workers from another colony, they are easily repulsed (Holldobler and Wilson 1990). 
Species with a third strategy, called “insinuators,” also arrive at the baits. These are small
colonies with small-sized worker ants such as Tetramorium simillimum and species of
Cardiocondyla. A scout who discovers the bait will recruit only one nestmate at a time.
Small size and stealthy behavior allow these individuals to take some of the bait without
provoking a response from the extirpator species, – a situation reminiscent of small 
animals sneaking in and removing bits of food at a lion kill.

Holldobler and Wilson also emphasize that territorial fighting and “ant wars” are com-
mon, especially among species with large colonies. Numerous cases have been documented
in which introduced ant species have eliminated other species over a few years’ time. For
example, on Bermuda Iridomyrmex humilis has been replacing Pheidole megacephala since
the former was introduced in 1953, although the two species may be reaching equilibrium
short of extinction of Pheidole (Lieberburg et al. 1975). As a final example, the red
imported fire ant (Solenopsis invicta) has virtually eliminated the native fire ant (S. xyloni)
from most of its range in the United States (Holldobler and Wilson 1990).

Literature reviews of field studies on competition

In the 1980s the importance of interspecific competition in nature was questioned by a
number of biologists. Strong et al. (1983), among others, challenged much of the evidence
usually cited for the prominent role assigned to competitive interactions in structuring
natural communities. They asserted that the data were often indistinguishable from 
random models. Others charged that there were few experimental studies of competition
from nature, and that predation was a much more significant ecological interaction. Still
others, such as Wiens (1977), asserted that competition is a temporally sporadic, often
impotent, interaction. Schoener (1982, 1983) decided to review the literature to determine
if competition had been affirmed as an important interaction in nature. He found, to his
surprise, over 150 experimental field studies of competition in natural (“field” settings),
many of which had been conducted in the previous five years. Schoener carefully defined
an interspecific competition experiment as a manipulation of the abundance of one or
more hypothetically competing species. All such experiments had to have proper controls.
Prior to these experimental studies, there had been a dependence on “natural experiments,”
which will be discussed below (Diamond 1983).

The “field” was defined as a study in which some major natural factors extrinsic to the
organism remain uncontrolled. Schoener did not allow laboratory or greenhouse setups,
but did count experiments involving fenced exclosures or caged portions of shorelines to
fit the definition of a field study.

Through 1982 Schoener found that 164 published studies fitted the criteria. Of those
164, 90% (148) of the studies and 76% of the species involved did show positive evidence
of interspecific competition. In a separate analysis and using different criteria, Connell 
(1983) found evidence of competition in 40% of the experiments and 50% of the species.
There were, however, few studies involving herbivorous insects that demonstrated inter-
specific competition. Schoener suggested, as had Hairston et al. (1960), that herbivores,
which occupy an intermediate position in the food web, are controlled by predators and
therefore competition is a less important interaction for this trophic position. Schoener’s
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literature review found little evidence to support Wiens’ idea that there is a great deal 
of temporal variability in competition. Competitive variability is especially rare in marine
ecosystems. Variability was mostly found in dry, continental habitats. This is interesting
in that Wiens developed his ideas after carrying out research on bird communities in North
American arid or semi-arid shrub habitats.

A decade after the analyses of Schoener and Connell, Gurevitch et al. (1992) analyzed
competition studies carried out from 1980 to 1989, using a statistical approach. They found
“medium” effects of competition on primary producers, carnivores, and herbivorous
marine mollusks. Larger effects of competition were detected on some herbivores and stream
arthropods. As found by Schoener, however, studies on herbivorous terrestrial insects 
usually failed to show significant effects of competition.

One can conclude from these literature reviews that competition is a common event in
nature that contributes to the organization of ecological communities. It is, however, not
the only important interspecific interaction.

7.8 Indirect evidence for competition and “natural experiments”

Because competition has been difficult to demonstrate directly in the field, and because
the historical or evolutionary result of competition may have resulted in coevolution between
species to minimize competition (sometimes called the ghost of competition past),
Diamond (1978, 1983) proposed that indirect evidence, often the result of “natural experi-
ments,” should be given the same credibility as experimental studies in the field or labor-
atory. As important as field experiments are, a single variable is manipulated; nothing 
else can be controlled once the field sites have been selected. Diamond lists five different
drawbacks or weaknesses of field experiments. (i) The outcome of the experiment often
varies from year to year and season to season since weather and predators are uncontrolled.
(ii) Most field experiments are not run for enough time. This deficiency is, however, being
remedied. For example, the National Science Foundation (NSF) is addressing this prob-
lem in its Long Term Ecological Studies (LTER) program. (iii) The importance of large
temporal and spatial scales cannot be addressed in contemporary time and space. (iv) 
A manipulation of two species may incorrectly ignore the importance of a third species.
(v) The kinds of experiments that might reveal important information, such as the
removal or introduction of a species in an ecosystem, are often “technically impossible,
morally reprehensible and politically forbidden” (Diamond 1983).

In order to solve these problems, Diamond (1983) extolled the virtues of “natural experi-
ments” and other kinds of data gathered from field observations as opposed to experiments.
According to Diamond, natural experiments have three advantages. First, they permit an
ecologist to rapidly gather data. As an example, he described the work of Schoener and
Toft (1983). They surveyed spider populations on 92 small Bahamian islands, 48 of which
lacked lizards and 26 of which were occupied by at least one species of lizard. They found that
spiders were ten times more abundant on the islands without lizards. The explanation was
that lizards are both competitors with and predators on spiders. Diamond’s point, however,
was that this natural experiment (lizards present on some islands, absent on others), would
have been very difficult and time-consuming to set up, and we would have waited a very long
time (up to several years) before the spider populations reached new equilibrium values.
Using the natural experiments, Schoener and Toft completed their fieldwork in 20 days!
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Second, natural experiments allow ecologists to examine situations they would not be
allowed to set up experimentally. It is likely, for example, that the Bahamian government
would have objected to having lizards removed from 48 islands. In another example, Brown
(1971a, 1971b) has shown that two species of chipmunk (genus Eutamias) divide the 
forest by altitude when they are sympatric on mountains in the Sierra Nevada range. But
on several mountains, probably due to chance colonization or extinction events, only one
species is present. When only one species occupies the mountain, without its competitor,
it is found at all elevations. A field experiment, in which one species or the other was 
eliminated from an entire mountain, would never have been approved by the US Fish 
and Wildlife Service or by any granting agency. Yet this natural experiment is an elegant
demonstration of the phenomenon known as ecological release (see below).

Finally, natural experiments allow us to examine the end results of ecological or evolu-
tionary processes operating over a longer period of time than the usual field experiment.

The weakness of natural experiments is, of course, that the investigator does not know
what created the observed situation. There are often multiple explanations for the
observed differences and it may be impossible to distinguish among them. Furthermore,
the use of simple field observations, as opposed to rigorous, controlled experiments, is
unacceptable to many scientists. Diamond, however, asserted that a variety of evidence
derived from a variety of methodologies provides the most robust results.

Below we will review five different kinds of indirect evidence related to the role of com-
petition, many coming from natural experiments.

Ecological release

In ecological release, a species occupies a broader niche or geographical area in the
absence of a closely related competitor. The chipmunk distribution in the Sierra Nevada
mountain range fits this description. Another example is the distribution of two species
of Planaria in streams. When found alone in a stream (allopatric distribution) each
species occupies a wide range of stream temperatures. When both species are found in
the same stream (sympatric distribution), however, the distribution of both species is
restricted. P. montenegrina is found from 5 to about 13.5 °C, whereas P. gonocephala occu-
pies the warmer portions of the stream from 13.5 to approximately 23 °C (Beauchamp
and Ullyott 1932).

Ants also show ecological release. For example, Paratrechina longicornis normally nests
under objects on the ground in open environments in southern Florida and in the Florida
Keys. However, the Dry Tortugas, the outermost islands of the Florida Keys, have been
colonized by very few ant species. On the Dry Tortugas, released from competition, 
P. longicornis is extremely abundant and nests in tree boles and open soil, sites normally
occupied by other species in the rest of southern Florida. By contrast, Pseudomyrmex 
elongatus, which also has colonized the Dry Tortugas, has expanded neither its popula-
tion nor its normal nesting habitat of thin twigs near the top of the tree canopy
(Holldobler and Wilson 1990).

Contiguous allopatry

In this phenomenon, two species occupy distinctly different geographical areas directly
adjacent (contiguous) to one another. Another study on chipmunks on the east slope of
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the Sierra Nevada mountains in California provides an example of both contiguous
allopatry and ecological release. Heller (1971) found four species of chipmunks living 
at different altitudes. The least chipmunk (Eutamias minimus) is found at the lowest 
elevations within the sagebrush range. When all other chipmunks are absent, the least 
chipmunk can occupy all altitudes up to the alpine. However, the yellow pine chipmunk
(E. amoenus) through aggressive behavior restricts the least chipmunk to the hot, dry sage-
brush areas. If the least chipmunk is absent, the yellow pine chipmunk does not invade
the hot, dry habitats. Evidently this dry area is not part of the fundamental niche of the
yellow pine chipmunk. The lodgepole pine chipmunk (E. speciosus) is the most aggressive
of the four species, but it is most vulnerable to heat stress and is restricted to shady, cool
forests. It apparently limits both the upper distribution of the yellow pine chipmunk and
the lower distribution of the alpine chipmunk (E. alpinus). Therefore, these four species,
when all are present, show contiguous allopatry by altitude. When one or another is absent,
the least chipmunk shows ecological release.

Diamond (1978) has described other examples of contiguous allopatry and ecological
release. In one case he mapped the distribution of two species of warblers in the genus
Crateroscelis on Mount Karimui in New Guinea. The first species, C. murina, became 
relatively more abundant as Diamond hiked from sea level to 1650 m. From that altitude
to the summit of the mountain C. murina was abruptly replaced by C. robusta. This second
species had its greatest relative abundance at just over 1650 m. Diamond found a similar
situation when he examined the distribution of three species of nectar-drinking parrots
on several New Guinea mountains. When the species Charmosyna placentis was present it 
occupied forests from sea level to about 600 m. The sibling species C. rubronotata and 
C. rubrigularis were confined to higher elevations when in competition with C. placentis.
The distributions were contiguously allopatric. When C. placentis was absent from a
mountain on a different island, however, the other two species were both able to expand
their range to lower elevations. The opposite is also true. In the absence of the two 
sibling species, C. placentis is able to expand its range to higher elevations.

Niche partitioning

In niche partitioning, two or more species coexist while sharing one or more resources in
such a way that the niche overlap apparently violates the competitive-exclusion principle.
Upon closer investigation, the resources, though shared, are used with different frequen-
cies or are used in different ways so as to allow coexistence. For example, the root sys-
tems of coexisting annual plants can be shown to partition the soil by depth, thereby avoiding
direct resource competition (Wieland and Bazzaz 1975). In his classic study, MacArthur
(1958) showed that five species of Dendroica warblers coexisted by foraging in different
portions of trees in a coniferous forest. Although there was overlap, each species spent the
majority of its foraging time in a unique portion of the trees. Other examples come from
Diamond (1978). In one case he describes the coexistence of four species of fruit pigeons
on islands of the Bismarck Archipelago. The pigeons range in size from 91 g to 722 g. The
fruit sizes they consume range from 3 mm to 50 mm in diameter. Again, while there is a
great deal of overlap among the pigeons in terms of fruit sizes consumed, the mean usage
rates are clearly different. The smallest pigeon consumes fruits that are, on average, 8 mm
in size; the 135 g pigeon consumes fruits that average 11 mm; the 470 g pigeon, 18 mm;
and the 722 g pigeon, 25 mm. In a similar analysis, Diamond (1978) showed that eight
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species of fruit pigeons in New Guinea coexist not only by specializing on different sizes
of fruit, but also by the position of the fruit on the branches.

A particularly interesting example of niche partitioning involves the four species of antbirds
of the genus Myrmotherula that coexist on Barro Colorado Island in Panama. These birds
forage by following swarms of army ants. As the army ants move through the forests, insects,
lizards, and other small prey flee. Antbirds swoop in and capture unsuspecting prey intent
upon escaping from the army ants. This would seem to be a limited niche, yet four bird
species of the same genus make their living in this manner. MacArthur (1972), using data
supplied by John Terborgh, showed that the mean foraging heights among the four
species differed. Not only did these means differ, but they were also separated from each
other by at least one standard deviation.

Niche partitioning can also occur within a species. Male red-eyed vireos (Vireo olivaceus)
forage for insects primarily in the upper canopy of the forest, while females concentrate
their foraging in the lower canopy and near the ground (Williamson 1971).

Holldobler (1986) found that two species of ants in Australia display niche differentia-
tion based on foraging at different times of day. Iridomyrmex purpureus and Camponotus
consobrinus use the same food sources and are found nesting near each other. However,
Iridomyrmex forages mostly during the day and Camponotus mostly at night. When each
species is found alone its foraging time is increased by 1–2 hours per day. Strangely, 
these shortened foraging periods are the result of direct interference. In the morning
Iridomyrmex workers congregate around nest exits of Camponotus and close them with
pebbles and soil. At dusk the situation is reversed, with Camponotus workers harassing
Iridomyrmex at its nests. In another example of niche partitioning among ants, Levins 
et al. (1973) showed that Pheidole megacephala dominates baits in the shade, whereas
Brachymyrmex heeri takes over the same baits when they are in direct sun. As the shad-
ows move across the forest floor this situation reverses itself regularly, within 30 minutes,
accompanied by occasional aggressive encounters among workers.

Character displacement

Character displacement is defined as a situation in which two species, when living in 
separate geographical ranges (allopatric distributions), have nearly identical physical 
characteristics (i.e., beak sizes in birds, overall body sizes in lizards and snails, canine sizes
in the cat family). When sympatric, however, these physical or morphological charac-
teristics diverge in one or both species. This divergence minimizes competition for food
and allows the two species to coexist. Brown and Wilson (1956) appear to have introduced
this idea. When examining the overall size and beak lengths of specimens of the eastern
(Sitta tephronota) and western rock nuthatches (S. neumayer), they found that the
allopatric populations were almost identical in both average size and in the range of sizes.
However, these two species become sympatric in Iran. In sympatry, the eastern rock nuthatch
is larger, while the western species has become smaller. In this sympatric zone their beak
and body sizes are completely non-overlapping. This allows them to feed on different-
sized prey items and therefore coexist.

Another example (Lack 1947, Schluter et al. 1985, Grant 1999) comes from studies of
Galapagos finches (also known as Darwin’s finches). The medium ground finch (Geospiza
fortis) and the small ground finch (G. fuliginosa) are allopatric on the islands of Daphne
Major and Los Hermanos. On Santa Cruz they are sympatric. As in the case above, when
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they are allopatric their beak sizes are very similar (mean size approximately 10 mm in 
G. fortis and 8.5 mm in G. fuliginosa). On Santa Cruz, however, the sizes of their beaks
do not even overlap. The average for G. fortis is between 11 and 12 mm, while that of 
G. fuliginosa is reduced to about 7.5 mm. Beak size correlates with diet in the Galapagos
(Grant 1999).

Fenchel (1975) has demonstrated character displacement in shell lengths of two species
of mud snails (Hydrobia ulvae and H. ventrosa). The overall size of the shell is indicative
of the particle sizes consumed by the snails. As in the cases above, in allopatry the snail
sizes were almost identical, but in sympatry the H. ventrosa population is greatly reduced
in size. Simultaneously, the H. ulvae population includes many very large individuals, not
present in the allopatric population. The means and modes of the two species are distinctly
different in sympatry. For example, the population mode for H. ulvae is 5 mm in sym-
patry, but only 3 mm in allopatry.

In the above examples only pairs of species were examined. However, size displacements
may occur among several coexisting species. Strong et al. (1979) called this “community-
wide character displacement.” A pattern of regular differences in some size-ranked
sequence has been accepted as evidence that past competition helped to mold niche dif-
ferences. In fact, G.E. Hutchinson (1959) proposed that a ratio of between 1.1 and 1.3
among closely related species in a size-ranked sequence was sufficient for coexistence. This
is known in the literature as Hutchinson’s ratio or rule. There are many who have ques-
tioned the meaning or significance of such a rule (Simberloff and Boecklen 1981, Strong
and Simberloff 1981). However, an interesting paper by Dayan et al. (1990) has shown
that among wild felines in Israel, character displacement of canine diameters is remark-
ably constant at 1.10–1.14. These size ratios include three species of Felis, but also include
male and female sexual dimorphism in canine sizes (Table 7.3).

Dayan et al. (1990) hypothesized that intra- and interspecific competition for food 
has selected for these canine ratios. The assumption is that canine size is highly correlated
with the size of prey taken by these cats. In separating males and females, they were treat-
ing each species/gender combination as a distinct “morphospecies” in the community. 
A great deal more information is needed on: (i) the size distribution of potential prey; 
(ii) whether prey populations are limiting to predator populations; (iii) whether larger 
canines correlate with the capture of larger prey; and (iv) habitat use by the cats.

Table 7.3 Mean canine diameters for male and female coexisting species of Felis in
Israel. From Dayan et al. (1990).

Species, sex Mean canine diameter (mm) Ratio between adjacent
pairs of canine diameters

F. silvestris, female 4.8 –
F. silvestris, male 5.5 1.15
F. chaus, female 6.3 1.15
F. caracal, female 6.9 1.10
F. chaus, male 7.6 1.10
F. caracal, male 8.4 1.11
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Nevertheless, the data suggest that competition has played an important role in the 
evolution of this feline community.

Taper and Case (1992) have cautioned that any study purporting to demonstrate 
character displacement should meet the following criteria:

1 Morphological differences between a pair of sympatric species must be 
statistically greater than the differences between allopatric populations;

2 the observed differences between sympatric and allopatric populations must
have a genetic basis;

3 differences between sympatric and allopatric populations must have evolved
on the site and not be due to different founder populations;

4 variation in the character must have a known, ecologically important function;
5 competition must be known to occur for a resource in short supply and the

character must play an important role in that competition;
6 differences in the character cannot be explained by differences in resources

available to the sympatric and allopatric populations.

Ecologists have confirmed, however, that the Galapagos finch study (Grant 1999) 
satisfies all of these criteria.

Historical replacement

Finally, over human history there are documented cases of one species invading and elim-
inating another species from its original range. For example, Diamond (1978) has
described both historical replacement and niche segregation in two species of tits (Parus).
The blue tit (P. caeruleus) was found in Europe west of the Ural Mountains where it occu-
pied a wide variety of habitats from forest to riparian thickets. The azure tit (P. cyanus)
was formerly found in Asia east of the Urals. But in the late nineteenth century it spread
1600 km west across Russia to the Baltic Sea. Over the first 10 years of the 20th century,
however, the azure tit retreated several hundred kilometers eastward from the Baltic. 
At present, the two species overlap on the eastern edge of the geographical range of the
blue tit. However, in the overlap zone the two species segregate by habitat. The azure tit
is found in riparian thickets, while the blue tit is in upland forest.

In recent years the black duck (Anas rubripes) has been declining and is being replaced
by the mallard (Anas platyrhynchos) in many areas of Eastern North America. It is unclear
whether this is being caused by hunting, environmental and habitat changes, captive breed-
ing and release programs, or competition between the two species. A study by Merendino
et al. (1993) tentatively concluded that mallards were competitively excluding black ducks
from the most productive wetlands.

There are many known examples where introduced species have outcompeted the
native flora or fauna. Starlings (Sturnus vulgaris) and house sparrows (Passer domesticus)
are infamous for evicting native cavity-nesting birds such as eastern bluebirds (Sialia sialis)
and northern flickers (Colaptes auratus) from nest sites in North America. The purple looses-
trife (Lythrum salicaria), a native of Europe, has invaded wetlands in temperate North America
and is crowding out native wetland plants. Finally, Australia and Hawaii are living 
laboratories demonstrating the effects of introduced competitors (as well as predators and
herbivores) on native flora and fauna.
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7.9 Conclusions

How important are competitive interactions to the functioning of commun-
ities and ecosystems? There has been a long tradition of theory, laboratory
studies, and field studies that have emphasized the potential importance 
of competition in population regulation and in the shaping of population 
and community relationships among species. Darwin, Liebig, Tansley,
Lotka, Volterra, Gause, Park, Connell, MacArthur, Tilman, and many others
have contributed to the rich literature on competitive interactions. The 
competitive-exclusion principle established an expectation that competitive
interactions not only shape present-day ecological interactions, but also have
directed past evolutionary events (the so-called “ghost of evolution past”).
Resource-based competition theory has also laid out certain ground rules
(the R*-rule) for coexistence or exclusion in resource-limited environ-
ments. On the other hand, the competition–colonization trade-off concept
sets up conditions whereby inferior competitors may persist in commun-
ities. For example, ant species known as “opportunists” and “insinuators”
are able to coexist with the aggressive dominant competitor species, known
as “extirpators,” based on their ability to find food sources first, or by their
stealthy foraging style. And even among the dominant competitors, the
species that finds a food resource first and dominates it through recruit-
ment of nestmates is the winner at that resource. Therefore, as suggested
by Tilman (1994) and Yu and Wilson (2001), coexistence of inferior com-
petitors should be expected in a spatially diverse environment.

Some ecologists have complained that the fascination with competition has
resulted in an underestimation of the importance of parasitic, predatory, 
or even mutualistic relationships in shaping ecological communities.
American politicians have even turned economic competition into a kind of
religion. Let us now, therefore, turn to other kinds of interactions.
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Mutualism

8.1 Introduction

Mutualism or parasitism?

As outlined in the introduction to Part II, mutualism is an interaction in which both species
benefit. In facultative mutualism individuals in a population are able to survive and repro-
duce without their presumptive mutualist, although their fitness is enhanced when they
participate in the mutualism. By contrast, in obligatory mutualism, individuals in a
species are unable to survive without their mutualistic partner. As pointed out by
Vandermeer and Goldberg (2003), mutualistic relationships are complex, and do not 
necessarily fit into the two categories of facultative and obligatory. For example, a mutual-
ism may be obligatory for one partner, but not for the other. The mutualism may be 
very weak (provide few benefits) and therefore may only be found in very specific en-
vironments. In fact, many types of mutualisms are much more common in tropical 
environments. For example, Neotropical ants and African termites both raise mutualistic
fungi in “gardens” within their nests. Though fungus gardening does occur outside of the
tropics, it is much more common and conspicuous in the humid tropics. In ant–plant
mutualisms, ants defend plants from herbivores or perform other services in exchange for
nest sites and nutrition provided by the plants. Although these mutualisms exist in the
temperate zone, almost all of the obligatory ant–plant mutualisms are found within 
the tropics. The number of plant species providing extra-floral nectar, a low-cost method
of attracting ants to plants, declines with increasing latitude and altitude, and is rare in
the North Temperate zone.

Animal pollination and fruit dispersal are also much more common in tropical lati-
tudes. For example, bats that provide pollination and fruit dispersal for higher plants are

• Mutualism or parasitism?
• Modeling mutualism
• The costs of mutualism
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only found south of 33° N latitude. No bees that are obligatory pollinators of orchids 
are found north of 24° latitude. At Monteverde, a cloud forest in Costa Rica, animals as
opposed to wind pollinate more than 90% of the dicots and 88% of the monocots. A study
by Murray et al. (2000) of fruit dispersal at Monteverde showed that more than 81% of
tree species are adapted for seed dispersal by vertebrates. This compares well with 89% at
Alto Yunda, Colombia, 92% at La Selva, Costa Rica, and 92% at Rio Palenque, Ecuador.
At Monteverde about 80% of animal-dispersed trees are specifically adapted for bird 
dispersal. Adaptations for bat and ant dispersal are less common. Not all life forms, how-
ever, are adapted for animal dispersal of their fruit at Monteverde. A majority of epiphytes
(66%) and herbs (73%) are adapted for wind or other abiotic means of dispersal. Most of
the wind-dispersed seeds, however, are orchids (among epiphytes) and weedy species of
Asteraceae (among herbs). Lianas and shrubs are intermediate: the fruits of the majority
of species are bird-dispersed while 35–45% is abiotically dispersed.

Mutualistic relationships are wonders of natural history and prime examples of co-
evolution. Yet, as Bronstein (2000) put it, “Mutualism is the most poorly understood form 
of interspecific interactions.” Others such as Law (1988) and Watkinson (1997) have made
the same point. Furthermore, Watkinson (1997) lamented that “There is not even a sound
theoretical framework for the treatment of mutualistic interactions.” Recent research, 
however, has begun to emphasize the fact that in most mutualisms, the relationship is 
simultaneously beneficial and harmful to one or both participants. Rather than thinking
of the mutualistic species as happily entering a partnership, Bronstein (2002) has asserted
that mutualism is more likely a “reciprocal parasitism” in which each partner obtains what
it can at the lowest possible cost to itself.

Consider, for example, the fig-wasp pollination system. Figs (species of Ficus) have an
obligatory pollination system with wasps (Hymenoptera: Chalcidoidea: Agaoninae).
There are five species of figs at Monteverde in Costa Rica, but the reproductive biology
of only one of them has been worked out (Bronstein 2000). The female pollinators
(Pegoscapus silvestrii) are drawn to volatile odors released by the female florets of figs. These
females will already have mated with males and will also have ripped open the anthers of
male flowers in their natal fig. They pack pollen into pockets in their abdomens. Thus,
inseminated and pollen laden, they arrive at a new tree where they squeeze into the 1 cm
fig flower. Once within a fig, the wasp deposits pollen on the stigma of a floret. She then
lays a single egg in each of the ovaries she can reach with her ovipositor. The female is
fatally trapped inside the fig flower, but her offspring will develop in the fig ovaries, feed-
ing on the seeds as they develop. Some seeds escape wasp predation because the flower’s
style was too long for the female’s ovipositor. The seeds and seed-eating fig-wasp larvae
develop over a two-month period. Mature males eventually emerge and search out
females, still developing inside the growing figs, for mating. The male then chews an exit
hole through the wall of the fig, through which the females can also depart their natal fig.
Thus, in payment for pollination the figs lose a large number of potential seeds to wasp
larvae. The female wasps would lay eggs on all of the ovules if they could. If they suc-
ceeded they would indeed be parasites.

Or consider the relationship between East African whistling thorn acacias (Acacia
drepanolobium) and ants. These acacias are some of the most common plants of the savan-
nas of central Kenya. Almost all of these trees host thousands of ants. The ants provide
defense against herbivores in exchange for food and shelter. A pair of thorns lies at the
base of every leaf cluster, and each branch is lined with two types of thorns. The slender,
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white, needle-sharp thorns, which may be 75 mm in length, are the most abundant.
Intermingled with these thorns are pairs of thorns with bulbous, hollow bases. These “swollen
thorns” house the ant colonies; each thorn can harbor hundreds of ants. As in Central
American acacias (Janzen 1966), when an herbivore disturbs the tree, the ants stream out
of the thorns and bite the intruder, and when Stanton and Young (1999) experimentally
removed ants from trees, they found that herbivore damage by both browsing mammals
and insects increased significantly.

The acacia provides the ants with nectar from glands along the leaves. These extra-
floral nectaries are particularly abundant on new leaves. However, Acacia drepanolobium
does not provide lipid or protein food sources for these ant colonies. The ants must forage 
for insects and other protein-rich foods. Therefore the mutualism is weaker than the
Acacia–Pseudomyrmex relationship described by Janzen (1966) in Central America, where
the acacias provide lipid- and protein-rich structures, known as Beltian bodies, on the tips
of the leaflets.

There are four different ant species that colonize A. drepanolobium. The red-and-black
cocktail ant (Crematogaster mimosae) and the black-and-white cocktail ant (C. nigriceps)
are most effective against herbivores. Intruders are immediately attacked by a horde 
of biting ants. The ants race around emitting alarm pheromones with their abdomens 
held high (hence the term “cocktail ant”), and this recruits more workers to the scene.
Herbivores such as goats, which are bitten while attempting to browse on a defended tree,
refuse to approach those trees again. Trees defended by these two ant species are rarely
damaged by herbivores.

A third species, the slender black acacia ant (Tetraponera penzigi) has a nasty sting, but
is more passive and only attacks if the swollen thorns themselves (the home of larvae, pupae,
adults, and winged reproductive ants) are attacked by monkeys or other animals. On the
other hand, these ants patrol leaves day and night, removing pollen and probably fungal
spores. Therefore these workers may provide the acacias protection from disease.

The fourth species, the black cocktail ant (C. sjostedti), provides no services to the trees
whatsoever. Stanton and Young (1999) found that long-horned beetles could girdle stems
and kill entire sections of the tree while this ant was present. The reason for this may be
that this ant species does not even live in the swollen thorns. Instead it nests in hollow
spaces within dead and drying branches. The beetles actually provide this ant with nest
space, and the mutualistic relationship has shifted to one in which these two insect species
“cooperate” in exploiting the acacias.

Although all four species of ants may occupy trees on a given hectare of land, an 
individual tree is almost never occupied by more than one species of ant. The species are
intolerant of each other and engage in aggressive, mortal combat. Experiments have
shown that the fights continue until one species has wiped out the second on a given tree.
Unfortunately for the acacias, the black cocktail ant, which is functionally a parasite, is
the dominant competitor, winning most battles with the other three species.

The red-and-black cocktail ant, as well as the black cocktail ant, tend scale insects that
feed on the phloem of the acacias. Thus, both species have found an additional method
of draining energy from the trees. Worse still is the habit of the black-and-white cocktail
ant workers of removing the tips of most growing shoots. These workers also remove stem
tissue containing leaf and flower buds. New branches are only allowed to grow in prox-
imity to swollen thorns. These black-and-white cocktail ants have therefore changed the
architecture of these trees from one with large open canopies to one of compact masses
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of branching stems. In addition, by chewing off its flower buds, it prevents these trees from
reproducing.

In summary, the ant–acacia symbiosis in Africa, although potentially mutually bene-
ficial, appears to have tipped in favor of the ants, which function more like parasites than
mutualists. As we examine mutualisms, we should ask ourselves how these mutualisms
differ from host–parasite relationships.

8.2 Modeling mutualism

In his pessimistic remarks on our understanding of mutualistic interactions, Watkinson
(1997) points out that when modifications of the Lotka–Volterra competition equations
(Eqns. 8.1 and 8.2) are employed to model mutualism, the result is “unbounded expon-
ential growth” of both populations. Robert May (1981b) called this result an “orgy of 
mutual benefaction.” In Equations 8.1 and 8.2, as in the Lotka–Volterra equations, the
growth rates of the two mutualistic species are determined by their present population
sizes (N1 and N2) and their intrinsic rates of growth (r1 and r2), and diminished by
intraspecific competition. These carrying capacities, however, are set for each population
when living without its mutualist. Obviously, these equations only apply to facultative 
mutualism, since in obligatory mutualism there can be no positive carrying capacity in
the absence of the partner species. The main difference between these equations and the
competition equations is that the terms c1N2 and c2N1 have a positive sign. The terms c1

and c2 are mutualism coefficients and replace the competition coefficients in the Lotka–
Volterra competition equations. The term c1 measures the rate at which an individual of
N2 benefits the growth rate of population N1. Similarly, c2 measures the rate at which an
individual of N1 benefits the growth rate of population N2.

dN1/dt = r1N1 (8.1)

dN2/dt = r2N2 (8.2)

An equilibrium analysis can be done, similar to what we did with the competition 
equations, by setting dN1 and dN2 equal to zero. Ignoring situations where r, N, or K
are equal to zero leaves K1 + c1 N2 − N1 = 0 and K2 + c2 N1 − N2 = 0. The basic results are as
indicated in Equations 8.3 and 8.4. As you can see, the population of each species is increased
beyond its carrying capacity with additional individuals of its partner species. The more
intense the mutualism (the greater the benefits provided to the partner species) the larger
the equilibrium population becomes.

N1 = K1 + c1N2 (8.3)

N2 = K2 + c2N1 (8.4)

Furthermore, the “orgy of mutual benefaction” referred to above should be evident. Greater
numbers of N2 produce greater numbers of N1, which, in turn, produce larger numbers

K2 + c2N1 − N2

K2

K1 + c1N2 − N1

K1
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of N2, and so on. Strangely enough, the interaction is stable when only one partner 
benefits from the interaction. If c2 = 0, for example, N2 cannot exceed K2 and N1 stabilizes
at K1 + c1K2.

Another approach is to substitute the carrying capacity after mutualism into Equations
8.1 and 8.2. The new carrying capacities, K 1* and K 2*, are shown below (Eqns. 8.5 and 8.6).
The resultant equations (8.7 and 8.8), however, are only stable if we specify either 
a numerical limit to K 1* and K 2* or that the mutualism coefficients decline toward zero 
as the populations approach the new K * carrying capacity. In an obligatory mutualism 
we would have to specify that both N1 and N2 > 0. Otherwise, we have mutual extinction.
In fact, it is reasonable to assume, as in the Allee effect, that each population has a 
minimum viable population size, below which the mutualism falls apart and both species
go extinct.

