
Kanal: @Uzb_Dasturchilar | Muallif: Qudrat Abdurahimov

1] dars

Create your first Java program

Let's start by compiling and running the following short sample program.

/*

 This is a simple Java program. Call this file "Example.java".

 */

public class Example {

 // Your program begins with a call to main().

 public static void main(String args[]) {

 System.out.println("Java.");

 }

}

In Java, a source file is called a compilation unit. It is a text file that contains one or
more class definitions. The Java compiler requires that a source file use the .java

filename extension.

In Java, all code must reside inside a class. By convention, the name of the public class
should match the its file name. And Java is case-sensitive.

Compiling the Program

To compile the program, execute the compiler, javac, specifying the name of the source

file on the command line:

C:\>javac Example.java

The javac compiler creates a file called Example.class. Example.class contains the

bytecode version of the program.

To run the program, use the Java interpreter, called java. Pass the class name Example

as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

Java.

When Java source code is compiled, each individual class is put into its own file named
classname.class.

A Closer Look at the Example.java

http://t.me/uzb_dasturchilar

Here is the code we just created.

/*

 This is a simple Java program. Call this file "Example.java".

 */

public class Example {

 // Your program begins with a call to main().

 public static void main(String args[]) {

 System.out.println("Java.");

 }

}

The first part is a comment.

/*

 This is a simple Java program. Call this file "Example.java".

*/

Comment is a remark for a program. The contents of a comment are ignored by the
compiler. The next line of code in the program is shown here:

public class Example {

The keyword class declares that a new class is being defined.

Example is the name of the class.

The entire class definition is between the opening curly brace ({) and the closing curly

brace (}). The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

A single-line comment begins with a // and ends at the end of the line. The next line of

code is shown here:

public static void main(String args[]) {

Java applications begin execution by calling main(String args[]). Java is case-

sensitive. Thus, Main is different from main.

!!!

2] dars

Keywords and Identifiers

A keyword is a word whose meaning is defined by the programming language.

Java Keywords and Reserved Words:

abstract class extends implements null strictfp true

assert const false import package super try

boolean continue final instanceof private switch void

break default finally int protected synchronized

volatile

byte do float interface public this while

case double for long return throw

catch else goto native short throws

char enum if new static transient

An identifier is a word used by a programmer to name a variable, method, class, or
label.

Keywords and reserved words may not be used as identifiers.

An identifier must begin with a letter, a dollar sign ($), or an underscore (_); subsequent
characters may be letters, dollar signs, underscores, or digits.

Some examples are:

foobar // legal

Myclass // legal

$a // legal

3_a // illegal: starts with a digit

!theValue // illegal: bad 1st char

Identifiers are case sensitive.

For example, myValue and MyValue are distinct identifiers

!!!

3] dars

The Primitive Types

Java defines eight primitive types of data: byte, short, int, long, char, float, double, and
boolean.

Primitive Type Reserved Word Size Min Value Max Value

Boolean boolean N/A N/A N/A

Character char 16-bit Unicode 0 Unicode 216 - 1

Byte integer byte 8-bit -128 +127

Short integer short 16-bit -21 +215 - 1

Integer int 32-bit -231 +231 - 1

Long integer long 64-bit -263 +263 - 1

Floating-point float 32-bit 1.4e-045 3.4e+038

Double precision floating-point double 64-bit 4.9e-324 1.8e+308

byte, short, int, and long are for whole-valued signed numbers. float and double are
fractional precision numbers.

char represents symbols in a character set, like letters and numbers. boolean
represents true/false values.

Integers

Java defines four integer types: byte, short, int, and long.

Integer types are signed, positive and negative values.

The width and ranges of these integer types vary widely:

Name Width Range

long 64 -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 -2,147,483,648 to 2,147,483,647

short 16 -32,768 to 32,767

byte 8 -128 to 127

Floating Point Types

There are two kinds of floating-point types: float and double. float type represents
single-precision numbers. double type stores double-precision numbers.

Floating-Point Types width and ranges are shown here:

Name Width in Bits Approximate Range

double 64 4.9e-324 to 1.8e+308

float 32 1.4e-045 to 3.4e+038

!!!

4] dars

byte

The smallest integer type is byte. byte is a signed 8-bit type that has a range from -128
to 127. byte type variables are useful when working with a stream of data from a
network or file.

Byte variables are declared by use of the byte keyword. The following declares two byte

variables called b and c:

byte b, c;

short

short is a signed 16-bit type. short type variable has a range from -32,768 to 32,767.

Here are some examples of short variable declarations:

short s;

short t;

int

int is a signed 32-bit type that has a range from -2,147,483,648 to 2,147,483,647.

When byte and short values are used in an expression they are promoted to int when

the expression is evaluated.

octal (base eight)

Octal values are denoted in Java by a leading zero. valid value 09 will produce an error

from the compiler, since 9 is outside of octal's 0 to 7 range.

public class Main {

 public static void main(String[] args) {

 int i = 010;

 System.out.println(i);

 }

}

The output:

8

hexadecimal (base 16).

hexadecimal matches with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You

signify a hexadecimal constant with a leading zero-x, (0x or 0X).

The range of a hexadecimal digit is 0 to 15, so A through F (or a through f) are
substituted for 10 through 15.

An integer literal can always be assigned to a long variable. An integer can also be

assigned to a char as long as it is within range.

public class Main{

 public static void main(String[] argv){

 int f = 0XFFFFF;

 System.out.println(f);//1048575

 }

}

long

long is a signed 64-bit type and is used when an int type is not large enough. The range

of long type is -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

For example, here is a program that use long type to store the result.

public class Main {

 public static void main(String args[]) {

 long result= (long)Integer.MAX_VALUE * (long)10;

 System.out.println(result);//21474836470

 }

}

The result could not have been held in an int variable.

To specify a long literal, you need to tell the compiler that the literal value is of type long

by appending an upper- or lowercase L to the literal.

For example, 0x7ffffffffffffffL or 123123123123L.

public class Main {

 public static void main(String args[]) {

 long l = 0x7ffffffffffffffL;

 System.out.println("l is " + l);

 }

}

The output generated by this program is shown here:

l is 576460752303423487

float

float type represents single-precision numbers. float is 32-bit width and its range is from
1.4e-045 to 3.4e+038 approximately.

float type variables are useful when you need a fractional component. Here are some
example float variable declarations:

float high, low;

float literals

Floating-point literals in Java default to double precision. To specify a float literal, you
must append an F or f to the constant.

public class Main {

 public static void main(String args[]) {

 float d = 3.14159F;

 System.out.print(d);//3.14159

 }

}

Java's floating-point calculations are capable of returning +infinity, -infinity, +0.0, -0.0,
and NaN

public class Main {

 public static void main(String[] args) {

 Float f1 = new Float(Float.NaN);

 System.out.println(f1.floatValue());

 Float f2 = new Float(Float.NaN);

 System.out.println(f2.floatValue());

 System.out.println(f1.equals(f2));

 System.out.println(Float.NaN == Float.NaN);

 System.out.println();

 }

}

double

double represents double-precision numbers. double is 64-bit width and its range is
from 4.9e-324 to 1.8e+308 approximately.

Here is a program that uses double variables to compute the area of a circle:

public class Main {

 public static void main(String args[]) {

 double pi, r, a;

 r = 10.8888; // radius of circle

 pi = 3.1415926; // pi, approximately

 a = pi * r * r;

 System.out.println("Area of circle is " + a);

 }

}

The output:

Area of circle is 372.4859596381597

double type Literals

double type numbers have decimal values with a fractional component.

They can be expressed in either standard or scientific notation. Standard notation
consists of a whole number component followed by a decimal point followed by a

fractional component.

For example, 2.0, 3.14159, and 0.6667.

public class Main {

 public static void main(String args[]) {

 double d = 3.14159;

 System.out.print(d);//3.14159

 }

}

Scientific notation uses a standard-notation, floating-point number plus a suffix that
specifies a power of 10 by which the number is to be multiplied.

The exponent is indicated by an E or e followed by a decimal number, which can be
positive or negative.

For example, 6.02E23, 314159E-05, and 4e+100.

public class Main {

 public static void main(String[] argv) {

 double d1 = 6.022E23;

 double d2 = 314159E-05;

 double d3 = 2e+100;

 System.out.println("d1 is " + d1);

 System.out.println("d2 is " + d2);

 System.out.println("d3 is " + d3);

 }

}

The output generated by this program is shown here:

d1 is 6.022E23

d2 is 3.14159

d3 is 2.0E100

You can explicitly specify a double literal by appending a D or d.

public class Main {

 public static void main(String args[]) {

 double d = 3.14159D;

 System.out.print(d);//3.14159

 }

}

Java's floating-point calculations are capable of returning +infinity, -infinity, +0.0, -0.0,
and NaN

dividing a positive number by 0.0 returns +infinity. For example,
System.out.println(1.0/0.0); outputs Infinity.

public class Main{

 public static void main(String[] args) {

 System.out.println(1.0/0.0);

 }

}

Infinity

Dividing a negative number by 0.0 outputs -infinity. For example, System.out.println(-
1.0/0.0); outputs -Infinity.

public class Main{

 public static void main(String[] args) {

 System.out.println(-1.0/0.0);

 }

}

Output:

-Infinity

Dividing 0.0 by 0.0 returns NaN. square root of a negative number is NaN

For example, System.out.println(0.0/0.0) and System.out.println(Math.sqrt(-1.0)) output
NaN.

