

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio: i

The
Complete
Reference

Java™

Ninth Edition

®

00-FM.indd 1 21/02/14 10:12 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio ii

About the Author
Best-selling author Herbert Schildt has written extensively about programming
for nearly three decades and is a leading authority on the Java language. His
books have sold millions of copies worldwide and have been translated into all
major foreign languages. He is the author of numerous books on Java,
including Java: A Beginner’s Guide, Herb Schildt’s Java Programming Cookbook, and
Swing: A Beginner’s Guide. He has also written extensively about C, C++, and
C#. Although interested in all facets of computing, his primary focus is
computer languages, including compilers, interpreters, and robotic control
languages. He also has an active interest in the standardization of languages.
Schildt holds both graduate and undergraduate degrees from the University
of Illinois. He can be reached at his consulting office at (217) 586-4683. His
web site is www.HerbSchildt.com.

About the Technical Editor
Dr. Danny Coward has worked on all editions of the Java platform. He led the
definition of Java Servlets into the first version of the Java EE platform and
beyond, web services into the Java ME platform, and the strategy and planning
for Java SE 7. He founded JavaFX technology and, most recently, designed the
largest addition to the Java EE 7 standard, the Java WebSocket API. From coding
in Java to designing APIs with industry experts, to serving for several years as
an executive to the Java Community Process, he has a uniquely broad
perspective into multiple aspects of Java technology. Additionally, he is the
author of JavaWebSocket Programming and an upcoming book on Java EE.
Dr. Coward holds bachelor’s, master’s, and doctorate’s in mathematics from
the University of Oxford.

00-FM.indd 2 19/02/14 11:45 AM

http://www.HerbSchildt.com

The
Complete
Reference

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio iii

Herbert Schildt

New York Chicago San Francisco
Athens London Madrid Mexico City

Milan New Delhi Singapore Sydney Toronto

Java™

Ninth Edition

®

00-FM.indd 3 21/02/14 10:18 AM

Copyright © 2014 by McGraw-Hill Education (Publisher). All rights reserved. Printed in the United States of America. Except
as permitted under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any
means, or stored in a database or retrieval system, without the prior written permission of Publisher, with the exception that the
program listings may be entered, stored, and executed in a computer system, but they may not be reproduced for publication.

ISBN: 978-0-07-180856-9

MHID: 0-07-180856-6

e-Book conversion by Cenveo® Publisher Services

Version 1.0

The material in this eBook also appears in the print version of this title: ISBN: 978-0-071-80855-2,
MHID: 0-07-180855-8.

McGraw-Hill Education eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use
in corporate training programs. To contact a representative, please visit the Contact Us pages at www.mhprofessional.com.

All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps.

Information has been obtained by McGraw-Hill Education from sources believed to be reliable. However, because of the
possibility of human or mechanical error by our sources, McGraw-Hill Education, or others, McGraw-Hill Education does not
guarantee the accuracy, adequacy, or completeness of any information and is not responsible for any errors or omissions or the
results obtained from the use of such information.

Oracle and Java are registered trademarks of Oracle Corporation and/or its affiliates. All other trademarks are the property of their
respective owners, and McGraw-Hill Education makes no claim of ownership by the mention of products that contain these marks.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation
and/or its affiliates.

TERMS OF USE

This is a copyrighted work and McGraw-Hill Education (“McGraw Hill”) and its licensors reserve all rights in and to the work.
Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve
one copy of the work, you may not decompile, disassemble, reverse engineer, reproduce, modify, create derivative works based
upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior
consent. You may use the work for your own noncommercial and personal use; any other use of the work is strictly prohibited.
Your right to use the work may be terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL AND ITS LICENSORS MAKE NO GUARANTEES OR
WARRANTIES AS TO THE ACCURACY, ADEQUACY OR COMPLETENESS OF OR RESULTS TO BE OBTAINED
FROM USING THE WORK, INCLUDING ANY INFORMATION THAT CAN BE ACCESSED THROUGH THE WORK VIA
HYPERLINK OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY WARRANTY, EXPRESS OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill and its licensors do not warrant or guarantee that the functions contained in the work will meet your
requirements or that its operation will be uninterrupted or error free. Neither McGraw-Hill nor its licensors shall be liable to you
or anyone else for any inaccuracy, error or omission, regardless of cause, in the work or for any damages resulting therefrom.
McGraw-Hill has no responsibility for the content of any information accessed through the work. Under no circumstances shall
McGraw-Hill and/or its licensors be liable for any indirect, incidental, special, punitive, consequential or similar damages that
result from the use of or inability to use the work, even if any of them has been advised of the possibility of such damages. This
limitation of liability shall apply to any claim or cause whatsoever whether such claim or cause arises in contract, tort or
otherwise.

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180855-8 / eBook_cr_pg

eBook_855-8 CR.indd 1 22/02/14 6:33 PM

http://www.mhprofessional.com

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Contents at a Glance
 Part I The Java Language
 1 The History and Evolution of Java 3
 2 An Overview of Java 17
 3 Data Types, Variables, and Arrays 35
 4 Operators 61
 5 Control Statements 81
 6 Introducing Classes 109
 7 A Closer Look at Methods and Classes 129
 8 Inheritance 161
 9 Packages and Interfaces 187
 10 Exception Handling 213
 11 Multithreaded Programming 233
 12 Enumerations, Autoboxing, and
 Annotations (Metadata) 263
 13 I/O, Applets, and Other Topics 301
 14 Generics 337
 15 Lambda Expressions 381

 Part II The Java Library
 16 String Handling 413
 17 Exploring java.lang 441
 18 java.util Part 1: The Collections Framework 497
 19 java.util Part 2: More Utility Classes 579
 20 Input/Output: Exploring java.io 641
 21 Exploring NIO 689
 22 Networking 727
 23 The Applet Class 747
 24 Event Handling 769
 25 Introducing the AWT: Working with
 Windows, Graphics, and Text 797
 26 Using AWT Controls, Layout Managers, and Menus 833
 27 Images 885
 28 The Concurrency Utilities 915
 29 The Stream API 965
 30 Regular Expressions and Other Packages 991

 v

00-FM.indd 5 19/02/14 11:45 AM

Pitrick
Strikeout

Pitrick
Strikeout

Pitrick
Strikeout

Pitrick
Underline

Pitrick
Strikeout

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

vi Java: The Complete Reference, Ninth Edition

 Part III Introducing GUI Programming with Swing
 31 Introducing Swing 1021
 32 Exploring Swing 1041
 33 Introducing Swing Menus 1069

 Part IV Introducing GUI Programming with JavaFX
 34 Introducing JavaFX GUI Programming 1105
 35 Exploring JavaFX Controls 1125
 36 Introducing JavaFX Menus 1171

 Part V Applying Java
 37 Java Beans 1199
 38 Introducing Servlets 1211
 Appendix Using Java’s Documentation Comments 1235

 Index 1243

00-FM.indd 6 19/02/14 11:45 AM

 vii

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Preface .xxxi

 Part I The Java Language
 Chapter 1 The History and Evolution of Java .3
 Java’s Lineage . 3
 The Birth of Modern Programming: C . 4
 C++: The Next Step . 5
 The Stage Is Set for Java . 6
 The Creation of Java . 6
 The C# Connection . 8
 How Java Changed the Internet . 8
 Java Applets . 8
 Security . 9
 Portability . 9
 Java’s Magic: The Bytecode . 9
 Servlets: Java on the Server Side . 10
 The Java Buzzwords . 10
 Simple. 11
 Object-Oriented. 11
 Robust. 11
 Multithreaded . 12
 Architecture-Neutral . 12
 Interpreted and High Performance . 12
 Distributed . 12
 Dynamic . 13
 The Evolution of Java. 13
 Java SE 8 . 15
 A Culture of Innovation. 16
 Chapter 2 An Overview of Java. .17
 Object-Oriented Programming. 17
 Two Paradigms . 17
 Abstraction . 18
 The Three OOP Principles . 18

Contents

00-FM.indd 7 19/02/14 11:45 AM

viii Java: The Complete Reference, Ninth Edition

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 A First Simple Program . 23
 Entering the Program . 23
 Compiling the Program . 23
 A Closer Look at the First Sample Program. 24
 A Second Short Program . 26
 Two Control Statements. 28
 The if Statement . 28
 The for Loop . 29
 Using Blocks of Code. 30
 Lexical Issues . 32
 Whitespace . 32
 Identifiers . 32
 Literals . 32
 Comments . 32
 Separators. 33
 The Java Keywords . 33
 The Java Class Libraries . 34
 Chapter 3 Data Types, Variables, and Arrays .35
 Java Is a Strongly Typed Language . 35
 The Primitive Types . 35
 Integers . 36
 byte . 36
 short . 37
 int . 37
 long. 37
 Floating-Point Types. 38
 float. 38
 double. 38
 Characters. 39
 Booleans . 40
 A Closer Look at Literals . 41
 Integer Literals. 41
 Floating-Point Literals . 42
 Boolean Literals . 43
 Character Literals . 43
 String Literals. 43
 Variables . 44
 Declaring a Variable . 44
 Dynamic Initialization . 45
 The Scope and Lifetime of Variables . 45
 Type Conversion and Casting . 48
 Java’s Automatic Conversions . 48
 Casting Incompatible Types . 48
 Automatic Type Promotion in Expressions . 50
 The Type Promotion Rules . 50

00-FM.indd 8 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents ix

 Arrays . 51
 One-Dimensional Arrays . 51
 Multidimensional Arrays . 54
 Alternative Array Declaration Syntax . 58
 A Few Words About Strings . 58
 A Note to C/C++ Programmers About Pointers 59
 Chapter 4 Operators .61
 Arithmetic Operators. 61
 The Basic Arithmetic Operators . 62
 The Modulus Operator . 63
 Arithmetic Compound Assignment Operators 63
 Increment and Decrement . 64
 The Bitwise Operators . 66
 The Bitwise Logical Operators . 67
 The Left Shift . 69
 The Right Shift. 70
 The Unsigned Right Shift . 72
 Bitwise Operator Compound Assignments 73
 Relational Operators . 74
 Boolean Logical Operators . 75
 Short-Circuit Logical Operators . 76
 The Assignment Operator . 77
 The ? Operator. 77
 Operator Precedence. 78
 Using Parentheses . 79
 Chapter 5 Control Statements. .81
 Java’s Selection Statements . 81
 if . 81
 switch . 84
 Iteration Statements. 89
 while . 89
 do-while . 90
 for . 93
 The For-Each Version of the for Loop . 97
 Nested Loops . 102
 Jump Statements . 102
 Using break . 102
 Using continue. 106
 Chapter 6 Introducing Classes .109
 Class Fundamentals . 109
 The General Form of a Class. 109
 A Simple Class . 110
 Declaring Objects. 113
 A Closer Look at new. 113

00-FM.indd 9 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

x Java: The Complete Reference, Ninth Edition

 Assigning Object Reference Variables . 115
 Introducing Methods . 115
 Adding a Method to the Box Class . 116
 Returning a Value . 118
 Adding a Method That Takes Parameters 119
 Constructors . 121
 Parameterized Constructors . 123
 The this Keyword . 124
 Instance Variable Hiding. 125
 Garbage Collection . 125
 The finalize() Method . 126
 A Stack Class . 126
 Chapter 7 A Closer Look at Methods and Classes .129
 Overloading Methods . 129
 Overloading Constructors . 132
 Using Objects as Parameters . 134
 A Closer Look at Argument Passing . 136
 Returning Objects . 138
 Recursion . 139
 Introducing Access Control. 141
 Understanding static . 145
 Introducing final . 146
 Arrays Revisited . 147
 Introducing Nested and Inner Classes . 149
 Exploring the String Class . 152
 Using Command-Line Arguments . 154
 Varargs: Variable-Length Arguments . 155
 Overloading Vararg Methods . 158
 Varargs and Ambiguity . 159
 Chapter 8 Inheritance .161
 Inheritance Basics . 161
 Member Access and Inheritance . 163
 A More Practical Example. 164
 A Superclass Variable Can Reference a Subclass Object 166
 Using super. 167
 Using super to Call Superclass Constructors 167
 A Second Use for super. 170
 Creating a Multilevel Hierarchy . 171
 When Constructors Are Executed. 174
 Method Overriding . 175
 Dynamic Method Dispatch . 178
 Why Overridden Methods? . 179
 Applying Method Overriding . 180

00-FM.indd 10 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xi

 Using Abstract Classes . 181
 Using final with Inheritance . 184
 Using final to Prevent Overriding . 184
 Using final to Prevent Inheritance . 185
 The Object Class. 185
 Chapter 9 Packages and Interfaces. .187
 Packages . 187
 Defining a Package . 188
 Finding Packages and CLASSPATH . 188
 A Short Package Example . 189
 Access Protection . 190
 An Access Example . 191
 Importing Packages . 194
 Interfaces . 196
 Defining an Interface . 196
 Implementing Interfaces. 197
 Nested Interfaces . 200
 Applying Interfaces . 201
 Variables in Interfaces . 204
 Interfaces Can Be Extended . 206
 Default Interface Methods. 207
 Default Method Fundamentals . 208
 A More Practical Example. 209
 Multiple Inheritance Issues. 210
 Use static Methods in an Interface . 211
 Final Thoughts on Packages and Interfaces . 212
 Chapter 10 Exception Handling .213
 Exception-Handling Fundamentals . 213
 Exception Types . 214
 Uncaught Exceptions. 215
 Using try and catch . 216
 Displaying a Description of an Exception 218
 Multiple catch Clauses . 218
 Nested try Statements . 220
 throw . 222
 throws . 223
 finally. 224
 Java’s Built-in Exceptions . 226
 Creating Your Own Exception Subclasses . 227
 Chained Exceptions . 230
 Three Recently Added Exception Features . 231
 Using Exceptions . 232

00-FM.indd 11 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xii Java: The Complete Reference, Ninth Edition

 Chapter 11 Multithreaded Programming .233
 The Java Thread Model . 234
 Thread Priorities . 235
 Synchronization . 235
 Messaging . 236
 The Thread Class and the Runnable Interface 236
 The Main Thread . 237
 Creating a Thread . 238
 Implementing Runnable. 239
 Extending Thread . 241
 Choosing an Approach . 242
 Creating Multiple Threads . 242
 Using isAlive() and join() . 243
 Thread Priorities . 246
 Synchronization . 247
 Using Synchronized Methods . 247
 The synchronized Statement . 249
 Interthread Communication . 251
 Deadlock. 255
 Suspending, Resuming, and Stopping Threads 257
 Obtaining A Thread’s State . 259
 Using Multithreading. 261
 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata)263
 Enumerations . 263
 Enumeration Fundamentals . 263
 The values() and valueOf() Methods. 266
 Java Enumerations Are Class Types . 267
 Enumerations Inherit Enum. 269
 Another Enumeration Example . 271
 Type Wrappers . 272
 Character . 273
 Boolean . 273
 The Numeric Type Wrappers . 273
 Autoboxing . 274
 Autoboxing and Methods . 275
 Autoboxing/Unboxing Occurs in Expressions 276
 Autoboxing/Unboxing Boolean and Character Values 278
 Autoboxing/Unboxing Helps Prevent Errors 278
 A Word of Warning . 279
 Annotations (Metadata) . 279
 Annotation Basics . 280
 Specifying a Retention Policy . 281
 Obtaining Annotations at Run Time by Use of Reflection. 281
 The AnnotatedElement Interface . 286
 Using Default Values . 287