K 1* = K1 + c1N2 (8.5)

K 2* = K2 + c2N1 (8.6)

dN1/dt = r1N1 = r1N1 (8.7)

dN2/dt = r2N2 = r2N2 (8.8)

When trying to model mutualism by starting with the Lotka–Volterra equations, 
we encounter the same problems as those described in Chapter 7, on competition. The
Lotka–Volterra approach is a phenomenological one. What we need is a mechanistic approach
based on the rates of exchange of relevant resources between the two mutualists.
However, since each mutualistic interaction is both unique and complex, a model based
on one mutualism would lack generality. While specific models describing specific mutu-
alisms have been written, none has entered the literature as a standard approach.

K2 + c2N1 − N2

K2 + c2N1

K 2* − N2

K 2*

K1 + c1N2 − N1

K1 + c1N2

K 1* − N1

K 1*

8.3 Conclusions: the costs of mutualism

The study of mutualism has passed through a number of stages, but has
yet to move very far from the descriptive phase (Bronstein 2001). Many early
naturalists were skeptical about mutualistic relationships. For example, before
Janzen (1966) established the obligatory mutualism between Pseudomyrmex
ants and Acacia trees, the ants were said to be of no more use to the plants
than “fleas on a dog.” Once mutualisms were described they were often 
pronounced to be mostly confined to the tropics. However, Janzen (1985) 
has pointed out that every organism is involved in at least one mutualism
in its life. Given that the eukaryotic cell evolved as the result of mutualistic
relationships, the phenomenon is ubiquitous. And extra-tropical locations do
not lack mutualisms. Forest trees with mycorrhizal fungi dominate boreal
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habitats, deserts are populated with legumes and their nitrogen-fixing 
bacteria, and tundras are dominated by lichens.

While mutualistic interactions have become accepted as comparable in
importance to ecosystems as competition and predator–prey relationships, 
the view that mutualism represents “cooperation” between species has
been challenged. Bronstein (2001) has stressed that mutualisms involve 
costs for each species, as well as benefits. Costs of mutualism are only now
being tabulated, and there is little consistency in how data are gathered.
Bronstein (2001) cites the following examples: (i) 20% of the total carbon
budget of forest trees may be consumed supporting mycorrhizae (Johnson
et al. 1997); (ii) 3% of the energy budget of many plants is devoted to pro-
viding floral nectar for pollinators (Harder and Barrett 1992); (iii) extrafloral
nectar costs about 1% of the energy budget of the plants involved (O’Dowd
1979, 1980). In the obligatory interaction between figs and their wasp 
pollinators, Bronstein (2001) estimated that 53% of ovaries of Ficus aurea
are lost to the wasps, while yuccas (Yucca spp.) evidently lose 5–20% of their
seeds to their moth pollinators. Finally, Wolfe (2001a, 2001b) estimates that
nitrogen-fixing bacteria consume 20% of the carbohydrates produced by
legumes.

Rather than assuming that species have somehow entered into perman-
ent, mutually agreeable contracts, we need to analyze mutualism with the
following points in mind:

1 Mutualism always involves costs as well as benefits.
2 Costs set limits on the evolution of mutualisms.
3 There is a conflict of interest between the mutualistic species.
4 Organisms that “cheat” on the mutualism by reaping the benefits 

without reciprocation will often enjoy an advantage.
5 Related organisms (such as non-mutualistic ant species) may take

advantage of a mutualism and act as parasites on the relationship.
6 Mutualisms may evolve toward a host–parasite relationship from a

mutualistic one.
7 Continuous coevolution is necessary to maintain a mutualism.
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Host–parasite interactions

9.1 Introduction

Given the prominent role of medicine in today’s world, it is amazing to realize that the
theory that microbes (germs) were the cause of many diseases was not really established
until the 1870s. Attempts to create models of epidemiology did not begin until the 
twentieth century. Hamer (1906) formulated a discrete time model in an attempt to 
understand epidemics of measles. By the late 1920s Kermack and McKendrick (1927) 
had published models showing that the density of individuals susceptible to a disease 
must exceed a critical number before an epidemic was possible. A rich literature of 
mathematical epidemiology developed during the middle of the twentieth century. But
most ecologists were only dimly aware of this literature until the late 1970s, when
Anderson and May published a series of articles with titles such as “Population biology
of infectious diseases” (Anderson 1982, Anderson and May 1979, 1981, 1982). A recent
review of Hethcote (2000) is recommended for students interested in a review of the 
history of infectious-disease models.

In this chapter we will examine models for interactions between hosts and micro-
parasites such as viruses and bacteria. Parasitoid–host interactions (the Nicholson-Bailey
models) will be covered in Chapter 10, on predator–prey relationships. Here we are 
primarily concerned with models for microparasitic diseases such as measles, in which 
the parasite reproduces quickly and reaches tremendous populations within the host. The
duration of the acute infection is limited by either host defenses or host mortality, and 
is short relative to the host life span. Recovered hosts may have lifelong immunity. The

• Factors affecting microparasite population biology
• Modeling host–microparasite interactions
• Dynamics of the disease
• Endangered metapopulations and disease
• Social parasites
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dynamics of this relationship are driven by transmission between hosts and the essentials
can be modeled by classifying host individuals as susceptible, infected, or recovered
(immune). This is known as the SIR model, although there are many modifications and
elaborations on the basic SIR model (Hethcote 2000). For example, in the MSEIR model,
individuals are born with passive immunity (M); over time they lose this immunity and
transfer to the susceptible class (S); individuals exposed (E) to the disease then become
part of the infected (I) class; those who survive become part of the recovered (R) class.
The actual abundance of the parasite within the host is ignored. Recall that many
metapopulation models also ignore population size and dynamics within habitat patches.

By contrast, macroparasites (such as intestinal worms) typically cause chronic, persist-
ent infections. (This is also a feature of certain microparasites such as herpesviruses and
the malaria parasite.) Disease severity depends on the number of parasites present. Not
only do infected vertebrate and invertebrate hosts accumulate parasites throughout their
adult lives, but both the number and diversity of parasitic species also increase with host
age (Dobson et al. 1992). For example, in brown pelicans (Pelecanus occidentalis), the num-
ber of helminth parasite species increases by age class, reaching 13 for birds aged over three
years (Humphrey et al. 1978). The same study showed that the number of individual 
parasites peaked at 8000 for one-year-old pelicans, and then declined to about 4000 in
birds older than three years. A survey by Dobson et al. (1992) of North American mam-
mals showed that the average individual carried 369 macroparasites of three different species.
The survey examined four orders: carnivores, lagomorphs, rodents, and artiodactyls.
Carnivores carried the most diverse parasite fauna, lagomorphs the least.

Models of macroparasite dynamics must account for parasite abundance within 
hosts as well as host-to-host variation in parasite abundance (May and Anderson 1979).
Another complication is that many macroparasites such as Schistosoma mansoni, which
causes the disease known as schistosomiasis, have an asexually reproducing stage in an
intermediate host. Schistosomiasis is one of the most important human diseases in trop-
ical regions. It is estimated that 100 million people carry at least one worm. The adult
schistosomes live in pockets of the intestinal blood vessels or veins of the bladder in the
vertebrate host, where males and females carry out sexual reproduction. The eggs are passed
out of the host through the feces and urine into a body of water, where the eggs hatch
into free-swimming larvae known as miracidia. A successful miracidium penetrates a snail.
Once inside the snail it undergoes asexual reproduction. After 4–7 weeks new free-
swimming stages, known as cercariae, are shed from the snail into the water. The cercariae
must find the vertebrate host within 48 hours and each cercaria is capable of penetrating
the skin of a vertebrate host. Once inside the host they travel through the circulatory system
in a journey that can take 6–12 weeks. Once they locate the proper tissue they mature into
adult worms, completing the life cycle. An important aspect of this kind of life history 
is the asexual-reproduction stage in the snail. The large numbers of cercariae shed from
the snail make it much more likely that the vertebrate host will be located and the life
cycle completed. Finally, perhaps because of the complexity of the life cycle of the parasite,
vertebrate hosts generally have ineffective immune responses. In fact, the pathology of 
schistosomiasis is a consequence of the immune response of the host, in which shed eggs are
attacked and calcareous deposits laid down around them. The accumulation of these deposits
blocks the spleen and excretory organs of the infected hosts. For models of macro-
parasites with complex life cycles, such as the parasitic helminths, see Dobson et al. (1992).
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9.2 Factors affecting microparasite population biology

As outlined by Nokes (1992), three main factors govern the interaction between a 
host and a microparasite: (i) the course of the infection in the host; (ii) the mode of 
transmission between host individuals; and (iii) the behavior and demography of the host 
population.

The course of an infection includes a latent period after exposure to the source of the
infection. During this period the virus, for example, will increase exponentially. The next
stage includes the infectious period, during which time the host develops the symptoms
of the disease. Meanwhile, as the parasite population is building its numbers, the host immune
system begins developing specific antibodies. As the antibody numbers increase, the 
parasite population plummets and the symptoms of the illness subside. The host ceases
to be infectious at some point during the illness and the previously susceptible individual
passes from S (susceptible) to I (infected) to R (recovered and immune). Of course some
infected individuals may die during the course of the disease, and some recovered indi-
viduals may eventually lose their immunity. Other important factors affecting the natural
history of the infection include the length of the infectious period, the time-lag derived
from the latent period, the development of immunity by the host (thereby removing 
susceptible individuals from the host population), and the ability of some parasites to remain
latent and undetected in host individuals (for example, herpes), only to reappear at some
later date.

The two basic modes of transmission are: (i) vertical, in which the disease is passed from
mother to offspring (cytomegalovirus and hepatitis B virus); and (ii) horizontal, in which
diseases are passed from one individual to another in the environment. Most infections
disease organisms are passed through the horizontal method, although some disease
organisms can be passed both vertically and horizontally (hepatitis B). These include 
direct and indirect transmission. Direct transmission includes: (i) close-contact diseases 
(common cold, influenza, measles); (ii) sexual-contact diseases (hepatitis B virus, HIV,
syphilis); and (iii) contaminative-contact diseases (cholera, tetanus, typhoid). Indirect-
contact diseases include those that involve transmission from one animal host to another
(malaria, rabies, Lyme disease, or the plague) or via needles (HIV or hepatitis B). Human
and animal borne or transmitted diseases have been the hardest to control, just as
macroparasitic diseases with intermediate hosts, such as schistosomiasis, have yet to be
successfully controlled in many tropical countries.

Finally, the frequency and severity of disease outbreaks are also highly dependent upon
the behavior of the host population. As discussed below, many diseases such as measles
and influenza are dependent upon the size and density of the host population. Large and
dense host populations lead to a high disease transmission rate. Public health measures
such as isolation of infected individuals, the treatment of water and sewage wastes, and
pasteurization of milk have been instrumental in curbing the spread of many diseases.
Behavioral changes related to sexual activity are also essential in limiting the spread of other
classes of disease.
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9.3 Modeling host–microparasite interactions

In the SIR model, we assume the following:

N = total host population density
S = susceptible host density
I = infected host density
R = recovered (immune) host density
b = host birth rate
m = natural host mortality rate unrelated to disease mortality
a = disease-induced mortality rate
b = transmission rate of disease from one host to another
n = recovery rate, or the per capita rate of passage from the infected (I) to the

recovered (R) classes. This is usually the inverse of the average infectious
period

g = rate at which recovered individuals lose their immunity. That is, the rates
at which individuals return to the susceptible class (S) from the R class.

We assume that the rate of transmission of the disease, which is the rate by which 
susceptible individuals become infected, equals the product, βSI. This means that the rate
of infection depends on the rate of population mixing, which is a simple function of the 
density of both types of individuals. β is the parasite-specific transmission rate, which 
will differ depending on the life history and type of the infectious agent and the host. The
expression βSI is often referred to as the “law of mass action” because of its similarity to
the laws governing the mixing of gases (Nokes 1992).

The total population consists of susceptible, infected, and recovered individuals:

N = S + I + R (9.1)

The growth rate of each segment of the population is written as a differential equation.
The increase in the number of susceptible individuals (Eqn. 9.2) is based on the birth rate
(bN) and the rate at which recovered individuals lose immunity (γR). Losses are due to
the host mortality rate unrelated to the disease (mS), and to the conversion of individuals
from the susceptible to infected classes (βSI):

dS/dt = bN − mS − βSI + γR (9.2)

The growth rate of infected individuals (Eqn. 9.3) equals the product, βSI, minus losses
due to the combined effects of natural and disease-caused mortality (m + α), as well as
recovery rate (from I to R), ν:

dI/dt = βSI − (m + α + ν)I (9.3)

The growth rate of the recovered class (Eqn. 9.4) equals νI minus the death rate 
unrelated to disease and the loss of immunity, γR:

dR/dt = νI − mR − γR (9.4)
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If we add up all of these equations, we have:

dN/dt = dS/dt + dI/dt + dR/dt

dN/dt = b(N) − mS − βSI + γR + βSI − (m + α + ν)I + νI − mR − γR

Let N = S + I + R. Expanding, we have:

bS + bI + bR − mS − βSI + γR + βSI − mI − αI − νI + νI − mR − γR

After canceling terms, we have:

dN/dt = bS + bI + bR − mS − mI − αI − mR

Rearranging, letting N = S + I + R, and substituting the intrinsic rate of increase, r, for 
b − m, we have:

dN/dt = bS − mS + bI − mI + bR − mR − αI = (b − m)(S + I + R) − αI

The result is Equation 9.5:

dN/dt = bN − mN − αI = rN − αI (9.5)

Therefore we see that the growth of the population is diminished by the “natural” death
rate, m, and by the mortality rate due to infections, αI.

9.4 Dynamics of the disease

Spreading of a disease, that is, an epidemic, requires that the number of infected individuals
remain steady or increases. This means that dI/dt ≥ 0. Since dI/dt = βSI − (m + α + ν)I
(Eqn. 9.3), we have:

βSI − (m + α + ν)I ≥ 0 (9.6)

This simplifies to:

βS − (m + α + ν) ≥ 0 (9.7)

The rates m, α, and ν are all time-dependent. They represent rates at which a suscep-
tible individual either dies or moves from the infected to the recovered class. The inverse
of (m + α + ν) can be thought of as the length of the infectious period, D (Nokes 1992).
If we substitute D for m + α + ν, we have:

βS − 1/D ≥ 0

Through rearrangement, we then have:

βS ≥

and then:

βSD ≥ 1 (9.8)

1

D
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We define the product, βSD, as equal to R0, the basic reproductive number (BRN) or
parameter for this disease. The result is Equation 9.9:

R0 = βSD > 1 (9.9)

R0, the mean number of new infections caused by a single infective individual, is 
an important parameter. If this value is > 1, then dI > 1 and the disease incidence will 
increase. If R0 < 1, the epidemic fails. R0 is directly proportional to the rate at which an
infection spreads, βS. It also depends on the mean amount of time an infection is active,
D. For an infection to spread, it must have the right combination of susceptible hosts (S),
a reasonably high transmission rate (β), and a sufficiently long period of transmission.
One conclusion we may draw from this analysis is that for a disease to succeed, it needs
a dense population of hosts. For mosquito-borne diseases like malaria, BRN depends 
on: (i) vector (mosquito) abundance; (ii) focused feeding (the tendency to bite specific
hosts and nothing else; and (iii) vector longevity (the equivalent of D) (Spielman and
D’Antonio 2001).

Since the maximum number of susceptible individuals is N, to have an epidemic we
must have:

βND > 1 (9.10)

By rearranging, we find that the minimum size for an epidemic is such that:

N > (9.11)

This allows us to conclude that highly infectious and long-duration diseases can have
a low minimum number of infected individuals, but the value of N must be fairly high
for directly transmitted microparasitic diseases such as common viral infections, which
have short durations of infection and produce long-lasting immunity.

Another way of expressing R0 is to allow N = 1/βD, and to redefine the minimum size for
an epidemic as ST. If S T = 1/βD, then 1/ST = βD. Substituting 1/ST for βD in Equation 9.9,
we have:

R0 > S/ST (9.12)

This means that when the population density of susceptible hosts is above ST, then 
R0 > 1 and the infection spreads. There exists a fair amount of data on human epidemics
that confirm the theoretical prediction that epidemics occur mainly in areas with popu-
lations greater than a particular threshold. For example, measles, mumps, influenza, and
polio can be totally absent from small, isolated communities (Nokes 1992). In Table 9.1,
for example, are data reported by Anderson (1982) on the number of cases of measles in
North American cities of various sizes from 1921 to 1940. Observe that with one excep-
tion, Cleveland, no months without reported cases of measles were reported until the city
size was below 300,000.

Island populations show the same trend. During the same period, 1921–40, when the
population of an island was less than 100,000 there were no reported cases of measles 

1

βD
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in about 50% of the months. The proportions increase until, in Hawaii, with a popula-
tion of 550,000 at that time, cases of measles were reported in 100% of the months 
(Cliff et al. 1986).

Host population size also has an effect on the average age of infected individuals. In
larger populations the rate of transmission (βSI) and the basic reproductive number, R0,
will be larger since S is larger. Therefore the mean age at which individuals are infected
will be lower. This idea is illustrated in Table 9.2. The mean age of the infection decreases

Table 9.1 Reported cases of measles by month in North American cities, sorted by
size, in the period 1921–40. Based on Anderson (1982).

City Population Size ×× 105 Number of years with at
least one month in which no 

cases of measles were reported

New York 75 0
Chicago 34 0
Philadelphia 19 0
Detroit 16 0
Los Angeles 15 0
Montreal 10 0
Cleveland 9 1
Baltimore 9 0
Boston 8 0
Toronto 7 0
Washington, DC 7 0
Pittsburgh 7 0
Milwaukee 6 0
Buffalo 6 0
Minneapolis 5 0
Vancouver 3 20
Rochester 3 3
Dallas 3 18
Akron 2 8
Winnipeg 2 7

Table 9.2 The effect of population size on the mean age A (in years) at the time of
infection of various childhood diseases in New York State communities in the
period 1918–19. Based on data from Smith (1983), published in Nokes (1992).

Population size Measles Whooping cough Scarlet fever Diphtheria

Less than 2500 12.9 8.2 12.3 14.2
2500–10,000 10.7 6.9 11.2 12.5
10,000–50,000 9.0 5.7 10.2 11.5
50,000–200,000 9.0 6.3 10.5 10.6
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as communities get larger, although the last two population categories do not show the
trend consistently.

Table 9.3 illustrates the drop in mean age of infection for measles in England and Wales
during the period 1950–55. Notice the increase in the value of R0 with population density.
Note also the contrast between the New York and British data. Children in Britain con-
tracted measles between the ages of 4 and 5 on average, as compared to ages 9 to 13 in
New York State. The infection rate depends on “mass action” or mixing. The New York
populations in the early twentieth century were much less mobile than the British popu-
lations in the 1950s. In addition, a larger percentage of children were likely attending 
school regularly in the 1950s. Increased rates of infection accompany school terms when 
children are aggregated together.

Hethcote (2000), however, asserts that human contact rates, and therefore the potential
for the spread of diseases, are now only weakly dependent on population size. He believes
that the patterns of daily encounters are largely independent of the size of the com-
munity within a given area. This may be especially true now for school children who are 
routinely bused long distances to population centers, at least in the United States.

Finally, prior to massive immunizations, microparasitic diseases were well known for
their regular oscillatory patterns. Data from New York, Britain, and elsewhere have shown
that in the twentieth century measles had a regular two-year epidemic cycle, mumps a
three-year cycle, and rubella a four- to seven-year cycle (Nokes 1992, Hethcote 2000).
Infections, such as certain influenzas, are seasonal, and are therefore on a yearly cycle. These
yearly cycles are related to seasonal climatic variations and/or to seasonal patterns of 
population mixing. The greatest factor in the longer-term oscillations is the reduction 
in the susceptible population during epidemics as they either die or become immune. As
new births increase the density of susceptible individuals, the epidemic returns when the
value of S exceeds ST. The tendency for host–parasite as well as predator–prey interactions
to undergo oscillations is a confirmation of Turchin’s (2001) third principle of population
ecology (Chapter 1).

9.5 Immunization

One goal of immunization is to reduce the number of susceptible individuals in a host
population, thereby lowering the net reproductive number of the disease to less than one.

Table 9.3 Mean age of infection and R0 for measles in England and Wales, 1950–55.
Based on Smith (1983) and Nokes (1992). Reproductive rate based on an average
life span of 69.5 years.

Population size Mean age at infection in Basic reproductive number, R0

years, A

“Rural” 5.0 15.0
<50,000 4.5 16.5
50,000–100,000 4.2 17.5
>100,000 3.9 18.7
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Recall that ST is inversely proportional to D, the average infectious period, and to the rate
of infection (β). Therefore, a high rate of infection and/or a long course of the disease
make effective immunization more difficult.

Suppose we immunize a fraction, p, of the population. The new reproductive para-
meter, R 0*, becomes:

R 0* = (1 − p)R0 (9.13)

We need to drive S to a level below ST to eradicate the disease. If we set:

R 0* = S/ST = 1 = (1 − p)R0 (9.14)

and we solve for p, we have:

p = 1 − 1/R0 (9.15)

Therefore, for the disease to be extinguished, p (the proportion immunized) must be
greater than 1 − 1/R0.

For example, let us re-examine Table 9.2 for New York State in 1918–19. As you can
see from Table 9.4, the proportion of the population that would need to be immunized
for successful eradication is between 84% and 90%. By comparison, May (1983, as 
summarized in Alstad 2001) estimated the proportion immunized needed for successful
eradication of measles and whooping cough in England and Wales as 92% and 94%, respect-
ively. Successful eradication of rubella requires 86% immunization (Hethcote 2000). These
percentages are not atypical for highly contagious diseases. Because about 5% of those 
vaccinated do not become immune, Hethcote (2000) estimated that eradication of
measles requires 99% vaccination, and that 91% is needed for rubella. By 1998 measles
was no longer an indigenous disease in the United States (Hethcote 2000) and in March
of 2005 the Centers for Disease Control and Prevention pronounced rubella eradicated as
an indigenous disease in the United States.

More complex models would include equations for a host that has a very long latent
period during which time it is not yet infectious, or for hosts that never reach a state of
total immunity and continue to be infectious throughout the remainder of their lives 
(various venereal diseases or typhoid, for example).

Table 9.4 The estimated fraction needed for successful immunization against
several diseases, in a dense (>50,000) New York State population in 1918–19. A is
average age of infection (from Table 9.2), R0 is the reproductive parameter for the
disease, and p is the proportion that would need to be immunized for eradication 
of the disease. Average life span estimated at 55 years.

Disease A R0 p

Measles 9.0 7.1 0.86
Whooping cough 6.3 9.7 0.90
Scarlet fever 10.5 6.3 0.84
Diphtheria 10.6 6.2 0.84
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9.6 Endangered metapopulations and disease

As discussed previously, metapopulation ecology has come to the fore as a theoretical frame-
work for conservation planning. High dispersal rates (high movement between patches)
have been predicted to increase the proportion of patches occupied at equilibrium, the
time of metapopulation extinction, and the effective population size (Hanski and Gilpin
1997). Conservationists have favored measures, such as habitat corridors, which increase
connectivity among patches. Hess (1996), however, has suggested that easy migration can
have the negative effect of spreading disease among patches, causing extensive local
extinctions. Using a metapopulation analysis, Hess found that high migration rates, by
facilitating the movement of disease organisms, could reduce patch occupancy and
increase the probability of metapopulation extinction.

Gog et al. (2002), however, disagreed. They believe that most of the infections that threaten
wildlife are not caused by migration of diseased organisms, but by “spillover” from other,
more abundant hosts already present in the habitat patches. The reservoir for these
“spillover” diseases is often domestic animals. For example, domestic dogs are the prob-
able source of diseases that have threatened African wild dogs (Lycaon pictus), African lions
(Panthera leo), Baikal seals (Phoca sibirica), grey wolves (Canis lupus), and arctic foxes (Alopex
lagopus semenovi) (Gog et al. 2002).

In the deterministic model of Gog et al. (2002), S is the proportion of susceptible host
patches (host population present, no disease), and I is the proportion of infected patches
(host population and disease present). The extinction rates of susceptible and infected 
populations are xS and xI, respectively. The migration rate between susceptible and
infected populations is ψ. When an infected disperser arrives at a susceptible patch, it infects
the resident population with the probability of δ. Infection spreads at the rate of ψδIS.
The preceding is identical to the Hess (1996) model. What Gog et al. (2002) added is 
an extension of the Hess model in which they simulated various parameters of an 
infection rate from an “outside source,” g. Starting with the Hess model, Gog et al. set g
at zero, then ran a number of simulations showing the important effects when g is a 
non-zero parameter.

The equations for mean proportion of patches occupied in the S and I states are:

Ŝ = ψS(1 − I − S) − xsS − ψδIS − gS (9.16)

Î = ψI(1 − I − S) − xI I + ψδIS + gS (9.17)

Equations for stable equilibrium values of S and I for different values of g and m are
found in appendix A of Gog et al. (2002). Figure 9.1 has been produced based on their
equations for g = 0 (representing no outside sources of disease) and g = 0.4 (representing
a moderately large background infection rate). Other parameters are the same as in Hess
(1996): xs = 1.4, xI = 2.4, δ = 0.5.

As we see from Fig. 9.1, Gog et al. (2002) found that when g is zero or very small (as
in Hess), occupancy rates first increase but then decrease with increased migration as more
and more patches experience extinction due to disease. Eventually, patch occupancy
increases again with more migration, as all patches become infected. This result (Fig. 9.1a)
led Hess (1996) and others to suggest that increased migration between patches can have
a negative effect on patch occupancy and can increase the probability of metapopulation
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extinction. However, for larger values of g, increasing the migration rate results in little 
if any depression in the rate of patch occupancy. In other words, the decrease in patch
occupancy at intermediate levels of migration is minimized (Fig. 9.1b). Gog et al. (2002)
concluded that the net effect of migration is almost always positive, and that at high rates
of infection from external sources the benefits of migration will always outweigh the costs.
The major application of these models is that in wild populations suffering from a high
rate of infection from alternative host species, patch occupancy should increase, rather
the decrease, with migration rate.

Gog et al. (2002) concluded that corridors between suitable habitats are likely to 
benefit metapopulation persistence, a conclusion also reached by Laurance and Laurance
(2003; see Chapter 5). However, they pointed out that the Hess model might apply well
to captive populations, where transfer of animals from one facility to another is often 
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Figure 9.1 Proportion of suitable patches occupied as a function of movement rate:
(a) with the parameter g = 0; (b) with g = 0.4. When g = 0.4 there is a reasonably
large chance of infection from an “outside source.” Adapted from Gog et al. (2002)
and Hess (1996).

ITP_C09.qxd  09/27/2005  02:09PM  Page 204



HOST–PARASITE INTERACTIONS 205

a cause of disease epidemics. They stressed the importance of veterinary screening and
quarantining procedures before transferring animals from one captive population to
another.

9.7 Social parasites

By definition, parasites reduce the fitness of the host on which they live. This is usually
the result of the consumption of host tissues. There are, however, parasites that reduce
fitness by means of behavior. Social parasites include brood or nest parasites. Birds such
as cowbirds and cuckoos lay their eggs in the nests of other species (Davies 2000). When
the eggs hatch, the host parents feed the parasitic chicks, even in preference to their own
offspring. The chicks are large and aggressive, and since the parents often make no distinc-
tion among the chicks, the cowbird or cuckoo chicks get a majority of the food provided
by the parents. In most cases the host raises few young of their own species when a para-
sitic chick is present in the nest. Moreover, cuckoo and cowbird females often remove
host eggs prior to the laying of their own eggs, and in a nest still containing host eggs a
cuckoo chick will eject host eggs from the nest (Davies 2000). Social parasitism among
birds has evolved on every continent except Antarctica and there are about 100 species of
obligate brood parasites worldwide (Davies 2000). Brood parasitism has probably evolved
six times since it is found in six different bird families. Brood parasites include Old World
cuckoos (Europe, Asia, Africa, Australia, and New Zealand), New World cuckoos (North
and South America), cowbirds (North and South America), a duck (South America), 
honeyguides (Africa and Asia), and finches (Africa) (Davies 2000).

In some instances, the host makes an attempt to distinguish among the eggs and dumps
the parasite eggs from the nest. Social parasites, including several species of cuckoos, cow-
birds, African honeyguides, and finches have responded by laying “mimetic” eggs. That
is, eggs which look like those of the host species. Furthermore, according to the “Mafia
hypothesis,” (Zahavi 1979, Zahavi and Zahavi 1997), some nest parasites retaliate against
“dumpers” by destroying all of the eggs in the nest and perhaps even the nest itself. This
parasite makes the host birds an offer they “can’t refuse.” That is, “raise one of my chicks
or lose all of your children and your house!” Evidence, however, suggests that common
cuckoos (Cuculus canorus) do not adopt Mafia-like tactics (Davies 2000), since female 
cuckoos do not usually revisit nests they have parasitized. However, Davies suggests this
hypothesis could work in parasitic species that leave one or more host eggs in the nest.

Soler et al. (1995a, 1995b) experimentally tested the Mafia hypothesis between great 
spotted cuckoos (Clamator glandarius) and their magpie (Pica pica) hosts in Spain. They
found that when a magpie accepted a cuckoo egg, the nest was successful, but when the
host rejected the cuckoo egg the nest was often destroyed. Soler and his team experimentally
removed cuckoo eggs while simultaneously visiting nests without destroying the cuckoo
egg (controls). They found that more than 50% of the experimental nests were preyed
upon, either at the egg or young chick stage, compared with only 10% for the control
nests. The predation was most likely by cuckoos. Furthermore, in a follow-up experiment
Soler et al. (1999) showed that the magpies learned from the experience. If their eggs were
destroyed after they removed a cuckoo egg, when they re-nested they were 50% less likely
to remove the cuckoo egg the second time around. Curiously, however, the cuckoo lays
eggs that mimic those of the magpie. Davies (2000) suggests that the Mafia tactics do not
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work that well, and on average magpies still do better to reject cuckoo eggs. However, 
the behavior of individual hosts varies and some are more susceptible to Mafia tactics 
than others. Therefore efforts to intimidate the host are successful often enough to have
become part of the relationship between cuckoos and magpies in Spain.

Social parasitism also occurs among social insects. In the so-called slave-making ants,
a queen of the species Lasius reginae enters the nest of another species (L. alienus), kills
the resident queen, and forces the workers to care for her own offspring. In such a case
the workers are unable to distinguish the foreign ant queen from their own (Faber 1967).
This parasitism is temporary, however, during colony foundation. L. reginae workers 
eventually take over foraging and management of the nest. In many other cases, however,
the parasitic species produces no workers, a condition termed inquilinism. The socially
parasitic species spends its entire life in the nest of its host species. Workers are lacking
or are degenerate in normal foraging behavior. Holldobler and Wilson (1990) have
described the “ultimate social parasite,” Teleutomyrmex schneideri, which is a social para-
site of Tetramorium caespitum and T. impurum. This parasite is only found in the nests
of its hosts. It lacks a worker class and the queens contribute nothing to the host colonies.
Finally, the parasitic queen spends its life as an ectoparasite on the back of the host queen!

In more dramatic cases of interspecific slave making, species such as Formica sanguinea
raid other species of the same genus (F. fusca). As described by Wheeler in Holldobler 
and Wilson (1990), F. sanguinea heads to an F. fusca colony 50 to 100 m away, following
an amazingly direct route. Once they have arrived, they surround the nest and wait for
reinforcements to arrive. The raiders snatch larvae and pupae from the nest and from the
jaws of the host workers attempting to flee with their young. They kill adults of F. fusca
only if they offer resistance. Otherwise the host colony is left to rebuild itself as long as
the queen has not been killed. The brood of F. fusca is brought back to the F. sanguinea
colony and enslaved. There are also numerous examples of intraspecific slave making, in
which large colonies raid small ones, kill or drive off the queen, and carry or drag larvae,
pupae, and young workers to the home nest, where they are put to work (Holldobler and
Wilson 1990).