Dividing a positive number by +infinity outputs +0.0. For example,
System.out.println(1.0/(1.0/0.0)); outputs +0.0.

Dividing a negative number by +infinity outputs -0.0. For example, System.out.println(-

1.0/(1.0/0.0)); outputs -0.0.

public class Main {

 public static void main(String[] args) {

 Double d1 = new Double(+0.0);

 System.out.println(d1.doubleValue());

 Double d2 = new Double(-0.0);

 System.out.println(d2.doubleValue());

 System.out.println(d1.equals(d2));

 System.out.println(+0.0 == -0.0);

 }

}

The following code parses command-line arguments into double precision floating-point
values

public class Main {

 public static void main(String[] args) {

 if (args.length != 3) {

 System.err.println("usage: java Main value1 op value2");

 System.err.println("op is one of +, -, *, or /");

 return;

 }

 try {

 double value1 = Double.parseDouble(args[0]);

 double value2 = Double.parseDouble(args[2]);

 if (args[1].equals("+")) {

 System.out.println(value1 + value2);

 } else if (args[1].equals("-")) {

 System.out.println(value1 - value2);

 } else if (args[1].equals("*")) {

 System.out.println(value1 * value2);

 } else if (args[1].equals("/")) {

 System.out.println(value1 / value2);

 } else {

 System.err.println("invalid operator: " + args[1]);

 }

 } catch (Exception nfe) {

 System.err.println("Bad number format: " + nfe.getMessage());

 }

 }

}

char

In Java, char stores characters.

Java uses Unicode to represent characters. Unicode can represent all of the characters

found in all human languages.

Java char is a 16-bit type. The range of a char is 0 to 65,536.

There are no negative chars.

More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

public class Main {

 public static void main(String args[]) {

 char ch1, ch2;

 ch1 = 88; // code for X

 ch2 = 'Y';

 System.out.print("ch1 and ch2: ");

 System.out.println(ch1 + " " + ch2);//ch1 and ch2: X Y

 }

}

ch1 is assigned the value 88, which is the ASCII (and Unicode) value that corresponds
to the letter X.

char can be used as an integer type and you can perform arithmetic operations.

public class Main {

 public static void main(String args[]) {

 char ch1;

 ch1 = 'X';

 System.out.println("ch1 contains " + ch1);//ch1 contains X

 ch1 = (char)(ch1 + 1); // increment ch1

 System.out.println("ch1 is now " + ch1);//ch1 is now Y

 }

}

char Literals

Characters in Java are indices into the Unicode character set. character is represented

inside a pair of single quotes.

For example, 'a', 'z', and '@'.

public class Main {

 public static void main(String[] argv) {

 char ch = 'a';

 System.out.println("ch is " + ch);//ch is a

 }

}

public class Main {

 public static void main(String[] argv) {

 char ch = '@';

 System.out.println("ch is " + ch);//ch is @

 ch = '#';

 System.out.println("ch is " + ch);//ch is #

 ch = '$';

 System.out.println("ch is " + ch);//ch is $

 ch = '%';

 System.out.println("ch is " + ch);//ch is %

 }

}

The escape sequences are used to enter impossible-to-enter-directly characters.

'\'' is for the single-quote character.

'\n' for the newline character.

For octal notation, use the backslash followed by the three-digit number. For example,
'\141' is the letter 'a'.

For hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For
example, '\u0061' is the ISO-Latin-1 'a' because the top byte is zero.

'\ua432' is a Japanese Katakana character.

The following table shows the character escape sequences.

Escape Sequence Description

\ddd Octal character (ddd)

\uxxxx Hexadecimal Unicode character (xxxx)

\' Single quote

\" Double quote

\\ Backslash

\r Carriage return

\n New line

\f Form feed

\t Tab

\b Backspace

public class Main {

 public static void main(String[] argv) {

 char ch = '\'';

 System.out.println("ch is " + ch);//ch is '

 }

}

boolean

Java has a boolean type for logical values. It can have only one of two possible values,
true or false.

This is the type returned by all relational operators.

Here is a program that demonstrates the boolean type:

public class Main {

 public static void main(String args[]) {

 boolean boolVariable;

 boolVariable = false;

 System.out.println("b is " + boolVariable);

 boolVariable = true;

 System.out.println("b is " + boolVariable);

 if (boolVariable) {

 System.out.println("This is executed.");

 }

 boolVariable = false;

 if (boolVariable) {

 System.out.println("This is not executed.");

 }

 System.out.println("10 > 9 is " + (10 > 9));

 }

}

Output:

b is false

b is true

This is executed.

10 > 9 is true

Boolean Literals

Boolean literals are only two logical values: true and false. The values of true and false
do not convert into any numerical representation.

The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, they

can only be assigned to variables declared as boolean.

public class Main {

 public static void main(String[] argv) {

 boolean b = true;

 int i = b;

 }

}

If you try to compile the program, the following error message will be generated by
compiler.

Main.java:5: incompatible types

found : boolean

required: int

 int i = b;

 ^

1 error

!!!

5] dars

Variable stores value in a Java program

A variable is defined by an identifier, a type, and an optional initializer. The variables
also have a scope(visibility / lifetime).

Declaring a Variable

In Java, all variables must be declared before they can be used. The basic form of a

variable declaration is shown here:

type identifier [= value][, identifier [= value] ...] ;

 type could be int or float.

 identifier is the variable's name.

 Initialization includes an equal sign and a value.

To declare more than one variable of the specified type, use a comma-separated list.

int a, b, c; // declares three ints, a, b, and c.

int d = 3, e, f = 5; // declares three more ints, initializing d and f.

The following variables are defined and initialized in one expression.

public class Main {

 public static void main(String[] argv) {

 byte z = 2; // initializes z.

 double pi = 3.14; // declares an approximation of pi.

 char x = 'x'; // the variable x has the value 'x'.

 }

}

Variable cannot be used prior to its declaration.

public class Main {

 public static void main(String[] argv) {

 count = 100; // Cannot use count before it is declared!

 int count;

 }

}

Compiling the code above generates the following error message:

D:\>javac Main.java

Main.java:4: cannot find symbol

symbol : variable count

location: class Main

 count = 100; // Cannot use count before it is declared!

 ^

1 error

Operators

Java operators can be divided into the following four groups:

 arithmetic,
 bitwise,
 relational,

 logical.

Operators are classified as prefix, postfix, and infix.

 A prefix operator is a unary operator that precedes its operand, for example -6.
 A postfix operator is a unary operator that trails its operand, for example x++.

 An infix operator is a binary or ternary operator that is placed between the binary
operator's two or the ternary operator's three operands, for example x + 5

!!

6] dars

Arithmetic Operators

Arithmetic operators are used in mathematical expressions.

The following table lists the arithmetic operators:

Operator Result

+ Addition

- Subtraction (unary minus)

* Multiplication

/ Division

Operator Result

% Modulus

++ Increment

+= Addition assignment

-= Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

-- Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use
arithmetic operators on boolean types, but you can use them on char types.

The Basic Arithmetic Operators

The basic arithmetic operations are addition, subtraction, multiplication, and division.

They behave as you would expect. The minus operator also has a unary form which
negates its single operand.

public class Main {

 public static void main(String args[]) {

 System.out.println("Integer Arithmetic");

 int a = 1 + 1;

 int b = a * 3;

 int c = b / 4;

 int d = c - a;

 int e = -d;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 System.out.println("e = " + e);

 }

}

When you run this program, you will see the following output:

Integer Arithmetic

a = 2

b = 6

c = 1

d = -1

e = 1

Floating Point Arithmetic

The modulus operator, %, returns the remainder of a division operation.

public class Main {

 public static void main(String args[]) {

 int x = 42;

 System.out.println("x mod 10 = " + x % 10);

 }

}

When you run this program you will get the following output:

x mod 10 = 2

The modulus operator can be applied to floating-point types as well as integer types.

public class Main {

 public static void main(String args[]) {

 double y = 42.25;

 System.out.println("y mod 10 = " + y % 10);

 }

}

When you run this program you will get the following output:

y mod 10 = 2.25

The following code uses the modulus operator to calculate the prime numbers:

 public class Main {

 public static void main(String[] args) {

 int limit = 100;

 System.out.println("Prime numbers between 1 and " + limit);

 for (int i = 1; i < 100; i++) {

 boolean isPrime = true;

 for (int j = 2; j < i; j++) {

 if (i % j == 0) {

 isPrime = false;

 break;

 }

 }

 if (isPrime)

 System.out.print(i + " ");

 }

 }

}

The output:

Prime numbers between 1 and 100

1 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97

Arithmetic Compound Assignment Operators

Statements like the following

a = a + 4;

can be rewritten as

a += 4;

Both statements perform the same action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a/2 and puts that result back into a.

Any statement of the form

var = var op expression;

can be rewritten as

var op= expression;

Here is a sample program that shows several op= operator assignments:

public class Main {

 public static void main(String args[]) {

 int a = 1;

 int b = 2;

 int c = 3;

 a += 1;

 b *= 2;

 c += a * b;

 c %= 3;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 }

}

The output of this program is shown here:

a = 2

b = 4

c = 2

Increment and Decrement

 ++ and -- are Java's increment and decrement operators.