00-FM.indd 12 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xiii

 Marker Annotations. 288
 Single-Member Annotations . 289
 The Built-In Annotations . 290
 Type Annotations . 292
 Repeating Annotations . 297
 Some Restrictions . 299
 Chapter 13 I/O, Applets, and Other Topics. .301
 I/O Basics . 301
 Streams . 302
 Byte Streams and Character Streams . 302
 The Predefined Streams . 304
 Reading Console Input . 305
 Reading Characters . 305
 Reading Strings . 306
 Writing Console Output . 308
 The PrintWriter Class. 308
 Reading and Writing Files . 309
 Automatically Closing a File . 315
 Applet Fundamentals. 318
 The transient and volatile Modifiers. 322
 Using instanceof. 322
 strictfp . 324
 Native Methods. 325
 Problems with Native Methods . 328
 Using assert. 328
 Assertion Enabling and Disabling Options 331
 Static Import. 331
 Invoking Overloaded Constructors Through this() 334
 Compact API Profiles. 336
 Chapter 14 Generics .337
 What Are Generics? . 338
 A Simple Generics Example . 338
 Generics Work Only with Reference Types 342
 Generic Types Differ Based on Their Type Arguments. 342
 How Generics Improve Type Safety . 342
 A Generic Class with Two Type Parameters . 345
 The General Form of a Generic Class. 346
 Bounded Types. 346
 Using Wildcard Arguments . 349
 Bounded Wildcards . 352
 Creating a Generic Method. 356
 Generic Constructors . 359
 Generic Interfaces . 360
 Raw Types and Legacy Code . 362

00-FM.indd 13 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xiv Java: The Complete Reference, Ninth Edition

 Generic Class Hierarchies . 364
 Using a Generic Superclass . 365
 A Generic Subclass. 367
 Run-Time Type Comparisons Within a Generic Hierarchy 368
 Casting . 370
 Overriding Methods in a Generic Class . 371
 Type Inference with Generics . 372
 Erasure . 373
 Bridge Methods . 374
 Ambiguity Errors . 375
 Some Generic Restrictions . 377
 Type Parameters Can’t Be Instantiated . 377
 Restrictions on Static Members. 377
 Generic Array Restrictions . 377
 Generic Exception Restriction . 379
Chapter 15 Lambda Expressions .381
 Introducing Lambda Expressions . 382
 Lambda Expression Fundamentals . 382
 Functional Interfaces. 383
 Some Lambda Expression Examples . 384
 Block Lambda Expressions . 387
 Generic Functional Interfaces. 389
 Passing Lambda Expressions as Arguments . 391
 Lambda Expressions and Exceptions . 394
 Lambda Expressions and Variable Capture . 395
 Method References . 396
 Method References to static Methods . 396
 Method References to Instance Methods. 397
 Method References with Generics . 401
 Constructor References . 404
 Predefined Functional Interfaces . 408

 Part II The Java Library
Chapter 16 String Handling .413
 The String Constructors . 414
 String Length . 416
 Special String Operations . 416
 String Literals. 416
 String Concatenation . 417
 String Concatenation with Other Data Types 417
 String Conversion and toString() . 418
 Character Extraction . 419
 charAt(). 419
 getChars() . 419

00-FM.indd 14 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xv

 getBytes() . 420
 toCharArray() . 420
 String Comparison . 420
 equals() and equalsIgnoreCase() . 421
 regionMatches() . 421
 startsWith() and endsWith(). 422
 equals() Versus ==. 422
 compareTo(). 423
 Searching Strings . 424
 Modifying a String . 426
 substring(). 426
 concat() . 427
 replace() . 427
 trim(). 428
 Data Conversion Using valueOf() . 428
 Changing the Case of Characters Within a String 429
 Joining Strings . 430
 Additional String Methods . 431
 StringBuffer . 432
 StringBuffer Constructors . 432
 length() and capacity() . 433
 ensureCapacity() . 433
 setLength() . 433
 charAt() and setCharAt() . 434
 getChars() . 434
 append() . 435
 insert(). 435
 reverse() . 436
 delete() and deleteCharAt(). 436
 replace() . 437
 substring(). 437
 Additional StringBuffer Methods . 438
 StringBuilder . 439
Chapter 17 Exploring java.lang. .441
 Primitive Type Wrappers . 442
 Number . 442
 Double and Float . 442
 Understanding isInfinite() and isNaN() 446
 Byte, Short, Integer, and Long . 447
 Character . 455
 Additions to Character for Unicode Code Point Support 458
 Boolean . 458
 Void . 460
 Process . 460

00-FM.indd 15 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xvi Java: The Complete Reference, Ninth Edition

 Runtime . 461
 Memory Management . 462
 Executing Other Programs . 464
 ProcessBuilder . 465
 System . 467
 Using currentTimeMillis() to Time Program Execution. 469
 Using arraycopy() . 469
 Environment Properties . 470
 Object . 471
 Using clone() and the Cloneable Interface . 471
 Class. 473
 ClassLoader . 477
 Math . 477
 Trigonometric Functions. 477
 Exponential Functions . 478
 Rounding Functions . 478
 Miscellaneous Math Methods . 479
 StrictMath . 481
 Compiler. 481
 Thread, ThreadGroup, and Runnable . 481
 The Runnable Interface . 481
 Thread . 482
 ThreadGroup. 484
 ThreadLocal and InheritableThreadLocal . 488
 Package . 489
 RuntimePermission . 490
 Throwable. 490
 SecurityManager. 490
 StackTraceElement. 491
 Enum. 492
 ClassValue . 493
 The CharSequence Interface . 493
 The Comparable Interface . 493
 The Appendable Interface . 494
 The Iterable Interface . 494
 The Readable Interface . 495
 The AutoCloseable Interface . 495
 The Thread.UncaughtExceptionHandler Interface 495
 The java.lang Subpackages . 495
 java.lang.annotation . 496
 java.lang.instrument . 496
 java.lang.invoke . 496
 java.lang.management. 496
 java.lang.ref . 496
 java.lang.reflect . 496

00-FM.indd 16 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xvii

 Chapter 18 java.util Part 1: The Collections Framework .497
 Collections Overview . 498
 JDK 5 Changed the Collections Framework. 500
 Generics Fundamentally Changed the Collections Framework . . 500
 Autoboxing Facilitates the Use of Primitive Types 500
 The For-Each Style for Loop . 500
 The Collection Interfaces . 501
 The Collection Interface. 501
 The List Interface . 504
 The Set Interface . 504
 The SortedSet Interface . 506
 The NavigableSet Interface. 507
 The Queue Interface. 508
 The Deque Interface . 509
 The Collection Classes . 510
 The ArrayList Class . 511
 The LinkedList Class . 515
 The HashSet Class . 516
 The LinkedHashSet Class . 517
 The TreeSet Class. 518
 The PriorityQueue Class . 519
 The ArrayDeque Class . 520
 The EnumSet Class . 521
 Accessing a Collection via an Iterator. 521
 Using an Iterator . 523
 The For-Each Alternative to Iterators. 525
 Spliterators . 526
 Storing User-Defined Classes in Collections. 529
 The RandomAccess Interface . 530
 Working with Maps. 530
 The Map Interfaces . 531
 The Map Classes. 537
 Comparators . 542
 Using a Comparator . 544
 The Collection Algorithms . 550
 Arrays . 556
 The Legacy Classes and Interfaces . 561
 The Enumeration Interface . 562
 Vector . 562
 Stack . 566
 Dictionary. 568
 Hashtable . 569
 Properties . 572
 Using store() and load(). 576
 Parting Thoughts on Collections . 577

00-FM.indd 17 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xviii Java: The Complete Reference, Ninth Edition

Chapter 19 java.util Part 2: More Utility Classes .579
 StringTokenizer . 579
 BitSet . 581
 Optional, OptionalDouble, OptionalInt, and OptionalLong. 584
 Date . 586
 Calendar . 588
 GregorianCalendar . 591
 TimeZone . 593
 SimpleTimeZone . 594
 Locale . 594
 Random . 596
 Observable . 598
 The Observer Interface . 599
 An Observer Example . 599
 Timer and TimerTask . 602
 Currency . 604
 Formatter . 605
 The Formatter Constructors . 605
 The Formatter Methods . 606
 Formatting Basics. 607
 Formatting Strings and Characters. 609
 Formatting Numbers . 609
 Formatting Time and Date . 610
 The %n and %% Specifiers . 612
 Specifying a Minimum Field Width . 612
 Specifying Precision. 614
 Using the Format Flags . 614
 Justifying Output . 615
 The Space, +, 0, and (Flags . 616
 The Comma Flag . 617
 The # Flag. 617
 The Uppercase Option . 617
 Using an Argument Index. 618
 Closing a Formatter . 619
 The Java printf() Connection . 620
 Scanner . 620
 The Scanner Constructors . 620
 Scanning Basics . 620
 Some Scanner Examples . 624
 Setting Delimiters . 628
 Other Scanner Features . 629
 The ResourceBundle, ListResourceBundle,
 and PropertyResourceBundle Classes. 630
 Miscellaneous Utility Classes and Interfaces . 635

00-FM.indd 18 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xix

 The java.util Subpackages . 635
 java.util.concurrent, java.util.concurrent.atomic,
 and java.util.concurrent.locks . 636
 java.util.function . 636
 java.util.jar . 639
 java.util.logging . 639
 java.util.prefs . 639
 java.util.regex . 639
 java.util.spi . 639
 java.util.stream . 639
 java.util.zip . 639
Chapter 20 Input/Output: Exploring java.io .641
 The I/O Classes and Interfaces. 641
 File. 642
 Directories . 645
 Using FilenameFilter . 646
 The listFiles() Alternative. 647
 Creating Directories . 648
 The AutoCloseable, Closeable, and Flushable Interfaces 648
 I/O Exceptions. 649
 Two Ways to Close a Stream. 649
 The Stream Classes. 650
 The Byte Streams . 651
 InputStream . 651
 OutputStream . 651
 FileInputStream. 652
 FileOutputStream . 654
 ByteArrayInputStream. 656
 ByteArrayOutputStream . 658
 Filtered Byte Streams. 659
 Buffered Byte Streams . 659
 SequenceInputStream. 663
 PrintStream . 665
 DataOutputStream and DataInputStream 667
 RandomAccessFile . 669
 The Character Streams . 670
 Reader . 670
 Writer . 670
 FileReader . 672
 FileWriter . 673
 CharArrayReader . 674
 CharArrayWriter . 675
 BufferedReader . 676
 BufferedWriter . 678

00-FM.indd 19 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xx Java: The Complete Reference, Ninth Edition

 PushbackReader . 678
 PrintWriter . 679
 The Console Class . 680
 Serialization . 682
 Serializable . 682
 Externalizable . 683
 ObjectOutput. 683
 ObjectOutputStream. 684
 ObjectInput . 685
 ObjectInputStream . 685
 A Serialization Example . 686
 Stream Benefits . 688
Chapter 21 Exploring NIO .689
 The NIO Classes . 689
 NIO Fundamentals. 690
 Buffers . 690
 Channels. 691
 Charsets and Selectors. 693
 Enhancements Added to NIO by JDK 7 . 694
 The Path Interface. 694
 The Files Class . 695
 The Paths Class . 698
 The File Attribute Interfaces. 698
 The FileSystem, FileSystems, and FileStore Classes 700
 Using the NIO System . 700
 Use NIO for Channel-Based I/O . 700
 Use NIO for Stream-Based I/O . 709
 Use NIO for Path and File System Operations 712
 Pre-JDK 7 Channel-Based Examples . 719
 Read a File, Pre-JDK 7 . 720
 Write to a File, Pre-JDK 7. 723
Chapter 22 Networking. .727
 Networking Basics . 727
 The Networking Classes and Interfaces . 728
 InetAddress. 729
 Factory Methods . 729
 Instance Methods. 730
 Inet4Address and Inet6Address . 731
 TCP/IP Client Sockets . 731
 URL. 735
 URLConnection . 736
 HttpURLConnection . 739
 The URI Class. 741
 Cookies . 741

00-FM.indd 20 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xxi

 TCP/IP Server Sockets. 741
 Datagrams . 742
 DatagramSocket. 742
 DatagramPacket. 743
 A Datagram Example. 744
Chapter 23 The Applet Class .747
 Two Types of Applets . 747
 Applet Basics. 747
 The Applet Class . 749
 Applet Architecture . 751
 An Applet Skeleton . 751
 Applet Initialization and Termination . 753
 Overriding update(). 754
 Simple Applet Display Methods . 754
 Requesting Repainting. 756
 A Simple Banner Applet . 757
 Using the Status Window. 759
 The HTML APPLET Tag . 760
 Passing Parameters to Applets. 761
 Improving the Banner Applet. 763
 getDocumentBase() and getCodeBase() . 764
 AppletContext and showDocument() . 765
 The AudioClip Interface . 767
 The AppletStub Interface . 767
 Outputting to the Console . 767
Chapter 24 Event Handling. .769
 Two Event Handling Mechanisms. 769
 The Delegation Event Model . 770
 Events . 770
 Event Sources. 770
 Event Listeners. 771
 Event Classes. 771
 The ActionEvent Class. 773
 The AdjustmentEvent Class . 773
 The ComponentEvent Class . 774
 The ContainerEvent Class. 774
 The FocusEvent Class . 775
 The InputEvent Class . 775
 The ItemEvent Class . 776
 The KeyEvent Class . 777
 The MouseEvent Class. 778
 The MouseWheelEvent Class . 779
 The TextEvent Class. 780
 The WindowEvent Class . 780

00-FM.indd 21 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xxii Java: The Complete Reference, Ninth Edition

 Sources of Events . 781
 Event Listener Interfaces. 782
 The ActionListener Interface . 783
 The AdjustmentListener Interface . 783
 The ComponentListener Interface . 783
 The ContainerListener Interface . 783
 The FocusListener Interface. 783
 The ItemListener Interface. 783
 The KeyListener Interface . 784
 The MouseListener Interface . 784
 The MouseMotionListener Interface . 784
 The MouseWheelListener Interface. 784
 The TextListener Interface . 784
 The WindowFocusListener Interface . 785
 The WindowListener Interface. 785
 Using the Delegation Event Model . 785
 Handling Mouse Events . 785
 Handling Keyboard Events . 788
 Adapter Classes. 791
 Inner Classes. 793
 Anonymous Inner Classes . 795
Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text . . .797
 AWT Classes . 798
 Window Fundamentals . 800
 Component . 800
 Container . 801
 Panel . 801
 Window. 801
 Frame . 801
 Canvas. 801
 Working with Frame Windows. 802
 Setting the Window’s Dimensions . 802
 Hiding and Showing a Window . 802
 Setting a Window’s Title . 802
 Closing a Frame Window. 803
 Creating a Frame Window in an AWT-Based Applet 803
 Handling Events in a Frame Window. 805
 Creating a Windowed Program. 809
 Displaying Information Within a Window . 811
 Introducing Graphics. 811
 Drawing Lines . 811
 Drawing Rectangles . 812
 Drawing Ellipses and Circles . 812
 Drawing Arcs . 812