9.8 Conclusions

The complexities of parasite–host interactions rival those of mutualisms.
Parasites range from endoparasitic viruses to ectoparasitic ticks, and we lack
an understanding of the life cycle of most parasites in organisms other than
humans. What we do know is often based on models of human diseases 
and their modes of transmission. Parasitism can also involve complex
behavioral interactions such as brood parasites or slave-making ants. As we
will discuss in the next chapter, the activities of parasites can have major
impacts on populations, communities, and ecosystems. Some ecologists 
consider parasite–host interactions the newest and least explored ecological
frontier. Parasite–host interactions are much harder to study, and less
obvious, than predator–prey relationships. Therefore we know little about
them, and ecologists may well have been guilty of underestimating their 
importance.
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Predator–prey interactions

10.1 Introduction

The relationship between predators and their prey has provided a lively topic of discus-
sion for groups of humans ever since they began gathering around the fire or, now, the
seminar table. Historically, people have seen large predators not only as dangerous to them-
selves and their families, but also as competitors for the prey they were seeking. The large
number of fables and fairy tales involving wolves, lions, and tigers attests to their pro-
minent role in human culture. In the twentieth century the perception of large predators
for many people, particularly in developed, affluent countries, shifted from “vermin” to
“charismatic megafauna.”

In population ecology the basic question remains, what determines distribution and 
abundance? For trophic levels above that of producer, what is the role of predation in 
controlling herbivore populations? Are prey populations limited primarily by available 
habitat and food supply, or by their predators? That is, are prey limited by what they eat,
or by what eats them? In terms of species diversity, do predators allow more species to
exist in a community, or, by limiting prey populations to low levels, do they often drive
them locally extinct and thereby limit diversity? Do predators primarily kill very young,
very old, and/or sick individuals, such that their effect on population growth is insigni-
ficant? Do they actually benefit the prey population by eliminating the spread of disease

• The Lotka–Volterra equations
• Functional responses
• Functional responses and the Lotka–Volterra equations
• Graphical analyses
• The half-saturation constant in predator–prey interactions
• Nicholson–Bailey models
• Field studies of predator–prey interactions
• Trophic cascades
• Types of escape from predation

ITP_C10.qxd  09/27/2005  02:10PM  Page 207



208 CHAPTER 10

and eliminating genetically inferior individuals? Do predators take prey individuals when
the prey population has exceeded the carrying capacity, thereby helping stabilize the prey
population? Or, alternatively, are predators the cause of the periodical population cycles
seen in many prey species?

There are no simple answers to these questions, and the answers probably change from
one ecosystem to the next. Throughout human history, although we have domesticated
members of the cat and dog family, we have also tried to extirpate canine or feline pred-
ators perceived to be dangerous and/or which interfere with the management of prey species.
The Alaska Department of Fish and Game engages in wolf (Canis lupus) and bear control
projects in order to ensure an abundance of moose (Alces alces) and caribou (Rangifer 
tarandus) for human hunters (National Research Council 1997). In Europe, brown bears
(Ursus arctos), leopards (Panthera pardus), gray wolves, and other large predatory species
have been eliminated from most of their prehistoric ranges. On the other hand, predators
such as gray wolves and grizzly bears (Ursus arctos horribilis) are major tourist attractions
in National Parks in the western United States and Canada, and the US Fish and Wildlife
Service reintroduced wolves in Yellowstone National Park in 1995, after they had been
deliberately extirpated in the 1920s. One of the rationales for reintroducing wolves was
the assertion that, without wolves, the elk (Cervus elaphus) population had grown too 
large. Over-browsing by the elk supposedly has led to a decline in willow (Salix sp.) and
quaking aspen (Populus tremuloides), an increase in stream bank erosion and a decline 
in cutthroat trout (Salmo clarki) (Huff and Varley 1999). According to this scenario, the
reintroduction of wolves will have a salubrious effect on the Yellowstone ecosystem. Local
cattle and sheep ranchers have begged to differ, and Pyne (1997) might argue that fire
suppression is much more likely the cause of a decline in willow and quaking aspen rather
than the elimination of wolves. In addition, Meagher and Houston (1998) have noted that
willow and aspen are minor components (1–2%) of the vegetation in the northern range
of the Greater Yellowstone ecosystem. Ecosystems are complex and the specific roles played
by predators are difficult to disentangle from the complexities of the food web.

In spite of the much more sophisticated methods of gathering and analyzing data 
that we have today, when trying to understand predator–prey relationships we are still
bedeviled by the fables, simplistic theory, and inadequate analysis of data published in 
the first half of the twentieth century. For example, the fable of the Kaibab deer herd, 
first published in a Wisconsin Wildlife Bulletin by Aldo Leopold (1943), influenced the 
opinion of at least one generation of ecologists on the role of predators in ecosystems.
The story goes like this. Prior to 1906, a population of mule deer (Odocoileus hemionus)
shared the Kaibab plateau in northern Arizona with cattle (Bos taurus), sheep (Ovis aries),
coyotes (Canis latrans), wolves, mountain lions (Felis concolor), bear, and bobcats (Lynx
rufus). When this area was declared a game refuge as part of the new Grand Canyon National
Park by President T. Roosevelt, federal agents not only removed the cattle and sheep, but
also did their best to eliminate all the predatory species. In contrast to our views today,
in which we advocate the maintenance of an ecosystem, including the restoration of pred-
ators, Leopold and other wildlife biologists had a very negative view of predators. Although
Leopold changed his view later in life (Leopold 1949, Botkin 1990), he and other govern-
ment biologists initially agreed with a policy of predator removal. Hunters, in the period
1906–31, killed approximately 781 mountain lions, 30 wolves, 4338 coyotes, and 554 
bobcats on the Kaibab. These are impressive numbers, but no one actually knows what effect
this had on the predator populations. The deer population, approximately 4000 strong in
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1906, was released from both competition and predation, and rapidly increased. In the
fable, as published in many ecology and general biology textbooks as late as 1972, the deer
population increased to 100,000 by 1924, crashed due to overgrazing and ended up at a
population lower than that of 1906. This was thought to be due to permanent damage to
the soil and plant life in the ecosystem. The problem is that no one actually counted the
deer herd in a systematic manner. The estimate of 100,000 was by one individual who was
visiting the area. Other individuals estimated peak abundance at 50, 60, and 70 thou-
sand. Forest supervisors on site thought the peak population was 30,000. In any event, the
data are totally unreliable (Caughley 1970). Unfortunately, Leopold based his graphical
analysis on that of Rasmussen (1941), who used 100,000 as the deer population estimate
for 1924. Commenting on this story, Botkin (1990, pp. 78–80) writes, “an examination
of the facts about counts (of mule deer) leaves us up in the air. The famous ‘irruption’ of
mule deer . . . may or may not have occurred, and if it did occur the cause may have been
completely unrelated to the presence or absence of predators.” The Kaibab story was reprinted
repeatedly because it fitted into the “new” view that predators were part of the “balance
of nature” (Botkin 1990).

This dichotomous view of predation lives on. To some people predators are pests, 
undesirable and unworthy of existing except in someone else’s ecosystem. To others, pre-
dators are part of the balance of nature and we eliminate them at our peril. Since human
modification of ecosystems is so pervasive, it is almost impossible for large predators to
survive throughout much of their previous range. Yet prey populations, such as white-
tailed deer (Odocoileus virginianus), have prospered. Hunters who view themselves as 
filling the necessary role of the wild predator often employ the balance-of-nature argu-
ment. Alaskan hunters see themselves in competition for big game with wolves.

The prevailing views of predation in the first half of the twentieth century were colored
by the fact that theory and most early studies isolated two species, one prey and one 
predator, from their community and ecosystem. As we will see, simple, and even many 
complex models, predict that predator–prey relationships are “inherently oscillatory.” An
intensively studied phenomenon in population ecology is the regular population cycles
displayed by rodents, hares, and other small animals living in boreal and arctic com-
munities. After 80 years, there is still disagreement as to whether lemming (Dicrostonyx
groenlandicus and Lemmus lemmus) cycles, for example, are caused by the interaction of
lemmings with their food plant (Turchin et al. 2000) or are the result of an interaction
with their predators: stoats (Mustela erminea), arctic fox (Alopex lagopus), snowy owl (Nyctea
scandiaca), and long-tailed skua (Stercorarius longicaudus) (Gilg et al. 2003). What 
separates these modern studies from the simple models that are discussed below are the
assumptions that: (i) prey populations are at least partially determined by their food 
supplies, not just by their predators; (ii) prey populations respond to the entire com-
munity of predators, not just a single species; and (iii) predator populations are affected
by factors other than just the prey population density. Although most models and 
theoretical treatments we will discuss have been based on a single predator and a single
prey, you should keep in mind that more realistic treatments should be community- and
ecosystem-based.

The overall predation rate, that is the number of prey killed per unit area during a 
specified time period, is dependent on both the numerical response of the predator 
population and the functional response of individual predators in the population. As prey
density increases, a numerical response is an increase in the numbers of predators per unit
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area, based on both immigration and reproduction. A functional response is an increase
in the number of prey consumed per unit time by each individual predator as a function
of prey density. The total response, which is the combined effect of both the numerical
and functional responses, is density-dependent at low prey densities, but can become inversely
density-dependent at high prey densities (Holling 1959, Messier 1994), as explained in more
detail below.

When Robert May (1976c) reviewed existing predator–prey models and theories, he found
that they all lead to one of the outcomes enumerated in the list below. In a stable limit cycle,
both the prey and the predator go though regular, predictable cycles (Figs 10.1 and 10.2).
In a stable point, both the prey and the predator populations settle at a fixed number (Figs
10.3 and 10.4). In parentheses are early studies that have illustrated these outcomes:
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Figure 10.1 Stable limit cycle. Prey and predator populations versus time.

25

20

15

10

P
re

da
to

r 
po

pu
la

tio
n

5

0
0 10 20 30

Prey population

40 50

Figure 10.2 Stable limit cycle. Prey population versus predator population.

ITP_C10.qxd  09/27/2005  02:10PM  Page 210



PREDATOR–PREY INTERACTIONS 211

1 Extinction of the predator, survival of the prey (Gause 1934);
2 extinction of the prey followed by extinction of predator (Gause 1934, Huffaker

1958);
3 the prey and the predator populations go through oscillations, which dampen

to a stable limit cycle or a stable point (Figs 10.5 and 10.6) (Dodd 1940);
4 the prey and the predator go through increasing oscillations, leading to

extinction of the prey and/or the predator (Figs 10.7 and 10.8) (Hassell 1978);
5 immediate stable limit cycle (Hudson et al. 1998);
6 immediate stable point.

Metapopulation theory also predicts that a predator–prey interaction may consist of 
coexistence in a complex heterogeneous environment (Huffaker 1958, Dodd 1940) 
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combined with extinctions of prey and/or predators at any given site. Prey populations have
also been shown to fluctuate while the predator population remains stable. For example,
a stable population of predators may switch from one prey species to another, depending
upon prey availability (Southern 1970).

As we review various attempts to model predator–prey relationships, it will be obvious
that a number of simplifying assumptions have been made. Below is a short list of factors
that should be considered when evaluating the reality of a predator–prey model.

1 Errington (1946), based on his field work with muskrats (Ondatra zibethicus),
asserted that prey usually have a refuge; only when prey numbers are suffi-
ciently large that individuals must leave the refuge are they subject to predation.
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Figure 10.5 Prey and predator populations versus time, showing dampened
oscillations leading to a stable point.
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to a stable point.
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2 Some models assume that predation is random. In fact, predation is almost
always nonrandom. In addition, predators often specialize on certain age classes
of the prey, or on weakened or diseased individuals.

3 The generation times of the predator and the prey populations are often very
different. If the growth rate of the prey is much higher than that of the pre-
dator, and/or the generation time is much shorter in the prey species, the 
predator may rarely have an effect on the prey population. Alternatively,
there may be a time lag between growth of the prey population and the numer-
ical increase in the predator population. As we saw in Chapter 2, time lags
tend to produce population cycles.
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Figure 10.7 Prey and predator populations versus time, showing increasing
oscillations leading to extinction of both the prey and the predator population.
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4 Predators may be generalists and switch from one prey species to another,
depending on prey population size. Such behavior tends to stabilize prey 
populations. In fact, recent studies discuss the idea of a “predator pit” for the
prey (Hudson and Bjørnstad 2003) when there is a rich community of gener-
alist predators. When there are many predator species present, prey popu-
lations are controlled at a stable number and do not go through cycles typical
of the same prey species in less predator-rich communities.

5 Alternatively, the predator population may remain relatively constant in 
spite of large-scale fluctuations in the prey population. For example, when
Southern (1970) studied the relationship between the tawny owl (Strix aluco)
population and its rodent prey near Oxford, UK, he found a relatively constant
breeding population of owls, in spite of the fact that the rodent prey base 
oscillated. Over a 13-year period the number of rodents per 12 acres (4.9 ha)
varied from fewer than 10 to more than 250. During the same time the 
number of breeding pairs of the owl changed from a low of 17 to a high of 30.
In years of low rodent density, however, no owls attempted to breed.

6 The predator may have a carrying capacity unrelated to the number of prey
individuals. Thus the predator may never increase beyond a certain number
and the prey population “escapes” from predation once it reaches a certain
population threshold.

7 Density-independent mortality of the prey and/or the predator population
must be evaluated.

8 Predator–prey interactions may have multiple equilibriums. As pointed out by
Messier (1994), a predator–prey interaction may have a low-density equilib-
rium and high-density equilibrium. At low prey densities the predation rate is
density-dependent and the prey population is maintained at the level K1. At
densities just above K1 is the “predator pit” and the prey population is pushed
back down to K1 by the functional and numerical responses of its predator(s).
However, if the prey population escapes to density K2 it has escaped the 
pit. At densities above K2 the overall predation rate is inversely density-
dependent due to limitations in the functional and/or numerical responses 
of the predators. The prey population is able to increase to level K3, the 
high-density equilibrium, where it is limited by its food supply or some other
environmental variable.

The introduction of predators into “naïve” communities has provided us with evidence
that predators can have a powerful destabilizing effect on ecosystems. One well-known
example is the inadvertent introduction of the sea lamprey (Petromyzon marinus) into the
Great Lakes (Baldwin 1964, Smith and Tibbles 1980). Marine sea lampreys are found 
off the Atlantic coast of North America, but migrate into fresh water to spawn. Adult 
lampreys feed by rasping a hole in the host and sucking out fluids. Lampreys were able
to move up the St Lawrence River but were not found in the Great Lakes due to the Niagara
Falls. But, beginning in 1829, various canals were built to allow ships to pass from the 
St Lawrence into the Great Lakes. The Welland Canal was finished in 1829, allowing ships
and lamprey passage to Lake Erie. However, the systematic movement of lampreys into
the Great Lakes did not begin until 1921. Once established in the Great Lakes, the lam-
prey began preying upon lake trout (Salvelinus namaycush), an economically important
fishery. Lampreys were found in Lakes Huron and Michigan in 1936–37 and in Lake Superior
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in 1938. Catches of lake trout declined from a high of 3000 tons per year in Lake Huron
in 1936 to virtual extinction by the late 1950s. The story was repeated in Lakes Michigan
and Superior, but took more time. The peak of 3500 tons of lake trout was harvested in
the middle 1940s in Lake Michigan and dropped to virtually zero by 1950–51. In Lake
Superior the peak harvest was around 2500 tons in 1950 and dropped to less than 500 tons
by 1960. Massive efforts to eliminate the sea lamprey failed, but did reduce its popu-
lation. The result was only a partial recovery by the lake trout to its former numbers.

To take another example, Like most Pacific Islands, Guam lacked large predatory
snakes. The only native snake was a blind, wormlike snake, which fed on termites and
ants (Fritts 1988). The brown tree snake (Boiga irregularis), a member of the family Colubridae
and native to Australia, Papua New Guinea, and other islands in northwestern Melanesia,
arrived in Guam shortly after World War II, probably as a stowaway in military cargo
from Papua New Guinea (Fritts 1988). These snakes did not become conspicuous until
the 1960s, but by 1968 had colonized the entire island. Brown tree snakes feed on a wide
variety of bird, mammal, and lizard species. The population of snakes increased for over
35 years, reaching a density at one point of 100 per hectare in some areas (Rodda et al.
1992). By 1963, several formerly abundant native bird species had disappeared from areas
where the snakes were most populous. By 1986, nine native forest bird species were extinct
due to snake predation and several other bird species were endangered. Small mammals
are also very rare in most areas inhabited by the snake. Finally, having depleted birds and
mammals, the brown tree snake now feeds to a large extent on lizards. Between three 
and six lizard species have been or are being extirpated on Guam (Savidge 1988, 
Rodda and Frits 1992).

Over evolutionary time, of course, predators and their prey reach an accommoda-
tion through coevolution or else they cannot coexist. Extinction and re-colonization in
metapopulations occurs continuously over shorter periods of time, as do extinction and
speciation over evolutionary time. Therefore we should not necessarily expect, based on a
“quasi-religious idea of the balance of nature” (McCullough 1997), that predator and prey
populations should be “stable.” Nevertheless, we can all agree that the rapid extinction of
entire communities of native organisms by introduced predators is highly undesirable.

One last word, before we proceed. The term “stable” as applied to a population has 
a variety of definitions. Here we will use the word to simply mean a population, or a pair
of populations when applied to predator–prey relationships, which have a “return tend-
ency” to a particular density. Recall that a density-dependent population is one in which
there is some mean level of density around which the regulated population fluctuates. 
In addition, over time the population does not wander increasingly away from this level.
If we apply this to several populations simultaneously, each will fluctuate in a cloud of
points around some point to which it tends to return. We will distinguish this from a cyclic
population in which there is a regular, identifiable pattern of population sizes over time
(Fig. 10.1). We will call this, as described above, a “stable cycle” or “stable limit cycle.”
These two patterns are to be distinguished from those of increasing oscillations leading to
extinction, or other patterns of extinction of the predator or mutual extinction of the pre-
dator and the prey. These interactions are usually called “destabilizing” or “unstable.” The
cases described above, of the introduction of the sea lamprey or the brown tree snake,
qualify as destabilizing. Some authors characterize certain predators as destabilizing and
other as stabilizing. For example, Gilg et al. 2003 describe the stoat, a specialist predator,
as destabilizing, while the generalist predators stabilize the interaction with lemmings.
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10.2 The Lotka–Volterra equations

The first well-known models of predator–prey interactions can be traced to Lotka (1925)
and Volterra (1926). Although the Lotka–Volterra model has been critiqued on many grounds
(May 1975a, 1976c), it is still well respected, and forms the basis for models still in use
today. As Hudson and Bjørnstad (2003) put it, “the fundamental theory of predator–prey
interactions encapsulated in the worthy Lotka–Volterra model predicts cycles in prey and
predator abundance.”

The Lotka–Volterra model, like most predator–prey models, consists of two parts. The
prey population grows according to a simple exponential or logistic model. Subtracted 
from this are losses due to predation. These losses are due to the overall predation rate,
which itself consists of two parts. The numerical response of the predator is a function 
of an increased rate of reproduction, an increase in immigration, or both. The second 
factor, which increases the overall predation rate, is the rate of consumption of prey per
individual predator, the functional response. In the prey equation, the rate of growth is
decreased by the overall predation rate, which is a function of both the numerical and
functional responses of the predator.

The predator equation also consists of two parts. The growth of the predator popula-
tion is a function of the overall predation rate, and is similar to the negative part of the
prey equation. The growth rate of the predator is then decreased by a mortality factor,
which can be either density-independent or density-dependent.

The relatively simple Lotka–Volterra model was based on the following assumptions:

1 In the absence of predators, the prey population grows either exponentially
or logistically.

2 The population growth of the predator is limited only by the availability of the prey.
3 Both predator and prey reproduce continuously, have no age structure, and

all individuals are identical.
4 The predation rate is proportional to the rate of encounter between pre-

dators and prey. Encounter rate is a random function of population density.
That is, both prey and predator individuals move at random.

5 The predator has a density-independent, constant mortality rate.

Most of the eight points raised in Section 10.1 are ignored in the Lotka–Volterra model.
Predation is random; there is no refuge for the prey; and there is no carrying capacity for
the predator independent of that set by the prey population.

In the version of the Lotka–Volterra model in which the prey population grows 
exponentially in the absence of predators, the prey growth rate is:

dN/dt = rnN (10.1a)

Where rn is the prey intrinsic growth rate and N is the prey population size.
If the prey population grows according to the logistic, the prey equation is:

dN/dt = rnN (10.1b)

where Kn is a carrying capacity for the prey population.

Kn − N

Kn

ITP_C10.qxd  09/27/2005  02:10PM  Page 216



PREDATOR–PREY INTERACTIONS 217

Without prey, the predator population (P) dies off based on the instantaneous density-
independent mortality rate, mp , and the population declines according to Equation 10.2:

dP/dt = −mpP (10.2)

The chance of an encounter between the predator and prey is the product:

ENP (10.3)

E is a number less than one, which measures the searching (and capturing) efficiency
of the predator. Equation 10.3 assumes that the number of prey taken varies linearly 
with prey abundance. The coefficient E is a functional-response term based on the rate of
predation per individual predator per unit time. The increase in the predator population
is the encounter term (10.3) times a constant χp, which measures the efficiency by which
the food (prey) is turned into new predator individuals. In essence this is the assimilation
efficiency of the predator. The population growth term for the predator is: (χp)(E)(N)(P).
This product, therefore, includes the numerical response to an increase in the prey 
population, and a linear functional response. The Lotka–Volterra model assumes that an
encounter leads to the death of a prey individual. The prey population is thus decreased
by the term ENP. Starting with Equation 10.1a, the equations for prey and predator are
as shown below.

dN/dt = rnN − ENP (10.4a)

dP/dt = χpENP − mpP (10.5)

The behavior of this model at equilibrium can be analyzed by setting both dN/dt and
dP/dt = 0, leading to Equations 10.6 and 10.7:

P* = (10.6)

N* = (10.7)

Equation 10.6 expresses the predator equilibrium in terms of the growth rate of the prey
and searching efficiency of the predator. Equation 10.7 describes the prey equilibrium in
terms of the mortality rate, the searching efficiency, and the assimilation efficiency of the
predator. These equations seem to indicate that the equilibrium values are independent
of the numbers of the other population. However, we can also see that the per capita growth
rate of the prey becomes zero or negative when the predator population exceeds a fixed
number. Similarly, the per capita rate of predator increase becomes zero or negative when
the prey population drops below a specific density. Finally, the functional response for the
predator is unrealistic in that it assumes that at high prey densities the predator has an
unlimited appetite.

As pointed out by May (1975a, 1976c) the Lotka–Volterra model has a peculiar 
“neutral stability” that can be compared to that of a frictionless pendulum. Populations

mp

χpE

rn

E

ITP_C10.qxd  09/27/2005  02:10PM  Page 217



218 CHAPTER 10

are predicted to oscillate forever based on the initial conditions, with no mechanism 
for increasing or decreasing the amplitude of the oscillations. Furthermore, both the 
functional and the numerical responses of the predator are fixed. This is a significant flaw
in either a predictive or a descriptive set of models.

Long ago, Volterra (1931) recognized that adding a density-dependent component to
the prey equation would add realism to the model. Therefore the prey equation (10.4a)
was modified to 10.4b. The Volterra model is characterized by a stable equilibrium point
(Figs 10.5 and 10.6).

dN/dt = rnN − ENP (10.4b)

10.3 Early tests of the Lotka–Volterra models

According to the Lotka–Volterra equations, the response of a predator population to 
an increase in a prey population is to increase its own numbers. This increase may be 
through an increase in the birth rate of the predator (perhaps combined with a decrease
in death rate) or through immigration. Again, this is termed a numerical response.
According to the Lotka–Volterra equations, the result of this increase in predation is 
a coupled numerical response in the prey population, which declines. Once the prey 
population has declined sufficiently, the negative consequences for the predator popula-
tion results in its decline. Once predator numbers have decreased sufficiently, the prey
population begins to recover, leading eventually to an increase in the predator popula-
tion, and so on. A graph of the Lotka–Volterra results versus time look like a stable limit
cycle (Fig. 10.1), though it is not. In a true limit cycle, if the populations are pushed out
of the cycle by density-independent factors, the populations return to the original limit
cycle. Due to the neutral stability of the Lotka–Volterra equations, they would have no
return tendency.

The Lotka–Volterra equations led some ecologists to adopt the view that predator–prey
interactions were “inherently oscillatory,” and research was directed to test this pro-
position. As discussed previously, some parasite–host and various small mammal and bird
populations in boreal and arctic regions display regular oscillations in number. Do pre-
dators cause these cycles? Already in 1924 Charles Elton had published “Periodic fluctua-
tions in the numbers of animals: their causes and effects.” In this and later publications
(Elton and Nicholson 1942) he presented the now famous and infamous data on the 
populations of snowshoe hare (Lepus americanus) and the lynx (Lynx canadensis). As in
the case of the Kaibab deer, these data were not based on systematic population surveys,
but rather on the numbers of pelts brought into the Hudson’s Bay Company by trappers.
The data do show regular fluctuations of great magnitude, but we must ask, how reliable
are these data? Are the fluctuations due to predator–prey interactions as envisioned by
Lotka and Volterra? We will not try to answer these questions now, but note here that
after 70 years of field experiments and time-series analysis, Krebs et al. (2001) concluded
that the hare cycle can only be understood as an interaction involving the hare popula-
tion, its food supply, and a community of predators (not just the lynx).

As discussed earlier, the competition equations of Lotka and Volterra were tested in the
laboratory by Gause (1934). Gause also tried to test the predictions of the Lotka–Volterra

Kn − N

Kn
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predator–prey equations using microorganisms. He attempted to produce the predicted
oscillations using as his prey populations of Paramecium caudatum grown in test tubes.
To these tubes he introduced another ciliated protozoan, Didinium nasutum. Didinium is
a voracious predator on Paramecium and it reproduces by binary fission, just as does its
prey. In the simple test-tube environment Didinium was able to hunt down all of the
Paramecium. Once its food supply was gone, Didinium starved. Thus, in any one tube,
mutual extinction was assured. Gause next tried adding sediment to the bottom of the
tubes as a refuge for Paramecium. This ensured the survival of the Paramecium, but 
the Didinium population eventually went extinct. With its predator eliminated, the
Paramecium population rapidly grew to the expected carrying capacity. But Gause had more
tricks. He now added one Paramecium and one Didinium every third day to each test tube.
This finally resulted in coexistence of the prey and its predator for more than two weeks.
Both the prey and the population went through two oscillations during this period.

Did Gause see his work as confirming the equations developed by Lotka and Volterra?
Just the opposite. Gause stated that predator–prey interactions are not inherently oscil-
latory, and that coexistence was possible only through adding heterogeneity to the simple
test-tube environment, or through constant interference of the system through the addi-
tion of immigrants.

Another early laboratory experiment illustrates the weaknesses in the simple Lotka–
Volterra model. In Chapter 5 on metapopulations we described the work of Huffaker 
(1958), who was a California entomologist interested in biological control of pests in orange
orchards. The prey species was the six-spotted mite (Eotetranychus sexmaculatus), which
feeds on oranges. The predator was a carnivorous mite (Typhlodromus occidentalis) which
preys on the six-spotted mite. Both species reproduce rapidly through parthenogenesis.
In each experiment, Huffaker began with 20 prey females and introduced two predator
females 11 days later.

In one experiment, Huffaker concentrated the food (oranges) in one area. The results
mirrored those of Gause. The prey population rapidly increased, then was located by the
predators, which also rapidly increased. Within a short time (25–30 days) both popula-
tions were extinct. Huffaker then began creating a heterogeneous environment. He set up a
complex laboratory environment consisting of three 40-cell trays with a total of 120 feeding
positions. Although each position contained one orange, he controlled the feeding sur-
faces by dipping the oranges in wax, leaving only 5% of the orange available for feeding.
This forced the herbivorous mite to constantly seek out new feeding surfaces. He added
small wooden pegs as launching pads for the six-spotted mites to speed their dispersal from
one orange to another. And he added a maze of Vaseline™ barriers across the trays to slow
the dispersal of the predatory mites, which could travel only by foot. Once a predator arrived
on an orange already colonized by the prey species, it quickly killed and consumed all of the
herbivorous mites on that particular orange. But the rapid immigration and emigration
of the herbivorous mite, along with the complex, heterogeneous environment created by
Huffaker, allowed the two species to coexist in this laboratory environment for over 200 days.

In both of these laboratory studies, the coexistence of the prey with the predator
depended upon environmental heterogeneity. Secondly, both systems required regular 
immigration of the prey and/or the predator to avoid extinction. Neither of these require-
ments was anticipated by the Lotka–Volterra approach.

Another instructive laboratory experiment was that of Utida (1957). In this case stable
oscillations between the azuki bean weevil (Callosobruchus chinensis) and a parasitic wasp
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(Heterospilus prosopidis) were maintained for more than 25 generations in a laboratory
Petri dish (1.8 cm high by 8.5 cm diameter). The wasp is actually a specialized predator
known as a parasitoid, which paralyzes its prey without killing it. The wasp lays an egg
on the paralyzed host, usually an insect larva. The egg hatches and the wasp larva slowly
consumes the host, leading to its eventual death. In this case, the wasp only lays eggs 
on certain instar larvae. The wasp does not parasitize adult or pupal beetles. Therefore,
although these two populations undergo the regular oscillations of a limit cycle, both 
populations persist due to the nonrandom predation by the wasp. Again, the violation of
the Lotka–Volterra assumption of random hunting is what allows the coexistence of prey
and predator.

10.4 Functional responses

The Canadian ecologist C.S. Holling concluded that our understanding of predation
needed a more realistic, empirical approach. He believed that to understand predator–
prey relationships it was first necessary to understand the act of predation. That is, he asserted
that the first response of an individual predator to an increase in a prey population is not
to increase its growth rate, but rather to increase its per capita predation rate, often by
selective behavior. Using terminology from Solomon (1949), Holling (1959, 1961, 1966,
1973) termed this per capita increase in predation the functional response of a predator.
He analyzed the act of predation and broke it down into behavioral units termed the com-
ponents of predation. In his papers Holling described many other potential factors that
might influence predation, but we will limit our discussion to the time and/or energy devoted
to these four major components: (i) search, (ii) capture, (iii) handling, and (iv) digestion.
Theory and laboratory testing suggest that the functional response of an animal may take
one of three forms called the type I, type II, and type III functional responses. In all of
these functional-response graphs, the x-axis consists of number of prey per unit area (prey
density), while the y-axis consists of the number of prey eaten per individual predator 
per unit time. Thus the functional response is the result of changes in consumption rate
per individual predator. In all three types of functional responses the predation rate will
rise with prey density, but will eventually level off. At low prey densities, predation rate
is influenced mostly by the amount of time and/or energy devoted to search and capture,
while at very high prey densities predation rate is bounded by the last two components
of predation, time or energy devoted to handling and digestion of prey.

The simplest functional response (type I) is one in which prey consumption rises 
linearly with prey density. This is sometimes called the filter feeder’s functional response,
and is often pictured as a simple straight line. However, this picture is misleading. It omits
the fact that increases in prey density beyond a threshold do not result in an increased
per capita predation rate. This is due to the handling and digestion components of preda-
tion. For example, Porter et al. (1982, 1983) maintained concentrations of the green alga
Chlamydomonas in the laboratory at concentrations up to 106 cells per cubic cm. They
then introduced the arthropod Daphnia magna (the “water flea”), a filter feeder. As illus-
trated by Fig. 10.9, Daphnia needed almost 1000 (103) cells per cm3 to maintain itself. As
the concentration of Chlamydomonas increased, so did the consumption rate of Daphnia.
Once about 20,000 cells per cm3 were reached, however, the increase in consumption
decreased rapidly and the water flea processed a maximum of about 7 cells per second or
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25,000 per hour. There is evidently a limit to what Daphnia can process, and the type I
functional response has a plateau, as do all functional responses, due to the handling and
digestive components of predation. Picture yourself eating popcorn. If individual pieces
of popcorn were spread about the house and you had to search for them, your consumption
rate would be limited by the search component of predation (capture time for popcorn
is presumably zero). But if you were surrounded by an unlimited number of tubs of 
popcorn, your consumption rate would be limited by the time it would take to handle
and chew. And eventually, your stomach would tell you, no more! Until you had time to
digest what you had stuffed into your mouth, your consumption rate would plummet.
Next time you go to a movie theater, take notes on the rates of consumption of your 
fellow predators!

Porter et al. (1982, 1983) also found that when the algal concentration went up, the
amount of effort by Daphnia, as measured by filtering rate, went down. As food concen-
tration went up the movement of filtering appendages declined from 6 to 3.5 per second,
resulting in a decrease in filtering rate from 4 to 1 cm3 per hour. This means that the 
food resource was so concentrated that maximum ingestion was possible with much 
less effort. Therefore, since less energy was expended, the Daphnia population was able 
to turn more assimilated energy into reproduction. As we can see from Table 10.1, an 
increase in food consumption led directly to a numerical response in Daphnia magna,
at least up to a point. As the density of Chlamydomonas increased, several reproductive
parameters also increased. However, at the highest prey density (106 cells) reproduc-
tive parameters decreased and the intrinsic rate of increase declined from 0.28 to 0.20.
These data illustrate the relationship between the functional and the numerical response
of a predator, as well as the fact that at very high prey densities other factors may limit
the numbers of a predator.