 The increment operator, ++, increases its operand by one.
 The decrement operator, --, decreases its operand by one.

For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

This statement:

x = x - 1;

is equivalent to

x--;

The increment and decrement operators are unique in that they can appear both in
postfix form and prefix form.

In the postfix form they follow the operand, for example, i++.
In the prefix form, they precede the operand, for example, --i.

The difference between these two forms appears when the increment and/or decrement
operators are part of a larger expression.

In the prefix form, the operand is incremented or decremented before the value is used
in the expression. In postfix form, the value is used in the expression, and then the
operand is modified.

Examples of Pre-and Post- Increment and Decrement
Operations

Initial Value of x Expression Final Value of y Final Value of x

5 y = x++ 5 6

5 y = ++x 6 6

5 y = x-- 5 4

Initial Value of x Expression Final Value of y Final Value of x

5 y = --x 4 4

For example:

x = 42;

y = ++x;

y is set to 43, because the increment occurs before x is assigned to y. Thus, the line

y = ++x;

is the equivalent of these two statements:

x = x + 1;

y = x;

However, when written like this,

x = 42;

y = x++;

the value of x is obtained before the increment operator is executed, so the value of y is
42.

In both cases x is set to 43. The line

y = x++;

is the equivalent of these two statements:

y = x;

x = x + 1;

The following program demonstrates the increment operator.

public class Main {

 public static void main(String args[]) {

 int a = 1;

 int b = 2;

 int c = ++b;

 int d = a++;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 System.out.println("d = " + d);

 }

}

The output of this program follows:

a = 2

b = 3

c = 3

d = 1

Bitwise Operators

Java bitwise operators can be applied to the integer types: long, int, short, char,
byte. Bitwise Operators act upon the individual bits of their operands.

Operator Result

~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Left Shift

It has this general form:

 value << num

The following code shifts byte type variable.

public class Main {

 public static void main(String args[]) {

 byte a = 64, b;

 int i;

 i = a << 2;

 b = (byte) (a << 2);

 System.out.println("Original value of a: " + a);

 System.out.println("i and b: " + i + " " + b);

 }

}

The output generated by this program is shown here:

Original value of a: 64

i and b: 256 0

Each left shift has the effect of doubling the original value. The following program
illustrates this point:

public class Main {

 public static void main(String args[]) {

 int num = 0xFFFFFFF;

 for (int i = 0; i < 4; i++) {

 num = num << 1;

 System.out.println(num);

 }

 }

}

The program generates the following output:

536870910

1073741820

2147483640

-16

The Right Shift

<![CDATA[The right shift operator, >>, shifts all of the bits in a value

to the right a specified number of times. Its general form is shown here:]]>

 value >> num

num specifies the number of positions to right-shift.

The following code fragment shifts the value 32 to the right by two positions:

public class Main {

 public static void main(String[] argv) {

 int a = 32;

 a = a >> 2;

 System.out.println("a is " + a);

 }

}

The output:

a is 8

The Unsigned Right Shift

<![CDATA[Java's unsigned, shift-right operator, >>>, always shifts

zeros into the high-order bit.]]>

public class Main {

 public static void main(String[] argv) {

 int a = -1;

 a = a >>> 24;

 System.out.println("a is " + a);

 }

}

The output:

a is 255

Bitwise Operator Assignments

Bitwise operator assignments combines the assignment with the bitwise operation. The

following two statements are equivalent:

a = a >> 4;

a >>= 4;

The following two statements are equivalent:

a = a | b;

a |= b;

The following program demonstrates the bitwise operator assignments:

public class Main {

 public static void main(String args[]) {

 int a = 1;

 int b = 2;

 int c = 3;

 a |= 2;

 b >>= 2;

 c <<= 2;

 a ^= c;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("c = " + c);

 }

}

The output of this program is shown here:

a = 15

b = 0

c = 12

Using the Bitwise Logical Operators

The following program demonstrates the bitwise logical operators:

public class Main {

 public static void main(String args[]) {

 int a = 1;

 int b = 2;

 int c = a | b;

 int d = a & b;

 int e = a ^ b;

 int f = (~a & b) | (a & ~b);

 int g = ~a & 0x0f;

 System.out.println(" a = " + a);

 System.out.println(" b = " + b);

 System.out.println(" a|b = " + c);

 System.out.println(" a&b = " + d);

 System.out.println(" a^b = " + e);

 System.out.println("~a&b|a&~b = " + f);

 System.out.println(" ~a = " + g);

 }

}

Here is the output from this program:

 a = 1

 b = 2

 a|b = 3

 a&b = 0

 a^b = 3

~a&b|a&~b = 3

 ~a = 14

Relational Operators

The relational operators determine the relationship between two operands. The
relational operators are:

Operator Result

== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

For example, the following code fragment is perfectly valid:

public class Main {

 public static void main(String[] argv) {

 int a = 4;

 int b = 1;

 boolean c = a < b;

 System.out.println("c is " + c);

 }

}

The result of a < b (which is false) is stored in c.

c is false

The outcome of a relational operator is a boolean
value.

In the following code, the System.out.println outputs the result of a relational operator.

public class Main {

 public static void main(String args[]) {

 // outcome of a relational operator is a boolean value

 System.out.println("10 > 9 is " + (10 > 9));

 }

}

The output generated by this program is shown here:

10 > 9 is true

Boolean Logical Operators

The Boolean logical operators operate only on boolean operands.

Operator Result

& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

? : Ternary if-then-else

The following table shows the effect of each logical operation:

A B A | B A & B A ^ B !A

False False False False False True

True False True False True False

False True True False True True

True True True True False False

The following program demonstrates the boolean logical operators.

public class Main {

 public static void main(String args[]) {

 boolean a = true;

 boolean b = false;

 boolean c = a | b;

 boolean d = a & b;

 boolean e = a ^ b;

 boolean f = (!a & b) | (a & !b);

 boolean g = !a;

 System.out.println(" a = " + a);

 System.out.println(" b = " + b);

 System.out.println(" a|b = " + c);

 System.out.println(" a&b = " + d);

 System.out.println(" a^b = " + e);

 System.out.println("!a&b|a&!b = " + f);

 System.out.println(" !a = " + g);

 }

}

The output:

 a = true

 b = false

 a|b = true

 a&b = false

 a^b = true

!a&b|a&!b = true

 !a = false

Short-Circuit Logical Operators

The OR operator results in true when one operand is true, no matter what the second
operand is.
The AND operator results in false when one operand is false, no matter what the

second operand is.
If you use the || and &&, Java will not evaluate the right-hand operand when the

outcome can be determined by the left operand alone.

The following code shows how you can use short-circuit logical operator to ensure that
a division operation will be valid before evaluating it:

public class Main {

 public static void main(String[] argv) {

 int denom = 0;

 int num = 3;

 if (denom != 0 && num / denom > 10) {

 System.out.println("Here");

 } else {

 System.out.println("There");

 }

 }

}

The output:

There

The following code uses a single & ensures that the increment operation will be applied
to e whether c is equal to 1 or not.

public class Main {

 public static void main(String[] argv) {

 int c = 0;

 int e = 99;

 int d = 0;

 if (c == 1 & e++ < 100)

 d = 100;

 System.out.println("e is " + e);

 System.out.println("d is " + d);

 }

}

The output:

e is 100

d is 0

The ? Operator

The ? operator is a ternary (three-way) operator. The ? has this general form:

expression1 ? expression2 : expression3

 expression1 can be any expression that evaluates to a boolean value.

 If expression1 is true, then expression2 is evaluated.
 Otherwise, expression3 is evaluated.

The expression evaluated is the result of the ? operation.

Both expression2 and expression3 are required to return the same type, which can't be

void. Here is an example of ? operator:

public class Main {

 public static void main(String[] argv) {

 int denom = 10;

 int num = 4;

 double ratio;

 ratio = denom == 0 ? 0 : num / denom;

 System.out.println("ratio = " + ratio);

 }

}

The output:

ratio = 0.0

Here is another program that demonstrates the ? operator. It uses it to obtain the

absolute value of a variable.

public class Main {

 public static void main(String args[]) {

 int i, k;

 i = 10;

 k = i < 0 ? -i : i;

 System.out.print("Absolute value of ");

 System.out.println(i + " is " + k);

 i = -10;

 k = i < 0 ? -i : i;

 System.out.print("Absolute value of ");

 System.out.println(i + " is " + k);

 }

}

The output generated by the program is shown here:

Absolute value of 10 is 10

Absolute value of -10 is 10

Operator Precedence

The following table shows the order of precedence for Java operators, from highest to
lowest.

1. () [] . (Highest)
2. ++ - - ~ !

3. * / %
4. + -

5. <![CDATA[>> >>> <<]]>

6. <![CDATA[>>= < <=]]>

7. == !=

8.
9. ^
10. |

11.
12. ||

13. ?:
14. = op= (Lowest)

Operator Precedence

The following table shows the order of precedence for Java operators, from highest to
lowest.

1. () [] . (Highest)
2. ++ - - ~ !

3. * / %

4. + -
5. <![CDATA[>> >>> <<]]>

6. <![CDATA[>>= < <=]]>

7. == !=
8.
9. ^

10. |
11.