00-FM.indd 22 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xxiii

 Drawing Polygons . 813
 Demonstrating the Drawing Methods . 813
 Sizing Graphics . 814
 Working with Color . 815
 Color Methods . 816
 Setting the Current Graphics Color . 817
 A Color Demonstration Applet. 817
 Setting the Paint Mode . 818
 Working with Fonts . 819
 Determining the Available Fonts . 821
 Creating and Selecting a Font. 822
 Obtaining Font Information. 824
 Managing Text Output Using FontMetrics. 825
 Displaying Multiple Lines of Text. 825
 Centering Text . 828
 Multiline Text Alignment . 829
 Chapter 26 Using AWT Controls, Layout Managers, and Menus. 833
 AWT Control Fundamentals . 834
 Adding and Removing Controls . 834
 Responding to Controls . 834
 The HeadlessException. 835
 Labels . 835
 Using Buttons . 836
 Handling Buttons . 836
 Applying Check Boxes . 840
 Handling Check Boxes . 840
 CheckboxGroup. 842
 Choice Controls . 844
 Handling Choice Lists . 844
 Using Lists. 846
 Handling Lists . 847
 Managing Scroll Bars . 849
 Handling Scroll Bars . 850
 Using a TextField . 852
 Handling a TextField. 853
 Using a TextArea . 854
 Understanding Layout Managers . 855
 FlowLayout . 856
 BorderLayout . 858
 Using Insets . 860
 GridLayout . 861
 CardLayout. 862
 GridBagLayout. 865
 Menu Bars and Menus . 870

00-FM.indd 23 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xxiv Java: The Complete Reference, Ninth Edition

 Dialog Boxes. 876
 FileDialog . 880
 A Word About Overriding paint() . 882
Chapter 27 Images .885
 File Formats . 885
 Image Fundamentals: Creating, Loading, and Displaying 886
 Creating an Image Object . 886
 Loading an Image . 886
 Displaying an Image . 887
 ImageObserver . 888
 Double Buffering . 889
 MediaTracker . 892
 ImageProducer. 895
 MemoryImageSource . 895
 ImageConsumer. 897
 PixelGrabber . 897
 ImageFilter . 899
 CropImageFilter . 900
 RGBImageFilter . 902
 Additional Imaging Classes . 913
Chapter 28 The Concurrency Utilities .915
 The Concurrent API Packages . 916
 java.util.concurrent . 916
 java.util.concurrent.atomic . 917
 java.util.concurrent.locks . 917
 Using Synchronization Objects . 917
 Semaphore . 918
 CountDownLatch. 923
 CyclicBarrier. 925
 Exchanger . 927
 Phaser . 930
 Using an Executor . 937
 A Simple Executor Example . 937
 Using Callable and Future . 939
 The TimeUnit Enumeration . 942
 The Concurrent Collections . 943
 Locks . 943
 Atomic Operations. 946
 Parallel Programming via the Fork/Join Framework 947
 The Main Fork/Join Classes . 948
 The Divide-and-Conquer Strategy . 951
 A Simple First Fork/Join Example . 952
 Understanding the Impact of the Level of Parallelism 955
 An Example that Uses RecursiveTask<V>. 958

00-FM.indd 24 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xxv

 Executing a Task Asynchronously. 960
 Cancelling a Task . 961
 Determining a Task’s Completion Status . 961
 Restarting a Task . 961
 Things to Explore . 962
 Some Fork/Join Tips . 963
 The Concurrency Utilities Versus Java’s Traditional Approach 964
Chapter 29 The Stream API .965
 Stream Basics . 965
 Stream Interfaces. 966
 How to Obtain a Stream . 969
 A Simple Stream Example. 969
 Reduction Operations . 973
 Using Parallel Streams . 975
 Mapping . 978
 Collecting . 982
 Iterators and Streams . 986
 Use an Iterator with a Stream . 986
 Use Spliterator . 987
 More to Explore in the Stream API . 990
Chapter 30 Regular Expressions and Other Packages .991
 The Core Java API Packages . 991
 Regular Expression Processing . 993
 Pattern . 994
 Matcher . 994
 Regular Expression Syntax . 995
 Demonstrating Pattern Matching . 995
 Two Pattern-Matching Options. 1001
 Exploring Regular Expressions. 1001
 Reflection . 1001
 Remote Method Invocation (RMI) . 1005
 A Simple Client/Server Application Using RMI 1006
 Formatting Date and Time with java.text . 1009
 DateFormat Class . 1009
 SimpleDateFormat Class . 1011
 The Time and Date API Added by JDK 8 . 1013
 Time and Date Fundamentals. 1013
 Formatting Date and Time . 1015
 Parsing Date and Time Strings . 1017
 Other Things to Explore in java.time. 1018

00-FM.indd 25 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xxvi Java: The Complete Reference, Ninth Edition

 Part III Introducing GUI Programming with Swing
Chapter 31 Introducing Swing .1021
 The Origins of Swing . 1021
 Swing Is Built on the AWT. 1022
 Two Key Swing Features. 1022
 Swing Components Are Lightweight . 1022
 Swing Supports a Pluggable Look and Feel 1022
 The MVC Connection . 1023
 Components and Containers . 1024
 Components. 1024
 Containers . 1025
 The Top-Level Container Panes . 1025
 The Swing Packages . 1026
 A Simple Swing Application . 1026
 Event Handling . 1030
 Create a Swing Applet . 1033
 Painting in Swing . 1036
 Painting Fundamentals . 1036
 Compute the Paintable Area. 1037
 A Paint Example . 1037
Chapter 32 Exploring Swing .1041
 JLabel and ImageIcon . 1041
 JTextField . 1043
 The Swing Buttons . 1045
 JButton . 1045
 JToggleButton . 1047
 Check Boxes. 1049
 Radio Buttons. 1051
 JTabbedPane. 1053
 JScrollPane . 1056
 JList . 1058
 JComboBox. 1061
 Trees . 1063
 JTable . 1066
Chapter 33 Introducing Swing Menus. .1069
 Menu Basics . 1069
 An Overview of JMenuBar, JMenu, and JMenuItem 1071
 JMenuBar . 1071
 JMenu . 1072
 JMenuItem . 1073
 Create a Main Menu . 1074
 Add Mnemonics and Accelerators to Menu Items. 1078
 Add Images and Tooltips to Menu Items . 1080
 Use JRadioButtonMenuItem and JCheckBoxMenuItem 1081
 Create a Popup Menu . 1083

00-FM.indd 26 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xxvii

 Create a Toolbar. 1087
 Use Actions . 1089
 Put the Entire MenuDemo Program Together 1095
 Continuing Your Exploration of Swing. 1101

 Part IV Introducing GUI Programming with JavaFX
Chapter 34 Introducing JavaFX GUI Programming .1105
 JavaFX Basic Concepts . 1106
 The JavaFX Packages . 1106
 The Stage and Scene Classes. 1106
 Nodes and Scene Graphs . 1107
 Layouts . 1107
 The Application Class and the Lifecycle Methods. 1107
 Launching a JavaFX Application . 1108
 A JavaFX Application Skeleton . 1108
 Compiling and Running a JavaFX Program. 1111
 The Application Thread . 1112
 A Simple JavaFX Control: Label . 1112
 Using Buttons and Events . 1114
 Event Basics . 1115
 Introducing the Button Control . 1115
 Demonstrating Event Handling and the Button 1116
 Drawing Directly on a Canvas . 1119
Chapter 35 Exploring JavaFX Controls. .1125
 Using Image and ImageView. 1125
 Adding an Image to a Label . 1128
 Using an Image with a Button . 1130
 ToggleButton . 1133
 RadioButton . 1135
 Handling Change Events in a Toggle Group. 1138
 An Alternative Way to Handle Radio Buttons 1139
 CheckBox . 1142
 ListView. 1146
 ListView Scrollbars. 1149
 Enabling Multiple Selections . 1150
 ComboBox . 1151
 TextField . 1154
 ScrollPane. 1157
 TreeView . 1160
 Introducing Effects and Transforms . 1164
 Effects . 1165
 Transforms . 1166
 Demonstrating Effects and Transforms . 1167
 Adding Tooltips . 1170
 Disabling a Control . 1170

00-FM.indd 27 19/02/14 11:45 AM

xxviii Java: The Complete Reference, Ninth Edition

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Chapter 36 Introducing JavaFX Menus. .1171
 Menu Basics . 1171
 An Overview of MenuBar, Menu, and MenuItem 1173
 MenuBar. 1173
 Menu. 1174
 MenuItem. 1174
 Create a Main Menu . 1175
 Add Mnemonics and Accelerators to Menu Items. 1180
 Add Images to Menu Items . 1182
 Use RadioMenuItem and CheckMenuItem . 1183
 Create a Context Menu . 1185
 Create a Toolbar. 1189
 Put the Entire MenuDemo Program Together 1191
 Continuing Your Exploration of JavaFX. 1196

 Part V Applying Java
Chapter 37 Java Beans .1199
 What Is a Java Bean?. 1199
 Advantages of Java Beans . 1200
 Introspection . 1200
 Design Patterns for Properties . 1200
 Design Patterns for Events . 1202
 Methods and Design Patterns . 1202
 Using the BeanInfo Interface . 1202
 Bound and Constrained Properties . 1203
 Persistence . 1203
 Customizers . 1203
 The Java Beans API . 1204
 Introspector . 1206
 PropertyDescriptor . 1206
 EventSetDescriptor . 1206
 MethodDescriptor . 1206
 A Bean Example . 1206
Chapter 38 Introducing Servlets. .1211
 Background . 1211
 The Life Cycle of a Servlet. 1212
 Servlet Development Options . 1212
 Using Tomcat . 1213
 A Simple Servlet . 1214
 Create and Compile the Servlet Source Code 1215
 Start Tomcat . 1215
 Start a Web Browser and Request the Servlet 1216

00-FM.indd 28 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Contents xxix

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 The Servlet API. 1216
 The javax.servlet Package . 1216
 The Servlet Interface. 1217
 The ServletConfig Interface . 1218
 The ServletContext Interface . 1218
 The ServletRequest Interface . 1218
 The ServletResponse Interface . 1218
 The GenericServlet Class. 1220
 The ServletInputStream Class. 1220
 The ServletOutputStream Class . 1220
 The Servlet Exception Classes. 1220
 Reading Servlet Parameters. 1220
 The javax.servlet.http Package . 1222
 The HttpServletRequest Interface . 1222
 The HttpServletResponse Interface . 1222
 The HttpSession Interface . 1223
 The Cookie Class . 1224
 The HttpServlet Class . 1225
 Handling HTTP Requests and Responses . 1227
 Handling HTTP GET Requests . 1227
 Handling HTTP POST Requests . 1229
 Using Cookies. 1230
 Session Tracking. 1232
 Appendix Using Java’s Documentation Comments .1235
 The javadoc Tags . 1235
 @author . 1236
 {@code} . 1236
 @deprecated . 1236
 {@docRoot}. 1237
 @exception. 1237
 {@inheritDoc}. 1237
 {@link}. 1237
 {@linkplain} . 1237
 {@literal} . 1237
 @param . 1237
 @return . 1238
 @see . 1238
 @serial . 1238
 @serialData. 1238
 @serialField . 1238
 @since. 1238

00-FM.indd 29 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xxx Java: The Complete Reference, Ninth Edition

 @throws . 1239
 {@value} . 1239
 @version . 1239
 The General Form of a Documentation Comment 1239
 What javadoc Outputs . 1239
 An Example that Uses Documentation Comments 1240

 Index .1243

00-FM.indd 30 19/02/14 11:45 AM

 xxxi

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Preface

Java is one of the world’s most important and widely used computer languages.
Furthermore, it has held that distinction for many years. Unlike some other computer
languages whose influence has waned with the passage of time, Java’s has grown stronger.

 Java leapt to the forefront of Internet programming with its first release. Each subsequent
version has solidified that position. Today, it is still the first and best choice for developing
web-based applications. Simply put: much of the modern world runs on Java code. Java
really is that important.

A key reason for Java’s success is its agility. Since its original 1.0 release, Java has
continually adapted to changes in the programming environment and to changes in the
way that programmers program. Most importantly, it has not just followed the trends, it has
helped create them. Java’s ability to accommodate the fast rate of change in the computing
world is a crucial part of why it has been and continues to be so successful.

Since this book was first published in 1996, it has gone through several editions, each
reflecting the ongoing evolution of Java. This is the Ninth edition, and it has been updated
for Java SE 8 (JDK 8). As a result, this edition of the book contains a substantial amount of
new material because Java SE 8 adds several new features to the Java language. The most
important is the lambda expression, which introduces an entirely new syntax element and
fundamentally increases the expressive power of the language. Because the impact of
lambda expressions is so significant, an entire chapter is devoted to them. Furthermore,
examples of their use are found elsewhere in the book. The lambda expression was also the
catalyst for other new features. One is the stream library in java.util.stream, which supports
pipeline operations on data. It too has an entire chapter devoted to it. Another is the
default method, which makes it possible to add default functionality to an interface.
Features such as repeating and type annotations further expand the power of Java. Java
SE 8 also makes significant enhancements to the Java API library, several of which are
described in this book.

Another important addition to this edition of the book is coverage of JavaFX, Java’s new
GUI framework. Because of the significant role that JavaFX is expected to play in the way
Java applications are designed, three new chapters are devoted to it. Simply put, experience
with JavaFX is something that Java programmers need. An additional chapter about Swing
has also been included that discusses menus. Although Swing may ultimately be replaced by
JavaFX, it is (at the time of this writing) still the most widely used Java GUI framework.
Thus, expanded coverage was warranted. Finally, many small updates have been made
throughout the book.

00-FM.indd 31 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xxxii Java: The Complete Reference, Ninth Edition

A Book for All Programmers
This book is for all programmers, whether you are a novice or an experienced pro. The
beginner will find its carefully paced discussions and many examples especially helpful. Its
in-depth coverage of Java’s more advanced features and libraries will appeal to the pro. For
both, it offers a lasting resource and handy reference.

What’s Inside
This book is a comprehensive guide to the Java language, describing its syntax, keywords,
and fundamental programming principles. Significant portions of the Java API library are
also examined. The book is divided into five parts, each focusing on a different aspect of
the Java programming environment.

Part I presents an in-depth tutorial of the Java language. It begins with the basics,
including such things as data types, operators, control statements, and classes. It then
moves on to inheritance, packages, interfaces, exception handling, and multithreading.
Next, it describes annotations, enumerations, autoboxing, and generics. I/O and applets
are also introduced. The final chapter in Part I covers lambda expressions. As mentioned,
the lambda expression is the single most important new feature in Java SE 8.

Part II examines key aspects of Java’s standard API library. Topics include strings, I/O,
networking, the standard utilities, the Collections Framework, applets, the AWT, event
handling, imaging, concurrency (including the Fork/Join Framework), regular
expressions, and the new stream library.

Part III offers three chapters that introduce Swing.
Part IV presents three chapters that introduce JavaFX.
Part V contains two chapters that show examples of Java in action. The first discusses

Java Beans. The second presents an introduction to servlets.