In the type II functional response, as prey density increases, prey consumption
increases more rapidly than in a type I response, and is nonlinear, but also reaches a plateau.
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Figure 10.9 Type I functional response. Ingestion of the alga Chlamydomonas by
Daphnia magna. From Porter et al. (1982).

ITP_C10.qxd  09/27/2005  02:10PM  Page 221



222 CHAPTER 10

This is called the “general invertebrate curve,” since Holling found this curve applied to
a number of invertebrate predators that he tested (Fig. 10.10).

In the type III response, prey consumption remains low until a threshold density is reached.
The predation rate then increases exponentially until it levels out. The shape of this curve
is described as “sigmoid” and it looks something like the logistic population growth 
curve. Sometimes called the “vertebrate” curve or the “learning predator’s” curve, the 
predator ignores the prey when densities are very low in order to make hunting 
energetically profitable. Another interpretation of the low predation rate at low prey 
densities is that the predator does not see the potential prey often enough to recognize it
as prey. Once the prey population reaches the threshold density, the predator develops 
a “search image” for the prey and begins actively seeking it. At this point, the predation
rate increases exponentially until reaching the maximum rate, which occurs at the plateau
due to handling and digestion time.

Table 10.1 Reproductive parameters of Daphnia magna as a function of the
concentration of its prey, the green alga Chlamydomonas. Experiment conducted 
at 20 °C. Based on Porter et al. (1983), and adapted from Ricklefs (1990).

Concentration of Chlamydomonas (cells per cm3)

103 104 105 106

Percent reproducing 50 87 97 50
Eggs per brood 2.8 2.6 15.5 21.1
Broods per female 1.7 7.5 8.2 3.4
Days between broods 5.4 3.6 3.1 3.3
Age of first brood (days) 23.4 16.9 9.8 9.1
Net reproductive rate (R0) 2.25 16.23 99.33 34.80
Intrinsic rate of increase (r) 0.03 0.10 0.28 0.20
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Figure 10.10 Type II functional response. The larvae of the damsel fly Ischnura
elegans feeding on Daphnia magna. From Hassell (1976).
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Working in the high-Arctic tundra of Greenland, Gilg et al. (2003) have shown that the
snowy owl, the arctic fox, and the long-tailed skua all have type III functional responses
to increasing densities of collared lemmings (Fig. 10.11).

The next step is to integrate the components of predation into the Lotka–Volterra equa-
tions. The functional response, f, is set equal to EN for a type I response, as was actually
incorporated into the original Lotka–Volterra equations (Eqns. 10.4a 10.4b, 10.5).

The type II and III functional responses involve variables for search and capture rates
(E2 N and E3 N 2) and handling and digestion rates (h2 and h3). As described above, the
plateau or asymptote found in each functional-response curve is the result of the handling
and digestion rates, h. When prey densities get very large, little time or energy must be
spent searching or capturing, and the predation rate depends on handling time and diges-
tive pause. Thus we have the Holling equation for the type II response (10.8a) (See Case
2000 for a derivation):

fn = (10.8a)

If we take its inverse, we have:

= (10.9)

We can rewrite this as:

= + = + h2 (10.10)
1

E2N

h2E2N
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Figure 10.11 Type III functional response curves for three predators of lemmings
in Greenland. Adapted from Gilg et al. (2003).
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The second term simplifies to h2; when the prey population becomes very large, the first
term becomes very small and we can set it to 0. Thus 1/f = h2 and:

fn = (10.11)

Equation 10.11 simply states that the functional response is the inverse of the handling
time component. A similar analysis applies to the type III functional response. A useful
interpretation here is that the inverse of handling time equals the maximum killing rate
(c), when the search and capture components are essentially zero. An alternative form for
equation 10.8a sets the parameter c = 1/h2 and substitutes the half-saturation constant, 
d (the prey density at which killing rate is half of the maximum) for (E2h2)

−1. Substituting
1/c for h2 and c/d for E2 in Equation 10.8a, we have 10.8b, the alternative equation for the
functional response. The advantage of this version of the functional response is that we
can relatively easily estimate these parameters from field data:

fn = (10.8b)

When prey densities are very low, the search and capture rates become very large com-
pared to the handling time. If we set h equal to 0 in equation 10.8a, the denominator becomes
equal to one and the functional-response equations become:

fn = E2N (type II functional response) (10.12a)

fn = E3N
2 (type III functional response) (10.12b)

Therefore, at a low prey density, the functional response is completely determined by
the search and capture components, and it is essentially linear in the type II response.

10.5 Adding prey density dependence and the type II and III functional
responses to the Lotka–Volterra equations

Now let’s return to the Lotka–Volterra equations as modified by a type II functional response.
For the prey equation, we will not only add the functional response, but we will also 
add the carrying-capacity term as suggested by Volterra (1931). The prey equation again
consists of two parts: (i) recruitment and (ii) death due to predators. The recruitment 
section is the traditional logistic, and the losses due to predation are based on the 
numerical response term (ENP) modified by the type II functional response (Eqn. 10.8a).
The resultant equation is:

dN/dt = rnN 1 − − (10.13a)

In the predator equation the left term is again modified by the type II functional response,
but is otherwise unchanged:
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dP/dt = − mpP (10.14a)

Recall that χp measures the efficiency at which the food (prey) is turned into new 
predator individuals (= assimilation efficiency of the predator), and mp is the mortality
rate of the predator.

In the type III functional response, the term N is replaced by N 2 in the expression 
describing death due to predation in Equation 10.13a. That is:

Similarly, in Equation 10.14a N is replaced by N 2 on the right side of the equation.
How does the functional response affect the behavior of the predator–prey interaction?

Figures 10.12, 10.13, and 10.14 are based on Equations 10.13a and 10.14a. In each case 
rn = 0.2, Kn = 100, N0 = P0 = 20. E, the coefficient measuring the efficiency of search and
capture = 0.02. χp (assimilation efficiency) is set at 1.0. The mortality rate mp = 0.25.

In Fig. 10.12 we have removed the functional-response terms from both equations. This
means the populations are growing according to the type I functional response, which is
equivalent to the basic Lotka–Volterra equations. What we see is mutual extinction such
as Gause and Huffaker found. In Figs 10.13 and 10.14, by contrast, we have introduced
the type II and III functional response terms with h = 3.0 in Fig. 10.13 and h = 4.0 in 
Fig. 10.14. The populations move toward a stable point in each case. Handling time puts
a cap on the number of prey that each predator can consume, thereby limiting both its growth
rate and the losses to the prey population. The effect is to help stabilize the interaction.
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Figure 10.12 Predator–prey interaction following the Lotka–Volterra equations with
a type I functional response.

ITP_C10.qxd  09/27/2005  02:10PM  Page 225



226 CHAPTER 10

Prey

Predator

P
re

da
to

r/
pr

ey
 p

op
ul

at
io

ns

0 50 100
Time
150 200 250 300

100

80

60

40

20

0

Figure 10.13 Predator–prey interaction with a type II functional response.
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Figure 10.14 Predator–prey interaction with a type III functional response.
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10.6 The graphical analyses of Rosenzweig and MacArthur

Rosenzweig and MacArthur (1963) founded a general approach for studying predator–
prey interactions known as the isocline or graphical analysis. The graphical analysis 
consists of a plot whose x-axis is the prey population and whose y-axis is the predator
population. Two isoclines are drawn on the graph. The first line, known as the 
predator isocline, may be a vertical line, or may be modified to any linear representation
with a positive slope. This line represents the prey density that results in zero popu-
lation growth of the predator. Areas to the right of the line allow the predator population 
to grow; to the left predator populations decline. The second line, the prey isocline, 
represents the predator and prey combinations that result in zero population growth of
the prey. The prey isocline (Fig. 10.15) is based on the per capita growth rate of the 
prey. At the far right is the point (K, 0). There are zero predators, but the prey growth
rate is limited to zero by its carrying capacity. The growth rate has a positive slope at 
low prey densities and reaches its maximum value at K/2. Regions above the prey isocline
represent combinations of predator and prey resulting in a negative prey growth rate due
to predation. The prey isocline is often shown with the Allee effect included (Fig. 10.16).
As discussed in Chapter 2, very low prey populations may result in negative growth. Thus
the prey isocline is shifted away from the point (0, 0) to a point representing a minimum
viable population size.

This graphical approach allows us to envision a variety of situations in which extinc-
tions, stable cycles, and stable points are produced. In Fig. 10.17 the predator isocline is
far to the right, intersecting the prey isocline in an area where it has a negative slope. This
represents an “inefficient” predator, which needs large numbers of prey. The result is a
series of decreasing oscillations resulting in a stable point at the intersection of the two
isoclines. By pushing the predator isocline to the left, however, such that the predator 
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Figure 10.15 Prey and predator isoclines. Adapted from Rosenzweig and
MacArthur (1963). The prey population has positive growth in the shaded area. 
The predator population has positive growth to the right of the vertical line. 
K = carrying capacity.
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isocline intersections the prey isocline at a right angle at K/2, the result is a stable cycle
(Fig. 10.18), rotating around the intersection point, S. Finally, if we push the predator 
isocline further left, so that it intersects the prey isocline where it has a positive slope, 
simulating a “highly efficient predator,” the result is mutual extinction of the predator
and its prey (Fig. 10.19). If the predator is limited by a resource other than the prey 
population, the result is a stable point as illustrated in Fig. 10.20.

This analysis also allows us to examine what is known as the “paradox of enrichment”.
Laboratory experiments and theoretical simulations show us that predator–prey inter-
actions are often stabilized by lower prey growth rates. In his experiments with oranges and
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Figure 10.16 The prey isocline with the Allee effect. MVP, minimum viable
population; K, carrying capacity.
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Figure 10.17 Graphical analysis of predator–prey interactions of Rosenzweig and
MacArthur (1963). An inefficient predator isocline produces decreasing oscillations
to a stable point S, where the two isoclines meet.
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orange mites, described earlier, Huffaker (1958) found that to stabilize the predator–prey
interaction he had to diminish the prey growth rate. He reduced the amount of feeding
surface available for the prey on the oranges by dipping them in wax. Similarly, when
Luckinbill (1973) repeated Gause’s experiments (substituting P. aurelia for P. caudatum,
but still using Didinium nasutum as the predator) both prey and predator went extinct
within a few hours. However, by adding methyl cellulose to the medium, which slowed
down the movement of both predator and prey, the two species coexisted for several days.
He then cut the food supply for the prey in half, and the two species coexisted for 33 days
before the experiment was terminated. Rosenzweig (1969) had predicted this result on 
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Figure 10.19 A highly efficient predator, resulting in increasing oscillations leading
to extinction of both the predator and the prey (point E ).
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Figure 10.18 Predator–prey isoclines for a moderately efficient predator, resulting
in a stable limit cycle.
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theoretical grounds. In Fig. 10.21 we see that, although the predator isocline is the same
as in Fig. 10.18, where the result was a stable cycle, by moving the prey isocline to the
right, simulating a higher growth rate for the prey due to an increase in resources, 
the result is mutual extinction.

Finally, we can simulate an invulnerable prey refuge (Fig. 10.22). In this case the result,
depending on the efficiency of the predator, is a stable point or a cycle (limit cycle), although
the cycle may be rather complex. We can easily add the idea of prey refuge in Equations
10.13a and 10.14a by adding a constant M*. This number represents a minimum prey
population which is never exposed to predation. The number of prey available for preda-
tion will then be only N − M*, and we replace N by N − M* in the appropriate places:
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Figure 10.20 Predator–prey interaction when predator growth is restricted by a
factor other than the prey population. The result is a stable point, S.
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Figure 10.21 The effect of the “paradox of enrichment” on a predator–prey
interaction. The predator isocline is identical to that of Fig. 10.17. The prey 
isocline has been shifted to the right, simulating resource enrichment. The 
final point is E (0, 0).
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dN/dt = rnN 1 − − (10.13b)

dP/dt = − mpP (10.14b)

As discussed by Case (2000) and Crawley (1992), these types of analyses underscore the
point that in a predator–prey relationship there can be more than one stable point, and
predator–prey relationships that produce cycles in one ecosystem may result in a stable
point in another.

10.7 Use of a half-saturation constant in predator–prey interactions

Turchin and Ellner (2000) have asserted that the predator–prey equations used by
Rosenzweig and MacArthur (1963) should be adopted as “the standard” for predator–
prey interactions, since they eliminate the assumption of the linear functional response
and are “perhaps the simplest model that can actually be applied to real life systems” (Turchin
2003, p. 95). The only differences between these equations and Equations 10.13a and 10.14a
are that the handling term in the functional response has been replaced by d + N, where
d is the half saturation (half maximum killing rate) parameter, and E has been replaced
by c, the maximum killing rate when the search and capture components have been 
minimized. In other words, we are using the alternative functional response shown as
Equation 10.8b:

dN/dt = rnN 1 − − (10.15)

dP/dt = − mpP (10.16a)
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Figure 10.22 Predator–prey interaction when the prey has a refuge. The result is a
stable cycle.
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An alternative form of the predator equation (10.16a) is to add what is known as the
ZPG component consumption rate (µp). This parameter represents the minimum rate of
prey consumption needed for a predator to survive and just replace itself. This is usually
easier to estimate than the predator death rate in the absence of prey, mp. The result 
is Equation 10.16b, a version of which we will use in Chapter 11 on herbivore–plant 
interactions:

dP/dt = χ pP − µp (10.16b)

Now compare the predator equation (10.16a) to Equations 7.19 and 7.20, which
describe the effects of resource depletion on the growth rate of a consumer in the context
of competition.

In a revised version of Equation 7.20, instead of a competing species, N2, we are 
substituting P, the predator population. The death rate, m, is now mp. We have replaced
χpc, which measures the maximum rate of conversion of the resource (prey) into pre-
dators, by b, which was the maximum growth rate of the competing species.

dP/dt = − mpP (7.20 revised)

The prey population (N in equation 10.16a) is considered a resource, so is replaced by
R, the concentration of the resource. The half-saturation constant d is replaced by KR. The
two equations are now identical. Equation 7.20 measures the growth rate of a consumer
in terms of its maximum growth rate, the concentration of the resource, the half-
saturation constant for that resource, and the death rate of the consumer. The predator
equation (10.16a) measures the growth rate of the predator in terms of maximum effi-
ciency in turning prey into predator individuals (χpc), the concentration of the resource
(N), the half-saturation constant, and the death rate of the predator. We now have a
general mechanistic equation, useful in both competitive interactions and predator–prey
interactions for the growth rate of a consuming population.

Because the half-saturation parameter is more easily estimated in the field than is a 
specific handling time value, this approach (Eqns. 10.15 and 10.16) was employed by Gilg
et al. (2003) in their study of lemming–predator interactions in Greenland, as well as by
Turchin and Ellner (2000).

10.8 Parasitoid–host interactions and the Nicholson–Bailey models

As pointed out earlier, a parasitoid is a special type of predator. Rather than killing and
consuming the prey immediately, a female parasitoid lays its eggs on a particular stage of
a host species (usually a larval stage of an insect). The egg hatches into a larva which con-
sumes the host over a period of time, eventually killing it. The parasitoid emerges from
the host ready to hunt for more prey. The parasitoids are usually very host-specific and
must time their life cycles to those of their hosts. In addition, since there is a time delay
between egg laying and emergence of the next generation, discrete time equations are used
to model these interactions.
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Nicholson and Bailey (1935) developed models for parasitoids and their hosts. These
were the starting point for a series of more complex models developed by and expanded
to book length by Hassell (1976, 1978).

The assumptions of the basic Nicholson–Bailey model include:

1 The number of encounters, Ne, between Pt parasitoids and a host or prey species
is proportional to the host density, Nt.

2 The encounters are randomly distributed among the hosts. This means that
some host individuals will be encountered more than once, so that Ne can be
larger than Nt.

Given the assumption of random distribution of encounters, the proportion of hosts
not parasitized is given the zero term of the Poisson distribution:

ρ0 = e(−Ne /Nt ) (10.17)

The number of hosts actually parasitized is Na:

Na = Nt(1 − e−Ne /Nt) (10.18)

The number of encounters between Pt parasitoids and their hosts, Nt , can be restated as:

Ne = aNtPt (10.19)

where a is constant called the parasitoid’s rate of discovery. It is a measure of searching
efficiency.

It follows that Ne /Nt = aPt , and the number of hosts that are parasitized can be 
rewritten as:

Na = Nt (1 − e(−aPt)) (10.20)

This expression implies that the rate of parasitism will reach a saturation level as 
parasitoids find fewer and fewer hosts not previously attacked. Nicholson–Bailey called
this relationship a competition curve.

As mentioned above, because of the discrete seasonality of most arthropods and
because there is no age structure in most populations, the equations defining host 
and parasitoid dynamics are written as difference equations. The number of progeny 
a female parasitoid leaves behind is based on the number of hosts attacked.

The prey equation is therefore:

Nt+1 = λNt e−aPt (10.21)

where λ = the finite rate of increase per generation and e−aP represents the proportion of
hosts escaping attack by the parasitoid.

If we assume that only one parasitoid emerges from each host, the parasitoid equation is:

Pt+1 = Nt(1 − e−aPt ) (10.22a)
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However, we can allow more than one parasitoid to emerge from each host by adding
the parameter n to this equation. In Equation 10.22b, the parameter n equals the number
of parasitoids emerging from each host:

Pt+1 = nNt[1 − e−aPt] (10.22b)
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Figure 10.23 Density-independent host–parasitoid interaction. l = 2.0, a = 0.06 
and n = 1.0.
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Figure 10.24 Density-dependent host–parasitoid interaction. Parameters as in 
Fig. 10.23, but K = 50.
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The number of parasitoids in the next generation, then, is the product of n times the
number of host individuals times the proportion of host individuals successfully attacked.

Unfortunately, this model does not improve on the Lotka–Volterra model; the main
difference is the built-in time lag associated with the use of difference equations. While
the Lotka–Volterra model produces a neutrally stable cycle, the Nicholson–Bailey model
predicts unstable, increasing oscillations (Fig. 10.23).

However, the introduction of a density-dependent host growth factor will stabilize the
Nicholson–Bailey model (Hassell 1976) as in Fig. 10.24, in which a carrying-capacity term
has been added (Eqn. 10.23). The result is a stable cycle, although the oscillations are 
very large.

Nt+1 = λNt e[(1−N/Kn)−aPt ] (10.23)

If we look at these two interactions by graphing the host population on the x-axis and
the parasitoid population on the y-axis, we get Figs 10.25 and 10.26. Here we clearly 
see the mutual extinction of the two populations in Fig. 10.25 and the ellipse in Fig. 10.26,
which illustrates the stable limit cycle more clearly than does Fig. 10.24.

The introduction of the carrying-capacity term for the host produces a number of 
interesting results, depending on value of the other parameters. Under a large number 
of conditions the parasitoid–host interaction produces a stable cycle. For example, as 
we have shown in Fig. 10.26, if λ = 2.0, Kn = 50, n = 1.0, a = 0.060, N0 = 25 and P0 = 10,
the result is a stable cycle, whereas without the density-dependent term the result is mutual
extinction (Fig. 10.25). However, if we run simulations using a computer program like
Populus, we find a wide range of results from mutual extinction to a stable point. For
example, if the initial host population is too large or too small relative to its carrying 
capacity, the result can be extinction of the parasitoid population. If the host population
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Figure 10.25 Density-independent host–parasitoid relationship showing mutual
extinction. Based on data from Fig. 10.23.
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has a finite rate of increase that is too small, it can also lead to extinction of the parasitoid.
But an extremely high host rate of increase does not destabilize the interaction. A λ-value
of over 12 (= r of 2.5) simply leads to a stable limit cycle. On the other hand, given the
values shown above, lowering the carrying capacity of the host population to 25 leads to 
a stable point instead of a stable cycle. But either lowering Kn to 10 or raising it to 75 
leads to extinction of the parasitoid. The stability of this interaction is also affected by 
the searching efficiency parameter, a. A highly efficient parasitoid produces extinction of 
both the parasitoid and the host. An a-value of about 0.09 results in extinction of only
the parasitoid, whereas values between 0.03 and 0.06 result in a stable point rather than
a limit cycle (Figs. 10.27 and 10.28). If the parasitoid becomes even less efficient (values
much less than 0.03), it goes extinct.

Other factors that have been found to stabilize the parasitoid–host interaction include
(Hassell 1978):

1 Interference competition among the parasitoids. If female parasitoids avoid
each other or avoid laying eggs where others have laid theirs, the rate of 
parasitism rises more slowly.

2 A refuge for the host. As in other predator–prey models, if the prey has hiding
spots or habitats that cannot be found by the parasitoid, the interaction is more
stable.

10.9 Predator–prey interactions in practice: field studies

As we indicated at the beginning of this chapter, simple predator–prey models inevitably
predict an oscillatory interaction between predators and their prey. However, by adding
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Figure 10.26 Host–parasitoid relationship showing stable limit cycle. Based on data
from Fig. 10.24.
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a density-dependent factor for the prey population, and some version of a functional response
by the predator, depending upon the values of the parameters, these models predict a range
of responses, from extinction to cycles to stable points. Adding a carrying-capacity term
for the predator, independent of the prey population, may also help stabilize a predator–
prey interaction. More realistic models would include the ability of the predator to 
choose from among several prey species and/or among age classes within a species. With

H
os

t/
pa

ra
si

to
id

 p
op

ul
at

io
ns

0 2010 30 40
Number of generations

50

100

80

60

40

20

0

Host

Parasitoid

Figure 10.27 Host–parasitoid interaction with searching efficiency a = 0.03. Result
is a stable point.
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Result is a stable point.

ITP_C10.qxd  09/27/2005  02:10PM  Page 237



238 CHAPTER 10

these thoughts in mind we will now examine several examples of real-life predator–prey
interactions.

Fox–prey interactions in Sweden

The role of predators in controlling bird and mammal populations has had a controversial
history. As discussed earlier, based on his studies of rodent populations in England, and
after reviewing data on snowshoe hare and lynx populations, Charles Elton (1924)
believed that predator–prey interactions tend to be oscillatory (display a stable limit 
cycle) and that predators often control prey populations. At one point Peterson et al. (1984),
based on their experiences with the wolf and moose populations on Isle Royale in
Michigan, seem to have agreed. On the other hand, Errington (1946) and his followers
thought that predators mostly took a “doomed surplus” of the prey population. 
However, for 40 years following Errington’s work, there had been few studies in which
vertebrate predators were manipulated to discover their effect on vertebrate prey (but 
see NRC 1997).

Lindstrom et al. (1994) published data based on a “natural experiment” in which a
Scandinavian red fox (Vulpes vulpes) population underwent a severe sarcoptic mange 
epidemic. The mange mite (Sarcoptes scabiei) appeared in Sweden in 1975 and had a 
dramatic effect on fox populations throughout the 1980s. The mite caused hair loss, 
skin deterioration, and death, and the fox populations declined by 70%. This allowed
Lindstrom et al. to survey the effects on the small-game community of a dramatic drop
in a top-carnivore population.

The “alternate prey” hypothesis states that certain prey species are cyclic (3–4 years in
voles and lemmings, 10 years in snowshoe hares, for example) and are mostly uncontrolled
by predation. Such species are little affected by predation and the oscillations are likely
due to interactions with the vegetation (Turchin and Batzli 2001), while other species are
controlled by predation. In years when these cyclic prey numbers are in the low phase of
their cycle, predators switch to “alternate prey.” These alternate prey species are usually
limited by predation, especially during the years when the cyclic prey species are in the
low phase. In Scandinavia, Lindstrom et al. (1994) proposed that while voles are largely
uncontrolled, hare, grouse, and other small mammals and birds are alternate prey species
subject to control by predation.

Lindstrom et al. (1994) therefore examined the effect of the reduced fox populations
on voles, hares, grouse, and deer. Methods were as follows: (i) rodent populations were
surveyed by snap-trapping; (ii) the investigators checked red fox reproduction by enter-
ing dens and determining litter sizes; (iii) populations of hare, grouse, and deer were checked
by the pellet-count method; (iv) bird populations were estimated by using imitation 
birdcalls and recording responses; (v) hunters were given questionnaires concerning 
populations of all of the above and hunting records were consulted. Fawn/doe ratios were
estimated from “incidental observations.”

In the 1970s, previous to the mange introduction, red fox litter sizes followed the vole
(Cricetidae) densities, increasing during the vole peaks. The fox population declined dur-
ing the mange epidemic and then recovered after 1990 to the level before the mange appeared.
Vole populations were not affected by fox numbers. They continued their normal cycles
before, during, and after the fox mange epidemic. Lindstrom et al. hypothesized that these
cycles were in response to variations in plant productivity and snow depth. Mountain hare
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(Lepus timidus) and grouse populations went up 40–100% during the fox mange epidemic
and their populations dropped as the fox populations recovered.

Previous to the mange epidemic, black grouse (Tetrao tetrix) populations peaked one
year after the peak of vole density. As foxes concentrated on consuming voles, preda-
tion on the hares dropped, and hare numbers increased accordingly. European hare 
(L. europaeus) and black grouse populations followed the same patterns, consistent with
the alternate-prey hypothesis.

For roe deer (Capreolus capreolus) the fox population affected the mortality of fawns.
After the mange epidemic the number of fawns per doe increased 30% and the average
deer density went up 64%. However, the production of fawns was also correlated with the
previous year’s winter weather. With a delay of 1.5 years, snow depth explains 48% of 
the variation in fawn/doe ratios. Roe deer usually go into estrous in the second summer
of life and, with delayed implantation, give birth at age two. A fawn undergoing a hard
winter, however, would delay puberty by one year. Thus, there are fewer births 1.5 years
after a hard winter, introducing a time lag into the deer population response. Still, fox
density did have a significant effect on fawn production, even accounting for winter weather.

Summarizing: (i) All prey populations except voles increased in density as the mange
struck the fox population. All but roe deer returned to previous population levels as the
fox population returned to normal. (ii) Consistent with the alternate-prey hypothesis, whereas
voles are not limited by fox predation, hare and grouse are. (iii) Red fox is a “keystone”
species in structuring the small-game community in Scandinavia. It conveys the 3–4 year
vole cycle to the hare and grouse populations. It shows both a functional response and a
numerical response, since vole populations affect fox litter size. (iv) The mange mite, since
it affects red fox populations so drastically, could also be called a keystone species. (v) The
role of humans cannot be ignored. First, by exterminating wolves from this area, the role
of the fox has been enhanced. Second, by opening up the forest through clear-cutting prac-
tices, man has also created excellent fox habitat. In a closed forest the role of the fox is
likely to be of much less significance.

Are population cycles caused by predation?

Other work, however, seems to indicate that vole cycles are caused by predation. In 
the paper by Lindstrom et al. (1994), although red fox predation was temporarily elimin-
ated, weasel-type (Mustelidae) and avian predators were not controlled. Recent research
suggests that population cycling by prey species is only eliminated when all potential pre-
dators or parasites are eliminated (May 1999).

For example, Hudson et al. (1998) studied population cycles in the red grouse (Lagopus
lagopus). Red grouse have cycles of population abundance with an average period of seven
years. Moreover, these cycles are synchronized over large portions of northern England
(Cattadori et al. 2005). These cycles are of special interest because grouse are a traditional
English/Scottish shooting bird. About 75% of the British populations of red grouse
undergo these cycles. Hypotheses for causation included vertebrate predators, food sup-
plies, territory size, or parasite infections. According to Hudson et al. (1998), the answer
is that the cycles are caused by parasites and the synchronization is set by climatic condi-
tions affecting the transmission of the parasite (Cattadori et al. 2005).

The parasite is a nematode (Trichostrongylus tenuis). Hudson et al. (1998) began a study
of six grouse populations, in which they predicted cyclic troughs in 1989 and 1993. In two
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of these populations birds were caught and treated with an anthelminthic medicine that
eliminated the parasite. These treatments were in advance of the 1989 and 1993 predicted
crashes. Two of the populations were not treated, and two of the populations were treated
prior to 1993, but not prior to 1989.

The results were remarkable (May 1999). In the two untreated populations the predicted
crashes occurred, on schedule, in 1989 and 1993. The magnitude of these crashes was a
drop of more than three orders of magnitude. In the two populations treated twice, one
population remained steady throughout the period 1988–96, while the second showed a
small drop (threefold) in 1993. The populations treated only in 1989 had a major crash
in 1993, but remained relatively steady in 1989. For this vaccination program to work,
however, at least 20% of the birds had to be injected. This is based on models of epidemiology,
discussed in Chapter 9.

In a second example, Korpimaki and Norrdahl (1998) studied two species of field voles
(Microtus agrestis and M. rossiaemeridionalis) and a species of bank vole (Clethrionomys
glareolus) that show persistent three-year cycles in Finland. Korpimaki and Norrdahl set
up six large study areas of 2–3 km2. They reduced the numbers of weasels (Mustela
nivalis) and stoats, the major mustelid predators. They also removed kestrels (Falco 
tinnunculus) and owls, the major avian predators. In 1992, prior to an anticipated popu-
lation crash, they were successful in removing most of the weasels but not the stoats, 
and they did not attempt to remove the birds of prey. In 1995, however, they were able
to remove all of the predators. None of the predators were removed in the control areas.
In 1992, with only the weasels removed, the vole populations crashed, as did the control
populations in both 1992 and 1995. However, in 1995, when all the vertebrate predators
were removed, the vole populations remained steady without a crash. In earlier work,
Norrdahl and Korpimaki (1995) had removed only avian predators. Here again, the voles
crashed in both manipulated and control plots. We can conclude that vole cycles are indeed
caused by predators. To eliminate cycles, all of the predators must be removed; removal
of only a subset of the predator community leaves other predators to drive the cycle.

Turchin et al. (2000) drew a large distinction between vole and lemming populations.
They agreed that voles, such as Microtus agrestis, are limited by their predators. They con-
cluded, however, that lemming populations in Norway and other regions of Scandinavia
are controlled by their food supply. They make the case that because voles feed on 
grasses and other herbs with the ability to quickly recover after defoliation by mobilizing
underground food reserves, the vole–vegetation interaction is highly stable. According 
to Turchin et al., lemmings are primarily moss-eaters. Since mosses grow very slowly, 
the inherent time lag is highly destabilizing. Lemmings tend to deplete their forage in the 
arctic and alpine habitats where they live before predator populations begin to affect their
dynamics. Lemmings are highly mobile during these population peaks, leading to the myths
about lemming suicidal behavior (Chitty 1996). Thus, although both voles and lemmings
undergo periodic oscillations, the cycles are driven by different ecological mechanisms, 
a predator–prey interaction in one case (voles) and a food–herbivore interaction in the
other case (lemmings). This is a classic top-down (voles) versus bottom-up (lemmings)
population control paradigm.

All of these works stress that cyclic prey species are actually preyed upon by a com-
munity of predators, again reminding us of the inadequacy of a single predator/single prey
model. True cycles appear to be confined to northern temperate and subarctic ecosystems
and are unknown in the tropical latitudes or southern hemisphere (Sinclair and Gosline
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1997). Furthermore, it is widely believed that the amplitude of these cycles decreases at
lower latitudes. However, a review of 700 long-term (25+ years) animal population studies
found that this expected latitudinal gradient in population cycles can only be confirmed
for North American carnivores, British lagomorphs, and Fennoscandian rodent popula-
tions (Kendall et al. 1998). The database used by Kendall et al. did not include studies
from the tropics or the southern hemisphere. Nevertheless, they found periodicity in 33%
of the mammal and 43% of the fish populations reviewed. Periodicity was less common
among bird (13%) and insect (16%) populations, but was particularly common among
grouse. Since almost 30% of all populations in their review showed regular cycles, this
phenomenon cannot be dismissed (Kendall et al. 1998).