12. ||
13. ?:
14. = op= (Lowest)

!!

Simplest if statement

Java has two selection statements: if and switch. Simplest if statement form is shown

here:

if(condition)

 statement;

condition is a boolean expression.

If condition is true, then the statement is executed.

If condition is false, then the statement is bypassed.

Here is an example:

public class Main {

 public static void main(String args[]) {

 int num = 99;

 if (num < 100) {

 System.out.println("num is less than 100");

 }

 }

}

The output generated by this program is shown here:

num is less than 100

Using if statement to compare two variables

public class Main {

 public static void main(String args[]) {

 int x, y;

 x = 10;

 y = 20;

 if (x < y){

 System.out.println("x is less than y");

 }

 x = x * 2;

 if (x == y){

 System.out.println("x now equal to y");

 }

 x = x * 2;

 if (x > y){

 System.out.println("x now greater than y");

 }

 if (x == y){

 System.out.println("===");

 }

 }

}

The output generated by this program is shown here:

x is less than y

x now equal to y

x now greater than y

Using a boolean value to control the if statement

The value of a boolean variable is sufficient, by itself, to control the if statement.

public class Main {

 public static void main(String args[]) {

 boolean b;

 b = false;

 if (b) {

 System.out.println("This is executed.");

 } else {

 System.out.println("This is NOT executed.");

 }

 }

}

There is no need to write an if statement like this:

if(b == true) ...

The output generated by this program is shown here:

This is NOT executed.

Simplest if statement

Java has two selection statements: if and switch. Simplest if statement form is shown

here:

if(condition)

 statement;

condition is a boolean expression.

If condition is true, then the statement is executed.

If condition is false, then the statement is bypassed.

Here is an example:

public class Main {

 public static void main(String args[]) {

 int num = 99;

 if (num < 100) {

 System.out.println("num is less than 100");

 }

 }

}

The output generated by this program is shown here:

num is less than 100

Using if statement to compare two variables

public class Main {

 public static void main(String args[]) {

 int x, y;

 x = 10;

 y = 20;

 if (x < y){

 System.out.println("x is less than y");

 }

 x = x * 2;

 if (x == y){

 System.out.println("x now equal to y");

 }

 x = x * 2;

 if (x > y){

 System.out.println("x now greater than y");

 }

 if (x == y){

 System.out.println("===");

 }

 }

}

The output generated by this program is shown here:

x is less than y

x now equal to y

x now greater than y

Using a boolean value to control the if statement

The value of a boolean variable is sufficient, by itself, to control the if statement.

public class Main {

 public static void main(String args[]) {

 boolean b;

 b = false;

 if (b) {

 System.out.println("This is executed.");

 } else {

 System.out.println("This is NOT executed.");

 }

 }

}

There is no need to write an if statement like this:

if(b == true) ...

The output generated by this program is shown here:

This is NOT executed.

switch statement

The switch statement is a multiway branch statement.

It provides a better alternative than a large series of if-else-if statements.

Here is the general form of a switch statement:

switch (expression) {

case value1:

 statement sequence

 break;

case value2:

 statement sequence

 break;

.

.

.

case valueN:

 statement sequence

 break;

default:

 default statement sequence

}

Duplicate case values are not allowed.

A break statement jumps out of switch statement to the first line that follows the entire

switch statement.

Here is a simple example that uses a switch statement:

public class Main {

 public static void main(String args[]) {

 for (int i = 0; i < 6; i++)

 switch (i) {

 case 0:

 System.out.println("i is zero.");

 break;

 case 1:

 System.out.println("i is one.");

 break;

 case 2:

 System.out.println("i is two.");

 break;

 case 3:

 System.out.println("i is three.");

 break;

 default:

 System.out.println("i is greater than 3.");

 }

 }

}

The output produced by this program is shown here:

i is zero.

i is one.

i is two.

i is three.

i is greater than 3.

i is greater than 3.

The break statement is optional

If you omit the break, execution will continue on into the next case. For example,

consider the following program:

public class Main {

 public static void main(String args[]) {

 for (int i = 0; i < 12; i++)

 switch (i) {

 case 0:

 case 1:

 case 2:

 case 3:

 case 4:

 System.out.println("i is less than 5");

 break;

 case 5:

 case 6:

 case 7:

 case 8:

 case 9:

 System.out.println("i is less than 10");

 break;

 default:

 System.out.println("i is 10 or more");

 }

 }

}

This program generates the following output:

i is less than 5

i is less than 5

i is less than 5

i is less than 5

i is less than 5

i is less than 10

i is less than 10

i is less than 10

i is less than 10

i is less than 10

i is 10 or more

i is 10 or more

Nested switch Statements

For example, the following fragment is a valid nested switch statement.

public class Main {

 public static void main(String args[]) {

 for (int i = 0; i < 6; i++)

 switch(i) {

 case 0:

 switch(i+1) { // nested switch

 case 0:

 System.out.println("target is zero");

 break;

 case 1:

 System.out.println("target is one");

 break;

 }

 break;

 case 2: // ...

 }

 }

}

The output:

target is one

while loop

The while loop repeats a statement or block while its controlling expression is true.

Here is its general form:

while(condition) {

 // body of loop

}

 The condition can be any Boolean expression.

 The body of the loop will be executed as long as the conditional expression is

true.

 The curly braces are unnecessary if only a single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of "tick":

public class Main {

 public static void main(String args[]) {

 int n = 10;

 while (n > 0) {

 System.out.println("n:" + n);

 n--;

 }

 }

}

When you run this program, you will get the following result:

n:10

n:9

n:8

n:7

n:6

n:5

n:4

n:3

n:2

n:1

The body of the while loop will not execute if the condition is false. For example, in the

following fragment, the call to println() is never executed:

public class Main {

 public static void main(String[] argv) {

 int a = 10, b = 20;

 while (a > b) {

 System.out.println("This will not be displayed");

 }

 System.out.println("You are here");

 }

}

The output:

You are here

The body of the while can be empty. For example, consider the following program:

public class Main {

 public static void main(String args[]) {

 int i, j;

 i = 10;

 j = 20;

 // find midpoint between i and j

 while (++i < --j)

 ;

 System.out.println("Midpoint is " + i);

 }

}

It generates the following output:

Midpoint is 15

do-while statement

To execute the body of a while loop at least once, you can use the do-while loop. Its

general form is

do {

 // body of loop

} while (condition);

Here is an example to show how to use a do-while loop. It generates the same output

as before.

public class Main {

 public static void main(String args[]) {

 int n = 10;

 do {

 System.out.println("n:" + n);

 n--;

 } while (n > 0);

 }

}

The loop in the preceding program can be written as follows:

n:10

n:9

n:8

n:7

n:6

n:5

n:4

n:3

n:2

n:1

public class Main {

 public static void main(String args[]) {

 int n = 10;

 do {

 System.out.println("n:" + n);

 } while (--n > 0);

 }

}

The output:

n:10

n:9

n:8

n:7

n:6

n:5

n:4

n:3

n:2

n:1

The following program implements a very simple help system with do-while loop and

switch statement.

public class Main {

 public static void main(String args[]) throws java.io.IOException {

 char choice;

 do {

 System.out.println("Help on:");

 System.out.println(" 1. A");

 System.out.println(" 2. B");

 System.out.println(" 3. C");

 System.out.println(" 4. D");

 System.out.println(" 5. E");

 System.out.println("Choose one:");

 choice = (char) System.in.read();

 } while (choice < '1' || choice > '5');

 System.out.println("\n");

 switch (choice) {

 case '1':

 System.out.println("A");

 break;

 case '2':

 System.out.println("B");

 break;

 case '3':

 System.out.println("C");

 break;

 case '4':

 System.out.println("D");

 break;

 case '5':

 System.out.println("E");

 break;

 }

 }

}

Here is a sample run produced by this program:

Help on:

 1. A

 2. B

 3. C

 4. D

 5. E

Choose one:

for Loop

The simplest form of the for loop is shown here:

 for(initialization; condition; iteration) statement;

initialization sets a loop control variable to an initial value.

condition is a Boolean expression that tests the loop control variable.

If condition is true, the for loop continues to iterate.

If condition is false, the loop terminates.

The iteration determines how the loop control variable is changed each time the loop

iterates.

Here is a short program that illustrates the for loop:

public class Main {

 public static void main(String args[]) {

 int i;

 for (i = 0; i < 10; i = i + 1)

 System.out.println("This is i: " + i);

 }

}

This program generates the following output:

This is i: 0

This is i: 1

This is i: 2

This is i: 3

This is i: 4

This is i: 5

This is i: 6

This is i: 7

This is i: 8

This is i: 9

i is the loop control variable.

i is initialized to zero in the initialization.

At the start of each iteration, the conditional test x < 10 is performed.
If the outcome of this test is true, the println() statement is executed, and then the

iteration portion of the loop is executed.

This process continues until the conditional test is false.