Don’t Forget: Code on the Web
Remember, the source code for all of the examples in this book is available free-of-charge
on the Web at www.oraclepressbooks.com.

Special Thanks
I want to give special thanks to Patrick Naughton, Joe O’Neil, and Danny Coward.

Patrick Naughton was one of the creators of the Java language. He also helped write the
first edition of this book. For example, among many other contributions, much of the material
in Chapters 20, 22, and 27 was initially provided by Patrick. His insights, expertise, and
energy contributed greatly to the success of that book.

During the preparation of the second and third editions of this book, Joe O’Neil
provided initial drafts for the material now found in Chapters 30, 32, 37, and 38 of this
edition. Joe helped on several of my books and his input has always been top-notch.

00-FM.indd 32 19/02/14 11:45 AM

http://www.oraclepressbooks.com

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Preface xxxiii

Danny Coward is the technical editor for this edition of the book. Danny has worked on
several of my books and his advice, insights, and suggestions have always been of great value
and much appreciated.

HERBERT SCHILDT

00-FM.indd 33 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

xxxiv Java: The Complete Reference, Ninth Edition

For Further Study
Java: The Complete Reference is your gateway to the Herb Schildt series of Java programming
books. Here are others that you will find of interest:

Herb Schildt’s Java Programming Cookbook

Java: A Beginner’s Guide

Swing: A Beginner’s Guide

The Art of Java

00-FM.indd 34 19/02/14 11:45 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio: 1

The Java Language

PART

I
CHAPTER 1
The History and Evolution
of Java

CHAPTER 2
An Overview of Java

CHAPTER 3
Data Types, Variables,
and Arrays

CHAPTER 4
Operators

CHAPTER 5
Control Statements

CHAPTER 6
Introducing Classes

CHAPTER 7
A Closer Look at Methods
and Classes

CHAPTER 8
Inheritance

CHAPTER 9
Packages and Interfaces

CHAPTER 10
Exception Handling

CHAPTER 11
Multithreaded Programming

01-ch01.indd 1 14/02/14 4:41 PM

CHAPTER 12
Enumerations, Autoboxing,
and Annotations (Metadata)

CHAPTER 13
I/O, Applets, and
Other Topics

CHAPTER 14
Generics

CHAPTER 15
Lambda Expressions

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

01-ch01.indd 2 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

32
CHAPTER

 3

The History and
Evolution of Java1

To fully understand Java, one must understand the reasons behind its creation, the forces
that shaped it, and the legacy that it inherits. Like the successful computer languages that
came before, Java is a blend of the best elements of its rich heritage combined with the
innovative concepts required by its unique mission. While the remaining chapters of
this book describe the practical aspects of Java—including its syntax, key libraries, and
applications—this chapter explains how and why Java came about, what makes it so
important, and how it has evolved over the years.

Although Java has become inseparably linked with the online environment of the
Internet, it is important to remember that Java is first and foremost a programming
language. Computer language innovation and development occurs for two fundamental
reasons:

•	 To adapt to changing environments and uses

•	 To implement refinements and improvements in the art of programming

As you will see, the development of Java was driven by both elements in nearly equal
measure.

Java’s Lineage
Java is related to C++, which is a direct descendant of C. Much of the character of Java is
inherited from these two languages. From C, Java derives its syntax. Many of Java’s object-
oriented features were influenced by C++. In fact, several of Java’s defining characteristics
come from—or are responses to—its predecessors. Moreover, the creation of Java was
deeply rooted in the process of refinement and adaptation that has been occurring in
computer programming languages for the past several decades. For these reasons, this
section reviews the sequence of events and forces that led to Java. As you will see, each
innovation in language design was driven by the need to solve a fundamental problem
that the preceding languages could not solve. Java is no exception.

01-ch01.indd 3 14/02/14 4:41 PM

4 PART I The Java Language

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

The Birth of Modern Programming: C
The C language shook the computer world. Its impact should not be underestimated, because
it fundamentally changed the way programming was approached and thought about. The
creation of C was a direct result of the need for a structured, efficient, high-level language
that could replace assembly code when creating systems programs. As you probably know,
when a computer language is designed, trade-offs are often made, such as the following:

•	 Ease-of-use versus power

•	 Safety versus efficiency

•	 Rigidity versus extensibility

Prior to C, programmers usually had to choose between languages that optimized one
set of traits or the other. For example, although FORTRAN could be used to write fairly
efficient programs for scientific applications, it was not very good for system code. And
while BASIC was easy to learn, it wasn’t very powerful, and its lack of structure made its
usefulness questionable for large programs. Assembly language can be used to produce
highly efficient programs, but it is not easy to learn or use effectively. Further, debugging
assembly code can be quite difficult.

Another compounding problem was that early computer languages such as BASIC,
COBOL, and FORTRAN were not designed around structured principles. Instead, they
relied upon the GOTO as a primary means of program control. As a result, programs
written using these languages tended to produce “spaghetti code”—a mass of tangled
jumps and conditional branches that make a program virtually impossible to understand.
While languages like Pascal are structured, they were not designed for efficiency, and failed
to include certain features necessary to make them applicable to a wide range of programs.
(Specifically, given the standard dialects of Pascal available at the time, it was not practical
to consider using Pascal for systems-level code.)

So, just prior to the invention of C, no one language had reconciled the conflicting
attributes that had dogged earlier efforts. Yet the need for such a language was pressing. By
the early 1970s, the computer revolution was beginning to take hold, and the demand for
software was rapidly outpacing programmers’ ability to produce it. A great deal of effort was
being expended in academic circles in an attempt to create a better computer language.
But, and perhaps most importantly, a secondary force was beginning to be felt. Computer
hardware was finally becoming common enough that a critical mass was being reached. No
longer were computers kept behind locked doors. For the first time, programmers were
gaining virtually unlimited access to their machines. This allowed the freedom to experiment.
It also allowed programmers to begin to create their own tools. On the eve of C’s creation,
the stage was set for a quantum leap forward in computer languages.

Invented and first implemented by Dennis Ritchie on a DEC PDP-11 running the UNIX
operating system, C was the result of a development process that started with an older
language called BCPL, developed by Martin Richards. BCPL influenced a language called
B, invented by Ken Thompson, which led to the development of C in the 1970s. For many
years, the de facto standard for C was the one supplied with the UNIX operating system and
described in The C Programming Language by Brian Kernighan and Dennis Ritchie (Prentice-
Hall, 1978). C was formally standardized in December 1989, when the American National
Standards Institute (ANSI) standard for C was adopted.

01-ch01.indd 4 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 1 The History and Evolution of Java 5

Pa
rt

 I

The creation of C is considered by many to have marked the beginning of the modern
age of computer languages. It successfully synthesized the conflicting attributes that had so
troubled earlier languages. The result was a powerful, efficient, structured language that
was relatively easy to learn. It also included one other, nearly intangible aspect: it was a
programmer’s language. Prior to the invention of C, computer languages were generally
designed either as academic exercises or by bureaucratic committees. C is different. It was
designed, implemented, and developed by real, working programmers, reflecting the way
that they approached the job of programming. Its features were honed, tested, thought
about, and rethought by the people who actually used the language. The result was a
language that programmers liked to use. Indeed, C quickly attracted many followers
who had a near-religious zeal for it. As such, it found wide and rapid acceptance in the
programmer community. In short, C is a language designed by and for programmers.
As you will see, Java inherited this legacy.

C++: The Next Step
During the late 1970s and early 1980s, C became the dominant computer programming
language, and it is still widely used today. Since C is a successful and useful language, you
might ask why a need for something else existed. The answer is complexity. Throughout the
history of programming, the increasing complexity of programs has driven the need for
better ways to manage that complexity. C++ is a response to that need. To better understand
why managing program complexity is fundamental to the creation of C++, consider the
following.

Approaches to programming have changed dramatically since the invention of the
computer. For example, when computers were first invented, programming was done by
manually toggling in the binary machine instructions by use of the front panel. As long as
programs were just a few hundred instructions long, this approach worked. As programs grew,
assembly language was invented so that a programmer could deal with larger, increasingly
complex programs by using symbolic representations of the machine instructions. As
programs continued to grow, high-level languages were introduced that gave the programmer
more tools with which to handle complexity.

The first widespread language was, of course, FORTRAN. While FORTRAN was an
impressive first step, it is hardly a language that encourages clear and easy-to-understand
programs. The 1960s gave birth to structured programming. This is the method of programming
championed by languages such as C. The use of structured languages enabled programmers
to write, for the first time, moderately complex programs fairly easily. However, even with
structured programming methods, once a project reaches a certain size, its complexity
exceeds what a programmer can manage. By the early 1980s, many projects were pushing
the structured approach past its limits. To solve this problem, a new way to program was
invented, called object-oriented programming (OOP). Object-oriented programming is discussed
in detail later in this book, but here is a brief definition: OOP is a programming methodology
that helps organize complex programs through the use of inheritance, encapsulation, and
polymorphism.

In the final analysis, although C is one of the world’s great programming languages,
there is a limit to its ability to handle complexity. Once the size of a program exceeds a
certain point, it becomes so complex that it is difficult to grasp as a totality. While the
precise size at which this occurs differs, depending upon both the nature of the program
and the programmer, there is always a threshold at which a program becomes unmanageable.

01-ch01.indd 5 14/02/14 4:41 PM

6 PART I The Java Language

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

C++ added features that enabled this threshold to be broken, allowing programmers to
comprehend and manage larger programs.

C++ was invented by Bjarne Stroustrup in 1979, while he was working at Bell Laboratories
in Murray Hill, New Jersey. Stroustrup initially called the new language “C with Classes.”
However, in 1983, the name was changed to C++. C++ extends C by adding object-oriented
features. Because C++ is built on the foundation of C, it includes all of C’s features, attributes,
and benefits. This is a crucial reason for the success of C++ as a language. The invention of
C++ was not an attempt to create a completely new programming language. Instead, it was
an enhancement to an already highly successful one.

The Stage Is Set for Java
By the end of the 1980s and the early 1990s, object-oriented programming using C++ took
hold. Indeed, for a brief moment it seemed as if programmers had finally found the perfect
language. Because C++ blended the high efficiency and stylistic elements of C with the
object-oriented paradigm, it was a language that could be used to create a wide range of
programs. However, just as in the past, forces were brewing that would, once again, drive
computer language evolution forward. Within a few years, the World Wide Web and the
Internet would reach critical mass. This event would precipitate another revolution in
programming.

The Creation of Java
Java was conceived by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike
Sheridan at Sun Microsystems, Inc. in 1991. It took 18 months to develop the first working
version. This language was initially called “Oak,” but was renamed “Java” in 1995. Between
the initial implementation of Oak in the fall of 1992 and the public announcement of Java
in the spring of 1995, many more people contributed to the design and evolution of the
language. Bill Joy, Arthur van Hoff, Jonathan Payne, Frank Yellin, and Tim Lindholm were
key contributors to the maturing of the original prototype.

Somewhat surprisingly, the original impetus for Java was not the Internet! Instead, the
primary motivation was the need for a platform-independent (that is, architecture-neutral)
language that could be used to create software to be embedded in various consumer
electronic devices, such as microwave ovens and remote controls. As you can probably
guess, many different types of CPUs are used as controllers. The trouble with C and C++
(and most other languages) is that they are designed to be compiled for a specific target.
Although it is possible to compile a C++ program for just about any type of CPU, to do so
requires a full C++ compiler targeted for that CPU. The problem is that compilers are
expensive and time-consuming to create. An easier—and more cost-efficient—solution
was needed. In an attempt to find such a solution, Gosling and others began work on a
portable, platform-independent language that could be used to produce code that would
run on a variety of CPUs under differing environments. This effort ultimately led to the
creation of Java.

About the time that the details of Java were being worked out, a second, and ultimately
more important, factor was emerging that would play a crucial role in the future of Java.
This second force was, of course, the World Wide Web. Had the Web not taken shape at
about the same time that Java was being implemented, Java might have remained a useful
but obscure language for programming consumer electronics. However, with the emergence

01-ch01.indd 6 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 1 The History and Evolution of Java 7

Pa
rt

 I

of the World Wide Web, Java was propelled to the forefront of computer language design,
because the Web, too, demanded portable programs.

Most programmers learn early in their careers that portable programs are as elusive as they
are desirable. While the quest for a way to create efficient, portable (platform-independent)
programs is nearly as old as the discipline of programming itself, it had taken a back seat
to other, more pressing problems. Further, because (at that time) much of the computer
world had divided itself into the three competing camps of Intel, Macintosh, and UNIX,
most programmers stayed within their fortified boundaries, and the urgent need for
portable code was reduced. However, with the advent of the Internet and the Web, the
old problem of portability returned with a vengeance. After all, the Internet consists of a
diverse, distributed universe populated with various types of computers, operating systems,
and CPUs. Even though many kinds of platforms are attached to the Internet, users would
like them all to be able to run the same program. What was once an irritating but low-
priority problem had become a high-profile necessity.

By 1993, it became obvious to members of the Java design team that the problems of
portability frequently encountered when creating code for embedded controllers are also
found when attempting to create code for the Internet. In fact, the same problem that Java
was initially designed to solve on a small scale could also be applied to the Internet on a
large scale. This realization caused the focus of Java to switch from consumer electronics
to Internet programming. So, while the desire for an architecture-neutral programming
language provided the initial spark, the Internet ultimately led to Java’s large-scale success.

As mentioned earlier, Java derives much of its character from C and C++. This is by intent.
The Java designers knew that using the familiar syntax of C and echoing the object-oriented
features of C++ would make their language appealing to the legions of experienced C/C++
programmers. In addition to the surface similarities, Java shares some of the other attributes
that helped make C and C++ successful. First, Java was designed, tested, and refined by real,
working programmers. It is a language grounded in the needs and experiences of the
people who devised it. Thus, Java is a programmer’s language. Second, Java is cohesive and
logically consistent. Third, except for those constraints imposed by the Internet environment,
Java gives you, the programmer, full control. If you program well, your programs reflect it.
If you program poorly, your programs reflect that, too. Put differently, Java is not a language
with training wheels. It is a language for professional programmers.

Because of the similarities between Java and C++, it is tempting to think of Java as
simply the “Internet version of C++.” However, to do so would be a large mistake. Java has
significant practical and philosophical differences. While it is true that Java was influenced
by C++, it is not an enhanced version of C++. For example, Java is neither upwardly nor
downwardly compatible with C++. Of course, the similarities with C++ are significant, and if
you are a C++ programmer, then you will feel right at home with Java. One other point: Java
was not designed to replace C++. Java was designed to solve a certain set of problems. C++
was designed to solve a different set of problems. Both will coexist for many years to come.

As mentioned at the start of this chapter, computer languages evolve for two reasons:
to adapt to changes in environment and to implement advances in the art of programming.
The environmental change that prompted Java was the need for platform-independent
programs destined for distribution on the Internet. However, Java also embodies changes
in the way that people approach the writing of programs. For example, Java enhanced
and refined the object-oriented paradigm used by C++, added integrated support for
multithreading, and provided a library that simplified Internet access. In the final analysis,

01-ch01.indd 7 14/02/14 4:41 PM

8 PART I The Java Language

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

though, it was not the individual features of Java that made it so remarkable. Rather, it was
the language as a whole. Java was the perfect response to the demands of the then newly
emerging, highly distributed computing universe. Java was to Internet programming what
C was to system programming: a revolutionary force that changed the world.