One reason that cycles may be more common at high latitudes among mammals is the
relative simplicity of the predator–prey community. For example, when Gilg et al. (2003)
studied lemming cycles in the high arctic tundra of Greenland, they found one major 
prey species, the collared lemming, and four predator species. Three species, as shown in
Fig. 10.11, were generalist predators (snowy owl, arctic fox, and long-tailed skua) and one
was a specialist predator, the stoat, a member of the weasel (Mustelidae) family. Mustelids
are prolific predators and prolific breeders, capable of a very strong numerical response.
In their study, Gilg et al. (2003) concluded that the lemming cycle in Greenland is driven
by predation and there is no evidence of food or space (nest site) limitation. The special-
ist predator, the stoat, produces the cycle. There is a one-year delay in the numerical response
of the stoat, resulting in a cyclical dynamic between lemmings and stoats. But the authors
emphasize that generalist predators are necessary to stabilize the lemming–stoat inter-
action. The three generalist predators focus on lemmings only when the lemming 
population is very dense. As seen in Fig. 10.11, all three have strong functional responses
to lemming density. Snowy owls and arctic foxes, in addition to stoats, also display a strong
numerical response. The generalist predators are thought to be necessary to slow down
the growth rate of the lemming at its highest densities, thereby allowing the specialist pre-
dator to catch up and begin driving the lemming population downward.

Some Canadian lemming populations, however, do not cycle (Reid et al. 1997). The
collared lemmings at Pearce Point in the Northwest Territories are preyed upon by a 
specialist predator (rough-legged hawk Buteo lagopus), a semi-specialist predator (red 
fox), and by several generalist predators (golden eagle Aquila chrysaetos, grizzly bear, arctic
ground squirrel Spermophilus parryii, peregrine falcon Falco peregrinus, and gyrfalcon Falco
rusticolus). The interactions are governed by differences between summer and winter pre-
dation rates. The major stabilizing factor, however, is the presence of ground squirrels,
which become the primary prey or principal alternative prey for the predators when 
lemming densities are low. Not only do ground squirrels provide a prey base to keep a
diverse array of predators in the ecosystem, but they also prey on lemmings themselves.
Without ground squirrels, Reid et al. (1997) hypothesize the loss of three of the generalist
predator species. The complex guild of generalist predators plus the ground squirrels found
in this ecosystem never allow the lemmings to go through an irruption.

Snowshoe hare cycles

As discussed earlier, snowshoe hare populations undergo 10-year cycles in North America,
and, based on pelts returned to the Hudson’s Bay Company, Charles Elton proposed that
lynx controlled these hare populations. Recently Krebs et al. (1995, 2001), set up 1 km2
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plots in the boreal forests of the Yukon in Canada. Fertilizer was added to promote plant
growth in some plots, and in some plots predators were excluded. To summarize this very
complex study, they found that both food and predation help drive the snowshoe hare
cycle, and that the two effects are likely linked. Although Krebs et al. (2001) emphasize
that “the hare cycle is not driven primarily by plant–herbivore interactions,” food 
limitation increased predation by forcing hares to search more extensively for food, 
by reducing their health, and by making them less likely to escape predation. This result
reinforces the predator-sensitive food hypothesis described below for wildebeest (Sinclair
and Arcese 1995).

When radio-collars were placed on hares, Krebs et al. (2001) found that 95% of 
the hares died as a result of predation. In the Yukon, predators included lynx, coyotes,
goshawks (Accipter gentilis) and great horned owls (Bubo virginianus). In this study, Krebs
et al. (2001) could not identify a predominant role for any one predator species. As phrased
by Krebs et al. (2001) “the hare cycle is not strictly a lynx–hare cycle, as many textbooks
claim.” The entire community of predators drives the hare cycles, not just lynx. In fact,
in areas such as the Anticosti Island in eastern Canada, where no lynx are found, the hare
cycles continue.

Another interesting twist is that when snowshoe hares are in a down portion of their
cycle, the predatory species turn on each other (O’Donoghue et al. 1995). These data also
come from the Yukon, where hare populations cycle every 8–11 years. Prey species included
red squirrels (Tamiasciurus hudsonicus) and voles. The primary predators included lynx,
coyotes, great horned owls, and goshawks, as well as red fox, wolverines (Gulo gulo), and
wolves. Since the primary predators appear to go through population cycles related to those
of the hare, O’Donoghue et al. put radio-collars on lynxes and coyotes and radio-tagged
owls, hawks, and other birds of prey in order to determine their fate.

Snowshoe hare populations peaked at 450 per square mile (174 per km2) in 1989–90
and declined to 7 per square mile (3 per km2) by the spring of 1992. The lynx population
declined from 60 to 15 per square mile (23 to 6 per km2). Did the lynx leave the area? 
If they died what were the causes of death?

Of 15 radio-collared lynx in 1991–92, by the spring of 1993 only seven remained. Six
individuals emigrated and two deaths were recorded. Collars were found as far away as
800 km in Alaska, British Columbia, and the Northwest Territories.

In 1992–93, of nine radio-collared lynx, all had died by April. One lynx was found healthy
and well-fed, but had been killed by a wolf. A female lynx was killed by another lynx. One
young male starved. A male and female pair was migrating into the mountains when a
wolverine killed the female. The male was killed by either a wolf or a wolverine, based 
on evidence from blood and tracks in the snow. The investigators actually witnessed 
a lynx being killed by a coyote. Other scientists have also reported witnessing lynx 
being killed by other lynx or by wolverines. All of this does not happen when hare 
are abundant. Furthermore, when hare populations are low, lynx themselves become very
aggressive, routinely killing red fox.

Birds of prey followed the same pattern. In 1989 and 1990, when hare were abundant,
10 of 11 goshawk nests succeeded in fledging their young. In 1991, 50% nest failure was
reported. All failed because of predation, evidently by great horned owls. The owls ate the
adult female birds as well as their young.

In conclusion, snowshoe hare cycles are not simply driven by the lynx population. 
The vegetation and the entire community of predators are involved in these cycles.
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Furthermore, these trophic interactions involve the community of predators itself. 
When prey populations are scarce, predatory animals turn on each other, and mortality
of the predators due to starvation was, in fact, relatively rare.

Moose–wolf interactions

Isle Royale is a 574 km2 island in Lake Superior that is a protected National Park. Moose
populations have been present on the island for about 100 years (Pastor et al. 1988). Shortly
after 1900 moose arrived on the island from Minnesota or Canada. They found abundant
food and no major predators. The Isle Royale ecosystem is, in fact, relatively simple in
terms of large herbivores and carnivores. As described by Smith et al. (2003), when moose
arrived, the only mammalian carnivores were coyote and red fox, and the large herbivores
included red squirrel, snowshoe hare and beaver (Castor canadensis). Ravens (Corvus corax)
were also present. The moose population rapidly increased to some 3000 individuals by
the early 1930s (Murie 1934). As they over-browsed their food supply the population declined.
Several forest fires in the 1930s resulted in the regeneration of aspen and paper birch (Betula
papyrifera), which allowed the moose population to increase again since these are preferred
foods. In the late 1940s, gray wolves arrived and evidently quickly extinguished the 
coyote population, maintaining a relatively simple food web. According to Mech (1966),
predation limited the moose population below its food supply. More recent research 
(Peterson 1999), however, indicates that both vegetation and wolves play a role in moose
population dynamics.

Between 1948 and 1950 four exclosures (each 100 m2 in size) were set up to evaluate
the effect of moose on the vegetation and other ecosystem properties. Pastor et al. (1988)
concluded that intensive moose browsing led to fewer deciduous trees and a forest 
dominated by spruce (Picea glauca) and balsam fir (Abies balsamea), which are less 
palatable to moose. In addition, lower levels of nitrogen remained in the soil. The net 
result was an ecosystem less able to support moose populations, since moose do less 
well on this diet.

Although there seems to be some agreement that moose populations are affected by
wolves, the question remains, how much of an effect? Peterson et al. (1984), based on about
20 years of data on the wolf population at Isle Royale, concluded that moose and wolves
would go through population cycles typical of predator–prey interactions involving
rodent and hare populations. However, since the body mass (M) of moose is larger, 
they concluded that moose–wolf interactions would cycle with considerably longer period
lengths. In fact, after noting that the intrinsic rate of increase of mammals scales as 
M−0.26, they proposed that vertebrates cycle as the fourth root of the body mass, M 0.25. From
this they predicted that moose populations should cycle with a period length of 38 ± 13
years. Given the paucity of data, however, this prediction cannot be confirmed. Moreover,
their prediction that “oscillating elephant populations” should cycle with a period of 
71 ± 21 years seems without merit.

Making predictions about prey and predator populations based on allometric relation-
ships or on prey-induced vegetation changes also ignores the role of climate. Mech et al.
(1987) showed that Isle Royale moose and northeastern Minnesota deer populations were
both significantly affected by the snow accumulation of the previous winter. In severe 
winters moose populations were not able to find browse, and their physical condition 
deteriorated. Many of the moose and deer that were killed by wolves would have starved
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to death anyway. Therefore, although wolf predation was a direct mortality agent, Mech
et al. believe it was secondary to winter weather in influencing deer and moose popula-
tions. In addition, snow accumulation during previous winters affects maternal nutrition
to such a degree that fecundity and/or calf survivorship during the next growing seasons
is seriously influenced.

The wolf population on Isle Royale decreased from 1981 through the mid-1990s,
because of a canine parvovirus, probably introduced from the mainland on the hiking boots
of visitors. During this period the moose population increased until it reached a record
level in 1995 of 2400. Before the wolf population could recover (there were approximately
50 in 1980 and 24 in 1995), the moose population crashed. Almost 80% died, mostly from
starvation, but a severe winter tick infestation contributed to the crash (Peterson et al.
1998). Peterson (1999) concluded that although the moose population density is influ-
enced by wolves, the population level is ultimately set by available food.

Smith et al. (2003) have pointed out how much more complex the food web is at
Yellowstone National Park in Wyoming, where wolves have recently been introduced, 
than is the case at Isle Royale. Whereas the only mammalian predators at Isle Royale 
are wolf and red fox, at Yellowstone coyote, mountain lion, grizzly bear, and black bear
(Ursus americanus) are found along with wolves. Human hunting on American elk
(Cervus elaphus, called red deer in Europe) must also be factored in. Avian predators at
Yellowstone include bald eagles (Haliaeetus leucocephalus), golden eagles, magpies (Pica
pica) and ravens, whereas only ravens are found on Isle Royale. Additional large prey species,
beside moose, found at Yellowstone are pronghorn antelopes (Antilocapra americana), bighorn
sheep (Ovis canadensis), mule deer, American elk, and bison (Bison bison). At Yellowstone
only 26 instances of wolves killing moose have been recorded since the wolves were 
reintroduced. Wolves mainly prey on elk, and are predicted to reduce elk populations. 
However, the elk herds have only declined by approximately 18% so far (Smith et al. 2003,
Ripple and Beschta 2003).

After reviewing 27 studies on moose–wolf interactions, Messier (1994) was able to 
generate both functional and numerical for wolves as a function of moose density. He 
concluded that when wolves are the single predator, a moose population will stabilize 
at 1.3 moose per km2, whereas the equilibrium density with no predators is 2.0 moose 
per km2. His analysis is consistent with a model proposing that under these circumstances
moose populations are regulated at low densities due to density-dependent wolf preda-
tion. However, Messier comments that Isle Royale is an exception: it has a high-density
moose population limited by food competition, and wolves are present but do not 
regulate moose density (Messier 1991, 1994).

Predator–prey relationships in Africa

Sinclair and Arcese (1995) studied the interaction between food supply and predation in
the regulation of large herbivore populations on the Serengeti Plain in East Africa. They
distinguished among three hypotheses:

1 The predation-sensitive food (PSF) hypothesis states that both food and pre-
dation limit prey populations. As food becomes limiting, animals take greater
risks to obtain food and become victims of predation.

2 The predator regulation hypothesis states that predators hold prey popula-
tions well below starvation levels.
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3 The surplus predation hypothesis states that predators kill only those prey
individuals that are excluded from optimal habitat and are already dying 
of starvation. This is similar to Errington’s (1946) ideas about the “doomed
surplus” of muskrat populations.

These three hypotheses were tested by examining the body condition of Serengeti
wildebeest (Connochaetes taurinus) over a 24-year period. Two phases of population
growth were examined: (i) 1968–73, when food was abundant and prey populations were
increasing; and (ii) 1977–91, when the wildebeest population was stationary and partially
regulated by competition for food. Sinclair and Arcese examined live animals, predation
kills, and non-predation deaths. Body condition was measured by an examination of bone
marrow, the last reservoir of fat in these animals.

The predator-regulation hypothesis predicts that bone-marrow condition will be 
similar in predator-killed and live samples, while the surplus-predation hypothesis 
predicts that bone marrow will be similar in predator-killed and non-predator deaths. 
The PSF hypothesis predicts that bone marrow condition of animals killed by predators
should be: (i) poorer than that of live animals; (ii) better than that of the animals who
die of causes, such as disease, unrelated to predation; (iii) better when food is limiting
than when it is abundant (because when food is abundant, predators only kill sick or young
animals).

Analyses of the bone marrow from animals dying due to predation or from non-
predation-related causes showed that these animals were in poorer health than the live
population. In both the increasing and stationary phases, the animals dying from preda-
tion were in better condition than the animals dying from non-predation causes. These
results are consistent with the PSF hypothesis, and inconsistent with the other two
hypotheses. Lions (Panthera leo) and hyenas (Crocuta crocuta) killed animals in similar
condition, but lions took younger animals.

The results suggest that: (i) body condition affects vulnerability of individual wildebeest
to predation, and (ii) predation jointly limits the population along with intraspecific com-
petition for food resources.

Sinclair et al. (2003) have also analyzed the community-wide patterns of predation in
the Serengeti ecosystems of Tanzania and Kenya. Twenty-eight species of ungulates and
10 species of carnivores inhabit these areas, consisting mostly of open grassland
(savanna). In any one habitat as many as seven species of canid and felid carnivores are
present. The predators range from 8 kg (Golden jackal, Canis aureus) to 150 kg (lions),
while prey sizes range from small gazelles (Gazella sp.), which weigh 18–20 kg, to elephants
(Loxodonta africana), rhinoceros (Diceros bicornis), and hippopotamus (Hippopotamus
amphibius), which come in at over 3000 kg. Long-term studies of the causes of ungulate
mortality show that the proportion of adult mortality due to predation is above 80% in
the smallest species such as oribi (Ourebia ourebia), impala (Aepyceros melampus), topi
(Damaliscus lunatus), and wildebeest. By contrast, in a heavier species such as zebra (Equus
quagga), adult mortality due to predation is 70%. There is a “threshold” in body size of
about 150 kg, after which deaths due to predation decline substantially. Only about 23%
of adult buffalo and 5% of adult giraffe (Giraffa camelopardalis) mortality is caused 
by predation; rhinos, hippos, and elephants (the “big three”) suffer virtually no adult 
predation. While the smallest ungulates are preyed upon by as many as seven different
predators, the number of potential predators falls off linearly as a function of the log of the
herbivore weight, to zero for the big three. Thus the smallest ungulates (less than 150 kg)
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are limited by the diverse array of predatory species, while the large ungulates are basi-
cally food-limited. A “natural experiment” confirmed this generalization. In the northern
Serengeti poaching and poisoning eliminated most of the carnivores, including lions, 
hyenas, and jackals, whereas in the nearby Mara Reserve the predator community remained
intact. During the years when predator populations were eliminated five of the species below
150 kg in weight increased their populations conspicuously as compared to the Mara Reserve.
Once the predators returned, their populations declined. By comparison, the 800 kg
giraffes did not increase in the predator-removal area. Sinclair et al. (2003) concluded that
the mammalian herbivore populations in the Serengeti ecosystem are subject to top-down
(predation) or bottom-up (food limitation) processes depending on their size.

10.10 Trophic cascades

A trophic cascade is a “progression of indirect effects by predators across successively lower
trophic levels” (Estes et al. 2001). Predators may have non-lethal effects on a prey popula-
tion when prey changes its behavior due to the presence of predators. This has been referred
to as the “ecology of fear” concept (Brown et al. 1999). In the predation-sensitive-food
hypothesis discussed above, both predation and food availability limit prey populations,
and prey occupy risky sites only when suitable vegetation is limited. Ripple and Beschta
(2003, 2004) have proposed that the reintroduction of wolves in 1995 into Yellowstone
National Park has already had a profound effect on the ecosystem. Elk will only forage at
sites that allow early detection and escape from wolves. The result has been re-growth of
cottonwood (Populus sp.) and willow in riparian areas along Soda Butte Creek and the
Lamar River. Both areas are frequented by wolves and are avoided by elk. Ripple and Beschta
(2003, 2004) have proposed that the return of willow and cottonwoods has provided shade
and cover, which will benefit both trout and migratory birds. Furthermore, several new
beaver colonies have colonized these riparian zones. The number of beaver colonies in
Yellowstone’s northern range has increased from one in 1996 to seven in 2003. Through
their dam building, these beaver populations will produce a multitude of effects within
these watersheds. Thus the reintroduction of wolves into Yellowstone has potentially 
produced a cascade of effects in both terrestrial and wetland environments, the full scope
of which will be unveiled in the next few decades.

10.11 The dangers of a predatory lifestyle

Ross (1994) has described the fate of solitary predators, such as cougars. Cougars, also
known as pumas or mountain lions (Felis concolor), are almost unique among solitary pred-
ators in that they consistently seek prey larger than themselves. African lions, hyenas, wild
dogs (Lycaon pictus), and wolves all practice cooperative hunting when attacking large prey.
Most solitary hunters, such as weasels or foxes, generally prey on creatures smaller than
themselves. Among the cats, leopards, cheetahs (Acinonyx jubatus), jaguars (Panthera onca),
and lynxes also usually follow this pattern of attacking smaller animals.

Attacking large prey has the drawback that it can sometimes prove fatal for the hunter.
Among Alberta cougars, there are some dramatic examples of what can go wrong in a 
violent struggle with a large prey animal. Aside from human hunters, these struggles are
the main cause of death in this cougar population.
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One young adult female suffered a broken back when the mule deer she was riding down
a steep slope slammed into a pine tree. Another female was speared by a sharp branch
when the elk that she eventually killed tried to shake her loose from its throat. An adult
male cougar that attacked a bighorn sheep lost his footing in the struggle, and both fell
to their death over a 27-meter cliff.

10.12 Escape from predation

Let us now change our focus to an evaluation of predator–prey relationships from the per-
spective of the lower trophic level. What mechanisms have evolved allowing organisms to
escape predation? These means of escape can be classified into the following four general
categories: (i) escape in time; (ii) escape in space; (iii) escape through behavior; (iv) escape
through physical/chemical mechanisms.

Escape in time or predator satiation

Life cycles have evolved so as to minimize predation or (for plants) herbivory. Usually
one part of the life cycle is highly vulnerable to predation, such as newly produced off-
spring or adult stages involved in reproductive behavior. Examples include mast-fruiting
in oaks, periodical cicadas (Williams et al. 1993, Karban 1997), bamboos that reproduce
once a century (Janzen 1976), century plants, mayflies, and the mating flights of ants and
termites. In all of these cases reproduction is synchronized in a local population or in many
populations over a large geographical area. So many potential prey organisms are produced
in such a short time period, or in such an unpredictable manner (e.g. periodical cicadas
reproduce once every 13 or 17 years), that potential predators can eat their fill (satiation)
without seriously reducing the prey population. Since predator populations cannot build
up due to the brevity of the vulnerable stage and/or the unreliability of the prey population,
the vast majority of seeds, seedlings, larvae, or other vulnerable stages “escape” predation.

Escape in space

In this case, the prey population is relatively rare and disperses readily, so that it is not
abundant in any local habitat. Since the prey population is so rare, the predator may never
develop a search image for it. Furthermore, predators that specialize on this species can-
not become very common themselves, given the limited number of opportunities to feed.
Such predators, once they find a prey population, however, may wipe it out completely.
Although the prey population goes locally extinct, if it disperses rapidly enough it will not
go extinct over a larger area. Such an interaction is consistent with the definition of a meta-
population that survives local extinctions as long as there are other local populations in the
region. Examples of such interactions are the herbivorous and predatory mites studied in
the laboratory by Huffaker (1958) and the Opuntia stricta–Cactoblastis cactorum relation-
ship in Australia (Dodd 1940).

Behavioral means

Prey species have a variety of means by which they confuse predators. Some of these are
combined with coloration schemes (see below). It is well known that among birds, adults
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will attempt to draw the attention of predators away from nests or vulnerable offspring
by attacking and mobbing them, creating noisy disturbances, or pretending to be injured.
Noteworthy also are herding (among mammals) and schooling (among fish) behaviors.
In order to hunt effectively, a predator usually needs to focus on a given individual. Animals
moving in herds or schools create confusion or disrupt the path of a predator that has
focused its attention on a particular prey individual. In other cases, potential prey 
attempt to intimidate their predators through aggressive displays. The frilled lizard
(Chlamydosaurus kingii) exposes a skin flap (a “frill”) around its neck, opens its mouth
widely, and makes aggressive lunges at a potential predator in an attempt to make it look
large and fierce. Several species of fish and toads are known to fill themselves with air in
order to look larger to potential predators.

Physical and chemical mechanisms

Physical toughness
In animals, spines, scales, quills, and bony plates are used for protection. Among plants there
exist spines (modified leaves), thorns (modified stems), epidermal hairs, thick cuticles, 
heavy cork layers, lignified or silicified cells in the epidermis or cortex, barbed and sticky
trichomes (an outgrowth of the epidermis), and the general use of fibers, lignin, crystals,
silicon, and cellulose itself to make plant tissues difficult to eat and to digest. When com-
bined with noxious chemical defenses (“secondary compounds”) produced by plants, the
result is that most plant material, including leaves, bark, stems, and roots, constitutes an
unrewarding diet for most animals.

Resistance to chemical degradation
Cellulose is the most abundant compound in plants. Approximately 10 billion tons of 
carbon is transformed into cellulose per year (Albersheim 1965). Cellulose is a linear 
polysaccharide, and the molecules are juxtaposed so as to form linear crystals or micro-
fibrils. As such, cellulose is highly resistant to chemical and enzymatic degradation.
Numerous bacteria, one termite species, and a few protistans have been shown to 
manufacture an enzyme, cellulase, capable of partially degrading cellulose. But cellulase
has rarely been evolved in the animal kingdom. Actually two enzymes are necessary to
degrade cellulose, cellulase, which yields the disaccharide cellobiose, and cellobiase that
hydrolyzes the dimer to yield free hexose.

Wood contains large amounts of lignin. Conducting vessels and the fibers that
strengthen plants are mostly lignified cell walls. Lignin is a close second to cellulose as the
most abundant compound in nature (perhaps 60% of the amount of cellulose). Lignin is
a polymer that contains a large number of aromatic side chains, and it is quite resistant
to chemical degradation and almost impervious to enzymatic digestion. In fact, lignin is
probably the most resistant compound to degradation by enzymes found in nature
(Albersheim 1965).

Coloration

1 Cryptic or camouflage coloration. Cryptic patterns, i.e., blending in with the
environment, are commonly found among arthropods, especially insects, and
all groups of vertebrates. Even cephalopods such as octopuses have evolved
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cryptic color patterns. Among insects, larval and adult stages have evolved
patterns that appear to be sticks, living leaves, dead leaves, flowers (Greene
1989), bark, lichens, and even bird droppings.

2 Confusing patterns. Several species of insects have evolved false “heads” or
other strange appendages on their rear ends. A possible explanation for such
traits is that they distract a predator, confuse it, and the result is an attack
that is much less likely to be fatal than one directly on the head.

3 Startle patterns. Several tropical butterfly species have color patterns on 
the underwings that are said to resemble owl’s eyes, and many other 
lepidopteran species have evolved concentric rings resembling vertebrate 
eyes (Blest 1957). When disturbed by a bird, the butterfly flashes these false
eyes, with the result that the bird may temporarily back away. Other insect
larvae have evolved morphological patterns and/or colors that make them
resemble snakes (Pough 1988).

4 Flash patterns. In this situation, a cryptic animal flashes a bright color 
pattern, which is normally hidden on the underside of the animal or by some
other means. For example, white-tailed deer flash their white tails when
alarmed. The white patch is highly visible as it runs away from its predator.
Subsequently, the deer usually takes a sharp-angled turn; at this point the
white tail is no longer visible and the deer, which is highly cryptic otherwise,
disappears from view. Having focused on the white tail, the predator has a
hard time visually locating where the deer has turned, and has trouble track-
ing it. Other examples include frogs that are a cryptic green color except for
a yellow underbelly. If discovered, the frog jumps and the potential predator
is “flashed” the bright yellow. This yellow is concealed as the frog settles again
into the green vegetation.

5 Aposematic patterns. Here we are interested in the interaction of color 
patterns with chemical defenses (discussed below). When an animal is 
dangerous, toxic, poisonous, or odoriferous, it is adaptive if the potential 
predator has been warned of the consequences of dealing with such an 
animal. Thus, such chemically protected animals have usually evolved highly
colorful patterns (red, orange, or other bright colors) that warn predators 
with color vision (birds, primates, etc.). Alternatively, they have evolved 
alternating stripes or spots of light and dark colors (e.g., striped and spotted
skunks, Mephitis mephitis and Spilogale putorius, and Hymenoptera such as
bees and wasps) to warn animals that lack color vision. These are known 
as aposematic or warning color patterns.

Chemical defenses
Plants produce a multitude of compounds that are not part of the primary metabolism
and are therefore called “secondary compounds.” We will discuss these in the next 
chapter. At this point we will simply note that the great diversity of physical and chem-
ical defenses among plants is one line of evidence suggesting that herbivores have greatly
influenced the evolution of plants. The chemical diversity of plants has evidently resulted
in a similar diversity in chemical defenses among animals. While some animals are 
able to synthesize their own chemical defenses, many acquire them from the plants they
consume. Such animals have not only evolved mechanisms to detoxify or tolerate 
the chemicals found in their diet, but they are also able to sequester or modify these 
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chemicals so as to provide them with protection from their own predators. Some animals
have active chemical defenses, for example skunks, bombardier beetles (Coleoptera)
(Eisner and Aneshansley 1982) and stinkbugs (Hemiptera). These animals are able to spray
their potential predators with noxious compounds. Other animals have a more passive
defense in that they taste bitter or are toxic if eaten.

Mimicry
The combination of poisonous host plants and chemically defended herbivores with
aposematic coloration set the stage for the evolution of mimicry. In Batesian mimicry,
the color pattern of an unpalatable model species is copied or mimicked by another species
that is not itself chemically protected. The classic case of the monarch (Danaus plexippus)
and the viceroy butterflies (Limenitis archippus) was described by Brower and his colleagues
(Brower and Brower 1964, Brower et al. 1967). The larvae of monarch butterflies feed 
on milkweed (Asclepias spp.) plants that contain cardiac glycosides in a milky sap. The
larvae are able to feed upon the glycosides without ill effect and store them in their 
tissues. The adult monarchs have an aposematic color pattern that is mimicked by the
viceroy. In the classic interpretation, viceroys are palatable to birds (but see below). When
a bird ingests a monarch, however, it often reacts violently to the cardiac glycosides, which
cause vomiting and seizures. Once a bird has this experience it never eats either a
monarch or a viceroy again.

In another type of mimicry (known as Muellerian mimicry) a group of species (again,
often butterflies) all are chemically protected and converge on a common color pattern.
The theory is that once a predator learns that a butterfly with this pattern is poisonous,
it generalizes the lesson to all of the species that have this color pattern. Recent 
experiments have suggested that under some circumstances the viceroy is chemically 
protected, and that the viceroy–monarch story may actually be one of Muellerian rather
than Batesian mimicry (Ritland and Brower 1991).

Although mimicry is most famous among members of the Lepidoptera, it should 
be noted that many other groups of insects can be mimics. Many flies (Diptera), for 
example, mimic bees and wasps (Hymenoptera) (Pough 1988).

Although discussions of mimicry usually focus on invertebrates, Pough (1988)
described many cases of mimicry among vertebrates. Among amphibians, the unpalatable
salamander, Plethodon jordani, is mimicked by palatable species of Desmognathus, and the
noxious red salamanders Pseudotriton ruber and P. montanus are probably Muellerian 
mimics. Among frogs, the terrestrial diurnal frogs of the genus Phyllobates (Dendrobatidae)
are protected by curare secretions in the skin. There is evidence that several species of frogs
in the family Leptodactylidae are Batesian mimics of Phyllobates.

Among reptiles, the most famous examples involve several species of snakes in the 
family Colubridae that are mimics of the coral snakes (genus Micrurus) (Greene and
McDiarmid 1981). Pough (1988) suggests that snakes, especially venomous snakes, are 
such extremely noxious models that predators have generalized their characters very
broadly. Additionally, if the model is sufficiently noxious, selection may act to produce
innate avoidance of the model. Because of the extreme toxicity of poisonous snakebites,
there is no opportunity for the trial-and-error learning by the predator that is the basis
for mimicry in insects or other less toxic vertebrates. Selection must therefore favor
predators that display an innate avoidance of the characteristics of model species, such 
as coral snakes.
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Several studies have shown that, indeed, several vertebrate predators do have an innate
fear of the coral snake pattern. Zoo-reared coatimundis (Nasua narica) and javelinas (Tayassu
pecari) were presented with rubber snakes. The coral snake pattern startled both species
and individuals fled. Rubber snakes painted green were attacked (Gehlbach 1972). Smith
(1975, 1977, 1980) obtained similar results using hand-reared birds. When turquoise-
browed motmots (Eumomota superciliosa) and great kiskadees (Pitangus sulphuratus)
were presented with wooden dowels painted in various neutral colors, both species 
readily attacked. Both species reacted with alarm calls and fled from dowels painted 
yellow with red rings. They also fled from a coral snake pattern of yellow, black, and red
rings. On the other hand, birds from the temperate zone, such as sparrows, blackbirds,
and jays, attacked all patterns presented, including the coral snake pattern. Thus, aversion
to aposematic colors does not seem to be an innate behavior of all birds. Innate aversion to
the coral snake pattern is, instead, a property of those species of birds potentially exposed
to coral snakes.

10.13 Conclusions

What have we learned about predator–prey interactions? Combining what we
know from theory, laboratory and field studies, we can conclude that predator–
prey interactions are stabilized by: (i) heterogeneity of the environment; 
(ii) nonrandom hunting by the predator; (iii) density dependence in the prey
population unrelated to the predator population; (iv) a prey refuge; (v) a less
efficient predator; (vi) providing the prey with less than optimal resources
to slow its growth rate and thereby avoiding the “paradox of enrichment;”
(vii) a complex of predators including enough generalists to dampen the 
destabilizing effects of the specialist predators; and (viii) the evolution of 
effective physical, chemical, or behavioral means by the prey species to limit
predation. On the other hand, simple predator–prey communities, time
lags, and specialist predators that overwhelm prey defenses tend to pro-
mote cycles or extinctions. Furthermore, although generalist predators
may stabilize some ecosystems, the introduction of either a specialist or 
a generalist predator into a “naïve” prey community may have devastating
consequences. A functional response by the predator which includes 
a significant handling/digestion time (energy) component can stabilize a 
predator–prey interaction if the prey population is kept at low densities. 
Once the prey population “escapes” and becomes so large that the func-
tional response of the predator has reached the “plateau,” the effect is 
destabilizing. Unless there is also a numerical response by the predator 
population, the overall predation rate would become inversely density-
dependent: the more prey, the lower the proportion of prey being consumed.
Finally, some prey species are controlled by predators, producing a top-down
effect on the community. As we will explore in the next chapter, other 
herbivorous prey species are controlled by plant productivity, resulting in a
bottom-up control of the community.
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Plant–herbivore interactions

11.1 Introduction

One of the most important fields of recent ecological inquiry has been that of plant–
herbivore interactions. There are several reasons for the rapid developments in this field.
(i) Herbivores are ecologically important. Globally it is estimated that herbivores consume
from 7% (Pimentel 1988) to 18% (Cyr and Pace 1993) of leaf area in terrestrial ecosystems
and from 30% to 79% of plant net production in aquatic ecosystems (Cyr and Pace 
1993). (ii) Caught between “plants and predators” (Olff et al. 1999), herbivores must deal
with the chemical and morphological defenses of plants while simultaneously defending
themselves from their own predators. The study of plants and their herbivores leads to new
understandings of interactions involving more than two trophic levels. (iii) Herbivores 
have been, and still are, important to the evolution of plants and other animals. Through
their activities, herbivores have evolutionarily shaped the plant community, partially
determining the diversity, abundance, and life form of plants. This, in turn, affects what
other types of animals are present and influences ecosystem processes such as energy flow
and nutrient cycling. (iv) Herbivores are economically important. In agricultural systems,
herbivores may often consume 50% of net productivity and therefore depress yield.
Under the worst of circumstances agricultural crops may be wiped out. Furthermore, the
animals we raise for food and other products are almost all herbivores themselves. Thus
a better understanding of plant–herbivore relationships is crucial to the success of our 

• Classes of chemical defenses
• Constitutive versus induced defense
• Plant communication and plant–parasitoid communication
• Novel defenses/herbivore responses
• Detoxification of plant compounds by herbivores
• Plant apparency, soil fertility, and chemical defense
• The optimal defense theory
• Modeling plant–herbivore population dynamics
• The complexities of plant–herbivore interactions
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agricultural endeavors. (v) Plant–herbivore interactions provide unique opportunities 
to investigate basic ecological and evolutionary processes such as coevolution, food webs,
plant chemistry, animal foraging, competition, and ecosystem processes such as nutrient
cycling.