The following code loops reversively:

public class Main {

 public static void main(String args[]) {

 for (int n = 10; n > 0; n--)

 System.out.println("n:" + n);

 }

}

The output:

n:10

n:9

n:8

n:7

n:6

n:5

n:4

n:3

n:2

n:1

Control Variables Inside the for Loop

It is possible to declare the variable inside the initialization portion of the for.

public class Main {

 public static void main(String args[]) {

 for (int n = 10; n > 0; n--){

 System.out.println("tick " + n);

 }

 }

}

The output:

tick 10

tick 9

tick 8

tick 7

tick 6

tick 5

tick 4

tick 3

tick 2

tick 1

The scope n ends when the for statement ends. Here is a program that tests for prime
numbers using for loop statement.

public class Main {

 public static void main(String args[]) {

 int num;

 boolean isPrime = true;

 num = 50;

 for (int i = 2; i <= num / 2; i++) {

 if ((num % i) == 0) {

 isPrime = false;

 break;

 }

 }

 if (isPrime)

 System.out.println("Prime");

 else

 System.out.println("Not Prime");

 }

}

The output:

Not Prime

Using the Comma

Java allows two or more variables to control a for loop.

And you can include multiple statements in both the initialization and iteration portions
of the for.
Each statement is separated from the next by a comma.

Here is an example:

public class Main {

 public static void main(String args[]) {

 for (int a = 1, b = 4; a < b; a++, b--) {

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 }

 }

}

The program generates the following output:

a = 1

b = 4

a = 2

b = 3

For Loop Variations

The three sections of the for can be used for any purpose. Parts of the for loop can be

empty.

public class Main {

 public static void main(String args[]) {

 int i = 0;

 boolean done = false;

 for (; !done;) {

 System.out.println("i is " + i);

 if (i == 10)

 done = true;

 i++;

 }

 }

}

The output:

i is 0

i is 1

i is 2

i is 3

i is 4

i is 5

i is 6

i is 7

i is 8

i is 9

i is 10

Declare multiple variables in for loop Example

You can define more than one variables and use them inside the for loop.

public class Main {

 public static void main(String[] args) {

 for (int i = 0, j = 1, k = 2; i < 5; i++)

 System.out.println("I : " + i + ",j : " + j + ", k : " + k);

 }

}

The output:

I : 0,j : 1, k : 2

I : 1,j : 1, k : 2

I : 2,j : 1, k : 2

I : 3,j : 1, k : 2

I : 4,j : 1, k : 2

Nested for Loops

For example, here is a program that nests for loops:

public class Main {

 public static void main(String args[]) {

 for (int i = 0; i < 10; i++) {

 for (int j = i; j < 10; j++)

 System.out.print(".");

 System.out.println();

 }

 }

}

The output produced by this program is shown here:

..........

.........

........

.......

......

.....

....

...

..

.

for each loop

The new version eliminates the loop counter.

The new syntax is:

for (type variable_name:array){

}

The type must be compatible with the array type.

public class Main {

 public static void main(String args[]) {

 String[] arr = new String[]{"java2s.com","a","b","c"};

 for(String s:arr){

 System.out.println(s);

 }

 }

}

The output:

java2s.com

a

b

c

Use for-each style for on a two-dimensional array.

public class Main {

 public static void main(String args[]) {

 int sum = 0;

 int nums[][] = new int[3][5];

 // give nums some values

 for (int i = 0; i < 3; i++)

 for (int j = 0; j < 5; j++)

 nums[i][j] = (i + 1) * (j + 1);

 // use for-each for to display and sum the values

 for (int x[] : nums) {

 for (int y : x) {

 System.out.println("Value is: " + y);

 sum += y;

 }

 }

 System.out.println("Summation: " + sum);

 }

}

The output from this program is shown here:

Value is: 1

Value is: 2

Value is: 3

Value is: 4

Value is: 5

Value is: 2

Value is: 4

Value is: 6

Value is: 8

Value is: 10

Value is: 3

Value is: 6

Value is: 9

Value is: 12

Value is: 15

Summation: 90

// Search an array using for-each style for.

public class Main {

 public static void main(String args[]) {

 int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };

 int val = 5;

 boolean found = false;

 // use for-each style for to search nums for val

 for (int x : nums) {

 if (x == val) {

 found = true;

 break;

 }

 }

 if (found)

 System.out.println("Value found!");

 }

}

break to Exit a Loop

When a break statement is encountered inside a loop, the loop is terminated and
program control resumes at the next statement following the loop.

Here is a simple example:

public class Main {

 public static void main(String args[]) {

 for (int i = 0; i < 100; i++) {

 if (i == 10)

 break; // terminate loop if i is 10

 System.out.println("i: " + i);

 }

 System.out.println("Loop complete.");

 }

}

This program generates the following output:

i: 0

i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

i: 8

i: 9

Loop complete.

The break statement can be used with while loop as well. For example, here is the

preceding program coded by use of a while loop.

public class Main {

 public static void main(String args[]) {

 int i = 0;

 while (i < 100) {

 if (i == 10)

 break; // terminate loop if i is 10

 System.out.println("i: " + i);

 i++;

 }

 System.out.println("Loop complete.");

 }

}

The output:

i: 0

i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

i: 8

i: 9

Loop complete.

The break statement can be used with infinite loops.

public class Main {

 public static void main(String args[]) {

 int i = 0;

 while (true) {

 if (i == 10){

 break; // terminate loop if i is 10

 }

 System.out.println("i: " + i);

 i++;

 }

 System.out.println("Loop complete.");

 }

}

The output:

i: 0

i: 1

i: 2

i: 3

i: 4

i: 5

i: 6

i: 7

i: 8

i: 9

Loop complete.

When used inside a set of nested loops, the break statement will only break out of the

inner-most loop. For example:

public class Main {

 public static void main(String args[]) {

 for (int i = 0; i < 5; i++) {

 System.out.print("Pass " + i + ": ");

 for (int j = 0; j < 100; j++) {

 if (j == 10)

 break; // terminate loop if j is 10

 System.out.print(j + " ");

 }

 System.out.println();

 }

 System.out.println("Loops complete.");

 }

}

This program generates the following output:

Pass 0: 0 1 2 3 4 5 6 7 8 9

Pass 1: 0 1 2 3 4 5 6 7 8 9

Pass 2: 0 1 2 3 4 5 6 7 8 9

Pass 3: 0 1 2 3 4 5 6 7 8 9

Pass 4: 0 1 2 3 4 5 6 7 8 9

Loops complete.

The break that terminates a switch statement affects only that switch statement and

not any enclosing loops.

public class Main {

 public static void main(String args[]) {

 for (int i = 0; i < 6; i++)

 switch (i) {

 case 1:

 System.out.println("i is one.");

 for (int j = 0; j < 5; j++) {

 System.out.println("j is " + j);

 }

 break;

 case 2:

 System.out.println("i is two.");

 break;

 default:

 System.out.println("i is greater than 3.");

 }

 }

}

The output:

i is greater than 3.

i is one.

j is 0

j is 1

j is 2

j is 3

j is 4

i is two.

i is greater than 3.

i is greater than 3.

i is greater than 3.

continue

continue statement forces an early iteration of a loop.

In while and do-while loops, a continue statement causes control to be transferred to

the conditional expression that controls the loop.

In a for loop, control goes first to the iteration portion of the for statement and then to

the conditional expression.

The following code shows how to use a continue statement.

public class Main {

 public static void main(String[] argv) {

 for (int i = 0; i < 10; i++) {

 System.out.print(i + " ");

 if (i % 2 == 0)

 continue;

 System.out.println("");

 }

 }

}

The code above generates the following result.

0 1

2 3

4 5

6 7

8 9

Using continue with a label

continue may specify a label to describe which enclosing loop to continue.

public class Main {

 public static void main(String args[]) {

 outer: for (int i = 0; i < 10; i++) {

 for (int j = 0; j < 10; j++) {

 if (j > i) {

 System.out.println();

 continue outer;

 }

 System.out.print(" " + (i * j));

 }

 }

 System.out.println();

 }

}

Here is the output of this program:

 0

 0 1

 0 2 4

 0 3 6 9

 0 4 8 12 16

 0 5 10 15 20 25

 0 6 12 18 24 30 36

 0 7 14 21 28 35 42 49

 0 8 16 24 32 40 48 56 64

 0 9 18 27 36 45 54 63 72 81

return statement returns from a method.

The return statement immediately terminates the method in which it is executed.

public class Main {

 public static void main(String args[]) {

 boolean t = true;

 System.out.println("Before return");

 if (t)

 return; // return to caller

 System.out.println("after");

 }

}

The output from this program is shown here:

Before return

Comments

There are three types of comments defined by Java.

1. Single-line,
2. Multiline and

3. Documentation comment.

Single-line comment

Java single line comment starts from // and ends till the end of that line.

public class Main {

 // This is a single line comment.

 public static void main(String[] argv) {

 }

}

Multiline comment

Java multiline comment is between /* and */.

public class Main {

 /* This

 is

 a

 Multiline

 comment.

 */

 public static void main(String[] argv) {

 }

}

Documentation comment.

Documentation comment is used to produce an HTML file that documents your

program. A Javadoc comment occupies one or more lines of source code. The
documentation comment begins with a /** and ends with a */. Everything from /**

through */ is ignored by the compiler.

The following example demonstrates a Javadoc comment:

/**

* Application entry point

*

* @param args array of command-line arguments passed to this method

*/

public static void main(String[] args)

{

// TODO code application logic here

}

This example begins with a Javadoc comment that describes the main() method. /** and
*/ contains a description of the method, which could include HTML tags such as <p>
and <code>/</code>, and the @param Javadoc tag (an @-prefixed instruction).