The C# Connection
The reach and power of Java continues to be felt in the world of computer language
development. Many of its innovative features, constructs, and concepts have become part
of the baseline for any new language. The success of Java is simply too important to ignore.

Perhaps the most important example of Java’s influence is C#. Created by Microsoft to
support the .NET Framework, C# is closely related to Java. For example, both share the
same general syntax, support distributed programming, and utilize the same object model.
There are, of course, differences between Java and C#, but the overall “look and feel” of
these languages is very similar. This “cross-pollination” from Java to C# is the strongest
testimonial to date that Java redefined the way we think about and use a computer language.

How Java Changed the Internet
The Internet helped catapult Java to the forefront of programming, and Java, in turn, had
a profound effect on the Internet. In addition to simplifying web programming in general,
Java innovated a new type of networked program called the applet that changed the way
the online world thought about content. Java also addressed some of the thorniest issues
associated with the Internet: portability and security. Let’s look more closely at each of these.

Java Applets
An applet is a special kind of Java program that is designed to be transmitted over the Internet
and automatically executed by a Java-compatible web browser. Furthermore, an applet is
downloaded on demand, without further interaction with the user. If the user clicks a link
that contains an applet, the applet will be automatically downloaded and run in the browser.
Applets are intended to be small programs. They are typically used to display data provided
by the server, handle user input, or provide simple functions, such as a loan calculator, that
execute locally, rather than on the server. In essence, the applet allows some functionality to
be moved from the server to the client.

The creation of the applet changed Internet programming because it expanded the
universe of objects that can move about freely in cyberspace. In general, there are two very
broad categories of objects that are transmitted between the server and the client: passive
information and dynamic, active programs. For example, when you read your e-mail, you
are viewing passive data. Even when you download a program, the program’s code is still
only passive data until you execute it. By contrast, the applet is a dynamic, self-executing
program. Such a program is an active agent on the client computer, yet it is initiated by
the server.

As desirable as dynamic, networked programs are, they also present serious problems
in the areas of security and portability. Obviously, a program that downloads and executes
automatically on the client computer must be prevented from doing harm. It must also be
able to run in a variety of different environments and under different operating systems.
As you will see, Java solved these problems in an effective and elegant way. Let’s look a bit
more closely at each.

01-ch01.indd 8 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 1 The History and Evolution of Java 9

Pa
rt

 I

Security
As you are likely aware, every time you download a “normal” program, you are taking a risk,
because the code you are downloading might contain a virus, Trojan horse, or other harmful
code. At the core of the problem is the fact that malicious code can cause its damage because
it has gained unauthorized access to system resources. For example, a virus program might
gather private information, such as credit card numbers, bank account balances, and
passwords, by searching the contents of your computer’s local file system. In order for Java to
enable applets to be downloaded and executed on the client computer safely, it was necessary
to prevent an applet from launching such an attack.

Java achieved this protection by confining an applet to the Java execution environment
and not allowing it access to other parts of the computer. (You will see how this is
accomplished shortly.) The ability to download applets with confidence that no harm will
be done and that no security will be breached may have been the single most innovative
aspect of Java.

Portability
Portability is a major aspect of the Internet because there are many different types of
computers and operating systems connected to it. If a Java program were to be run on
virtually any computer connected to the Internet, there needed to be some way to enable
that program to execute on different systems. For example, in the case of an applet, the
same applet must be able to be downloaded and executed by the wide variety of CPUs,
operating systems, and browsers connected to the Internet. It is not practical to have
different versions of the applet for different computers. The same code must work on all
computers. Therefore, some means of generating portable executable code was needed. As
you will soon see, the same mechanism that helps ensure security also helps create portability.

Java’s Magic: The Bytecode
The key that allows Java to solve both the security and the portability problems just described
is that the output of a Java compiler is not executable code. Rather, it is bytecode. Bytecode is
a highly optimized set of instructions designed to be executed by the Java run-time system,
which is called the Java Virtual Machine (JVM). In essence, the original JVM was designed as
an interpreter for bytecode. This may come as a bit of a surprise since many modern languages
are designed to be compiled into executable code because of performance concerns.
However, the fact that a Java program is executed by the JVM helps solve the major
problems associated with web-based programs. Here is why.

Translating a Java program into bytecode makes it much easier to run a program in
a wide variety of environments because only the JVM needs to be implemented for each
platform. Once the run-time package exists for a given system, any Java program can run
on it. Remember, although the details of the JVM will differ from platform to platform, all
understand the same Java bytecode. If a Java program were compiled to native code, then
different versions of the same program would have to exist for each type of CPU connected
to the Internet. This is, of course, not a feasible solution. Thus, the execution of bytecode
by the JVM is the easiest way to create truly portable programs.

The fact that a Java program is executed by the JVM also helps to make it secure.
Because the JVM is in control, it can contain the program and prevent it from generating

01-ch01.indd 9 14/02/14 4:41 PM

10 PART I The Java Language

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

side effects outside of the system. As you will see, safety is also enhanced by certain
restrictions that exist in the Java language.

In general, when a program is compiled to an intermediate form and then interpreted
by a virtual machine, it runs slower than it would run if compiled to executable code.
However, with Java, the differential between the two is not so great. Because bytecode has
been highly optimized, the use of bytecode enables the JVM to execute programs much
faster than you might expect.

Although Java was designed as an interpreted language, there is nothing about Java that
prevents on-the-fly compilation of bytecode into native code in order to boost performance.
For this reason, the HotSpot technology was introduced not long after Java’s initial release.
HotSpot provides a Just-In-Time (JIT) compiler for bytecode. When a JIT compiler is part
of the JVM, selected portions of bytecode are compiled into executable code in real time,
on a piece-by-piece, demand basis. It is important to understand that it is not practical to
compile an entire Java program into executable code all at once, because Java performs
various run-time checks that can be done only at run time. Instead, a JIT compiler compiles
code as it is needed, during execution. Furthermore, not all sequences of bytecode are
compiled—only those that will benefit from compilation. The remaining code is simply
interpreted. However, the just-in-time approach still yields a significant performance boost.
Even when dynamic compilation is applied to bytecode, the portability and safety features
still apply, because the JVM is still in charge of the execution environment.

Servlets: Java on the Server Side
As useful as applets can be, they are just one half of the client/server equation. Not long
after the initial release of Java, it became obvious that Java would also be useful on the
server side. The result was the servlet. A servlet is a small program that executes on the
server. Just as applets dynamically extend the functionality of a web browser, servlets
dynamically extend the functionality of a web server. Thus, with the advent of the servlet,
Java spanned both sides of the client/server connection.

Servlets are used to create dynamically generated content that is then served to the
client. For example, an online store might use a servlet to look up the price for an item in a
database. The price information is then used to dynamically generate a web page that is sent
to the browser. Although dynamically generated content is available through mechanisms
such as CGI (Common Gateway Interface), the servlet offers several advantages, including
increased performance.

Because servlets (like all Java programs) are compiled into bytecode and executed by
the JVM, they are highly portable. Thus, the same servlet can be used in a variety of
different server environments. The only requirements are that the server support the JVM
and a servlet container.

The Java Buzzwords
No discussion of Java’s history is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security,
other factors also played an important role in molding the final form of the language. The
key considerations were summed up by the Java team in the following list of buzzwords:

•	 Simple

•	 Secure

01-ch01.indd 10 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 1 The History and Evolution of Java 11

Pa
rt

 I

•	 Portable

•	 Object-oriented

•	 Robust

•	 Multithreaded

•	 Architecture-neutral

•	 Interpreted

•	 High performance

•	 Distributed

•	 Dynamic

Two of these buzzwords have already been discussed: secure and portable. Let’s examine
what each of the others implies.

Simple
Java was designed to be easy for the professional programmer to learn and use effectively.
Assuming that you have some programming experience, you will not find Java hard to master.
If you already understand the basic concepts of object-oriented programming, learning Java
will be even easier. Best of all, if you are an experienced C++ programmer, moving to Java will
require very little effort. Because Java inherits the C/C++ syntax and many of the object-
oriented features of C++, most programmers have little trouble learning Java.

Object-Oriented
Although influenced by its predecessors, Java was not designed to be source-code compatible
with any other language. This allowed the Java team the freedom to design with a blank
slate. One outcome of this was a clean, usable, pragmatic approach to objects. Borrowing
liberally from many seminal object-software environments of the last few decades, Java
manages to strike a balance between the purist’s “everything is an object” paradigm and
the pragmatist’s “stay out of my way” model. The object model in Java is simple and easy to
extend, while primitive types, such as integers, are kept as high-performance nonobjects.

Robust
The multiplatformed environment of the Web places extraordinary demands on a
program, because the program must execute reliably in a variety of systems. Thus, the
ability to create robust programs was given a high priority in the design of Java. To gain
reliability, Java restricts you in a few key areas to force you to find your mistakes early in
program development. At the same time, Java frees you from having to worry about many
of the most common causes of programming errors. Because Java is a strictly typed
language, it checks your code at compile time. However, it also checks your code at run
time. Many hard-to-track-down bugs that often turn up in hard-to-reproduce run-time
situations are simply impossible to create in Java. Knowing that what you have written
will behave in a predictable way under diverse conditions is a key feature of Java.

To better understand how Java is robust, consider two of the main reasons for program
failure: memory management mistakes and mishandled exceptional conditions (that is,
run-time errors). Memory management can be a difficult, tedious task in traditional

01-ch01.indd 11 14/02/14 4:41 PM

12 PART I The Java Language

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

programming environments. For example, in C/C++, the programmer will often manually
allocate and free all dynamic memory. This sometimes leads to problems, because
programmers will either forget to free memory that has been previously allocated or,
worse, try to free some memory that another part of their code is still using. Java virtually
eliminates these problems by managing memory allocation and deallocation for you. (In fact,
deallocation is completely automatic, because Java provides garbage collection for unused
objects.) Exceptional conditions in traditional environments often arise in situations such
as division by zero or “file not found,” and they must be managed with clumsy and hard-to-
read constructs. Java helps in this area by providing object-oriented exception handling. In
a well-written Java program, all run-time errors can—and should—be managed by your
program.

Multithreaded
Java was designed to meet the real-world requirement of creating interactive, networked
programs. To accomplish this, Java supports multithreaded programming, which allows you
to write programs that do many things simultaneously. The Java run-time system comes with
an elegant yet sophisticated solution for multiprocess synchronization that enables you to
construct smoothly running interactive systems. Java’s easy-to-use approach to multithreading
allows you to think about the specific behavior of your program, not the multitasking
subsystem.

Architecture-Neutral
A central issue for the Java designers was that of code longevity and portability. At the time
of Java’s creation, one of the main problems facing programmers was that no guarantee
existed that if you wrote a program today, it would run tomorrow—even on the same
machine. Operating system upgrades, processor upgrades, and changes in core system
resources can all combine to make a program malfunction. The Java designers made
several hard decisions in the Java language and the Java Virtual Machine in an attempt to
alter this situation. Their goal was “write once; run anywhere, any time, forever.” To a great
extent, this goal was accomplished.

Interpreted and High Performance
As described earlier, Java enables the creation of cross-platform programs by compiling into
an intermediate representation called Java bytecode. This code can be executed on any
system that implements the Java Virtual Machine. Most previous attempts at cross-platform
solutions have done so at the expense of performance. As explained earlier, the Java
bytecode was carefully designed so that it would be easy to translate directly into native
machine code for very high performance by using a just-in-time compiler. Java run-time
systems that provide this feature lose none of the benefits of the platform-independent code.

Distributed
Java is designed for the distributed environment of the Internet because it handles TCP/IP
protocols. In fact, accessing a resource using a URL is not much different from accessing a
file. Java also supports Remote Method Invocation (RMI). This feature enables a program to
invoke methods across a network.

01-ch01.indd 12 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 1 The History and Evolution of Java 13

Pa
rt

 I

Dynamic
Java programs carry with them substantial amounts of run-time type information that is used
to verify and resolve accesses to objects at run time. This makes it possible to dynamically link
code in a safe and expedient manner. This is crucial to the robustness of the Java environment,
in which small fragments of bytecode may be dynamically updated on a running system.

The Evolution of Java
The initial release of Java was nothing short of revolutionary, but it did not mark the end of
Java’s era of rapid innovation. Unlike most other software systems that usually settle into a
pattern of small, incremental improvements, Java continued to evolve at an explosive pace.
Soon after the release of Java 1.0, the designers of Java had already created Java 1.1. The
features added by Java 1.1 were more significant and substantial than the increase in the
minor revision number would have you think. Java 1.1 added many new library elements,
redefined the way events are handled, and reconfigured many features of the 1.0 library. It
also deprecated (rendered obsolete) several features originally defined by Java 1.0. Thus,
Java 1.1 both added to and subtracted from attributes of its original specification.

The next major release of Java was Java 2, where the “2” indicates “second generation.”
The creation of Java 2 was a watershed event, marking the beginning of Java’s “modern
age.” The first release of Java 2 carried the version number 1.2. It may seem odd that the
first release of Java 2 used the 1.2 version number. The reason is that it originally referred
to the internal version number of the Java libraries, but then was generalized to refer to
the entire release. With Java 2, Sun repackaged the Java product as J2SE (Java 2 Platform
Standard Edition), and the version numbers began to be applied to that product.

Java 2 added support for a number of new features, such as Swing and the Collections
Framework, and it enhanced the Java Virtual Machine and various programming tools. Java 2
also contained a few deprecations. The most important affected the Thread class in which
the methods suspend(), resume(), and stop() were deprecated.

J2SE 1.3 was the first major upgrade to the original Java 2 release. For the most part,
it added to existing functionality and “tightened up” the development environment. In
general, programs written for version 1.2 and those written for version 1.3 are source-code
compatible. Although version 1.3 contained a smaller set of changes than the preceding
three major releases, it was nevertheless important.

The release of J2SE 1.4 further enhanced Java. This release contained several important
upgrades, enhancements, and additions. For example, it added the new keyword assert,
chained exceptions, and a channel-based I/O subsystem. It also made changes to the
Collections Framework and the networking classes. In addition, numerous small changes
were made throughout. Despite the significant number of new features, version 1.4
maintained nearly 100 percent source-code compatibility with prior versions.

The next release of Java was J2SE 5, and it was revolutionary. Unlike most of the previous
Java upgrades, which offered important, but measured improvements, J2SE 5 fundamentally
expanded the scope, power, and range of the language. To grasp the magnitude of the
changes that J2SE 5 made to Java, consider the following list of its major new features:

•	 Generics

•	 Annotations

01-ch01.indd 13 14/02/14 4:41 PM

14 PART I The Java Language

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

•	 Autoboxing and auto-unboxing

•	 Enumerations

•	 Enhanced, for-each style for loop

•	 Variable-length arguments (varargs)

•	 Static import

•	 Formatted I/O

•	 Concurrency utilities

This is not a list of minor tweaks or incremental upgrades. Each item in the list represented
a significant addition to the Java language. Some, such as generics, the enhanced for, and
varargs, introduced new syntax elements. Others, such as autoboxing and auto-unboxing,
altered the semantics of the language. Annotations added an entirely new dimension to
programming. In all cases, the impact of these additions went beyond their direct effects.
They changed the very character of Java itself.