The relationship between plant “secondary compounds” and herbivore–plant relation-
ships was first outlined by Fraenkel (1959). Since the compounds under discussion are
not part of the primary metabolism of plants, they were and still are known as “secondary
compounds.” Fraenkel suggested that plant secondary compounds have evolved as
defenses against herbivores and herbivores have strongly affected plant evolution. Since
the publication of his paper research has exploded in the fields of plant–herbivore rela-
tionships and chemical ecology. Ecologists such as Harborne (1993, 1997) and Hartley and
Jones (1997) accept that the major functions of plant secondary compounds are as
defenses against herbivores. Skeptics, such as Smith and Smith (2001) have asserted that
there is little evidence that plants evolved secondary compounds for a defensive purpose.
However, as Hartley and Jones (1997) put it, although “we are still not sure why plants
have such a huge array of secondary compounds or how this came to be, we do know that
these chemicals are important in keeping the world green.”

The basic theory, which has guided ecological thinking concerning plant–herbivore inter-
actions, was set forth by Ehrlich and Raven (1964). At that time the great diversity of chem-
ical compounds produced by plants was already widely recognized. Many chemists and
botanists referred to these compounds as waste products of plant metabolism, lacking any
adaptive value. Ehrlich and Raven, by contrast, asserted that secondary compounds were
the product of coevolution with herbivores. Plants that produced secondary chemicals 
made their tissues unpalatable or toxic, lowered herbivore damage, and had a selective
advantage since they could devote more energy to competition and reproduction. If 
less energy were lost to herbivores, then plants would grow more rapidly and enjoy 
competitive success. Any genes that allowed the plant to produce these chemicals would
spread throughout the population. By the same argument, herbivores could be expected
to adapt to plant defenses. Again, an herbivore that evolved a detoxification enzyme, or
other adaptation to allow it to feed on protected plants, would enjoy competitive success
compared to individuals unable to feed on these plants. As discussed previously, some 
herbivores have turned defensive chemicals to their own advantage. That is, by modify-
ing and storing plant toxins, the herbivore itself became unpalatable to predators. Thus
an herbivore, which evolved an adaptation for feeding on a chemically defended plant,
could potentially enjoy both competitive success and protection from its own predators.

Faced with an increasing number of herbivores adapted to a particular chemical defense,
plants have, according to Ehrlich and Raven’s theory, counter-adapted by producing addi-
tional defensive chemicals. This process of evolution and counter-evolution of chemical
defenses is often referred to as the “evolutionary arms race” and is thought to have helped
produce the great diversity of both angiosperms and the insects that feed upon them. Taken
together, land plants (particularly angiosperms) and insects make up more than half of
all known terrestrial species on earth (excluding microorganisms).

The Ehrlich–Raven theory is based on the following assumptions:

1 Herbivore activity is harmful to plants. This would seem to be obvious, but
this assumption cannot be accepted unequivocally.

2 Plants are able to evolve defenses that are effective in deterring feeding by
herbivores. Note that, although the Ehrlich–Raven theory stresses herbivores,
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these plant chemical defenses could just as easily have been evolved to
defend plants against attacks by fungi, bacteria, and other microorganisms.
Those chemicals that evolved as antifungal defenses, for example, might also
be effective against other microorganisms or herbivores.

3 Herbivore feeding activities, growth, reproduction, and evolution have been
guided by the ability of plants to defend themselves, both physically and 
chemically.

4 Although there exist herbivores that feed on plants of many species, genera,
or families with seemingly little regard for the identity of the plants, these
“generalists” are actually much more selective than they appear. Generalists
engage in a broad “sampling program” in which they eat small amounts 
of material from many plant species. The majority of what they consume, 
however, comes from a much smaller species list (Rockwood 1976, 1977,
Rockwood and Glander 1979). The careful manner in which generalists eat is
thought to be consistent with the central importance of secondary com-
pounds in plant–herbivore interactions.

5 The majority of herbivore species are not generalists, but are specialists, 
feeding on just one plant species, one plant genus, or perhaps one plant 
family (for example the Cruciferae or mustard family). Such specialization is
consistent with the idea that an herbivore that evolves a way of feeding on a
particular plant type eventually loses the ability to feed on other plants.

For example, one simple hypothesis, based on these assumptions, is that plants with
few specialized chemical defenses will be fed upon primarily by generalist herbivores, while
plants with specialized, complex chemical defenses will by fed upon mostly by specialist
herbivores. When Berenbaum (1981) examined the chemical defenses in the Apiaceae 
(the carrot family) she found some species defended by a relatively simple phenolic
(coumarin), some by linear furanocoumarins, and some by sophisticated angular furano-
coumarins. As the defenses became more complex the herbivores feeding on the plants
changed from mostly generalists (defined as feeding on more than three plant families),
to mostly specialists (those feeding on only 1–3 genera).

11.2 Classes of chemical defenses

Plants have evolved a wide variety of chemical defenses. Over 40,000 chemical compounds
known as allelochemicals have been described from plants (Berenbaum 2002). Allelo-
chemicals are characterized as having a negative impact on herbivores, disease organisms,
or other plants. The three main classes of secondary compounds are (i) terpenoids, 
(ii) phenolics, and (iii) nitrogen-based compounds such as alkaloids. The terpenoids or
isoprenoids are formed from acetyl coenzyme A, and are built on five-carbon units into
larger molecules. Phenolics include plant pigments such as anthocyanins but also include
the bitter-tasting tannins. These compounds are derived from the amino acid phenyl-
alanine or from malonyl coenzyme A, a precursor to fatty acid and lipid biosynthesis
(Harborne 1997). The major groups of nitrogen-based compounds are alkaloids, the glu-
cosinolates of the mustard family (Cruciferae), and non-protein amino acids. Glycosides
are dealt with below under nitrogen-based defenses, although cardiac glycosides (those 
found in milkweeds) do not contain nitrogen.
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The production of these secondary compounds is metabolically expensive. To synthes-
ize a gram of alkaloid requires 5 g of photosynthetic carbon dioxide, while a comparable
figure would be 2.6 g for a phenolic (Gershenzon 1994). On the other hand, compounds
like alkaloids are effective at low concentrations such as 2–4% dry weight, while others,
such as tannins, require a higher concentration, such as 5% dry weight in leaves, to be
effective. Alkaloid concentration is sometimes only 10–20% of the concentration of a 
comparable phenolic (Harborne 1997).

Nitrogen-based defenses

Alkaloids
Alkaloids are a heterogeneous group of substances that have two common characteristics:
they occur in plants and they have an organic base containing a nitrogen atom. They often
have a carbon ring structure. They impart a bitter taste to plants, some are very toxic, 
and some are hallucinogenic. Alkaloids have evolved many times in a variety of plant 
taxonomic groups. Accordingly, alkaloid biosynthesis has no underlying unity. When Levin
(1976) reviewed the literature he found that 16% of temperate-zone plant species and over
35% of tropical plant species contain alkaloids. Approximately 10,000 types of alkaloids
are known (Harborne 1988, 1997).

Alkaloids are less important than the phenolics since they are found in only about 20%
of angiosperm species worldwide and they are generally absent from mosses, ferns, and
gymnosperms (Harborne 1997). One reason why alkaloids, and nitrogen-based defenses
in general, are less ubiquitous than carbon-based defenses such as terpenoids and 
phenolics is that these alkaloids require protein amino acids. Amino acids are, in turn,
dependent on a supply of nitrogen, either from the soil or fixed by bacterial mutualists,
and nitrogen is usually limiting to plant growth. In legumes, although Rhizobium-type 
bacteria fix nitrogen from the air, the metabolic costs of fixation are high. The fact that
nitrogen-based defenses potentially drain needed nitrogen from protein synthesis may have
prevented such defenses from evolving more consistently. Nevertheless, there is a great
diversity of alkaloids, as described below.

1 Pyridine and piperidine alkaloids. The major example is nicotine.
2 Polyacetyl alkaloids. These alkaloids are found in the plant division

Lycopodophyta. Note that although alkaloids have evolved repeatedly in 
flowering plant families, they can be present in lower plant groups such as
the lycopods.

3 Pyrrolidine and tropane alkaloids. The major examples are cocaine (from coca,
Erythroxylon coca) and atropine (from deadly nightshade, Atropa belladonna, a
plant in the tomato and potato family).

4 Isoquinoline alkaloids. Examples include pain relievers such as morphine and
codeine.

5 Indole alkaloids. Examples include both the anti-malarial drug quinine and
the poison strychnine.

6 Pyrrolizidine alkaloids. Senecionine is found in the genus Senecio (ragwort)
and causes convulsions and liver damage if ingested. Since ragwort often grows
in open pasturelands, seneciosis is a common disease of livestock.

7 Pseudoalkaloids. When methylated nucleic acids are degraded, they produce
compounds now known as pseudoalkaloids. Examples include caffeine and 
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theobromine. Caffeine is, of course, the main pseudoalkaloid found in coffee,
tea, and cola nuts, while theobromine is found in cocoa. These compounds
are all stimulants and diuretics. While they are not very toxic, they give a very
bitter taste to seeds and other plant parts.

Glycosides
Glycosides are biologically active forms of steroids, derived from oligosaccharides.
Cardiac glycosides, known as cardenolides, are C23 steroids and, though belonging to the
terpenoid group (see below), are convenient to discuss here. They are known from at least
11 plant families, but are especially well known from the plant families Apocynanceae,
Asclepiadaceae, and Scrophulariaceae. Often the youngest leaves have the greatest amount
of these compounds. Cardiac glycosides are heart poisons, which usually provoke vomit-
ing among animals which ingest them, and can cause death in livestock. The heart drug,
digitalis, is derived from a cardiac glycoside. The cardiac glycosides in the milky sap of
milkweeds (Asclepias spp.) are well documented.

A recent review of the role of cyanogenic glycosides in plant–herbivore interactions 
is instructive (Gleadow and Woodrow 2002). Over 2500 plant species are able to release
hydrogen cyanide (HCN) upon ingestion by an herbivore. When an herbivore chews a
leaf it disrupts tissues and cells that had previously separated the β-glucosidase enzymes
from the cyanogenic glycoside compounds. The resultant degradation of the cyanogenic
compound eventually releases HCN.

Examples of poisonings of humans and animals, some leading to death, abound. In addi-
tion, there are many cases in which animals have been shown to avoid foods containing
cyanogenic glycosides. On the other hand, numerous studies have found that for some
herbivores glycosides have little effect or even act as a feeding stimulant (Gleadow and
Woodrow 2002).

As explained by Gleadow and Woodrow (2002), in attempting to understand a specific
herbivore–plant interaction, four factors must be accounted for. These are: (i) concen-
tration of the presumed toxin; (ii) the status of the herbivore as a “specialist” versus a
“generalist”; (iii) the ability of an herbivore to monitor glycosides in its diet; and (iv) the
feeding mode of the animal.

In the first case, the cyanogenic compounds must be present at a threshold level in 
order to be effective. For example, Gleadow and Woodrow (2000) found a significant 
inverse relationship between concentrations of cyanogenic compounds in young leaves of
Eucalyptus cladocalyx and herbivore damage. The age of the leaves and the health of the
plant often determines the level of defensive compounds in plants, and hence their level
of toxicity.

There exist a number of studies that illustrate the principle that, while specialists have
evolved the means to tolerate cyanogenic glycosides, plants containing these compounds
are avoided by generalist herbivores. For example, Schappert and Shore (1999a) found
that the number of herbivore species feeding on the plant Turnera ulmifolia in Jamaica
was inversely related to the cyanogenic glycoside content. Yet the total amount of 
herbivory was similar regardless of the glycosides. While the cyanogenic compounds
deterred generalist herbivores, the specialists were not deterred, and total leaf area lost 
was equivalent.

In many cases an animal is able to sequester the cyanogens while preventing the release
of HCN. These sequestered compounds are then used as a defense from predators. For
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example, larvae of Euptoieta hegesia accumulate cyanogenic compounds from Turnera 
ulmifolia and become bad-tasting to Anolis lizards (Schappert and Shore 1999b).

The third point is simply based on the fact that animals, including humans, are able to
monitor the amount of glycosides in their diet due to their bitter taste. Thus it is unlikely
that animals will actually poison themselves while feeding on plant material containing
cyanogenic glycosides. Hungry animals are more likely to overexpose themselves to plant
material containing glycosides. On the other hand, exposure to cyanogenic glycosides 
leads to an increased ability to tolerate them through greater detoxification ability. For
example, humans and other mammals can be induced to produce increased levels of the
enzyme rhodanase, which detoxifies HCN as it is released (Gleadow and Woodrow 2002).

Finally, Gleadow and Woodrow (2002) point out that any mode of feeding which 
minimizes tissue disruption will allow insects and other animals to successfully feed 
on plants containing cyanogenic glycosides. The main successful tactic involves using 
sucking mouthparts (Hemiptera, Homoptera) as opposed to chewing mouthparts
(Coleoptera).

Gleadow and Woodrow (2002) conclude that, although cyanogenesis is not a totally 
effective defense, it is toxic and distasteful enough to be effective against a wide variety of
herbivores if available in sufficient concentration.

Carbon-based defenses

Phenolic compounds
Phenolic compounds are essentially ubiquitous in the plant kingdom (Swain 1965,
Harborne 1988); they are found in ferns and gymnosperms, as well as in angiosperms.
Phenolics are defined as compounds with aromatic structures with one or more hydroxyl
groups attached (Harborne 1997). They have a common biosynthetic origin from the amino
acid phenylalanine. The total number of known phenolic compounds is estimated at 8000
(Harborne 1997). Phenolic compounds range in size from simple phenol, the essential oil
in Pinus sylvestris, to condensed tannins with molecular weights of 20,000. Phenolics include
flavanoids (derivatives of which give color to flowers and fruits), coumarins, and tannins.
The tannins are substances present in vegetable extracts that are responsible for convert-
ing animal skins into leather by the tanning process. When leaves of many plants are boiled
or decompose, tannins give the water its brown color. Tannins are defined as naturally
occurring compounds of high enough molecular weight (500–3000), and containing a suf-
ficient number of phenolic hydroxyl groups, to enable them to form cross-links between
proteins and other macromolecules. Phenolic compounds of lower molecular weight are
apparently too small in size to form effective cross-links, while compounds of molecular
weight beyond 3000 may be ineffective tanning agents because they are too large to pen-
etrate between plant collagen fibers. Although tannins are among the most effective types
of defensive compounds (Feeny 1976), simple phenols are also effective feeding deterrents.

Phenolic compounds are broadly toxic to most forms of life. Because of their ability 
to form cross-links with proteins and other polymers, phenols and tannins are capable 
of inhibiting enzymes, and are also markedly astringent. That is, they cause a dry or 
puckery sensation in the mouth by reducing the lubricant action of the glycoproteins in
the saliva.

There are two distinct types of vegetable tannins. The first class has a core polyhydric
alcohol such as glucose. Acids, bases, or enzymes can readily hydrolyze these tannins to
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yield a carbohydrate and a phenolic acid. Known as hydrolyzable tannins, the main 
effect of these compounds is to inactivate the digestive enzymes of herbivores, especially
insects.

Tannins of the second class contain only phenolic nuclei. These are called non-
hydrolyzable or condensed tannins. Condensed tannins are bound to cellulose and pro-
teins of the cell walls. They make it very difficult for herbivores to extract amino acids
from plant material and also defend plants from microbial or fungal attack.

Furanocoumarins
Furanocoumarins are another phenolic group (Harborne 1988) whose biosynthesis can
be traced back to the amino acid phenylalanine (Berenbaum and Zangerl 1999). These
allelochemicals are found primarily in two plant families, the Apiaceae (the carrot fam-
ily) and the Rutaceae (the rue family), and thanks to the work of Berenbaum and her col-
leagues (Berenbaum 1991, 1995, Berenbaum and Zangerl 1996), we know a great deal about
the biosynthesis and effects of the furanocoumarins in wild parsnip (Pastinaca sativa).
Furanocoumarins have biological effects on a wide variety of organisms, from bacteria and
fungi to insects and vertebrates. These chemicals “act principally by binding covalently 
to pyrimidine bases in DNA and interfering with transcription, but these compounds 
are also capable of causing toxicity by binding to unsaturated lipids in membranes, 
inactivating enzymes and generating oxyradicals” (Berenbaum and Zangerl 1999, p. 62).
Furanocoumarin content of leaves, roots, and stems can be rapidly “induced” to increase
by either biotic or abiotic damage. For example, furanocouramin content in leaves can
increase over 200% due to mechanical damage. Furthermore, this induced response 
can be rapid. Mechanical damage can cause xanthotoxin concentration to reach a 
maximum level within six hours (Berenbaum and Zangerl 1999).

Terpenoids
Isoprenoids and their derivatives constitute a group of naturally occurring plant mater-
ials that have in common the fact that are derivatives of the five-carbon compound 
isoprene, C5H8. This group includes essential oils, resins, steroids, carotenoids, and 
rubber. Terpenoids are classified according to the number of C5 units they contain. For
example, monoterpenoids are C10 compounds; sesquiterpenoids are C15 compounds, and
so on through tetraterpenoids, which are C40 compounds.

Produced by over 2000 species of plants in 60 plant families, monoterpenoids are 
usually pleasant-smelling, as in the characteristic odor of the pine family (Pinaceae). Cells
in the resin ducts of pine produce oleoresin, from which turpentine is made via steam 
distillation. Oils from citrus and Eucalyptus are also monoterpenes. When resin ducts 
are disrupted by herbivores the oleoresin, usually under pressure, spills out and is effective
in “gumming up” the mouthparts of insects and even vertebrate herbivores.

The triterpenoids, C30 compounds, include the toxic and bitter cucurbitacins produced
by the cucumber family (Cucurbitaceae), the cardiac glycosides described above, and the
saponins found in over 70 plant families (Harborne 1993).

In summary, the diversity of both physical defenses and of secondary compounds is
one line of evidence suggesting that herbivores have greatly influenced the evolution of
plants. The chemical diversity of plants, in turn, has aided in the production of chemical
defenses by animals. While some animals may have evolved their own chemicals, many
are dependent upon their host plant for their defenses.
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11.3 Constitutive versus induced defense

Plants usually produce a certain quantity of a chemical defense, a sort of background amount.
This is called a constitutive defense. After a plant is attacked, however, the amount of these
chemicals usually increases. In other cases, entirely new compounds are produced after
an attack. Such a reaction, known as an induced defense to herbivore attack, can be thought
of as a parallel to the immune system in animals.

According to Karban and Myers (1989), any change in a plant following herbivory 
can be thought of as an induced response. Such changes include not only allelochemical
induction (Baldwin 1994), but also increases in physical defenses such as thorn length (Young
1987), spine density, production of trichomes, emission of volatiles that attract predators
and parasites, reduction in plant nutritional quality for herbivores, and even increases 
in extrafloral nectar in plants protected by ants (Agrawal 2000). Induced defenses are not
limited to plants. Phytoplankton, rotifers, ciliated protozoans, cladocerans, and even carp
(Cyprinus carpio) are known to respond morphologically or behaviorally to the presence
of herbivores or predators (Tollrian and Harvell 1999). Even marine bryozoans have 
been shown to have inducible physical defenses. Bryozoans produced spines, which were
effective in reducing mortality, after being attacked by nudibranchs (Harvell 1984).

To qualify as an induced defense (or induced resistance), the response must result in a
decrease in herbivore or predatory damage, and an increase in fitness must be demon-
strated as compared to non-induced controls (Karban and Baldwin 1997). Harvell and
Tollrian (1999) identified the following as conditions necessary for the evolution of an
inducible defense: (i) the selective pressures should be variable and unpredictable, but some-
times strong; if the inducing species is constant, then permanent, constitutive defenses should
be present; (ii) a reliable cue is necessary to activate the defense; (iii) the defense must be
effective; (iv) the inducible defense must save energy as compared to a constitutive
defense or no defense at all.

The basic hypothesis is that while defenses increase plant fitness when herbivores 
are present, the energy invested in such defenses results in lowered plant fitness when 
herbivores are absent (Agrawal et al. 1999). Inducible defenses allow an organism to invest
in defense when necessary, but avoid costly allocations to defense when the herbivore or
predator is absent.

In the 1980s Schultz and Baldwin (1982) and Rossiter et al. (1986) showed that defolia-
tion by gypsy moth (Lymantria dispar) larvae stimulated oaks to increase the phenolic con-
tent of leaves. Rossiter et al. found a significant negative correlation between phenolic 
content of leaves and the size of female gypsy moth pupae. Assuming reproductive output
of a female gypsy moth is positively correlated with size, the induction of a high phenolic
content in oak leaves would be expected to eventually cause a decline in gypsy moth 
populations. However, a complication to this seemingly straightforward picture is the fact
that another control agent, the gypsy moth nuclear polyhedrosis virus, is inhibited by 
high levels of phenolic compounds in oak leaves. Even though leaf phenolics depress gypsy
moth reproduction, survivorship is enhanced due to suppression of the virus. The two
potential control agents work in opposition to each other, making it increasingly difficult
to predict the dynamics of gypsy moth populations (Foster et al. 1992). Furthermore, through-
out the 1990s gypsy moth populations declined to very low levels, apparently due to a
fungus. The moth populations in the eastern United States increased during the period
2000–02, but did not reached the population levels common in the early 1990s.
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Agrawal (2000) exposed the leaves of the herbaceous plant Lepidium virginicum
(Brassicaceae or mustard family) to herbivory by the larvae of Pieris rapae (Pieridae). Induced
plants responded by producing more trichomes per leaf and increasing the glucosinolates
(mustard oil) content of the leaves. While induction did not affect the feeding behavior
of the specialist P. rapae, feeding by generalist caterpillars in the family Noctuidae was
reduced.

In a related field study, Agrawal (2000) again induced a response by allowing leaves 
to be consumed by larvae of P. rapae. However, in addition to undamaged controls, he
damaged leaves by clipping with scissors. In the field, aphids were important herbivores.
Controlled herbivory by P. rapae induced resistance to attack by the aphids, but clipping
with scissors did not. The number of aphids feeding on control and clipped plants aver-
aged five per plant, while the average number on induced plants was just three per plant.
Furthermore, plant survivorship was lowest in the clipped plants. Previous studies have
suggested that the saliva of herbivores is necessary for successful defensive induction
(Bodnaryk 1992, Mattiacci et al. 1995). Plants therefore may respond differently to leaf
losses from herbivores as opposed to leaf damage from storms or other physical causes.

Other research has focused on the ability of plants to produce proteinase inhibitors that
inhibit the major digestive enzymes of insects. For example, when attacked by herbivores,
sagebrush (Artemisia tridentate) produces a compound known as jasmonic acid. Under
the influence of jasmonic acid, tobacco (Nicotiana sylvestris), tomato (Lycopersicon escu-
lentum) (Farmer and Ryan 1990, 1992), and alfalfa (Medicago sativa) plants all were induced
to produce proteinase inhibitors. More recently it was found that injury to a plant tissue
causes the production of a peptide hormone. The hormone stimulates the release of linolenic
acid, a fatty acid common to plant cell membranes. Linolenic acid is then converted to
jasmonic acid, which in turn stimulates proteinase inhibitors (Chen 1990). In another 
study, jasmonic acid stimulated the production of nicotine in tobacco plants (Ohnmeiss
and Baldwin 2000).

Some induced responses to wounds are considered “systemic.” This means that dam-
aged plant tissue may transmit a signal to other areas of the plant, resulting in the induced
reaction. Karban and Baldwin (1997) have outlined the requirements for a hypothetical
signal to be taken seriously.

1 The signal must be rapidly generated at the wound site;
2 the inducer must be known;
3 the signal must travel through the plant in a time course consistent with the

induced response;
4 the signal must stimulate the induced response at concentrations consistent

with those known from damaged plants.

Signals that have been proposed include: oligosaccharide fragments from cell walls, 
systemin (a polypeptide), salicylic acid, ethylene, abscisic acid, jasmonic acid/methyl 
jasmonate, and electrical signals (Karban and Baldwin 1997). Of these, jasmonic acid and
methyl jasmonate are the most likely signal compounds in that they meet the requirements
listed above (Karban and Baldwin 1997). Jasmonic acid is derived from common fatty acids
and it, along with its methyl ester relative (methyl jasmonate), are commonly found in
plants. Both compounds elicit a multitude of responses in plants. Mechanical wounding
increases the levels of jasmonic acid, which then move rapidly through the phloem.
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Moreover, methyl jasmonate is very volatile. Minute concentrations of gaseous methyl 
jasmonate can induce the synthesis of proteinase inhibitors, as described above. Other 
chemicals involved in plant defense such as ethylene, systemin, and several alkaloids increase
after plants are exposed to methyl jasmonate. The possibility that the gas methyl jasmonate
is a signaling compound provides a potential mechanism for communication among plants
(Karban and Baldwin 1997).

11.4 Plant communication

Damage to a plant may result in an induction of chemical defenses in neighboring plants.
Several experiments have shown that volatile chemicals are released when plants are 
damaged. Experiments by Rhoades (1983) and Baldwin and Schultz (1983) suggested 
that plants which share the same air space with damaged plants increase the production
of defensive chemicals even though they are not damaged themselves. In these early experi-
ments, however, the effect was temporary and alternative explanations have been offered.
Many scientists have questioned the results and, in other experiments, the evidence for
communication among plants was negative (Karban and Baldwin 1999). As outlined above,
methyl jasmonate was proposed to be the gaseous carrier, and a number of plant species
have responded to this signal by producing proteinase inhibitors. Evidence is increasing,
however, that volatile cues from damaged plant tissues may be used by herbivores, and
by the predators and parasites of these herbivores, to locate these plants. However, it remains
to be seen whether signals released by plants that are damaged are used by un-attacked
neighboring plants, to induce defensive responses (Karban and Baldwin 1999).

11.5 Plant–parasitoid communication

Research shows that when a herbivore, such as a caterpillar begins to consume a leaf, the
plant releases a volatile, “green leaf,” odor that attracts parasitoids. These parasitoids are
female wasps which sting the caterpillar, paralyze it, and lay eggs on it. The wasp eggs become
larvae, which then consume the caterpillar. Technically, “green leaf ” odors are simply 
mixtures of alcohols, aldehydes, and esters produced by oxidation of fatty acids from plant
membranes. Such volatile compounds are released by mechanical damage to plant tissues
and are relatively short-lived. But when a plant is infested with herbivores it produces a
suite of other compounds such as monoterpenes, homoterpenes, and phenylpropanoids.
These odors are long-lived and consistently attract predators. Salivary extracts from poten-
tial herbivores, or even from humans, can induce the production of volatile compounds
different from those produced by simple mechanical damage (Karban and Baldwin 1999).

DeMoraes et al. (1998) found that both tobacco and maize (Zea mays) plants produce
distinct volatile blends in response to damage by two closely related herbivore species (Heliothis
virescens, the tobacco budworm, and H. zea, the maize earworm). Oral secretions by the
herbivores trigger the production and release of several volatile terpenes. These terpenes
are induced, that is, produced de novo in response to insect feeding. The chemical com-
position of these volatile products varies among plant tissues, species, varieties, and even
cultivars! The parasitic wasp Cardiochiles nigriceps detects these odors and distinguishes
among them to locate its host, H. virescens, as opposed to H. zea. This study showed not
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only that these chemicals attract parasitic wasps, but also that the wasps can distinguish
among plants infested by different herbivore hosts. The interaction between plants and
the natural enemies of their herbivores is surprisingly sophisticated.

11.6 A classic set of data reconsidered

As described in the Chapter 10, the British ecologist Charles Elton proposed that the data
on pelt returns of snowshoe hare (Lepus americanus) and lynx (Lynx canadensis) by the
Hudson’s Bay Company provided support for the theory that periodical oscillations in 
populations are inherent in predator–prey interactions as predicted by the Lotka–Volterra
equations. Many factors have been proposed to explain the hare–lynx cycles, including
forest fires (Fox 1978). However, Bryant and Kuropat (1980) and Bryant et al. (1983) pro-
posed that the hare cycle was the result of induction of chemical defenses in the Lare’s
primary winter foods, willow (Salix spp.), alder (Alnus spp.), and birch (Betula spp.). The
chemical pinosylvin methyl ether, a toxic phenolic, deters feeding by snowshoe hares on
alder. The chemical is present in the foliar buds and catkins, but not in the internodes.
The hares will eat the internodes, but they are higher in fiber and lower in nutrients 
and carbohydrates as compared to buds and catkins. Willow, alder, and birch all have
inducible chemical defenses. When the snowshoe hare damages twigs or leaves, the re-
growth contains high quantities of phenolic resins and terpenes. Bryant et al. proposed
that the decreased amount of palatable browse provides the hares with little high-quality
food and results in population declines. Once the hare populations are low, the amount
of damage to twigs and leaves is reduced enough that the induced defenses decline. The
browse becomes more palatable and the hare population increases again. According to 
this reinterpretation, the lynx feed well at the peak hare population levels, especially since
the hare are in poor condition due to lack of quality food. Lynx populations go up, 
but the major effect of the lynx is to accelerate the decline in a hare population already
on the downswing.

Recently, however, Karban and Baldwin (1997) reviewed the literature and concluded
that induced resistance cannot provide the single factor that is necessary and sufficient to
produce cyclic dynamics. As was outlined in the previous chapter, Krebs et al. (1995, 2001)
found that both food availability and predation work synergistically to produce the hare
cycles. Karban and Baldwin (1997) feel that it is unclear at this point what role induced
resistance plays in driving population cycles of herbivorous species.

11.7 Novel defenses/herbivore responses

Many plants store resins, latexes, gums, and mucilages under pressure in networks 
of canals around the plant. When these plants are damaged, the fluids are released 
from the injured tissues. In many plants the canals contain defensive compounds. The
secretions also mechanically deter herbivores by interfering with their feeding since 
the secretions solidify when exposed to air. Sometimes insects are trapped in the 
secretions. Several species of Lepidoptera, Coleoptera, and Orthoptera circumvent 
the secretions by cutting trenches in the leaves, biting the veins, or even cutting the 
petioles. These species often have morphological adaptations for trenching or 
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vein-cutting. For example, Dussourd and Denno (1994) showed that the cabbage looper
(Trichoplusia ni) is able to cut a trench in leaves of Lactuca serriola, thereby disrupting the
flow of latex to areas of the leaf distal to the trench. Not only is the cabbage looper able
to feed on leaves distal to the trench, but so also is the yellow-striped armyworm
(Spodoptera ornithogalli), a generalist herbivore. Lacking the ability to trench on its own,
however, the armyworm is unable to feed successfully on plants with intact canals.

Becerra (1994) has reported on a squirt-gun defense of the succulent deciduous 
shrub Bursera schlechtendalii, found in Mexican deserts. This plant has simple leaves that
produce terpenes distributed in a network of resin canals located in the stem cortex and
throughout the leaves. When a leaf is cut, a syringe-like squirt of terpenes is released. The
squirt travels 5–150 cm and persists for several seconds. Some leaves release large
amounts of terpenes without the squirt response. This “rapid bath response” covers the
entire surface of the leaf. Other leaves do not release resins when damaged. A specialized
beetle (genus Blepharida, Chrysomelidae) feeds only on the leaves of this species. The 
larvae are able to sever the resin canals. They bite the mid-vein to eliminate the squirt 
or bath response. If larvae are bathed or squirted they withdraw from the leaf and try to
clean themselves, remaining inactive for many hours.

Becerra (1994) showed that there is a great deal of variation in terpene response within
the Bursera population. In most plants, 80% of the leaves released resins when damaged.
Some had extremely high responses, with resin squirting from mid-veins and from lateral
veins. The number of plants with high response increased throughout the season. Larvae
growing on plants with high rates of response had higher mortality rates. Early-instar larvae
are unable to sever veins, and feed by leaf mining. Sometimes they inadvertently rupture
canals. When this happens they die, covered with resins. Larvae also grow at a slower rate
on plants with a higher frequency of leaf response. High frequency of leaf response is 
correlated with leaf scars, probably indicating an induced response from a prior attack.
The frequency of vein-cutting behavior is also associated with frequency of leaf response.