The following list identifies several commonly used tags:

 @author identifies the source code's author.

 @deprecated identifies a source code entity that should no longer be used.
 @param identifies one of a method's parameters.
 @see provides a see-also reference.

 @since identifies the software release where the entity first originated.
 @return identifies the kind of value that the method returns.

The following code has more documentation comments

/**

 * A simple class for introducing a Java application.

 *

 * @author yourName

 */

public class HelloWorld {

 /**

 * Application entry point

 *

 * @param args

 * array of command-line arguments passed to this method

 */

 public static void main(String[] args) {

 System.out.println("Hello, world!");

 }

}

We can extract these documentation comments into a set of HTML files by using the
JDK's javadoc tool, as follows:

javadoc HelloWorld.java

!!!

Introduction to Arrays

A Java array is an ordered collection of primitives, object references, or other arrays.
Java arrays are homogeneous: except as allowed by polymorphism, all elements of an

array must be of the same type.

Each variable is referenced by array name and its index. Arrays may have one or more
dimensions.

One-Dimensional Arrays

A one-dimensional array is a list of similar-typed variables. The general form of a one-
dimensional array declaration is:

type var-name[];

 type declares the array type.

 type also determines the data type of each array element.

The following declares an array named days with the type "array of int":

int days[];

 days is an array variable.

 The value of days is set to null.

Allocate memory for array

You allocate memory using new and assign it to array variables. new is a special operator

that allocates memory. The general form is:

arrayVar = new type[size];

 type specifies the type of data being allocated.

 size specifies the number of elements.
 arrayVar is the array variable.

The following two statements first create an int type array variable and then allocate

memory for it to store 12 int type values.

int days[];

days = new int[12];

days refers to an array of 12 integers.

All elements in the array is initialized to zero.

Array creation is a two-step process.

1. declare a variable of the desired array type.

2. allocate the memory using new.

In Java all arrays are dynamically allocated.

You can access a specific element in the array with [index].
All array indexes start at zero.
For example, the following code assigns the value 28 to the second element of days.

public class Main {

 public static void main(String[] argv) {

 int days[];

 days = new int[12];

 days[1] = 28;

 System.out.println(days[1]);

 }

}

It is possible to combine the declaration of the array variable with the allocation of the
array itself.

int month_days[] = new int[12];

Array Element Initialization Values

Element Type Initial Value

byte 0

int 0

float 0.0f

char '\u0000'

object reference null

short 0

long 0L

double 0.0d

boolean false

Alternative Array Declaration Syntax

The square brackets follow the type specifier, and not the name of the array variable.

type[] var-name;

For example, the following two declarations are equivalent:

int al[] = new int[3];

int[] a2 = new int[3];

The following declarations are also equivalent:

char d1[][] = new char[3][4];

char[][] d2 = new char[3][4];

Multidimensional Arrays

In Java, multidimensional arrays are actually arrays of arrays. For example, the
following declares a two-dimensional array variable called twoD.

int twoD[][] = new int[4][5];

This allocates a 4-by-5 array and assigns it to twoD. This array will look like the one
shown in the following:

 [leftIndex][rightIndex]

 [0][0] [0][1] [0][2] [0][3] [0][4]

 [1][0] [1][1] [1][2] [1][3] [1][4]

 [2][0] [2][1] [2][2] [2][3] [2][4]

 [3][0] [3][1] [3][2] [3][3] [3][4]

The wrong way to think about multi-dimension arrays

+----+----+----+

| 1| 2| 3|

+----+----+----+

| 4| 5| 6|

+----+----+----+

| 7| 8| 9|

+----+----+----+

right way to think about multi-dimension arrays

+--+ +----+----+----+

| |--------| 1| 2| 3|

+--+ +----+----+----+ +----+----+----+

| |-----------------------------| 4| 5| 6|

+--+ +----+----+----+ +----+----+----+

| |---| 7| 8| 9|

+--+ +----+----+----+

An irregular multi-dimension array

+--+ +----+----+

| |--------| 1| 2|

+--+ +----+----+ +----+----+----+

| |-----------------------------| 4| 5| 6|

+--+ +----+----+----+----+ +----+----+----+

| |---| 7| 8| 9| 10|

+--+ +----+----+----+----+

The following code use nested for loop to assign values to a two-dimensional array.

public class Main {

 public static void main(String args[]) {

 int twoD[][] = new int[4][5];

 for (int i = 0; i < 4; i++) {

 for (int j = 0; j < 5; j++) {

 twoD[i][j] = i*j;

 }

 }

 for (int i = 0; i < 4; i++) {

 for (int j = 0; j < 5; j++) {

 System.out.print(twoD[i][j] + " ");

 }

 System.out.println();

 }

 }

}

This program generates the following output:

0 0 0 0 0

0 1 2 3 4

0 2 4 6 8

0 3 6 9 12

Three-dimensional array

The following program creates a 3 by 4 by 5, three-dimensional array.

public class Main {

 public static void main(String args[]) {

 int threeD[][][] = new int[3][4][5];

 for (int i = 0; i < 3; i++)

 for (int j = 0; j < 4; j++)

 for (int k = 0; k < 5; k++)

 threeD[i][j][k] = i * j * k;

 for (int i = 0; i < 3; i++) {

 for (int j = 0; j < 4; j++) {

 for (int k = 0; k < 5; k++)

 System.out.print(threeD[i][j][k] + " ");

 System.out.println();

 }

 System.out.println();

 }

 }

}

This program generates the following output:

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 1 2 3 4

0 2 4 6 8

0 3 6 9 12

0 0 0 0 0

0 2 4 6 8

0 4 8 12 16

0 6 12 18 24

Jagged array

When you allocate memory for a multidimensional array, you can allocate the remaining
dimensions separately. For example, the following code allocates the second dimension

manually.

public class Main {

 public static void main(String[] argv) {

 int twoD[][] = new int[4][];

 twoD[0] = new int[5];

 twoD[1] = new int[5];

 twoD[2] = new int[5];

 twoD[3] = new int[5];

 }

}

When allocating dimensions manually, you do not need to allocate the same number of
elements for each dimension.

The following program creates a two-dimensional array in which the sizes of the second
dimension are unequal.

public class Main {

 public static void main(String args[]) {

 int twoD[][] = new int[4][];

 twoD[0] = new int[1];

 twoD[1] = new int[2];

 twoD[2] = new int[3];

 twoD[3] = new int[4];

 for (int i = 0; i < 4; i++){

 for (int j = 0; j < i + 1; j++) {

 twoD[i][j] = i + j;

 }

 }

 for (int i = 0; i < 4; i++) {

 for (int j = 0; j < i + 1; j++)

 System.out.print(twoD[i][j] + " ");

 System.out.println();

 }

 }

}

This program generates the following output:

0

1 2

2 3 4

3 4 5 6

The array created by this program looks like this:

 [0][0]

 [1][0] [1][1]

 [2][0] [2][1] [2][2]

 [3][0] [3][1] [3][2] [3][3]

Initialize multidimensional arrays

Enclose each dimension's initializer within its own set of curly braces.

public class Main{

 public static void main(String args[]) {

 double m[][] = {

 { 0, 1, 2, 3 },

 { 0, 1, 2, 3 },

 { 0, 1, 2, 3 },

 { 0, 1, 2, 3 }

 };

 for(int i=0; i<4; i++) {

 for(int j=0; j<4; j++){

 System.out.print(m[i][j] + " ");

 }

 System.out.println();

 }

 }

}

When you run this program, you will get the following output:

0.0 1.0 2.0 3.0

0.0 1.0 2.0 3.0

0.0 1.0 2.0 3.0

0.0 1.0 2.0 3.0

Arrays length

Array size, arrayName.length, holds its length. The following code outputs the length of
each array by using its length property.

public class Main {

 public static void main(String args[]) {

 int a1[] = new int[10];

 int a2[] = {1, 2, 3, 4, 5};

 int a3[] = {4, 3, 2, 1};

 System.out.println("length of a1 is " + a1.length);

 System.out.println("length of a2 is " + a2.length);

 System.out.println("length of a3 is " + a3.length);

 }

}

This program displays the following output:

length of a1 is 10

length of a2 is 5

length of a3 is 4

Calculate with Array

Calculate Average value of Array elements

public class Main {

 public static void main(String[] args) {

 int[] intArray = new int[] { 1, 2, 3, 4, 5 };

 // calculate sum

 int sum = 0;

 for (int i = 0; i < intArray.length; i++){

 sum = sum + intArray[i];

 }

 // calculate average

 double average = sum / intArray.length;

 System.out.println("average: " + average);

 }

}

The output:

average: 3.0

Create Fibonacci Series with array

import java.util.Arrays;

public class Main {

 public static void main(String[] args) {

 int length = 20;

 long[] series = new long[length];

 series[0] = 0;

 series[1] = 1;

 for (int i = 2; i < length; i++) {

 series[i] = series[i - 1] + series[i - 2];

 }

 System.out.print(Arrays.toString(series));

 }

}

The output:

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,

2584, 4181]

The following code use two-dimensional double type array to do Matrix calculation

class Matrix {

 private double[][] doubleArray;

 Matrix(int nrows, int ncols) {

 doubleArray = new double[nrows][ncols];