The importance of these new features is reflected in the use of the version number “5.”
The next version number for Java would normally have been 1.5. However, the new features
were so significant that a shift from 1.4 to 1.5 just didn’t seem to express the magnitude of
the change. Instead, Sun elected to increase the version number to 5 as a way of emphasizing
that a major event was taking place. Thus, it was named J2SE 5, and the developer’s kit was
called JDK 5. However, in order to maintain consistency, Sun decided to use 1.5 as its
internal version number, which is also referred to as the developer version number. The
“5” in J2SE 5 is called the product version number.

The next release of Java was called Java SE 6. Sun once again decided to change the
name of the Java platform. First, notice that the “2” was dropped. Thus, the platform was
now named Java SE, and the official product name was Java Platform, Standard Edition 6.
The Java Development Kit was called JDK 6. As with J2SE 5, the 6 in Java SE 6 is the product
version number. The internal, developer version number is 1.6.

Java SE 6 built on the base of J2SE 5, adding incremental improvements. Java SE 6 added
no major features to the Java language proper, but it did enhance the API libraries, added
several new packages, and offered improvements to the runtime. It also went through several
updates during its (in Java terms) long life cycle, with several upgrades added along the way.
In general, Java SE 6 served to further solidify the advances made by J2SE 5.

Java SE 7 was the next release of Java, with the Java Development Kit being called JDK 7,
and an internal version number of 1.7. Java SE 7 was the first major release of Java since
Sun Microsystems was acquired by Oracle. Java SE 7 contained many new features, including
significant additions to the language and the API libraries. Upgrades to the Java run-time
system that support non-Java languages were also included, but it is the language and
library additions that were of most interest to Java programmers.

The new language features were developed as part of Project Coin. The purpose of
Project Coin was to identify a number of small changes to the Java language that would be
incorporated into JDK 7. Although these features were collectively referred to as “small,”
the effects of these changes have been quite large in terms of the code they impact. In fact, for

01-ch01.indd 14 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 1 The History and Evolution of Java 15

Pa
rt

 I

many programmers, these changes may well have been the most important new features in
Java SE 7. Here is a list of the language features added by JDK 7:

•	 A String can now control a switch statement.

•	 Binary integer literals.

•	 Underscores in numeric literals.

•	 An expanded try statement, called try-with-resources, that supports automatic resource
management. (For example, streams can be closed automatically when they are no
longer needed.)

•	 Type inference (via the diamond operator) when constructing a generic instance.

•	 Enhanced exception handling in which two or more exceptions can be caught by a
single catch (multi-catch) and better type checking for exceptions that are rethrown.

•	 Although not a syntax change, the compiler warnings associated with some types of
varargs methods were improved, and you have more control over the warnings.

As you can see, even though the Project Coin features were considered small changes to
the language, their benefits were much larger than the qualifier “small” would suggest. In
particular, the try-with-resources statement has profoundly affected the way that stream-based
code is written. Also, the ability to use a String to control a switch statement was a long-
desired improvement that simplified coding in many situations.

Java SE 7 made several additions to the Java API library. Two of the most important were
the enhancements to the NIO Framework and the addition of the Fork/Join Framework.
NIO (which originally stood for New I/O) was added to Java in version 1.4. However, the
changes added by Java SE 7 fundamentally expanded its capabilities. So significant were
the changes, that the term NIO.2 is often used.

The Fork/Join Framework provides important support for parallel programming. Parallel
programming is the name commonly given to the techniques that make effective use of
computers that contain more than one processor, including multicore systems. The
advantage that multicore environments offer is the prospect of significantly increased
program performance. The Fork/Join Framework addressed parallel programming by

•	 Simplifying the creation and use of tasks that can execute concurrently

•	 Automatically making use of multiple processors

Therefore, by using the Fork/Join Framework, you can easily create scaleable
applications that automatically take advantage of the processors available in the execution
environment. Of course, not all algorithms lend themselves to parallelization, but for those
that do, a significant improvement in execution speed can be obtained.

Java SE 8
The newest release of Java is Java SE 8, with the developer’s kit being called JDK 8. It has
an internal version number of 1.8. JDK 8 represents a very significant upgrade to the Java
language because of the inclusion of a far-reaching new language feature: the lambda
expression. The impact of lambda expressions will be profound, changing both the way that

01-ch01.indd 15 14/02/14 4:41 PM

16 PART I The Java Language

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

programming solutions are conceptualized and how Java code is written. As explained in
detail in Chapter 15, lambda expressions add functional programming features to Java. In
the process, lambda expressions can simplify and reduce the amount of source code
needed to create certain constructs, such as some types of anonymous classes. The addition
of lambda expressions also causes a new operator (the –>) and a new syntax element to be
added to the language. Lambda expressions help ensure that Java will remain the vibrant,
nimble language that users have come to expect.

The inclusion of lambda expressions has also had a wide-ranging effect on the Java
libraries, with new features being added to take advantage of them. One of the most
important is the new stream API, which is packaged in java.util.stream. The stream API
supports pipeline operations on data and is optimized for lambda expressions. Another
very important new package is java.util.function. It defines a number of functional interfaces,
which provide additional support for lambda expressions. Other new lambda-related features
are found throughout the API library.

Another lambda-inspired feature affects interface. Beginning with JDK 8, it is now
possible to define a default implementation for a method specified by an interface. If no
implementation for a default method is created, then the default defined by the interface
is used. This feature enables interfaces to be gracefully evolved over time because a new
method can be added to an interface without breaking existing code. It can also streamline
the implementation of an interface when the defaults are appropriate. Other new features
in JDK 8 include a new time and date API, type annotations, and the ability to use parallel
processing when sorting an array, among others. JDK 8 also bundles support for JavaFX 8,
the latest version of Java’s new GUI application framework. JavaFX is expected to soon play
an important part in nearly all Java applications, ultimately replacing Swing for most
GUI-based projects. Part IV of this book provides an introduction to it.

In the final analysis, Java SE 8 is a major release that profoundly expands the capabilities
of the language and changes the way that Java code is written. Its effects will be felt throughout
the Java universe and for years to come. It truly is that important of a upgrade.

The material in this book has been updated to reflect Java SE 8, with many new features,
updates, and additions indicated throughout.

A Culture of Innovation
Since the beginning, Java has been at the center of a culture of innovation. Its original release
redefined programming for the Internet. The Java Virtual Machine (JVM) and bytecode
changed the way we think about security and portability. The applet (and then the servlet)
made the Web come alive. The Java Community Process (JCP) redefined the way that new
ideas are assimilated into the language. The world of Java has never stood still for very long.
Java SE 8 is the latest release in Java’s ongoing, dynamic history.

01-ch01.indd 16 14/02/14 4:41 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

2
CHAPTER

 17

An Overview of Java

As in all other computer languages, the elements of Java do not exist in isolation. Rather,
they work together to form the language as a whole. However, this interrelatedness can
make it difficult to describe one aspect of Java without involving several others. Often a
discussion of one feature implies prior knowledge of another. For this reason, this chapter
presents a quick overview of several key features of Java. The material described here will
give you a foothold that will allow you to write and understand simple programs. Most of
the topics discussed will be examined in greater detail in the remaining chapters of Part I.

Object-Oriented Programming
Object-oriented programming (OOP) is at the core of Java. In fact, all Java programs are to
at least some extent object-oriented. OOP is so integral to Java that it is best to understand
its basic principles before you begin writing even simple Java programs. Therefore, this
chapter begins with a discussion of the theoretical aspects of OOP.

Two Paradigms
All computer programs consist of two elements: code and data. Furthermore, a program
can be conceptually organized around its code or around its data. That is, some programs
are written around “what is happening” and others are written around “who is being
affected.” These are the two paradigms that govern how a program is constructed. The first
way is called the process-oriented model. This approach characterizes a program as a series of
linear steps (that is, code). The process-oriented model can be thought of as code acting on
data. Procedural languages such as C employ this model to considerable success. However,
as mentioned in Chapter 1, problems with this approach appear as programs grow larger
and more complex.

To manage increasing complexity, the second approach, called object-oriented programming,
was conceived. Object-oriented programming organizes a program around its data (that is,
objects) and a set of well-defined interfaces to that data. An object-oriented program can
be characterized as data controlling access to code. As you will see, by switching the controlling
entity to data, you can achieve several organizational benefits.

02-ch02.indd 17 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

18 PART I The Java Language

Abstraction
An essential element of object-oriented programming is abstraction. Humans manage
complexity through abstraction. For example, people do not think of a car as a set of tens
of thousands of individual parts. They think of it as a well-defined object with its own
unique behavior. This abstraction allows people to use a car to drive to the grocery store
without being overwhelmed by the complexity of the parts that form the car. They can
ignore the details of how the engine, transmission, and braking systems work. Instead,
they are free to utilize the object as a whole.

A powerful way to manage abstraction is through the use of hierarchical classifications.
This allows you to layer the semantics of complex systems, breaking them into more
manageable pieces. From the outside, the car is a single object. Once inside, you see that
the car consists of several subsystems: steering, brakes, sound system, seat belts, heating,
cellular phone, and so on. In turn, each of these subsystems is made up of more specialized
units. For instance, the sound system consists of a radio, a CD player, and/or a tape or MP3
player. The point is that you manage the complexity of the car (or any other complex
system) through the use of hierarchical abstractions.

Hierarchical abstractions of complex systems can also be applied to computer programs.
The data from a traditional process-oriented program can be transformed by abstraction
into its component objects. A sequence of process steps can become a collection of messages
between these objects. Thus, each of these objects describes its own unique behavior. You
can treat these objects as concrete entities that respond to messages telling them to do
something. This is the essence of object-oriented programming.

Object-oriented concepts form the heart of Java just as they form the basis for human
understanding. It is important that you understand how these concepts translate into
programs. As you will see, object-oriented programming is a powerful and natural paradigm
for creating programs that survive the inevitable changes accompanying the life cycle of any
major software project, including conception, growth, and aging. For example, once you
have well-defined objects and clean, reliable interfaces to those objects, you can gracefully
decommission or replace parts of an older system without fear.

The Three OOP Principles
All object-oriented programming languages provide mechanisms that help you implement
the object-oriented model. They are encapsulation, inheritance, and polymorphism. Let’s
take a look at these concepts now.

Encapsulation
Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse. One way to think about encapsulation
is as a protective wrapper that prevents the code and data from being arbitrarily accessed by
other code defined outside the wrapper. Access to the code and data inside the wrapper is
tightly controlled through a well-defined interface. To relate this to the real world, consider
the automatic transmission on an automobile. It encapsulates hundreds of bits of information
about your engine, such as how much you are accelerating, the pitch of the surface you are
on, and the position of the shift lever. You, as the user, have only one method of affecting
this complex encapsulation: by moving the gear-shift lever. You can’t affect the transmission
by using the turn signal or windshield wipers, for example. Thus, the gear-shift lever is a
well-defined (indeed, unique) interface to the transmission. Further, what occurs inside the

02-ch02.indd 18 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 19

Pa
rt

 I

transmission does not affect objects outside the transmission. For example, shifting gears
does not turn on the headlights! Because an automatic transmission is encapsulated, dozens
of car manufacturers can implement one in any way they please. However, from the driver’s
point of view, they all work the same. This same idea can be applied to programming. The
power of encapsulated code is that everyone knows how to access it and thus can use it
regardless of the implementation details—and without fear of unexpected side effects.

In Java, the basis of encapsulation is the class. Although the class will be examined in
great detail later in this book, the following brief discussion will be helpful now. A class defines
the structure and behavior (data and code) that will be shared by a set of objects. Each object
of a given class contains the structure and behavior defined by the class, as if it were stamped
out by a mold in the shape of the class. For this reason, objects are sometimes referred to as
instances of a class. Thus, a class is a logical construct; an object has physical reality.

When you create a class, you will specify the code and data that constitute that class.
Collectively, these elements are called members of the class. Specifically, the data defined by
the class are referred to as member variables or instance variables. The code that operates on
that data is referred to as member methods or just methods. (If you are familiar with C/C++, it
may help to know that what a Java programmer calls a method, a C/C++ programmer calls a
function.) In properly written Java programs, the methods define how the member variables
can be used. This means that the behavior and interface of a class are defined by the methods
that operate on its instance data.

Since the purpose of a class is to encapsulate complexity, there are mechanisms for
hiding the complexity of the implementation inside the class. Each method or variable in a
class may be marked private or public. The public interface of a class represents everything
that external users of the class need to know, or may know. The private methods and data
can only be accessed by code that is a member of the class. Therefore, any other code that
is not a member of the class cannot access a private method or variable. Since the private
members of a class may only be accessed by other parts of your program through the class’
public methods, you can ensure that no improper actions take place. Of course, this means
that the public interface should be carefully designed not to expose too much of the inner
workings of a class (see Figure 2-1).

Inheritance
Inheritance is the process by which one object acquires the properties of another object. This
is important because it supports the concept of hierarchical classification. As mentioned
earlier, most knowledge is made manageable by hierarchical (that is, top-down) classifications.
For example, a Golden Retriever is part of the classification dog, which in turn is part of the
mammal class, which is under the larger class animal. Without the use of hierarchies, each
object would need to define all of its characteristics explicitly. However, by use of inheritance,
an object need only define those qualities that make it unique within its class. It can inherit
its general attributes from its parent. Thus, it is the inheritance mechanism that makes it
possible for one object to be a specific instance of a more general case. Let’s take a closer
look at this process.

Most people naturally view the world as made up of objects that are related to each
other in a hierarchical way, such as animals, mammals, and dogs. If you wanted to describe
animals in an abstract way, you would say they have some attributes, such as size, intelligence,
and type of skeletal system. Animals also have certain behavioral aspects; they eat, breathe,
and sleep. This description of attributes and behavior is the class definition for animals.

02-ch02.indd 19 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

20 PART I The Java Language

If you wanted to describe a more specific class of animals, such as mammals, they would
have more specific attributes, such as type of teeth and mammary glands. This is known as a
subclass of animals, where animals are referred to as mammals’ superclass.

Since mammals are simply more precisely specified animals, they inherit all of the
attributes from animals. A deeply inherited subclass inherits all of the attributes from each
of its ancestors in the class hierarchy.

Inheritance interacts with encapsulation as well. If a given class encapsulates some
attributes, then any subclass will have the same attributes plus any that it adds as part of its
specialization (see Figure 2-2). This is a key concept that lets object-oriented programs grow
in complexity linearly rather than geometrically. A new subclass inherits all of the attributes
of all of its ancestors. It does not have unpredictable interactions with the majority of the
rest of the code in the system.

Figure 2-1 Encapsulation: public methods can be used to protect private data.

02-ch02.indd 20 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 21

Pa
rt

 I
Polymorphism
Polymorphism (from Greek, meaning “many forms”) is a feature that allows one interface to
be used for a general class of actions. The specific action is determined by the exact nature
of the situation. Consider a stack (which is a last-in, first-out list). You might have a program
that requires three types of stacks. One stack is used for integer values, one for floating-
point values, and one for characters. The algorithm that implements each stack is the same,
even though the data being stored differs. In a non–object-oriented language, you would be
required to create three different sets of stack routines, with each set using different names.
However, because of polymorphism, in Java you can specify a general set of stack routines
that all share the same names.