In summary, canals can be effective barriers against non-specialized insects. Even 
specialized trenching insects have higher mortality on highly responsive plants. It can 
take 1.5 hours for a larva to deactivate a resin canal of a leaf. The consumption of a leaf 
after disarming takes only 10–20 minutes. Thus there is high handling cost. Meanwhile,
the plant’s response is not fixed but depends on water potential and plant health.

11.8 Detoxification of plant compounds by herbivores

Animals are by no means helpless in the face of plant secondary compounds. Both 
invertebrate and vertebrate herbivores have evolved detoxification mechanisms. There 
are basically three parts to detoxification. Since these toxins are usually attracted to lipids
(lipophilic), the first step is usually for the herbivore to convert the compound to a water-
soluble form, usually an alcohol, so that it can be excreted. So-called phase I enzymes 
are found in the livers of vertebrates and involve cytochrome P450. These enzymes are
capable of acting on a wide variety of chemicals and are known as PSMOs (polysubstrate
mixed-function oxidases), or simply mixed-function oxidases (MFOs). PSMOs are
known from many groups of animals. In insects they are found in the gut, fat bodies, and
Malpighian tubules. In addition to oxidation, other reactions such as reduction and/or
hydrolysis may occur (Harborne 1993).
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In the second stage of detoxification, the metabolite from stage I is conjugated with 
a sugar or sulfate anion. This means that the compound from stage I is united with 
another molecule to form an inactive, non-toxic, product. These reactions require energy.
Therefore, although an herbivore may not suffer damage from ingesting plant material
containing plant toxins, the detoxification process is an energy drain. In the last stage, the
conjugated chemical is excreted through bile or urine. There is a great deal of variation
in the detoxification process, both between and within species. For example, Millburn (1978)
found that benzoic acid is excreted as a conjugate of glycine in mammals, amphibians,
fish, and insects, as an ornithine conjugate in birds and reptiles, and as an arginine 
conjugate by arachnids. As pointed out by Harborne (1993), 14% of the British people
cannot metabolize the alkaloid betanin, the red pigment in beetroot (Beta vulgaris). The
result is red-colored urine after ingesting beets (beeturia). The major point to bear in mind
is that herbivores are capable of detoxifying defensive chemicals, but there are high
metabolic costs in doing so.

11.9 Plant apparency and chemical defense

A general theory developed by Feeny (1976) stated that the amount and the type of defense
a plant has evolved is dependent on the likelihood of its being found and consumed by
herbivores. His hypotheses are as follows:

1 Plants which are large, woody, persistent, have clumped distributions, and 
which are abundant are “bound to be found” by herbivore populations. 
Feeny called such species “apparent,” and asserted that they would have 
a relatively large investment in chemical defenses. Such plants produce
chemicals such as phenolics that reduce the ability of all herbivores to digest
the plant parts that contain them. Such “digestibility-reducing compounds” 
often bind to proteins in such a way that herbivores have great difficulty 
eating, swallowing, and digesting this vegetation. These compounds are more
effective in larger doses and take more time and energy to produce than 
some other defensive compounds. Thus Feeny termed them “quantitative
defenses.”

2 “Unapparent” plants are small, herbaceous, and ephemeral, have highly dis-
persed distributions, and/or are rare. If toxins are present they are effective
at low concentrations, are rapidly produced, and require less total energy in
their formation. Alkaloids and glycosides are examples of such compounds,
termed “qualitative defenses” by Feeny. These compounds are effective in
deterring generalist or non-adapted herbivores. They are subject to counter-
adaptation and often are consumed by host-specific herbivorous insects. r-
selected plants, which exist in temporary environments, where growth rates
can be very high due to lack of competition, primarily use the qualitative
defenses, while K-selected plants should favor the quantitative defenses. 
K-selected plants normally use carbon-based defenses (especially phenolics).
This may be because “apparent” plants are often members of a community
in which nutrients eventually become limiting to growth. On the other hand,
defenses found among r-selected species include nitrogen-based alkaloids,
glycosides, and carbon-based coumarins.
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3 Defenses vary with time in plant parts. New leaves are ephemeral and some-
what unapparent, in that their characteristics change. Young leaves are 
usually less tough, higher in water and protein content, and lower in defens-
ive compounds, particularly of the quantitative type (Feeny 1970, Rockwood
1976). As a leaf ages it increases its quantitative defenses, becomes tougher
through changes in fiber or lignin content, and its protein and moisture con-
tents drop. At the other extreme, as leaves age they often become senescent
and more susceptible to herbivore or fungal attack (lilac, Syringa vulgaris, leaves,
for example). As explained in the section on optimal defense theory, plants
invest chemical defenses in the most valuable tissues. Nitrogen-based
defenses are withdrawn from less valuable tissues. Thus new leaves have higher
amounts of qualitative defenses than older leaves. For example, in Coffea 
arabica leaves, purine alkaloids are present at those periods when the plant
is most susceptible to herbivory. During leaf development the concentration
of the alkaloid increases to 4% of dry weight in new leaves. The rate of syn-
thesis decreases as the leaf matures. At senescence the leaf contains only
traces of the alkaloids (Harborne 1993).

11.10 Soil fertility and chemical defense

Janzen (1974) observed that tropical plant communities growing on nutrient-poor white-
sand soils always had fewer herbivores than nearby plant communities based on fertile
soils. He hypothesized that plants growing on infertile soils would have a difficult 
time replacing tissues lost to herbivores, due to their slow growth rates. Therefore, the 
permanent or “apparent” plants found on such soils should be heavily protected by 
quantitative defenses. Indirect evidence in favor of this hypothesis is that rivers draining
such white-sand environments contain tea-colored waters. These brown- or black-water
rivers contain large amounts of phenolic compounds that have leached from the surround-
ing plant communities. The famous Rio Negro of the Amazon basin drains such a 
white-sand area.

McKey and his colleagues (McKey et al. 1978) tested this idea in Africa. Plants from a
white-sand region in Uganda had twice the phenolic compounds as compared with plants
from a nutrient-rich soil in Cameroon.

Finally, Coley and others (Coley 1980, Coley et al. 1985) have shown that plants not
limited by a physiological stress of some kind are fast-growing, have higher leaf protein
contents, shorter leaf lifetimes, higher herbivory rates, lower amounts of defensive
metabolites, and higher turnover rates of defenses as compared with plants that grow slowly.
Furthermore, herbivores, especially generalist herbivores, have a definite preference for the
fast-growing plant species.

11.11 The optimal defense theory

The distribution of defensive compounds within a plant is perhaps best explained by the
“optimal defense theory.” This theory predicts that tissues of high fitness value, speci-
fically those whose contributions to fitness lie in the future, will be better defended than 
tissues of less value. This theory assumes that defense is costly in terms of energy and 
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nutrients consumed, and that trade-offs exist between defense and other functions such
as growth and reproduction. Furthermore, the theory predicts that within-plant alloca-
tion of defenses will be a function of the relative fitness values of the plant parts, as well
as their probability of being attacked. In most cases the youngest leaves and the tissues
associated with reproduction have the highest fitness values and are well protected by 
secondary compounds such as alkaloids and glycosides.

Ohnmeiss and Baldwin (2000) tested the optimal defense theory using tobacco plants.
A great deal of research has been done on tobacco, and the plant has several character-
istics that are ideal for this type of research. First, it is known that this defense is costly.
Nicotine is one of the most energetically costly secondary metabolites known, and after
induction a plant produces enough nicotine that it consumes 5–8% of the plant’s nitro-
gen budget (Baldwin et al. 1994). Second, the mechanisms for inducible nicotine defense
are known. Herbivory and leaf wounding induce jasmonic acid (JA) synthesis in the leaves
at the wound site. JA is then transported from the wound site via the phloem to the roots,
where nicotine synthesis occurs. Nicotine is subsequently transported to the shoot via xylem.
Third, since research has already established the physiological responses of the plant to
nitrogen limitation, it is possible to test whether changes in leaf value are mirrored by
changes in the distribution of the defense. Finally, nicotine is used as a proxy for energy
devoted to defense, although it is likely that the plant produces proteinase inhibitors and
other defensive metabolites.

Ohnmeiss and Baldwin wounded or removed leaves of different ages (young, mature,
old) and determined the effects of nicotine allocation and fitness (viable seed production).
Results were: (i) Leaf removal at the elongation stage of growth results in a significant decrease
in seed production, but leaf removal at the rosette or flowering stages does not.
Apparently the plants can compensate, and damage to rosette leaves can be replaced. 
By the time of flowering, plants have already allocated resources for seed production. Within
the elongation stage, the least amount of seed production was lost when old leaves were
removed, but significantly fewer seeds were produced if young or mature leaves were lost.
(ii) The relative value of leaves decreases from young and mature to old leaves. (iii) Leaf
damage significantly increases the whole-plant nicotine contents of rosette-stage plants,
but not of later stage plants. (iv) After damage, younger leaves are more heavily defended
than older leaves at the elongation and flowering stages. (v) Under nitrogen limitation,
tissues of the highest value are defended at the expense of other leaves. Overall, Ohnmeiss
and Baldwin (2000) concluded that plants distribute nicotine among leaves in accordance
with their fitness value, supporting the optimal defense theory.

11.12 Modeling plant–herbivore population dynamics

Most plant–herbivore models are for grazers. As pointed out by Turchin (2003, p. 112),
a grazer is a “consumer that scores low on both intimacy and lethality.” That is, models
are usually based on generalist herbivores, which do not usually kill their resources, and
which consume small amounts from many different individuals and species of plants.
Specialist herbivores, especially sucking insects, are functionally parasites and score high
on the “intimacy” scale. As we will see, grazer–vegetation models tend to be similar to
predator–prey models when they focus on the quantity of vegetation harvested by grazers.
In these models we assume that plant quality does not change in spite of attack by 
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herbivores. In another approach, the assumption is made that plant quality is the variable,
while quantity is held constant.

Crawley has summarized several possible models for vegetation–herbivore population
interactions of the first type (the quantity of the vegetation is the variable). To begin, we
can use the basic ideas gleaned from predator–prey models described in the previous chap-
ter. Density-independent plant growth can be described as rvV, where rν is maximum growth
(equivalent to the intrinsic rate of increase) and V represents plant abundance or biomass.

For density-dependent plant growth we can simply use the logistic equation:

dV/dt = rvV

where Kv is a carrying-capacity term for the plant population.
We then subtract plant losses due to herbivore feeding. This is equivalent to the 

herbivore functional response and can be of several forms. Since herbivores are not usu-
ally killing the vegetation, we measure the grazer’s functional response in terms of
amounts of biomass removed. We also have to be careful how we define V for the herbi-
vore since most herbivores cannot eat entire plants, but specialize on leaves, stems, buds,
etc. Recall from the last chapter that we used E as a coefficient measuring the efficiency
of predation. Here F will be used to measure the efficiency of herbivore removal of 
vegetation biomass. If the herbivore functional response is simply modeled as FNV, where
N is the number of herbivores, we have the equivalent of the Lotka–Volterra equation 
for prey. This is essentially a type I functional response, linear and unlimited, meaning
that there is no handling component, and that each herbivore has an unlimited appetite.
However, we can add either a type II or type III functional response as we did in 
Chapter 10. The type II functional response would be:

where h is the handling-time component. The type III functional response is:

and finally, the functional response with a half-saturation constant for the herbivore–
plant interaction is:

The term f equals the maximum consumption or grazing rate when the search and 
capture components have been minimized, and b equals half of the maximum consump-
tion rate.

Using the functional response with the half-saturation constant, the plant growth equa-
tion becomes:

fNV

b + V

FNV 2

1 + Fh3V
2

FNV

1 + Fh2V

Kv − V

Kv
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dV/dt = rvV − (11.1)

Before we continue by modeling the herbivore or grazer population, we should stop
and consider a point raised by Turchin (2003) and others. Using the logistic for growth
of the vegetation assumes that when V is close to zero, growth rate is rather slow at first,
then accelerates until V = Kv /2, before slowing down to zero at Kv . The problem with this
is that many plants, especially grasses, store 80–90% of their biomass underground
(Wielgolaski 1975). When we are modeling V, we are usually only measuring above-ground
vegetation (e.g., leaves and stems). As Turchin points out, when re-growth occurs after
an herbivore attack, the initial re-growth pattern is more likely to follow a linear path to
K, as opposed to a logistic pattern (Figure 11.1).

Using this logic, the equation describing re-growth in the absence of herbivore losses
simplifies to Equation 11.2:

dV/dt = u0 1 − (11.2)

where u0 represents plant growth rate when V is close to zero, and V specifically repres-
ents above-ground biomass.

Originally proposed by Turchin and Batzli (2001), this is known as the linear initial 
re-growth or simply the re-growth model. In contrast to the logistic model, V increases 
linearly to K with no initial slow-growth phase. Turchin (2003) points out that both 
models are simplistic, but different vegetation systems are reasonably characterized by one
of these two models. For example, when lemmings feed on mosses, the logistic best describes
the interaction since most of the moss biomass is vulnerable to direct consumption. On
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Figure 11.1 Vegetation recovery from grazing: logistic recovery versus linear
regrowth.
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the other hand, grasses and sedges are best modeled with the linear re-growth equation,
in that most of the biomass is underground and escapes herbivory. The exception would 
be if herbivores such as root voles (Microtus oeconomus) consume rhizomes and other 
underground parts (Pitelka 1957, Tast 1974).

The herbivore population is modeled with growth based on a positive numerical
response to increases in plant net production, coupled with a density-independent or 
density-dependent mortality rate. The numerical response can be of several forms.
Following the Lotka–Volterra format for the predator population, with no limits based
on a functional response, the numerical response is simply χh fNV, where f is maximum
grazing rate and χh is the herbivore’s assimilation rate. The product χh f describes the 
maximum rate at which plant material is turned into herbivores, and is the equivalent of
χpc in Equation 10.16. We can again add either a type II or type III functional response
to the numerical response. Alternatively, we add the numerical response based on the half-
saturation constant (Equation 10.16):

The herbivore death rate can simply be a density-independent constant, mh. Or we 
can add a coefficient, θ, which is density-independent when equal to one, but which 
increases the herbivore death rate at high densities if θ > 1. The resultant equation (11.3)
describes the dynamics of the herbivore population with a functional response and a 
density-dependent death rate:

dN/dt = − mhN
θ (11.3)

Crawley (1997) makes the interesting point that functional responses often work more
in terms of the amount of food per herbivore as opposed to the amount of food per area.
This point has also been made for predator–prey relationships. Therefore the functional
response might be more appropriately modeled as ratio-dependent. Using Equation 11.3,
if we assume θ = 1 and the functional response is dependent on the ratio of V/N, we have:

dN/dt = χh fN − mhN (11.4)

If we assume both populations of herbivores and plants have stopped growing, they 
reach an equilibrium when dN/dt = 0 in Equation 11.4. By canceling the Ns, the result
χh f V = mh N can be solved for V * (Eqn. 11.5), which is the equilibrium plant abundance.
V* turns out to be directly proportional to the herbivore equilibrium population size, N*,
and the herbivore death rate, but inversely proportional to herbivore foraging and assimila-
tion efficiency. Obviously high plant abundance is favored when herbivore foraging 
efficiency is low and/or the herbivore population has a high death rate. Less intuitively obvi-
ous is the positive relationship between herbivore equilibrium population size and plant
abundance. In fact, if we solve Equation 11.5 for N*, we have Equation 11.6, which implies
that an increase in vegetation results in an increase in herbivores. But Equation 11.5 seems
to say that an increase in herbivores leads to an increase in vegetation biomass. As pointed
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out by Turchin (2003), these equations, which are the equivalent of the Rosenzweig and
MacArthur model in Chapter 10, lead to the so-called “paradox of enrichment” in which
the system is highly unstable when there is an abundance of vegetation.

V* = (11.5)

N* = (11.6)

If we replace the logistic equation for vegetation growth with the linear re-growth equa-
tion, we have the herbivore/re-growth model of Turchin and Batzli (2001) (Eqns. 11.7
and 11.8). The herbivore equation is based on Equation 10.16b, in which χh is again the
assimilation efficiency of the herbivore, f represents the maximum grazing rate and b is
the half-maximal grazing rate by the herbivores. The parameter µh is the minimum food
intake necessary for the herbivore to survive, and u0 represents plant growth rate when V
is close to zero:

dV/dt = u0 1 − − (11.7)

dN/dt = χhN − µh (11.8)

According to Turchin (2003) this model produces stability, mainly because the logistic
model has an inherent time lag built into it, while the linear model does not. Also, 
the fact that most of the biomass of the plants is protected below ground means that the
vegetation has a refuge, invulnerable (normally) to grazing. As we saw in Chapter 10, 
the presence of a refuge has a stabilizing effect on a consumer–resource system.

To this point we have exclusively focused on the quantity of the vegetation available to
grazers, but based on the theory of inducible defenses discussed above, the dynamics of
herbivore–plant interactions include changes in the quality of the resource for the grazer.
By preferentially grazing on better-quality plants and plant parts, and by inducing defenses,
heavy grazing by an herbivore population results in lower–quality resources for itself.

Edelstein-Keshet (Edelstein-Keshet 1984, Edelstein-Keshet and Rausher 1989) developed
a model that includes plant quality as a variable. She assumed that, without herbivory,
plants devote less energy to defenses and overall plant quality increases. By contrast, 
grazing tends to decrease plant quality for herbivores. A simplified form of her models 
is presented below (from Turchin 2003):

dQ /dt = q − fQN(N − n) (11.9)

dN/dt = rhN = rhN 1 − (11.10)

In this model, Q is average plant quality, N is herbivore density, n is a specific density of
herbivores, and rh is the maximum growth rate of the herbivore population. Equation 11.9
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assumes that in the absence of grazers, Q increases at the constant rate, q. The second
term represents the loss of quality due to the presence of herbivores. The phrase (N − n)
describes a tipping point. When N < n, the plant quality is increased faster than in the
absence of herbivores (see below). When N > n, plant quality is decreased by grazing. Equa-
tion 11.10 is simply the logistic equation for the herbivore, but the carrying capacity of
the herbivore depends on average plant quality (Q/q).

This model predicts that an increase in grazing leads to dampened oscillations leading
to a stable point. Furthermore, the interactions produce lower average plant quality when
grazing intensity is high.

Turchin (2003) developed a discrete-time model for herbivore–plant interactions that
encompasses plant quality. He then applied this model to the interaction between larch
trees (Larix sp.) and the larch budworm (Zeiraphera diniana) in the Swiss Alps. The moth
population displays regular oscillations, which cover five orders of magnitude. Time-series
data are available from 1959 through 1977 for this moth population. As Turchin noted,
plant quality is currently the “reigning” explanation for the larch budworm oscillations.
When he analyzed the time-series data, however, he found that plant quality explained
only 31% of the variance in the budworm populations. Secondly, he found that parasitoids
(ichneumonid wasps) likely played a role in determining larch budworm rates of change.
Finally, Turchin (2003) has found that a tritrophic model combining both plant quality
and parasitism is superior to any single explanation. His conclusion mirrors what we have
found previously: a model involving three trophic levels, combining plant quality and 
parasitism, did the best job in matching the observed dynamics of the larch budworm 
populations.

Tritrophic (three trophic level) models can be traced to Oksanen et al. (1981), who 
combined the plant–herbivore and predator–prey models of Rosenzweig and MacArthur
into a three-equation set. Turchin proposed that the vegetation model be based on his
herbivore–plant re-growth equations described above (Eqns. 11.7 and 11.8). The her-
bivore (prey) growth rate is diminished by the term cNP/(d + N) as described in 
Chapter 10. rh is the maximum growth rate of the herbivore (prey) population, while χp

is the predator’s assimilation rate. The predator equation is identical to Equation 10.16b, 

but Turchin has added a predator self-limitation term, . s0 and κ represent the 

rate of increase and a carrying capacity due to territoriality.

dV/dt = u0 1 − − (11.11)

dN/dt = rhN − µh −

dP/dt = χhP − µp −

In summary, (i) the addition of self-limitation terms adds stability to both plant–
herbivore and predator–prey systems; (ii) modeling producers with the re-growth, rather
than the logistic model, also produces a more stable outcome (Turchin 2003).
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11.13 Conclusions: the complexities of herbivore–plant interactions

Herbivores can affect individual plants, plant populations, and plant com-
munities in subtle, complex, and unexpected ways.

Distribution. Herbivores have the ability to limit the distribution of plants
geographically or by habitat. Reef fishes limit the distribution of turtle grass
(Thalassia testudinum) to areas away from the protection provided to the 
fish by the reefs. Randall (1965) observed a conspicuous band of bare 
sand averaging 10 m in width that separated coral reefs from beds of sea
grasses (Thalassia testudinum and Cymodocea manatorum). The klamath
weed (Hypericum perforatum) introduced to California from Europe, became
so widespread and common that it was considered a pest. The beetle
Chrysolina quadrigemina, which feeds upon it in Europe, was introduced. This
introduction, a successful case of biological control, limited the klamath weed
so well that it is now found only in shady moist areas where the beetles do
not reproduce (Holloway 1964).

Attack by other organisms. Although attack by herbivores may result in
an increase in induced defenses, heavy attacks can leave the plant in such
a weakened condition that it becomes subject to further attack. Rockwood
(1974) described one variation on this theme. The calabash tree (Crescentia
alata) was defoliated by hand in order to examine the effects of defoliation
on reproduction (see below). At the time of defoliation it was noted that mature
leaves had very little herbivore damage, but a beetle was consuming newly
produced leaves at the top of the tree. After the hand defoliation the entire
tree produced a crop of new leaves. Beetles flew in from a wide geographic
area and began feasting on the new leaves. The tree was completely defo-
liated again, while neighboring control trees, full of mature leaves, were
untouched by the beetles. The trees actually flushed a crop of leaves again
and were once again defoliated by the beetles. This cycle of destruction ended
when the beetles went dormant in the dry season.

Effects of herbivores on productivity and reproduction. One of the tenets
of plant–herbivore theory is that herbivore activity has a negative effect on
plant growth and reproduction. Such an obvious relationship is, however, more
complex than it appears. Several authors have proposed that herbivory, up to
a certain level, may be beneficial to plant growth and reproduction. Let us
begin with the common recommendation that roses and fruit trees are kept
productive by a constant pruning. Next we should note that grasslands are
kept at high productivity by either allowing grazing by herbivores, or by a con-
sistent mowing. Finally, Paige and Whitham (1987) and Whitham et al. (1991)
found that when the scarlet gilia (Ipomopsis aggregata), an herbaceous plant
from the southwestern United States, was browsed such that the apical meris-
tem was destroyed, it responded by producing multiple inflorescences and
up to three times as many flowers, fruits, and seeds. In all of these studies
the plants appear to compensate for herbivore damage through re-growth.
In some cases the re-growth appears to be great enough to surpass the growth
in the un-browsed plants. This is known as overcompensation.
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Is overcompensation possible, and is it real? In theory, low levels of 
herbivory can be beneficial to plants such as monocots, in which the meris-
tems are near ground level, for the following reasons: (i) herbivores remove
old, non-productive tissues while allowing light to penetrate to the ground
where new leaves are found; (ii) herbivores speed up the cycling of mineral
nutrients (old leaves are consumed and deposited on the ground as
manure, which is quickly broken down by fungi and bacteria, releasing 
mineral nutrients); (iii) the saliva of herbivores contains growth-promoting
substances or encourages an induced defense that protects the plant from
further herbivore attacks. McNaughton (1986) endorsed overcompensation,
asserting that plants have the capacity to compensate for herbivory and 
overcompensate for damage so as to increase fitness. Crawley (1997), how-
ever, stresses that there is actually no evidence that herbivory can increase
Darwinian fitness. He believes that overcompensation has yet to be proven from
a well-designed, controlled experiment. In grasses, for example, although
above-ground production is maximized by frequent mowing or grazing, it is
at the expense of energy storage in roots, or results in suppression of flower-
ing and fruiting. In his critique of Paige and Whitham (1987), Crawley (1997)
finds it likely that their result was due to large plants being allocated to the
grazed group and small plants to the ungrazed controls.

If overcompensation does occur, the following factors must be explored:
(i) timing of herbivory: if a plant is browsed early in the growing season, there
is ample evidence that many plants are able to recover; (ii) nutrient, water,
and light availability: overcompensation can only occur if the plants are not
stressed by a lack of resources needed for photosynthesis; (iii) competition:
if there are few competitors in the area, then a plant can recover, again assum-
ing adequate resources are available; under heavy competitive stress, how-
ever, a plant that is damaged by an herbivore will lose its position in the
community to other plants that are not damaged; (iv) type of tissue lost: 
as seen in the paper by Ohnmeiss and Baldwin (2000), damage to certain
tissues, such as new leaves, is of much greater importance to plant 
productivity than is damage to other tissues.

Certain plant species have little potential for compensatory responses. For
example, species with a physiology that limits new growth, or that live in
resource-limited environments, will be severely affected by herbivore
attacks. On the other hand, species such as r-selected annuals and peren-
nials, with rapid growth rates and a physiology that allows a rapid response
to herbivore damage, are likely candidates for overcompensation. Long-lived,
woody perennials, however, are unlikely to easily recover from severe 
herbivore damage.

High levels of herbivore damage severely limit reproduction in many
species. Rockwood (1973) showed that heavy defoliation virtually eliminated
reproduction in six species of tropical shrubs and small trees.
Subsequently, Marquis (1984, 1992) and Rockwood and Lobstein (1994) have
demonstrated a graduated response to differing levels of herbivory. At low
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levels of herbivory, reproduction is little reduced. However, the timing of 
the defoliation, its local intensity, and the amount of competition from other
plants all modify the reproduction responses to defoliation. Less than 50%
defoliation had little effect on herbaceous plants in northern Virginia
(Rockwood and Lobstein 1994), and the effects of defoliation were often
expressed a year later. Marquis (1992) discovered that a given branch of 
the tropical shrub Piper arieianum suffered an 80% reduction in seed 
production from a mere 10% leaf removal when it was concentrated on that
one branch. Finally, when the plant Abutilon theophrasti was grown at low
densities, up to 75% defoliation had no effect on reproductive fitness. At 
high densities, however, the same amount of defoliation reduced reproduc-
tion by 50% (Lee and Bazzaz 1980).

Community-level effects. Certain herbivores and predators have been
described as keystone species. The mere presence or absence of such species
is critical to community organization and ecosystem functioning. A simple
example is the effect of elephants (Loxodonta africana) in East Africa.
Because of their browsing activities and their ability to destroy even the largest
trees, a large population of elephants can convert shrub land into a habitat
dominated by grasses. Conversely, if elephants are removed from an area
it may change back to heavy brush. Darwin discovered that the grazing of
cattle on the English heath prevented forests from being established. Upon
close examination, under the heath stems he found small fir trees, one of
which was 26 years old according to its growth rings. When this common
land was enclosed, ending a tradition dating to the Middle Ages, the heath
quickly converted to forest (Kingsland 2004). The introduction of Nile perch
(Lates niloticus) into Lake Victoria and a species of bass into Lake Gatun in
Panama virtually eliminated many species of smaller plankton-feeding fish.
This resulted in increases in zooplankton populations, higher consumption
rates of phytoplankton, and a decline in overall productivity in the lakes. In
some cases a group of ecologically related species, known as a guild, can
be considered as keystones. Brown and Heske (1990) reported that elimin-
ating three species of seed-eating kangaroo-rats in the Southwestern
United States led to an increase in large-seeded winter annuals. Rescued
from rodent predation, the large-seeded species eventually out-competed
the small-seeded annuals.

Other rodents such as prairie dogs (Cynomys ludovicianus) can have 
complex effects on the plant community. In Texas, Weltzin (1991) found that
the elimination of prairie dogs was usually followed by an increase in the
shrub mesquite. He excluded cattle from an area containing a prairie dog
colony. The rodents removed pods and seeds from mesquite and stripped
bark from young plants. Such activities help reduce mesquite establishment
from around their colonies. He concluded that elimination of prairie dogs in
the past had allowed mesquite to spread throughout the cattle ranges.

On the other hand, at Wind Cave National Park in South Dakota, it was
shown that prairie dogs favored the establishment of herbaceous dicots over
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grasses. With no prairie dogs present the herbaceous community consisted
of 87% grasses and 13% herbaceous dicots. With prairie dogs present it shifted
to 47% grasses and 53% herbs.

Paine (1966) carried out the classic study on keystone predators. In 
the rocky intertidal zone off the coast of Washington state there were 
15 species of coexisting invertebrates. The dominant predator was the
starfish Pisaster. The community consisted of species of chitons, limpets,
bivalves, barnacles, and a marine snail. Paine experimentally removed
starfish from half of the experimental areas. In those areas where the starfish
was removed, the bivalve Mytilus and the barnacles became the dominant
competitors. They crowded out several other species and the community
declined to eight coexisting species. The starfish, when present, preyed 
consistently on the dominant competitors, preventing them from crowding
out the other species.

Paine’s work lead to the general hypothesis that predators restrict 
populations of competitively dominant species and allow coexistence of a
greater number of species than would occur in the absence of the pre-
dators. This is known as the “top-down” control of communities. As has been
recently shown by Robles and Desharnais (2002), this view was too simplistic.
A variety of factors, including the interplay of the physical environment 
with prey refuges, prey dispersal, and prey production determine prey 
populations and community structure. Nevertheless, Paine’s classic work
was an important milestone in the history of ecology.

The relationship between herbivores and plant diversity is muddled.
Though some studies have shown an increase in plant diversity with her-
bivory (Belsky 1992), some have shown a decrease (Milton 1940), and still
others no effect whatsoever (Crawley 1989). Again, we must stress that 
herbivore populations are themselves affected by their own predators 
and parasites (Hartley and Jones 1997). Thus, the control herbivores 
might have on plant communities can be neutralized by top-down forces.
Herbivores themselves, of course, are most likely controlled by a combina-
tion of bottom-up and top-down forces.

Multiple-trophic-level effects. As mentioned in Chapter 10, tritrophic inter-
actions involving plants, herbivores, and predators can produce “trophic 
cascades” by which predators affect prey populations to the extent that the
herbivore–plant interactions are fundamentally altered. Predators can
thereby influence plant productivity and community composition (Marquis and
Whelan 1994). Evidence for trophic cascades includes the reintroduction of
wolves (Canis lupus) to Yellowstone National Park described in Chapter 10.
In other cases, the effect of predators on herbivore–plant interactions 
has been demonstrated by experimentally removing predators. In one such
experiment, Marquis and Whelan (1994) caged white oak (Quercus alba)
saplings to eliminate bird predation on insect herbivores over a two-year
period. Birds were allowed free access to control plants and to a third treat-
ment in which they used insecticides to estimate plant growth with minimal
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insect damage. In the first year, caged plants suffered 25% leaf area loss,
as compared to 13% in plants where birds preyed upon insect herbivores.
Sprayed plants suffered only 6% leaf damage. Figures in the second year
were 34%, 24%, and 9%, respectively. Prior to this study, most examples 
of trophic cascades (the effect of predators and parasites on plant pro-
ductivity and composition) had come from aquatic ecosystems. For terrestrial
forests, these results mirror those of Turchin (2003) (larch budworms and
their parasitoids) described above. In this case, however, we are dealing with
the entire insect herbivore community and its interaction with the insect-
consuming bird community.

In conclusion, herbivores have had significant effects on the evolution 
of plants and continue to exert considerable selective pressure on plants
today. Yet herbivores themselves have been under “the gun” from their own
predators, so to speak, in both contemporary and evolutionary time. Several
lines of evidence tell us that the most effective way to investigate herbivores
is to evaluate both their food resources and their predators. Of course the
roles of herbivores in an ecosystem are also undoubtedly affected by 
the physical environment, including the soil and the local climate.

In this book we began with simple growth models for single populations. These models became
increasingly complex as we added time lags and stochastic effects. In the second half of the
book we began with relatively simple competitive interactions involving only two species. We
then moved on to consider interactions between different trophic levels, again starting with
simple two-species models (one predator, one prey). But you should now realize that all inter-
specific interactions must be analyzed in the context of the entire community of organisms,
not simply in terms of one competing or one predatory species. Plants are attacked by a multi-
tude of herbivores; herbivores exist in a community of both competitors and predators; and
predators themselves are bedeviled with parasites while they compete with other predators 
of their own species, as well as with individuals of other species. All of this takes place on a
complex physical landscape and in an ever-changing climate. Attempting to understand, much
less model, these complexities should keep population ecology (indeed all types of ecology) fresh
and challenging for a long time to come.
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Problem sets

Here are six exercises to help you see how some of the population models in the book
work in practice. The first five relate to Chapter 1, the sixth to Chapter 4. Answers have
been provided for problem 6 only.

Problem 1

You survey an annual insect and find 5000 females per acre. One year later, you census
the population and find 6000 females per acre. What is the net replacement rate, R, for
this population? What size will the population be three years from the original census if
the population continues to grow at the same rate? Five years later? Ten years later? In
what year would the population reach 100,000?