 }

 int getCols() {

 return doubleArray[0].length;

 }

 int getRows() {

 return doubleArray.length;

 }

 double getValue(int row, int col) {

 return doubleArray[row][col];

 }

 void setValue(int row, int col, double value) {

 doubleArray[row][col] = value;

 }

}

public class Main {

 public static void main(String[] args) {

 Matrix a = new Matrix(1, 3);

 a.setValue(0, 0, 1); // | 1 2 3 |

 a.setValue(0, 1, 2);

 a.setValue(0, 2, 3);

 dump(a);

 Matrix b = new Matrix(3, 2);

 b.setValue(0, 0, 4); // | 4 7 |

 b.setValue(1, 0, 5); // | 5 8 |

 b.setValue(2, 0, 6); // | 6 9 |

 b.setValue(0, 1, 7);

 b.setValue(1, 1, 8);

 b.setValue(2, 1, 9);

 dump(b);

 dump(multiply(a, b));

 }

 static void dump(Matrix m) {

 for (int i = 0; i < m.getRows(); i++) {

 for (int j = 0; j < m.getCols(); j++){

 System.out.print(m.getValue(i, j) + " ");

 }

 System.out.println();

 }

 System.out.println();

 }

 static Matrix multiply(Matrix a, Matrix b) {

 if (a.getCols() != b.getRows()) {

 throw new IllegalArgumentException("rows/columns mismatch");

 }

 Matrix result = new Matrix(a.getRows(), b.getCols());

 for (int i = 0; i < a.getRows(); i++) {

 for (int j = 0; j < b.getCols(); j++) {

 for (int k = 0; k < a.getCols(); k++) {

 result.setValue(i, j, result.getValue(i, j) + a.getValue(i, k) *

b.getValue(k, j));

 }

 }

 }

 return result;

 }

}

!!

Type Conversion and Casting

If the two types are compatible, then Java will perform the conversion automatically. For

example, assign an int value to a long variable.

For incompatible types we must use a cast. Casting is an explicit conversion between
incompatible types.

Java's Automatic Conversions

An automatic type conversion will be used if the following two conditions are met:

1. The two types are compatible.
2. The destination type is larger than the source type.

int type is always large enough to hold all valid byte values, so an automatic type

conversion takes place.

public class Main {

 public static void main(String[] argv) {

 byte b = 10;

 int i = 0;

 i = b;

 System.out.println("b is " + b);

 System.out.println("i is " + i);

 }

}

The output:

b is 10

i is 10

For widening conversions, integer and floating-point types are compatible with each
other.

public class Main {

 public static void main(String[] argv) {

 int i = 1234;

 float f;

 f = i;

 System.out.println("i is " + i);

 System.out.println("f is " + f);

 }

}

The output:

i is 1234

f is 1234.0

The numeric types are not compatible with char or boolean

public class Main{

 public static void main(String[] argv){

 char ch = 'a';

 int num = 99;

 ch = num ;

 }

}

Compiling the code above will generate the following error message.

char and boolean are not compatible with each other.

public class Main {

 public static void main(String[] argv) {

 char ch = 'a';

 int num = 99;

 ch = num;

 }

}

Compiling the code above will generate the following error message.

D:\>javac Main.java

Main.java:5: possible loss of precision

found : int

required: char

 ch = num;

 ^

1 error

Java performs an automatic type conversion when storing a literal integer constant into

variables of type byte, short, or long.

public class Main {

 public static void main(String[] argv) {

 byte b = 1;

 }

}

But you cannot store a value out of the byte scope

public class Main{

 public static void main(String[] argv){

 byte b = 11111;

 }

}

When compiling, it generates the following error message:

D:\>javac Main.java

Main.java:3: possible loss of precision

found : int

required: byte

 byte b = 11111;

 ^

1 error

Casting Incompatible Types

A narrowing conversion is to explicitly make the value narrower. A cast is an explicit
type conversion. It has this general form:

(target-type) value

target-type specifies the desired type. The following code casts int type value to byte

type value.

public class Main {

 public static void main(String[] argv) {

 int a = 1234;

 byte b;

 b = (byte) a;

 System.out.println("a is " + a);

 System.out.println("b is " + b);

 }

}

The output:

a is 1234

b is -46

Truncation happens when assigning a floating-point value to an integer value. For
example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.

public class Main {

 public static void main(String args[]) {

 byte b;

 int i = 1;

 double d = 1.123;

 System.out.println("Conversion of double to int.");

 i = (int) d;

 System.out.println("d: " + d + " i: " + i);

 System.out.println("Conversion of double to byte.");

 b = (byte) d;

 System.out.println("d: " + d + " b: " + b);

 }

}

This program generates the following output:

Conversion of double to int.

d: 1.123 i: 1

Conversion of double to byte.

d: 1.123 b: 1

Automatic Type Promotion in
Expressions

For example, examine the following expression:

public class Main {

 public static void main(String[] argv) {

 byte a = 40;

 byte b = 50;

 byte c = 100;

 int d = a * b / c;

 }

}

The result of a * b exceeds the range of byte. To handle this kind of problem, Java
automatically promotes each byte or short operand to int. a * b is performed using

integers.

Automatic promotions can cause compile-time errors.

public class Main {

 public static void main(String[] argv) {

 byte b = 5;

 b = b * 2; // Error! Cannot assign an int to a byte!

 }

}

Compiling the code above generates the following errors:

D:\>javac Main.java

Main.java:4: possible loss of precision

found : int

required: byte

 b = b * 2; // Error! Cannot assign an int to a byte!

 ^

1 error

If you understand the consequences of overflow, use an explicit cast.

public class Main {

 public static void main(String[] argv) {

 byte b = 50;

 b = (byte) (b * 2);

 System.out.println("b is " + b);

 }

}

The output from the code above is:

b is 100

The Type Promotion Rules

Widening conversions do not lose information about the magnitude of a value.

For example, an int value is assigned to a double variable.

This conversion is legal because doubles are wider than ints.

Java's widening conversions are

 From a byte to a short, an int, a long, a float, or a double

 From a short to an int, a long, a float, or a double
 From a char to an int, a long, a float, or a double

 From an int to a long, a float, or a double
 From a long to a float or a double
 From a float to a double

Widening conversions:

char->int

byte->short->int->long->float->double

Here are the Type Promotion Rules:

1. All byte and short values are promoted to int.

2. If one operand is a long, the whole expression is promoted to long.

3. If one operand is a float, the entire expression is promoted to float.
4. If any of the operands is double, the result is double.

In the following code, f * b, b is promoted to a float and the result of the

subexpression is float.

public class Main {

 public static void main(String args[]) {

 byte b = 4;

 float f = 5.5f;

 float result = (f * b);

 System.out.println("f * b = " + result);

 }

}

The output:

f * b = 22.0

In the following program, c is promoted to int, and the result is of type int.

public class Main {

 public static void main(String args[]) {

 char c = 'a';

 int i = 50000;

 int result = i / c;

 System.out.println("i / c is " + result);

 }

}

The output:

i / c is 515

In the following code the value of s is promoted to double, and the type of the

subexpression is double.

public class Main {

 public static void main(String args[]) {

 short s = 1024;

 double d = .1234;

 double result = d * s;

 System.out.println("d * s is " + result);

 }

}

The output:

d * s is 126.3616

!!!

Autoboxing and auto-unboxing

Type Wrappers

Java uses primitive types, such as int or double, to hold the basic primitive data types.

Primitive types, rather than objects, are used for the sake of performance.

Java provides type wrappers, which are classes that encapsulate a primitive type within
an object.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and

Boolean.

Autoboxing and Auto-unboxing

Autoboxing is the process by which a primitive type is automatically encapsulated

(boxed) into its equivalent type wrapper whenever an object of that type is needed.

Auto-unboxing is the process by which the value of a boxed object is automatically
extracted (unboxed) from a type wrapper when its value is needed.

For example, the following code constructs an Integer object that has the value 100:

public class Main {

 public static void main(String[] argv) {

 Integer iOb = 100; // autobox an int

 }

}

To unbox an object, simply assign that object reference to a primitive-type variable. For
example, to unbox iOb, you can use this line:

public class Main {

 public static void main(String[] argv) {

 Integer iOb = 100; // autobox an int

 int i = iOb; // auto-unbox

 }

}

Here is a program using autoboxing/unboxing:

public class Main {

 public static void main(String args[]) {

 Integer iOb = 100; // autobox an int

 int i = iOb; // auto-unbox

 System.out.println(i + " " + iOb); // displays 100 100

 }

}

Output:

100 100

Autoboxing and Methods

autoboxing occurs whenever a primitive type must be converted into an object; auto-

unboxing takes place whenever an object must be converted into a primitive type.

autoboxing/unboxing might occur when an argument is passed to a method, or when a
value is returned by a method.

For example, consider this example:

public class Main {

 static int m(Integer v) {

 return v; // auto-unbox to int

 }

 public static void main(String args[]) {

 Integer iOb = m(100);

 System.out.println(iOb);

 }

}

!!!

enum type

An enumeration is created using the enum keyword.

For example, here is a simple enumeration:

// An enumeration.

enum Direction {

 East, South, West, North

}

The identifiers East, South are called enumeration constants. Enumeration constants is

implicitly declared as a public, static final member of Direction.