Figure 2-2 Labrador inherits the encapsulation of all its superclasses.

02-ch02.indd 21 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

22 PART I The Java Language

More generally, the concept of polymorphism is often expressed by the phrase “one
interface, multiple methods.” This means that it is possible to design a generic interface to a
group of related activities. This helps reduce complexity by allowing the same interface to
be used to specify a general class of action. It is the compiler’s job to select the specific action
(that is, method) as it applies to each situation. You, the programmer, do not need to make
this selection manually. You need only remember and utilize the general interface.

Extending the dog analogy, a dog’s sense of smell is polymorphic. If the dog smells a
cat, it will bark and run after it. If the dog smells its food, it will salivate and run to its bowl.
The same sense of smell is at work in both situations. The difference is what is being smelled,
that is, the type of data being operated upon by the dog’s nose! This same general concept
can be implemented in Java as it applies to methods within a Java program.

Polymorphism, Encapsulation, and Inheritance Work Together
When properly applied, polymorphism, encapsulation, and inheritance combine to produce
a programming environment that supports the development of far more robust and scaleable
programs than does the process-oriented model. A well-designed hierarchy of classes is the
basis for reusing the code in which you have invested time and effort developing and testing.
Encapsulation allows you to migrate your implementations over time without breaking the
code that depends on the public interface of your classes. Polymorphism allows you to create
clean, sensible, readable, and resilient code.

Of the two real-world examples, the automobile more completely illustrates the power
of object-oriented design. Dogs are fun to think about from an inheritance standpoint, but
cars are more like programs. All drivers rely on inheritance to drive different types (subclasses)
of vehicles. Whether the vehicle is a school bus, a Mercedes sedan, a Porsche, or the family
minivan, drivers can all more or less find and operate the steering wheel, the brakes, and
the accelerator. After a bit of gear grinding, most people can even manage the difference
between a stick shift and an automatic, because they fundamentally understand their
common superclass, the transmission.

People interface with encapsulated features on cars all the time. The brake and gas
pedals hide an incredible array of complexity with an interface so simple you can operate
them with your feet! The implementation of the engine, the style of brakes, and the size of
the tires have no effect on how you interface with the class definition of the pedals.

The final attribute, polymorphism, is clearly reflected in the ability of car manufacturers
to offer a wide array of options on basically the same vehicle. For example, you can get an
antilock braking system or traditional brakes, power or rack-and-pinion steering, and 4-, 6-,
or 8-cylinder engines. Either way, you will still press the brake pedal to stop, turn the steering
wheel to change direction, and press the accelerator when you want to move. The same
interface can be used to control a number of different implementations.

As you can see, it is through the application of encapsulation, inheritance, and
polymorphism that the individual parts are transformed into the object known as a car.
The same is also true of computer programs. By the application of object-oriented
principles, the various parts of a complex program can be brought together to form a
cohesive, robust, maintainable whole.

As mentioned at the start of this section, every Java program is object-oriented. Or, put
more precisely, every Java program involves encapsulation, inheritance, and polymorphism.
Although the short example programs shown in the rest of this chapter and in the next few
chapters may not seem to exhibit all of these features, they are nevertheless present. As you

02-ch02.indd 22 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 23

Pa
rt

 I

will see, many of the features supplied by Java are part of its built-in class libraries, which do
make extensive use of encapsulation, inheritance, and polymorphism.

A First Simple Program
Now that the basic object-oriented underpinning of Java has been discussed, let’s look at
some actual Java programs. Let’s start by compiling and running the short sample program
shown here. As you will see, this involves a little more work than you might imagine.

/*
 This is a simple Java program.
 Call this file "Example.java".
*/
class Example {
 // Your program begins with a call to main().
 public static void main(String args[]) {
 System.out.println("This is a simple Java program.");
 }
}

NOTE The descriptions that follow use the standard Java SE 8 Development Kit (JDK 8), which is available
from Oracle. If you are using an integrated development environment (IDE), then you will need to follow
a different procedure for compiling and executing Java programs. In this case, consult your IDE’s
documentation for details.

Entering the Program
For most computer languages, the name of the file that holds the source code to a program
is immaterial. However, this is not the case with Java. The first thing that you must learn
about Java is that the name you give to a source file is very important. For this example,
the name of the source file should be Example.java. Let’s see why.

In Java, a source file is officially called a compilation unit. It is a text file that contains
(among other things) one or more class definitions. (For now, we will be using source files
that contain only one class.) The Java compiler requires that a source file use the .java
filename extension.

As you can see by looking at the program, the name of the class defined by the program
is also Example. This is not a coincidence. In Java, all code must reside inside a class. By
convention, the name of the main class should match the name of the file that holds the
program. You should also make sure that the capitalization of the filename matches the
class name. The reason for this is that Java is case-sensitive. At this point, the convention
that filenames correspond to class names may seem arbitrary. However, this convention
makes it easier to maintain and organize your programs.

Compiling the Program
To compile the Example program, execute the compiler, javac, specifying the name of the
source file on the command line, as shown here:

C:\>javac Example.java

The javac compiler creates a file called Example.class that contains the bytecode version of
the program. As discussed earlier, the Java bytecode is the intermediate representation of

02-ch02.indd 23 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

24 PART I The Java Language

your program that contains instructions the Java Virtual Machine will execute. Thus, the
output of javac is not code that can be directly executed.

To actually run the program, you must use the Java application launcher called java. To
do so, pass the class name Example as a command-line argument, as shown here:

C:\>java Example

When the program is run, the following output is displayed:

 This is a simple Java program.

When Java source code is compiled, each individual class is put into its own output file
named after the class and using the .class extension. This is why it is a good idea to give
your Java source files the same name as the class they contain—the name of the source file
will match the name of the .class file. When you execute java as just shown, you are actually
specifying the name of the class that you want to execute. It will automatically search for a
file by that name that has the .class extension. If it finds the file, it will execute the code
contained in the specified class.

A Closer Look at the First Sample Program
Although Example.java is quite short, it includes several key features that are common to
all Java programs. Let’s closely examine each part of the program.

The program begins with the following lines:

/*
 This is a simple Java program.
 Call this file "Example.java".
*/

This is a comment. Like most other programming languages, Java lets you enter a remark
into a program’s source file. The contents of a comment are ignored by the compiler.
Instead, a comment describes or explains the operation of the program to anyone who is
reading its source code. In this case, the comment describes the program and reminds you
that the source file should be called Example.java. Of course, in real applications, comments
generally explain how some part of the program works or what a specific feature does.

Java supports three styles of comments. The one shown at the top of the program is
called a multiline comment. This type of comment must begin with /* and end with */.
Anything between these two comment symbols is ignored by the compiler. As the name
suggests, a multiline comment may be several lines long.

The next line of code in the program is shown here:

class Example {

This line uses the keyword class to declare that a new class is being defined. Example
is an identifier that is the name of the class. The entire class definition, including all of its
members, will be between the opening curly brace ({) and the closing curly brace (}). For
the moment, don’t worry too much about the details of a class except to note that in Java,
all program activity occurs within one. This is one reason why all Java programs are (at least
a little bit) object-oriented.

02-ch02.indd 24 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 25

Pa
rt

 I

The next line in the program is the single-line comment, shown here:

// Your program begins with a call to main().

This is the second type of comment supported by Java. A single-line comment begins with a //
and ends at the end of the line. As a general rule, programmers use multiline comments for
longer remarks and single-line comments for brief, line-by-line descriptions. The third type
of comment, a documentation comment, will be discussed in the “Comments” section later in
this chapter.

The next line of code is shown here:

public static void main(String args[]) {

This line begins the main() method. As the comment preceding it suggests, this is the line
at which the program will begin executing. All Java applications begin execution by calling
main(). The full meaning of each part of this line cannot be given now, since it involves a
detailed understanding of Java’s approach to encapsulation. However, since most of the
examples in the first part of this book will use this line of code, let’s take a brief look at
each part now.

The public keyword is an access modifier, which allows the programmer to control the
visibility of class members. When a class member is preceded by public, then that member
may be accessed by code outside the class in which it is declared. (The opposite of public is
private, which prevents a member from being used by code defined outside of its class.) In
this case, main() must be declared as public, since it must be called by code outside of its
class when the program is started. The keyword static allows main() to be called without
having to instantiate a particular instance of the class. This is necessary since main() is
called by the Java Virtual Machine before any objects are made. The keyword void simply
tells the compiler that main() does not return a value. As you will see, methods may also
return values. If all this seems a bit confusing, don’t worry. All of these concepts will be
discussed in detail in subsequent chapters.

As stated, main() is the method called when a Java application begins. Keep in mind
that Java is case-sensitive. Thus, Main is different from main. It is important to understand
that the Java compiler will compile classes that do not contain a main() method. But java
has no way to run these classes. So, if you had typed Main instead of main, the compiler
would still compile your program. However, java would report an error because it would be
unable to find the main() method.

Any information that you need to pass to a method is received by variables specified
within the set of parentheses that follow the name of the method. These variables are called
parameters. If there are no parameters required for a given method, you still need to include
the empty parentheses. In main(), there is only one parameter, albeit a complicated one.
String args[] declares a parameter named args, which is an array of instances of the class
String. (Arrays are collections of similar objects.) Objects of type String store character
strings. In this case, args receives any command-line arguments present when the program
is executed. This program does not make use of this information, but other programs
shown later in this book will.

The last character on the line is the {. This signals the start of main()’s body. All of the
code that comprises a method will occur between the method’s opening curly brace and its
closing curly brace.

02-ch02.indd 25 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

26 PART I The Java Language

One other point: main() is simply a starting place for your program. A complex
program will have dozens of classes, only one of which will need to have a main() method
to get things started. Furthermore, in some cases, you won’t need main() at all. For example,
when creating applets—Java programs that are embedded in web browsers—you won’t use
main() since the web browser uses a different means of starting the execution of applets.

The next line of code is shown here. Notice that it occurs inside main().

System.out.println("This is a simple Java program.");

This line outputs the string "This is a simple Java program." followed by a new line on the
screen. Output is actually accomplished by the built-in println() method. In this case, println()
displays the string which is passed to it. As you will see, println() can be used to display other
types of information, too. The line begins with System.out. While too complicated to explain
in detail at this time, briefly, System is a predefined class that provides access to the system,
and out is the output stream that is connected to the console.

As you have probably guessed, console output (and input) is not used frequently in most
real-world Java applications. Since most modern computing environments are windowed and
graphical in nature, console I/O is used mostly for simple utility programs, demonstration
programs, and server-side code. Later in this book, you will learn other ways to generate
output using Java. But for now, we will continue to use the console I/O methods.

Notice that the println() statement ends with a semicolon. All statements in Java end
with a semicolon. The reason that the other lines in the program do not end in a semicolon
is that they are not, technically, statements.

The first } in the program ends main(), and the last } ends the Example class definition.

A Second Short Program
Perhaps no other concept is more fundamental to a programming language than that of a
variable. As you may know, a variable is a named memory location that may be assigned a
value by your program. The value of a variable may be changed during the execution of the
program. The next program shows how a variable is declared and how it is assigned a value.
The program also illustrates some new aspects of console output. As the comments
at the top of the program state, you should call this file Example2.java.

/*
 Here is another short example.
 Call this file "Example2.java".
*/

class Example2 {
 public static void main(String args []) {
 int num; // this declares a variable called num

 num = 100; // this assigns num the value 100

 System.out.println("This is num: " + num);

 num = num * 2;

 System.out.print("The value of num * 2 is ");

02-ch02.indd 26 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 27

Pa
rt

 I

 System.out.println(num);
 }
}

When you run this program, you will see the following output:

 This is num: 100
 The value of num * 2 is 200

Let’s take a close look at why this output is generated. The first new line in the program
is shown here:

int num; // this declares a variable called num

This line declares an integer variable called num. Java (like most other languages) requires
that variables be declared before they are used.

Following is the general form of a variable declaration:

type var-name;

Here, type specifies the type of variable being declared, and var-name is the name of the
variable. If you want to declare more than one variable of the specified type, you may use a
comma-separated list of variable names. Java defines several data types, including integer,
character, and floating-point. The keyword int specifies an integer type.

In the program, the line

num = 100; // this assigns num the value 100

assigns to num the value 100. In Java, the assignment operator is a single equal sign.
The next line of code outputs the value of num preceded by the string "This is num:".

System.out.println("This is num: " + num);

In this statement, the plus sign causes the value of num to be appended to the string that
precedes it, and then the resulting string is output. (Actually, num is first converted from an
integer into its string equivalent and then concatenated with the string that precedes it.
This process is described in detail later in this book.) This approach can be generalized.
Using the + operator, you can join together as many items as you want within a single
println() statement.

The next line of code assigns num the value of num times 2. Like most other languages,
Java uses the * operator to indicate multiplication. After this line executes, num will contain
the value 200.

Here are the next two lines in the program:

System.out.print ("The value of num * 2 is ");
System.out.println (num);

Several new things are occurring here. First, the built-in method print() is used to display
the string "The value of num * 2 is ". This string is not followed by a newline. This means
that when the next output is generated, it will start on the same line. The print() method is
just like println(), except that it does not output a newline character after each call. Now
look at the call to println(). Notice that num is used by itself. Both print() and println()
can be used to output values of any of Java’s built-in types.

02-ch02.indd 27 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

28 PART I The Java Language

Two Control Statements
Although Chapter 5 will look closely at control statements, two are briefly introduced here
so that they can be used in example programs in Chapters 3 and 4. They will also help
illustrate an important aspect of Java: blocks of code.

The if Statement
The Java if statement works much like the IF statement in any other language. Further, it is
syntactically identical to the if statements in C, C++, and C#. Its simplest form is shown here:

if(condition) statement;

Here, condition is a Boolean expression. If condition is true, then the statement is executed.
If condition is false, then the statement is bypassed. Here is an example:

if(num < 100) System.out.println("num is less than 100");

In this case, if num contains a value that is less than 100, the conditional expression is true,
and println() will execute. If num contains a value greater than or equal to 100, then the
println() method is bypassed.

As you will see in Chapter 4, Java defines a full complement of relational operators
which may be used in a conditional expression. Here are a few:

Operator Meaning
< Less than

> Greater than

== Equal to

Notice that the test for equality is the double equal sign.
Here is a program that illustrates the if statement:

/*
 Demonstrate the if.

 Call this file "IfSample.java".
*/
class IfSample {
 public static void main(String args[]) {
 int x, y;

 x = 10;
 y = 20;

 if(x < y) System.out.println("x is less than y");

 x = x * 2;
 if(x == y) System.out.println("x now equal to y");

02-ch02.indd 28 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 29

Pa
rt

 I

 x = x * 2;
 if(x > y) System.out.println("x now greater than y");

 // this won't display anything
 if(x == y) System.out.println("you won't see this");
 }
}

The output generated by this program is shown here:

 x is less than y
 x now equal to y
 x now greater than y

Notice one other thing in this program. The line

int x, y;

declares two variables, x and y, by use of a comma-separated list.