Problem 2

The birth rate for Asia in 1982 was 30 per thousand, while the death rate was 11 per 
thousand. What was the intrinsic rate of increase, assuming a stable age distribution? 
If the population size was 2.67 billion, what was the projected population in 2004?
Between 1982 and 2001 the population increased from 2.67 billion to 3.72 billion. What
was the actual r during that time period? Given this r-value, what is the doubling time?
What is λ?

Problem 3

In 1995 the human population of the world was 5.7 billion. The population of China 
was 1.2 billion. If its birth rate is 17 per thousand and its death rate is 10 per thousand,
what was China’s intrinsic rate of increase? In what year would the population of China
exceed the 2001 population of the world (6.137 billion) if it continued to grow at the 
1995 rate?
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Problem 4

In 1981, the world human population was 4.5 billion. The birth rate was 28 per thousand
(= 0.028 per capita) and the death rate, 11 per thousand (= 0.011). Thus the r-value was
0.017. Using these figures, project the population for 20 years to 2001. What was the expected
human population based on those figures? Compare this to the actual human population
of 6.1 billion in 2001. Now project the population 119 years to the year 2100. What is the
projected human population for the year 2100 based on the 1981 figures? How does this
compare to the 11 billion projected by the UN and Lomborg (2001)?

Problem 5

A yeast population grows as shown in the table below. Time is measured in hours. Find
the rmax (per hour) and ra (actual r over the entire time period) for this population.

Time in hours N (cells per mL) ln N ln[(K −− N)/N]
Use K == 320

0 10
1 20
2 40
3 75
4 140
5 210
6 273
7 300
8 310
9 315

10 318
11 319
12 317
13 318
14 319
15 315
16 319

Hint: Find the natural log of N and complete column 3. Then find the natural log of 
(K − N)/N and then complete column 4. Prepare graphs of columns 2, 3, and 4 versus
time. For rmax find the slope during the exponential phase of growth (hours 0–4, for 
example). For ra, find the slope of the values computed in column 4 versus time.
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Problem 6

A population has the life table shown below. Find the gross reproductive rate (GRR), 
the net reproductive rate (R0), px, and qx. The px and qx columns have been filled in 
for you. Would r be predicted to be positive, negative, or zero? Find r, λ, the stable age
distribution, the life expectancy by age class, and reproductive value by age class. Given
the population by age class at time zero, project this population one year into the future.
Repeat this process, using the Leslie matrix.

Age, x lx mx px qx nx at t == 0 nx at t == 1

0 1.00 0 0.40 0.60 1000 900
1 0.40 1.0 0.50 0.50 300 400
2 0.20 3.0 0.25 0.75 100 150
3 0.05 2.0 0 1.00 60 25
4 0 0 – – 0 0
∑ 6.0 1460 1475

GRR = ∑ mx = 6
R0 = ∑ lxmx = (0.40)(1) + (0.20)(3) + (0.05)(2) = 1.10
Since R0 > 1, r should be positive
To estimate r, we begin by estimating G (generation time)
G = ∑ xlxmx/R0 = 1.90/1.10 = 1.73
Estimate of r = ln R0/G = ln(1.1)/1.73 = 0.055
Next, confirm r with the Euler equation. We use r = 0.055 in column 4 (below) and 
r = 0.056 in column 5. Since 0.056 produces a sum closer to 1.000, we will use 0.056.
Since λ = er, λ = 1.057

Age, x lxmx xlxmx lxmx e−−rx lxmx e−−rx

r == 0.055 r == 0.056

0 0 0 0 0
1 0.40 0.40 0.379 0.378
2 0.60 1.20 0.538 0.536
3 0.10 0.30 0.085 0.085
4 0 0 0 0
∑ 1.10 1.90 1.002 00..999999

Matrix t = 0 t = 1

∑ = 1460 ∑ = 1475

0 40 1 50 0 50 0

0 40 0 0 0

0 0 50 0 0

0 0 0 25 0

1000

300

100

60

900

400

150

25

. . .

.           

     .      

          .

   =
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Stable age distribution with r = 0.056

Age, x e−rxlx cx for stable age distribution

0 1.00 0.625
1 0.378 0.236
2 0.179 0.112
3 0.042 0.026
∑ 1.599 0.999

Expectation of life

Age, x lx Lx Tx ex

0 1.00 0.700 1.150 1.150
1 0.40 0.300 0.450 1.125
2 0.20 0.125 0.150 0.750
3 0.05 0.025 0.025 0.500
4 0 0 0 0

Σ = 1.150

Reproductive value. To calculate reproductive value, we need the following
information:

Age, x lx mx e−rxlxmx e−rxlx

0 1.00 0 0 1.000
1 0.40 1.0 0.378 0.378
2 0.20 3.0 0.537 0.179
3 0.05 2.0 0.085 0.043
4 0 0 0 0

Sum 1.000

Calculation of reproductive value, Vx

Age, x Method one Method two

0 (0 + 0.378 + 0.537 + 0.085)/1.000 (0.378 + 0.537 + 0.085)/1.000
= 11..000000 = 11..000000

1 (0.378 + 0.537 + 0.085)/0.378 (0.537 + 0.085)/0.378
= 22..6644 = 11..6644

2 (0.537 + 0.085)/0.179 = 33..4477 (0.085)/0.179 = 00..4477
3 (0.085)/0.043 = 11..9988 (0)/0.132 = 00
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Matrix algebra: the basics

For more information on matrices the reader should consult Vandermeer and Goldberg
(2003), Caswell (1989), Searle (1966) or any basic matrix algebra textbook.

What is a matrix? A matrix is a rectangular array of numbers. Each number in a matrix
is known as an element. An ordinary single number is known as a scalar. The elements
of a matrix are usually made up of scalars. A matrix is made up of rows and columns. If
there is a single column of numbers, the array is known as a column vector. A single row
of numbers is known as a row vector. In a matrix, if the number of rows equals the num-
ber of columns, the result is known as a square matrix. Although the rows must be of
equal length and the columns must be of equal length in a matrix, the number of rows
only equals the number of columns in a square matrix. The size of a matrix is known as
its order and is known by the number of rows (r) first, followed by the number of columns
(c). Thus a matrix is known as “r by c.” For example below we have a 4 × 3 matrix, |A |
followed by a column vector (x) and a row vector (y). A scalar, by the way, can be thought
of as the element of a 1 × 1 matrix.

In a square matrix, if all of the non-diagonal elements are zero, the matrix is described
as a diagonal matrix. For example, a 4 × 4 diagonal matrix |D | is shown below:

| |  D =

−

1 0 0 0

0 2 0 0

0 0 3 0

0 0 0 4

| |                      |          |A x y= = =

1 2 3

4 5 6

7 8 9

0 10 11

1

4

7

0

1 2 3
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Matrix operations

Addition and subtraction

To add or subtract two matrices, the corresponding elements from the row and column
positions are added (or subtracted). For example, matrix |A| and |B | are added as follows:

Similarly, if matrix |B| is subtracted from matrix | A |, we have the following:

It should be obvious that that matrix addition and subtraction can only occur when
the two matrices involved are of the same order. Two matrices that are of the same order
are said to be “conformable for addition (or subtraction).”

The null matrix and the identity matrix

The null (or zero) matrix, is a matrix equivalent of the scalar number zero. There are many
possible null matrices, however, of different orders. Below are a 3 × 2 null matrix and a
square 3 × 3 null matrix.

The equivalent of the number one in algebra is the identity matrix (or the unit matrix).
The identity matrix must be a square matrix with all diagonal elements equal to one and
all off-diagonal elements equal to zero. The identity matrix is identified by the letter I,
sometimes with a subscript for the order. For example, I3 is shown below:

 

1 0 0

0 1 0

0 0 1

 

0 0

0 0

0 0

0 0 0

0 0 0

0 0 0

       

| |  | |  
      

      
  A B− =

− − −
− − −

=
− −

−
1 2 2 5 3 0

4 1 0 8 7 2

1 3 3

3 8 5

then   | |  | |  
      

      
  A B+ =

+ + +
+ + +

=
1 2 2 5 3 0

4 1 0 8 7 2

3 7 3

5 8 9

If and | |  | |  A B= =
1 2 3

4 0 7

2 5 0

1 8 2
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Mutiplication

1 By a scalar
Multiplication of a matrix by a scalar simply involves multiplying each element, in turn,
by the scalar, producing a matrix of the same order as the original matrix. See the 
example below:

If

Then

2 Multiplication of a row vector by a column vector
To multiply a row by a column, the two vectors must be of the same order. The result is
a scalar, which is found by using the following formula:

Given row vector a = |a1 a2 a3 |, and column vector x =

Then the product ax = a1x1 + a2x2 + a3x3. For example:

if |a| = |2 4 6 | and |x| = , the result is: [−10 + 4 + 0] = −6

 

−5

1

0

  

x

x

x

1

2

3

3

12 15 18 3

21 24 27 30

6 3 9 30

0 3 6 3

 | |  A =
− −

−

| |  A =
− −

−

4 5 6 1

7 8 9 10

2 1 3 10

0 1 2 1

3

3 3 3 3

3 3 3 3

3 3 3 3

3 3 3 3

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

 | |  A

a a a a

a a a a

a a a a

a a a a

=

| |  A

a a a a

a a a a

a a a a

a a a a

=

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44
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3 Multiplication of a matrix by a column vector
In order to multiply a matrix by a column vector we repeat the above for each row. That
is, each row is multiplied independently by the column vector. The result is a column 
vector of the same order as the previous column vector. In order to be conformable for
multiplication, the number of elements in the row (equal to the number of columns) must
equal the number of elements in the column vector. For example:

In general, if

then

4 The product of two matrices
Multiplying two matrices can be thought of as a repetitive exercise in multiplying a 
matrix by as many column vectors as are present in the second matrix. That is, think 
of matrix | B | as a series of column vectors. Again, to be conformable for multiplication
the number of columns in matrix | A | must equal the number of rows in matrix | B |.

For example, if matrix | A | is as above, and matrix |B | consists of two columns and three
rows, the product of | A | | B | is shown below:

  

| | | |  

    

    

    

 

    

    

    

A B

a x a x a x

a x a x a x

a x a x a x

a z a z a z

a z a z a z

a z a z a

=
+ +
+ +
+ +

+ +
+ +
+ +

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 3333 3z

  

| |  B

x

x

x

z

z

z

=
1

2

3

1

2

3

  

| |   

    

    

    

A y

a x a x a x

a x a x a x

a x a x a x

=
+ +
+ +
+ +

11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

  

| |      A

a a a

a a a

a a a

y

x

x

x

= =
11 12 13

21 22 23

31 32 33

1

2

3

   and    

  

| |   

(   )  (   )  (   )

(   )  (   )  (   )

(   )  (   )  (   )

  A y =
× + × + ×
× + × + ×
× + × + ×

=
5 1 6 2 8 3

2 1 5 2 12 3

1 1 3 2 9 3

41

48

34

  

| |        A y= =
5 6 8

2 5 12

1 3 9

1

2

3
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For example:

The laws of algebra

Matrices follow the associative laws of addition and multiplication provided the matrices
are conformable. That is, (A + B) + C = A + B + C = A + (B + C). Similarly, A(BC) =
(AB)C = ABC.

The distributive law also holds for matrices provided B and C are conformable for 
addition (necessarily of the same order) and matrices A and B are conformable 
for multiplication (hence A and C are also conformable). Thus: A(B + C) = AB + AC.

Addition of matrices follows the commutative rules provided they are conformable. 
If both matrices are of the same order we can write: A + B = B + A.

However, multiplication of matrices does not usually follow the commutative rule. 
In general, AB ≠ BA. There are particular cases, where AB = BA, but this is not true as a
general rule.

The inverse of a matrix

Division in the usual sense does not exist in matrix algebra. The concept of dividing by a
matrix is replaced by the idea of multiplication by the inverse of a matrix. In algebra, if
we want to divide a number by two, we have the option of simply multiplying by the inverse
of two, that is, 1/2 (0.5). In matrices, instead of dividing y by x, we multiply y by 1/x.
Another property of the inverse is that if we multiply x by its inverse the result is the num-
ber one. In matrix algebra, if we multiply |A| by |A|−1 the result should be the identity
matrix, I, which will be of the same order as |A| and |A|−1. The above is only true if |A|
and |A|−1 are square matrices. The inverse of |A| only exists if |A| has a determinant (see
next section). It is often difficult to solve for the inverse of a matrix, but computer pro-
grams are now available that do the hard work for you.

=
−
−
−

 

11 6 18

40 19 68

44 22 107

 

=
× − + × − + × − × + × + × × + × + ×
× − + × − + × − × + 

(   )  (   )  (   ) (   )  (   )  (   ) (   )  (   )  (   )

(   )  (   )  (   ) (   ) 

1 1 0 2 2 5 1 4 0 0 2 1 1 8 0 9 2 5

3 1 1 2 7 5 3 4  ( (   )  (   ) (   )  (   )  (   )

(   )  (   )  (   ) (   )  (   )  (   ) (   )  (   )  (  

1 0 7 1 3 8 1 9 7 5

4 1 5 2 6 5 4 4 5 0 6 1 4 8 5 9 6

× + × × + × + ×
× − + × − + × − × + × + × × + × + ×  )5

| | | |   A B =
−
−
−

1 0 2

3 1 7

4 5 6

1 4 8

2 0 9

5 1 5
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The determinant

The concept of a determinant also does not exist in traditional algebra. It is also difficult
to explain the meaning of a determinant in any intuitive fashion. A determinant is only
defined for a square matrix and is the result of a series of calculations resulting in a scalar.
It is the sum of a series of products of the elements of the matrix and each product is
multiplied by +1 or −1 according to certain rules. For example, for a 2 × 2 matrix, the
determinant is found by taking the difference between the products of the diagonals 
versus the off-diagonals. That is, the determinant of matrix |A| = (a11*a22) − (a12*a21).

If the determinant is calculated as (7 × 6) − (4 × 3) = 30.

A determinant for a 3 × 3 matrix follows similar, but more complicated, rules. As the
order of the matrices gets larger the calculations become increasingly complex. Again, how-
ever, there are computer programs to evaluate the determinant of a matrix.

| |  A =
7 3

4 6
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Mathematical symbols used 
in this book

In all chapters the following are conventionally used:

e the base of natural logarithms
K a carrying-capacity term
N population size
Nt population size at time t
r the intrinsic rate of increase = b − d = growth rate per individual per unit time
ra the actual intrinsic rate of increase in a given environment
rm the Malthusian parameter, or rmax; the density-independent, maximum

growth rate of a genotype in a given environment
R2 the amount of variance explained by a statistical regression model
t time

Symbols used in specific chapters are as follows:

Chapter 1

λ (lambda) the finite rate of increase or the growth rate per unit time = Nt+1/Nt = er when
there is a stable age distribution

b birth rate per individual per time period (per capita birth rate)
B the number of births per unit time; the litter size or the clutch size
d death rate per individual per time period (per capita death rate)
D the number of deaths per unit time
E the number of emigrants per unit time
I the number of immigrants per unit time
pi probability of a given λ when computing the geometric mean
P0,t the probability of extinction at time t
R the net replacement rate or net growth rate per generation in a population

with discrete generations
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Chapter 2

θ (theta) parameter describing non-linear responses of the logistic equation when 
θ ≠ 1

T (tau) measures a lag-time effect in the logistic equation
a′ (R − 1)/K; also a carrying-capacity parameter
a a constant of integration
b* the exponent that relaxes the assumption that population growth follows 

exact (linear) density dependence (exact compensation). When b* = 1 there
is “exact compensation,” but when b* > 1 there is “overcompensation,”
meaning that growth decreases more rapidly than expected with an increase
in population density. When b* < 1 there is “undercompensation,” meaning
that growth decreases less rapidly than expected with an increase in popu-
lation density.

C the final constant yield
K the carrying capacity of the environment for a given population
MVP minimum viable population size
RA the density-dependent or “actual” net growth parameter in a population 

with discrete generations; the net replacement rate or net growth rate per
generation

R or RI the density-independent growth parameter in a population with discrete 
generations

W mean mass per plant
wm the maximum potential mass per plant

Chapter 3

D the number of deaths due to density-independent factors per unit time

Chapter 4

|A | a matrix
A mature adult stages
cx proportion of the population belonging to an age category x

ex age-specific life expectancy; estimated as ex =

G mean generation time
GRR gross reproductive rate; the average number of female offspring produced

by a female living through all of the reproductive age classes.
I identity matrix
lx the age-specific survivorship; the proportion of the population, measured from

age zero, to live to a given age class x
Lx mean survivorship for any particular age interval; it assumes that, on

average, an organism dies half way between two age classes. Lx = lx + lx+1

2

Tx

lx
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mx age-specific fertility; the mean number of female offspring produced by a female
of age x

nx the number of individuals in an age class x

px age-specific probability of living to the next age class. px =

qx age-specific probability of death prior to the next age class. 
qx = 1 − px

R0 net reproductive rate in a population with age classes and overlapping gen-
erations; the mean number of females produced per female in the population
per generation.

Sx the number of survivors to a given age, x, based on a cohort of 1000
Tx the area under the survivorship curve for an individual of a given age, x, 

to the age, w, at which the oldest individual dies. Tx is estimated as 

Tx = Lx =

Vx reproductive value of an individual of the age x
x age class
Y young adult stages

Chapter 5

α (alpha) the dispersal ability of each individual organism
β (beta) the number of individuals dispersing
ε (epsilon) extinction rate in a metapopulation
A the area of an island or habitat
Ai the area of the habitat patch i
c the colonization rate in a metapopulation
C the y-intercept in the MacArthur and Wilson species–area relationship
Ci the colonization rate or probability per unit time in a metapopulation
di the distance from a source population i
dij the distance between patches i and j
D a coefficient of diffusion in a random walk movement model
e a parameter related to the probability of extinction per unit time in a patch

of a given size
Ei the extinction rate per unit time in a metapopulation
H the total number of available habitat patches
Ji the long-term probability of a patch being occupied (the incidence)
Mi the sum of individuals arriving at patch i, from all of the surrounding habitat

patches
P the proportion of available habitat patches occupied by a population
Pj = 0 for an unoccupied patch and 1 for an occupied patch in the incidence

function model
P ′ the number of habitat patches occupied by a population
P̂ the equilibrium value of P
Re the total number of possible source species found on the mainland
S the number of species on an island

lx + lx+1

2

w

∑
x

w

∑
x

lx+1

lx
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Si a measure of connectivity between patches
T the total number of habitat patches available
TL expected time to local extinction
TM long-term persistence of a metapopulation
X the rate of change of extinction per unit time with increasing patch size (a

measure of environmental stochasticity)
y efficiency of colonization
z a constant representing the slope of the line in a log–log plot of area and

species number

Chapter 6

α (alpha) the age at first reproduction
δ (delta) age of maximum reproduction
ω (omega) the age at last reproduction
b the allometric constant
B litter size
C constant final yield
E activation energy
G mean generation time
I whole-organism metabolic rate as a function of mass (M) and a normaliz-

ation constant, I0 or i0

k the Boltzmann constant
M mass
S total reproductive output
T absolute temperature in degrees Kelvin
Vx lx mx

W mean mass per plant
Y a physiological rate or some other variable dependent on mass; and Y0 is nor-

malization constant

Chapter 7

αij the competition coefficient: the effect of species j on species i
εi the mortality or extinction rate of species i
µ (mu) the growth rate on a given substrate of resource R, in the Michaelis–Menton

equation
µmax the maximum growth rate of the population
b the efficiency by which each individual converts the resource into new 

individuals
bi maximum cell division rate (= rmax) for species i
ci the colonisation rate of species i
Cj the availability of the resource j
Kµ or Ki the half-saturation constant for the resource i; the concentration of the

resource that produces half the maximum growth rate.
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K1 the carrying capacity of species one
K2 the carrying capacity of species two
kRi the supply rate of resource Ri

m death or mortality rate
N1 the number of individuals of species one
N2 the number of individuals of species two
Pi the proportion of available habitat sites or patches occupied by species i
P̂ the proportion of habitat sites occupied at equilibrium
P̂i the proportion of habitat sites occupied at equilibrium by species i
q the rate at which each individual must consume the resource in order to main-

tain itself
r1 the intrinsic rate of increase of species one
r2 the intrinsic rate of increase of species two
R* the amount of a resource needed to just sustain the population. That is, R*

is the level of the resource needed to balance mortality (growth just offsets
mortality)

Ri the quantity or concentration of a resource i

Chapter 8

ci and cj mutualism coefficients that replace the competition coefficients in the
Lotka–Volterra competition equations. The term ci measures the rate at
which an individual of Nj benefits the growth rate of population Ni.

K i* the carrying capacity for species i after a mutualistic interaction with 
species j.

Chapter 9

α (alpha) disease-induced mortality rate
β (beta) transmission rate of disease from one host to another
γ (gamma) rate at which recovered individuals lose their immunity. That is, the rates at

which individuals return to the susceptible class (S) from the recovered (R)
class.

δ (delta) probability that an infected disperser infects the resident population in a 
susceptible patch

ν (nu) recovery rate, or the per capita rate of passage from the infected (I) to the
recovered (R) classes. This is usually the inverse of the average infectious 
period.

ψ (psi) the migration rate between susceptible and infected populations
A the average age at which an individual in a population will become infected

with a particular disease
b host birth rate
D the length of the infectious period
g infection rate from an “outside source,” that is, from another species in the

patch

ITP_Z03.qxd  09/27/2005  02:14PM  Page 291



292 MATHEMATICAL SYMBOLS

I infected host density or the proportion of infected patches (both host 
population and disease present)

m natural host mortality rate unrelated to disease mortality
N total host population density
p the fraction of the population that has been immunized
R recovered (immune) host density
R0 the basic reproductive number (BSR) or parameter for a disease. It repres-

ents the mean number of new infections caused by a single infective 
individual, and equals βSD.

S susceptible host density or proportion of susceptible host patches in the
metapopulation model

ST the minimum size for an epidemic. ST = 1/βD
xI extinction rate of an infected population in a habitat patch
xS extinction rate of a susceptible population in a habitat patch

Chapter 10

λ (lambda) the finite rate of increase per generation for the prey in the Nicholson–
Bailey model

µp the minimum rate of prey consumption necessary for a predator to survive
and replace itself

ρ0 the zero term of the Poisson distribution
χp the efficiency by which food (prey) is turned into new predator individuals,

or the assimilation efficiency of the predator
a constant for the parasitoid searching efficiency
c the maximum predation or killing rate when the search and capture com-

ponents have been minimized; replaces the parameter E
d half-saturation parameter equal to half of the maximum predation rate
E the searching and capturing efficiency of the predator; a functional-response

term
E1, E2, E3 search and capture components for type I, II and III functional responses
f or fn functional-response term; equal to EN in a type I functional response
h1, h2, h3 handling and digestion-rate components of the type I, II, and III functional

responses
Kn carrying-capacity term for the prey population
KR the half-saturation constant for a resource
mp instantaneous, density-independent mortality rate of the predator population
M mass
M* prey population never exposed to predation (prey refuge)
n the number of parasitoids emerging from each host individual
N prey population
N* the equilibrium number of prey when both prey and predator populations

have stopped changing (dN/dt = 0 and dP/dt = 0)
Na the number of hosts actually parasitized
Ne the number of encounters between host or prey species and their parasitoids
P the predator population or parasitoid population
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P* the equilibrium number of predators when both prey and predator popula-
tions have stopped changing (dN/dt = 0 and dP/dt = 0)

R the concentration of a resource
rn the maximum growth rate (intrinsic rate of increase) for the prey population

Chapter 11

θ (theta) a density-dependent parameter affecting the herbivore death rate; = 1 at low
herbivore densities, but > 1 and increases the herbivore death rate at high
population densities

κ (kappa) the carrying-capacity term for the predator population due to territoriality
µh the minimum rate of food intake necessary for an herbivore to survive and

replace itself
χh the assimilation efficiency of the herbivore population
χp the assimilation efficiency of the predator population
b the half-saturation parameter for the herbivore population, equal to half of

the maximum consumption rate, f
c the maximum killing rate for the predator population when the search and

capture components have been minimized
d half-saturation parameter equal to half of the maximum predation rate, c
F the functional-response term for searching efficiency of the herbivore
f the maximum consumption or grazing rate for the herbivore when the search

and capture components have been minimized; replaces the parameter F
h handling and digestion-rate components of the functional response of the

herbivore
Kv carrying-capacity term for the vegetation (plant population)
mh instantaneous, density-independent mortality rate of the herbivore 

population
n the number of grazers that determines whether plant quality increases or

decreases
N the number of herbivores or grazers
N* the herbivore equilibrium population size when both plant and herbivore 

populations have stopped changing (dV/dt = 0 and dN/dt = 0)
P the number of predators
Q average plant quality
q the increase in plant quality in the absence of grazers
rh herbivore (prey) maximum growth rate
rv plant maximum growth rate
s0 predator rate of increase limited by a carrying capacity due to a territory
u0 plant growth rate when V is close to zero and V represents above-ground

biomass
V plant abundance or biomass
V* the equilibrium plant abundance when both plant and herbivore populations

have stopped changing (dV/dt = 0 and dN/dt = 0)
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contiguous allopatry, 182–3
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Costa Rica, 189

birds, 132, 133
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cougars see Felis concolor (puma)
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cowbirds, 205
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183
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cucumbers, 258
Cucurbitaceae (cucumbers), 258
cucurbitacins, 258
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cyanogens, 256–7
Cyclotella spp. (diatoms), 174
Cygnus olor (mute swan), 19–20
Cymodocea manatorum (manatee grass), 272
Cynomys ludovicianus (prairie dog), 27, 

274–5
Cyprinus carpio (carp), 259
Cypripedium acaule (pink lady’s slipper

orchid), 148
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Damaliscus lunatus (topi), 245
Danaus plexippus (monarch butterfly), 250
Daphne Major, 184
Daphnia magna (water flea), 220–1, 222

reproductive parameters, 222
Darveau, C.A., 138
Darwin, Charles, 34, 112, 274
Darwinian fitness, 273
Darwin’s finches, 184–5
Davidson, J., 66
Davies, N.B., 62–4, 205–6
Dayan, T., 185
deadly nightshade, 255
death rates, 8–9, 11

density dependence, 47–52
in small populations, 47–8

death at senescence curve, 81–2

deer, 218, 238, 243–4
flash patterns, 249
mule, 208–9, 244, 247
population control, 208–9
populations, 2–3, 6
roe, 239
white-tailed, 2–3, 6, 77
see also Cervus elaphus (elk)

defection, mutual, 64
defenses

carbon-based, 257–8
constitutive, 259–61
induced, 259–61
nitrogen-based, 254, 255–7, 265
qualitative, 264
quantitative, 264
theories, 265–6
see also chemical defenses

defoliation, 259, 272, 273–4
demographic stochasticity, 27

definition, 24–6
demographic transition model, 21
demography, characteristic equation of, 92
DeMoraes, C.M., 261
Dendroica spp. (warblers), 183
Denno, R.F., 262–3
density dependence

birth rates, 47–52
death rates, 47–52
and density independence combined, 

68–9
exact, 38–9, 41–2
issues, 66–7
and population regulation, 68
populations with discrete generations,

36–42
populations with overlapping generations,

42–7
tests of, 69–75
vs. stochastic noise, 67

density independence, and density dependence
combined, 68–9

density-dependent growth, 33–65
definition, 12
and density-independent growth compared,

38, 39, 66
models, 35
parameters, 38
vs. density-independent growth, 12

density-dependent models, stochastic, 56–7, 
68
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differential equations, 11, 17
diffusion, coefficient of, 122
digestibility-reducing compounds, 264
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digestive enzymes, inhibition, 258, 260
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Diomedea exulans (wandering albatross), 7
Dipsacus sylvestris (common teasel), 78
Diptera (flies), 250
discrete growth see geometric growth
discrete logistic model
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chaos, 54–5
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spillover, 203
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see also epidemics; infections

displacement-competition model, 178
disturbance, 151
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wild, 203, 246
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doubling time, 17–19, 20
Dow Jones Industrial Average, 67
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ducks, 186, 205
dung beetles, 61–2
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mating behavior, 63–4

Dussourd, D.E., 262–3
dynamic (fixed-cohort) life tables, 79

eagles, 241, 244
earworms, 261–2
East Africa, 244–6, 274
ecological niches, 159–60, 162
ecological release, 182, 183
ecologists, motivations, 1
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metabolic theory of, 139–40
see also metapopulation ecology; population
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ecology of fear, concept of, 246
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ecosystems, 208
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Ectopistes migratoris (passenger pigeon), 2, 

49
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Edelstein-Keshet, L., 270
eggs

mimetic, 205
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see also clutch size

egrets, 155
Ehrlich, Paul R., 33, 253–4
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elks see Cervus elaphus (elk)
Ellner, S.P., 231, 232
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and population growth, 8, 9–10
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see also immigration

emigration rates, definition, 9
encounter interference, definition, 36
encounter rates, 216
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endogenous feedback, 76
endoparasites, definition, 157
energy allocation, 147–8
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diseases, 202
grouse, 239–40
measles, 201

Enquist, B.J., 137, 138–9
enrichment, paradox of, 228–9, 270
environment

definition, 5
and population growth, 70

environmental noise, 69
environmental stochasticity, 27, 67

definition, 26
measures, 124, 125
and population regulation, 68–9
reduction, 135

enzymes
digestive, 258, 260
kinetics, 173
phase I, 263

Eotetranychus sexmaculatus (six-spotted mite),
219

epidemics, 201
minimum size for, 199

equilibrium, 116, 127, 128
in predator–prey interactions, 214

equilibrium analysis, 164
equilibrium theory, 112–15
Equus quagga (zebra), 245
Erie, Lake, 214
Errington, P.L., 212, 238
Erythroxylon coca (coca), 255
esters, 261
ethylene, 260, 261
Eucalyptus spp., oils, 258
Eucalyptus cladocalyx (sugar gum), 256
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Euler equation, 93–4, 95, 96, 103, 141, 144

definition, 92
Eumomota superciliosa (turquoise-browed

motmot), 251

Euphydryas editha (bay checkerspot), 127
Euptoieta hegesia (Mexican fritillary), 257
Europe, 186

human population growth, 20, 21
population statistics, 8, 9

Eutamias spp. (chipmunks), 182
Eutamias alpinus (alpine chipmunk), 183
Eutamias amoenus (yellow pine chipmunk),

183
Eutamias minimus (least chipmunk), 183
Eutamias speciosus (lodgepole pine chipmunk),

183
evolutionary arms race, 253
exact compensation, 49
Excel spreadsheets, 20, 56
exogenous feedback, 76
expectation of life, 89–91
exploitation competition, use of term, 

36
exponential growth, 7, 70

definition, 17
invasive species, 19–20
negative, 122
with overlapping generations, 15–19

exponential law, 7
extinction–colonization stochasticity, 118
extinction rates, 116, 117
extinctions, 129, 215

and age distributions, 78
and immigration, 10
and island biogeography model, 114–15
mechanisms, 48–9
metapopulations, 203
mutual, 219, 230, 235
and predator-prey interactions, 211, 213
stochastic, 130
see also local extinctions; metapopulation

extinctions
extirpators, 179
eyes, false, 249

facultative interactions, 156
Fairfax City, Virginia (US), 80–1
Falco peregrinus (peregrine falcon), 241
Falco rusticolus (gyrfalcon), 241
Falco tinnunculus (kestrel), 240
falcons, 240, 241
fatty acids, 260

oxidation, 261
fecundity, 145

definition, 8
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predatory behavior, 246–7
Felis concolor coryi (Florida panther), 7
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ferrets, 27
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definition, 8
soil, 265
vs. density, 58, 59
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finches, 184–5, 186, 205
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finite rate of increase, 11, 23–4
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predator–prey interactions, 214–15

fitness
Darwinian, 273
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plants, 265–6, 269
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fixation, metabolic cost, 255
fixed-cohort life tables, definition, 79
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flatworms, 182
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flies, 45, 83, 250
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Ovis canadensis (bighorn sheep), 36, 244, 247
Ovis dalli (Dall mountain sheep), 89

survivorship, 82, 83
owls, 240, 249

great horned, 242
northern spotted, 127
snowy, 209, 223, 241
tawny, 2, 214

Oxford (UK), 214

Packer, C., 64–5
Paige, K.N., 272, 273
Paine, R.T., 275
Panama, 112, 121, 184, 274

rainfall, 67–8
Panthera leo (African lion), 203, 245, 246

cooperation vs. competition, 64–5
Panthera onca ( jaguar), 246
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