The following program demonstrates the Direction enumeration:

// An enumeration of direction varieties.

enum Direction {

 East, South, West, North

}

public class Main {

 public static void main(String args[]) {

 Direction dir;

 dir = Direction.South;

 // Output an enum value.

 System.out.println("Value of dir: " + dir);

 System.out.println();

 dir = Direction.South;

 // Compare two enum values.

 if (dir == Direction.South)

 System.out.println("ap contains GoldenDel.\n");

 // Use an enum to control a switch statement.

 switch (dir) {

 case South:

 System.out.println("south");

 break;

 case East:

 System.out.println("East");

 break;

 case West:

 System.out.println("West");

 break;

 case North:

 System.out.println("North.");

 break;

 }

 }

}

The following code use enum with switch statement.

enum Coin {

 PENNY, NICKEL, DIME, QUARTER

}

public class Main {

 public static void main(String[] args) {

 Coin coin = Coin.NICKEL;

 switch (coin) {

 case PENNY:

 System.out.println("1 cent");

 break;

 case NICKEL:

 System.out.println("5 cents");

 break;

 case DIME:

 System.out.println("10 cents");

 break;

 case QUARTER:

 System.out.println("25 cents");

 break;

 default:

 assert false;

 }

 }

}

values() and valueOf() Methods

All enumerations automatically contain two predefined methods: values() and valueOf(
).

Their general forms are:

public static enum-type[] values()

public static enum-type valueOf(String str)

The values() method returns an array that contains a list of the enumeration constants.
The valueOf() method returns the enumeration constant whose value corresponds to
the string passed in str.

In both cases, enum-type is the type of the enumeration.

The following program demonstrates the values() and valueOf() methods:

enum Direction {

 East, South, West, North

}

public class Main {

 public static void main(String args[]) {

 Direction dir;

 // use values()

 Direction all[] = Direction.values();

 for (Direction a : all)

 System.out.println(a);

 System.out.println();

 // use valueOf()

 dir = Direction.valueOf("South");

 System.out.println(dir);

 }

}

enum as Class

You can give constructors, add instance variables and methods, and implement
interfaces for enum types.

When you define a constructor for an enum, the constructor is called when each
enumeration constant is created.

Each enumeration constant has its own copy of any instance variables defined by the
enumeration.

// Use an enum constructor, instance variable, and method.

enum Direction {

 South(10), East(9), North(12), West(8);

 private int myValue;

 // Constructor

 Direction(int p) {

 myValue = p;

 }

 int getMyValue() {

 return myValue;

 }

}

public class Main {

 public static void main(String args[]) {

 System.out.println(Direction.East.getMyValue());

 for (Direction a : Direction.values())

 System.out.println(a + " costs " + a.getMyValue());

 }

}

Two restrictions that apply to enumerations.

 an enumeration can't inherit another class.
 an enum cannot be a superclass.

You can add fields, constructors, and methods to an enum. You can have the enum
implement interfaces.

enum Coin {

 PENNY(1), NICKEL(5), DIME(10), QUARTER(25);

 private final int denomValue;

 Coin(int denomValue) {

 this.denomValue = denomValue;

 }

 int denomValue() {

 return denomValue;

 }

 int toDenomination(int numPennies) {

 return numPennies / denomValue;

 }

}

public class Main {

 public static void main(String[] args) {

 int numPennies = 1;

 int numQuarters = Coin.QUARTER.toDenomination(numPennies);

 numPennies = Coin.QUARTER.denomValue();

 int numDimes = Coin.DIME.toDenomination(numPennies);

 numPennies = Coin.DIME.denomValue();

 int numNickels = Coin.NICKEL.toDenomination(numPennies);

 numPennies = Coin.NICKEL.denomValue();

 for (int i = 0; i < Coin.values().length; i++) {

 System.out.println(Coin.values()[i].denomValue());

 }

 }

}

enum type Inherit Enum

All enum inherit java.lang.Enum. java.lang.Enum's methods are available for use by all
enumerations.

You can obtain a value that indicates an enumeration constant's position in the list of

constants. This is called its ordinal value, and it is retrieved by calling the ordinal()
method:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero.

You can compare the ordinal value of two constants of the same enumeration by using
the compareTo() method.

final int compareTo(enum-type e)

enum-type is the type of the enumeration, and e is the constant being compared to the
invoking constant.

If the two ordinal values are the same, then zero is returned. If the invoking constant

has an ordinal value greater than e's, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using
equals().

Those two objects will only be equal if they both refer to the same constant, within the

same enumeration.

The following program demonstrates the ordinal(), compareTo(), and equals()
methods:

// Demonstrate ordinal(), compareTo(), and equals().

enum Direction {

 East, South, West, North

}

public class Main {

 public static void main(String args[]) {

 Direction ap, ap2, ap3;

 // Obtain all ordinal values using ordinal().

 for (Direction a : Direction.values()){

 System.out.println(a + " " + a.ordinal());

 }

 ap = Direction.West;

 ap2 = Direction.South;

 ap3 = Direction.West;

 System.out.println();

 // Demonstrate compareTo() and equals()

 if (ap.compareTo(ap2) < 0)

 System.out.println(ap + " comes before " + ap2);

 if (ap.compareTo(ap2) > 0)

 System.out.println(ap2 + " comes before " + ap);

 if (ap.compareTo(ap3) == 0)

 System.out.println(ap + " equals " + ap3);

 System.out.println();

 if (ap.equals(ap2))

 System.out.println("Error!");

 if (ap.equals(ap3))

 System.out.println(ap + " equals " + ap3);

 if (ap == ap3)

 System.out.println(ap + " == " + ap3);

 }

}

enum type Inherit Enum

All enum inherit java.lang.Enum. java.lang.Enum's methods are available for use by all
enumerations.

You can obtain a value that indicates an enumeration constant's position in the list of
constants. This is called its ordinal value, and it is retrieved by calling the ordinal()
method:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero.

You can compare the ordinal value of two constants of the same enumeration by using

the compareTo() method.

final int compareTo(enum-type e)

enum-type is the type of the enumeration, and e is the constant being compared to the
invoking constant.

If the two ordinal values are the same, then zero is returned. If the invoking constant

has an ordinal value greater than e's, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using
equals().

Those two objects will only be equal if they both refer to the same constant, within the
same enumeration.

The following program demonstrates the ordinal(), compareTo(), and equals()
methods:

// Demonstrate ordinal(), compareTo(), and equals().

enum Direction {

 East, South, West, North

}

public class Main {

 public static void main(String args[]) {

 Direction ap, ap2, ap3;

 // Obtain all ordinal values using ordinal().

 for (Direction a : Direction.values()){

 System.out.println(a + " " + a.ordinal());

 }

 ap = Direction.West;

 ap2 = Direction.South;

 ap3 = Direction.West;

 System.out.println();

 // Demonstrate compareTo() and equals()

 if (ap.compareTo(ap2) < 0)

 System.out.println(ap + " comes before " + ap2);

 if (ap.compareTo(ap2) > 0)

 System.out.println(ap2 + " comes before " + ap);

 if (ap.compareTo(ap3) == 0)

 System.out.println(ap + " equals " + ap3);

 System.out.println();

 if (ap.equals(ap2))

 System.out.println("Error!");

 if (ap.equals(ap3))

 System.out.println(ap + " equals " + ap3);

 if (ap == ap3)

 System.out.println(ap + " == " + ap3);

 }

}

Overriding toString() to return a Token
constant's value

enum Token {

 IDENTIFIER("ID"), INTEGER("INT"), LPAREN("("), RPAREN(")"), COMMA(",");

 private final String tokValue;

 Token(String tokValue) {

 this.tokValue = tokValue;

 }

 @Override

 public String toString() {

 return tokValue;

 }

}

public class Main{

 public static void main(String[] args) {

 for (int i = 0; i < Token.values().length; i++){

 System.out.println(Token.values()[i].name() + " = " +

Token.values()[i]);

 }

 }

}

IDENTIFIER = ID

INTEGER = INT

LPAREN = (

RPAREN =)

COMMA = ,

Assign a different behavior to each
constant.

enum Converter {

 DollarToEuro("Dollar to Euro") {

 @Override

 double convert(double value) {

 return value * 0.9;

 }

 },

 DollarToPound("Dollar to Pound") {

 @Override

 double convert(double value) {

 return value * .8;

 }

 };

 Converter(String desc) {

 this.desc = desc;

 }

 private String desc;

 @Override

 public String toString() {

 return desc;

 }

 abstract double convert(double value);

}

public class Main{

 public static void main(String[] args) {

 System.out.println(Converter.DollarToEuro + " = " +

Converter.DollarToEuro.convert(100.0));

 System.out.println(Converter.DollarToPound + " = " +

Converter.DollarToPound.convert(98.6));

 }

}

o enum underline constant

Kanalimiz a’zolari uchun maxsus! Yuqori malakali dasturchilar uchun qo’llanma.

Telegram kanal: @Uzb_Dasturchilar

Youtube kanal: Uzb Dasturchilar TV

http://www.java2s.com/Book/Java/Language-Basics/Assign_a_different_behavior_to_each_constant_.htm
http://t.me/uzb_dasturchilar
https://www.youtube.com/channel/UC93vNBWA_CyyT06LaiAJwXA