The for Loop
As you may know from your previous programming experience, loop statements are an
important part of nearly any programming language. Java is no exception. In fact, as you
will see in Chapter 5, Java supplies a powerful assortment of loop constructs. Perhaps the
most versatile is the for loop. The simplest form of the for loop is shown here:

for(initialization; condition; iteration) statement;

In its most common form, the initialization portion of the loop sets a loop control
variable to an initial value. The condition is a Boolean expression that tests the loop control
variable. If the outcome of that test is true, the for loop continues to iterate. If it is false,
the loop terminates. The iteration expression determines how the loop control variable is
changed each time the loop iterates. Here is a short program that illustrates the for loop:

/*
 Demonstrate the for loop.

 Call this file "ForTest.java".
*/
class ForTest {
 public static void main(String args[]) {
 int x;

 for(x = 0; x<10; x = x+1)
 System.out.println("This is x: " + x);
 }
}

This program generates the following output:

 This is x: 0
 This is x: 1
 This is x: 2
 This is x: 3

02-ch02.indd 29 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

30 PART I The Java Language

 This is x: 4
 This is x: 5
 This is x: 6
 This is x: 7
 This is x: 8
 This is x: 9

In this example, x is the loop control variable. It is initialized to zero in the initialization
portion of the for. At the start of each iteration (including the first one), the conditional
test x < 10 is performed. If the outcome of this test is true, the println() statement is
executed, and then the iteration portion of the loop is executed, which increases x by 1.
This process continues until the conditional test is false.

As a point of interest, in professionally written Java programs you will almost never see
the iteration portion of the loop written as shown in the preceding program. That is, you
will seldom see statements like this:

x = x + 1;

The reason is that Java includes a special increment operator which performs this operation
more efficiently. The increment operator is ++. (That is, two plus signs back to back.) The
increment operator increases its operand by one. By use of the increment operator, the
preceding statement can be written like this:

x++;

Thus, the for in the preceding program will usually be written like this:

for(x = 0; x<10; x++)

You might want to try this. As you will see, the loop still runs exactly the same as it did
before.

Java also provides a decrement operator, which is specified as – –. This operator
decreases its operand by one.

Using Blocks of Code
Java allows two or more statements to be grouped into blocks of code, also called code blocks.
This is done by enclosing the statements between opening and closing curly braces. Once a
block of code has been created, it becomes a logical unit that can be used any place that a
single statement can. For example, a block can be a target for Java’s if and for statements.
Consider this if statement:

if(x < y) { // begin a block
 x = y;
 y = 0;
} // end of block

Here, if x is less than y, then both statements inside the block will be executed. Thus, the
two statements inside the block form a logical unit, and one statement cannot execute
without the other also executing. The key point here is that whenever you need to logically
link two or more statements, you do so by creating a block.

02-ch02.indd 30 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 31

Pa
rt

 I

Let’s look at another example. The following program uses a block of code as the target
of a for loop.

/*
 Demonstrate a block of code.

 Call this file "BlockTest.java"
*/
class BlockTest {
 public static void main(String args[]) {
 int x, y;

 y = 20;

 // the target of this loop is a block
 for(x = 0; x<10; x++) {
 System.out.println("This is x: " + x);
 System.out.println("This is y: " + y);
 y = y - 2;
 }
 }
}

The output generated by this program is shown here:

 This is x: 0
 This is y: 20
 This is x: 1
 This is y: 18
 This is x: 2
 This is y: 16
 This is x: 3
 This is y: 14
 This is x: 4
 This is y: 12
 This is x: 5
 This is y: 10
 This is x: 6
 This is y: 8
 This is x: 7
 This is y: 6
 This is x: 8
 This is y: 4
 This is x: 9
 This is y: 2

In this case, the target of the for loop is a block of code and not just a single statement.
Thus, each time the loop iterates, the three statements inside the block will be executed.
This fact is, of course, evidenced by the output generated by the program.

As you will see later in this book, blocks of code have additional properties and uses.
However, the main reason for their existence is to create logically inseparable units of code.

02-ch02.indd 31 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

32 PART I The Java Language

Lexical Issues
Now that you have seen several short Java programs, it is time to more formally describe the
atomic elements of Java. Java programs are a collection of whitespace, identifiers, literals,
comments, operators, separators, and keywords. The operators are described in the next
chapter. The others are described next.

Whitespace
Java is a free-form language. This means that you do not need to follow any special
indentation rules. For instance, the Example program could have been written all on one
line or in any other strange way you felt like typing it, as long as there was at least one
whitespace character between each token that was not already delineated by an operator
or separator. In Java, whitespace is a space, tab, or newline.

Identifiers
Identifiers are used to name things, such as classes, variables, and methods. An identifier
may be any descriptive sequence of uppercase and lowercase letters, numbers, or the
underscore and dollar-sign characters. (The dollar-sign character is not intended for
general use.) They must not begin with a number, lest they be confused with a numeric
literal. Again, Java is case-sensitive, so VALUE is a different identifier than Value. Some
examples of valid identifiers are

AvgTemp count a4 $test this_is_ok

Invalid identifier names include these:

2count high-temp Not/ok

NOTE Beginning with JDK 8, the use of an underscore by itself as an identifier is not recommended.

Literals
A constant value in Java is created by using a literal representation of it. For example, here
are some literals:

100 98.6 ‘X’ “This is a test”

Left to right, the first literal specifies an integer, the next is a floating-point value, the third
is a character constant, and the last is a string. A literal can be used anywhere a value of its
type is allowed.

Comments
As mentioned, there are three types of comments defined by Java. You have already seen
two: single-line and multiline. The third type is called a documentation comment. This type
of comment is used to produce an HTML file that documents your program. The

02-ch02.indd 32 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 2 An Overview of Java 33

Pa
rt

 I

documentation comment begins with a /** and ends with a */. Documentation comments
are explained in the Appendix.

Separators
In Java, there are a few characters that are used as separators. The most commonly used
separator in Java is the semicolon. As you have seen, it is used to terminate statements. The
separators are shown in the following table:

Symbol Name Purpose
() Parentheses Used to contain lists of parameters in method definition and

invocation. Also used for defining precedence in expressions,
containing expressions in control statements, and surrounding
cast types.

{ } Braces Used to contain the values of automatically initialized arrays.
Also used to define a block of code, for classes, methods, and
local scopes.

[] Brackets Used to declare array types. Also used when dereferencing array
values.

; Semicolon Terminates statements.

, Comma Separates consecutive identifiers in a variable declaration. Also
used to chain statements together inside a for statement.

. Period Used to separate package names from subpackages and classes. Also
used to separate a variable or method from a reference variable.

:: Colons Used to create a method or constructor reference.
(Added by JDK 8.)

The Java Keywords
There are 50 keywords currently defined in the Java language (see Table 2-1). These
keywords, combined with the syntax of the operators and separators, form the foundation

Table 2-1 Java Keywords

abstract continue for new switch

assert default goto package synchronized

boolean do if private this

break double implements protected throw

byte else import public throws

case enum instanceof return transient

catch extends int short try

char final interface static void

class finally long strictfp volatile

const float native super while

02-ch02.indd 33 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

34 PART I The Java Language

of the Java language. These keywords cannot be used as identifiers. Thus, they cannot be
used as names for a variable, class, or method.

The keywords const and goto are reserved but not used. In the early days of Java, several
other keywords were reserved for possible future use. However, the current specification for
Java defines only the keywords shown in Table 2-1.

In addition to the keywords, Java reserves the following: true, false, and null. These are
values defined by Java. You may not use these words for the names of variables, classes, and
so on.

The Java Class Libraries
The sample programs shown in this chapter make use of two of Java’s built-in methods:
println() and print(). As mentioned, these methods are available through System.out.
System is a class predefined by Java that is automatically included in your programs. In the
larger view, the Java environment relies on several built-in class libraries that contain many
built-in methods that provide support for such things as I/O, string handling, networking,
and graphics. The standard classes also provide support for a graphical user interface
(GUI). Thus, Java as a totality is a combination of the Java language itself, plus its standard
classes. As you will see, the class libraries provide much of the functionality that comes with
Java. Indeed, part of becoming a Java programmer is learning to use the standard Java
classes. Throughout Part I of this book, various elements of the standard library classes and
methods are described as needed. In Part II, several class libraries are described in detail.

02-ch02.indd 34 14/02/14 4:42 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

3
CHAPTER

 35

Data Types, Variables,
and Arrays

This chapter examines three of Java’s most fundamental elements: data types, variables, and
arrays. As with all modern programming languages, Java supports several types of data. You
may use these types to declare variables and to create arrays. As you will see, Java’s approach
to these items is clean, efficient, and cohesive.

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language. Indeed, part
of Java’s safety and robustness comes from this fact. Let’s see what this means. First, every
variable has a type, every expression has a type, and every type is strictly defined. Second,
all assignments, whether explicit or via parameter passing in method calls, are checked for
type compatibility. There are no automatic coercions or conversions of conflicting types as
in some languages. The Java compiler checks all expressions and parameters to ensure that
the types are compatible. Any type mismatches are errors that must be corrected before the
compiler will finish compiling the class.

The Primitive Types
Java defines eight primitive types of data: byte, short, int, long, char, float, double, and
boolean. The primitive types are also commonly referred to as simple types, and both
terms will be used in this book. These can be put in four groups:

•	 Integers This group includes byte, short, int, and long, which are for whole-valued
signed numbers.

•	 Floating-point	numbers This group includes float and double, which represent
numbers with fractional precision.

•	 Characters This group includes char, which represents symbols in a character set,
like letters and numbers.

•	 Boolean This group includes boolean, which is a special type for representing
true/false values.

03-ch03.indd 35 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

36 PART I The Java Language

You can use these types as-is, or to construct arrays or your own class types. Thus, they
form the basis for all other types of data that you can create.

The primitive types represent single values—not complex objects. Although Java is
otherwise completely object-oriented, the primitive types are not. They are analogous to
the simple types found in most other non–object-oriented languages. The reason for this
is efficiency. Making the primitive types into objects would have degraded performance
too much.

The primitive types are defined to have an explicit range and mathematical behavior.
Languages such as C and C++ allow the size of an integer to vary based upon the dictates
of the execution environment. However, Java is different. Because of Java’s portability
requirement, all data types have a strictly defined range. For example, an int is always 32 bits,
regardless of the particular platform. This allows programs to be written that are guaranteed
to run without porting on any machine architecture. While strictly specifying the size of an
integer may cause a small loss of performance in some environments, it is necessary in
order to achieve portability.

Let’s look at each type of data in turn.

Integers
Java defines four integer types: byte, short, int, and long. All of these are signed, positive
and negative values. Java does not support unsigned, positive-only integers. Many other
computer languages support both signed and unsigned integers. However, Java’s designers
felt that unsigned integers were unnecessary. Specifically, they felt that the concept of
unsigned was used mostly to specify the behavior of the high-order bit, which defines the sign
of an integer value. As you will see in Chapter 4, Java manages the meaning of the high-
order bit differently, by adding a special “unsigned right shift” operator. Thus, the need for
an unsigned integer type was eliminated.

The width of an integer type should not be thought of as the amount of storage it
consumes, but rather as the behavior it defines for variables and expressions of that type.
The Java run-time environment is free to use whatever size it wants, as long as the types
behave as you declared them. The width and ranges of these integer types vary widely, as
shown in this table:

Name Width Range
long 64 –9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

int 32 –2,147,483,648 to 2,147,483,647

short 16 –32,768 to 32,767

byte 8 –128 to 127

Let’s look at each type of integer.

byte
The smallest integer type is byte. This is a signed 8-bit type that has a range from –128 to
127. Variables of type byte are especially useful when you’re working with a stream of data
from a network or file. They are also useful when you’re working with raw binary data that
may not be directly compatible with Java’s other built-in types.

03-ch03.indd 36 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 37

Pa
rt

 I

Byte variables are declared by use of the byte keyword. For example, the following
declares two byte variables called b and c:

byte b, c;

short
short is a signed 16-bit type. It has a range from –32,768 to 32,767. It is probably the least-
used Java type. Here are some examples of short variable declarations:

short s;
short t;

int
The most commonly used integer type is int. It is a signed 32-bit type that has a range
from –2,147,483,648 to 2,147,483,647. In addition to other uses, variables of type int are
commonly employed to control loops and to index arrays. Although you might think that
using a byte or short would be more efficient than using an int in situations in which the
larger range of an int is not needed, this may not be the case. The reason is that when byte
and short values are used in an expression, they are promoted to int when the expression is
evaluated. (Type promotion is described later in this chapter.) Therefore, int is often the
best choice when an integer is needed.

long
long is a signed 64-bit type and is useful for those occasions where an int type is not large
enough to hold the desired value. The range of a long is quite large. This makes it useful
when big, whole numbers are needed. For example, here is a program that computes the
number of miles that light will travel in a specified number of days:

// Compute distance light travels using long variables.
class Light {
 public static void main(String args[]) {
 int lightspeed;
 long days;
 long seconds;
 long distance;

 // approximate speed of light in miles per second
 lightspeed = 186000;

 days = 1000; // specify number of days here

 seconds = days * 24 * 60 * 60; // convert to seconds

 distance = lightspeed * seconds; // compute distance

 System.out.print("In " + days);
 System.out.print(" days light will travel about ");
 System.out.println(distance + " miles.");
 }
}

03-ch03.indd 37 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

38 PART I The Java Language

This program generates the following output:

 In 1000 days light will travel about 16070400000000 miles.

Clearly, the result could not have been held in an int variable.

Floating-Point Types
Floating-point numbers, also known as real numbers, are used when evaluating expressions
that require fractional precision. For example, calculations such as square root, or
transcendentals such as sine and cosine, result in a value whose precision requires a floating-
point type. Java implements the standard (IEEE–754) set of floating-point types and
operators. There are two kinds of floating-point types, float and double, which represent
single- and double-precision numbers, respectively. Their width and ranges are shown here:

Name Width in Bits Approximate Range
double 64 4.9e–324 to 1.8e+308

float 32 1.4e–045 to 3.4e+038

Each of these floating-point types is examined next.

float
The type float specifies a single-precision value that uses 32 bits of storage. Single precision is
faster on some processors and takes half as much space as double precision, but will become
imprecise when the values are either very large or very small. Variables of type float are
useful when you need a fractional component, but don’t require a large degree of precision.
For example, float can be useful when representing dollars and cents.

Here are some example float variable declarations:

float hightemp, lowtemp;

double
Double precision, as denoted by the double keyword, uses 64 bits to store a value. Double
precision is actually faster than single precision on some modern processors that have been
optimized for high-speed mathematical calculations. All transcendental math functions,
such as sin(), cos(), and sqrt(), return double values. When you need to maintain accuracy
over many iterative calculations, or are manipulating large-valued numbers, double is the
best choice.

Here is a short program that uses double variables to compute the area of a circle:

// Compute the area of a circle.
class Area {
 public static void main(String args[]) {
 double pi, r, a;

 r = 10.8; // radius of circle
 pi = 3.1416; // pi, approximately

03-ch03.indd 38 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 39

Pa
rt

 I

 a = pi * r * r; // compute area

 System.out.println("Area of circle is " + a);
 }
}

Characters
In Java, the data type used to store characters is char. However, C/C++ programmers
beware: char in Java is not the same as char in C or C++. In C/C++, char is 8 bits wide. This
is not the case in Java. Instead, Java uses Unicode to represent characters. Unicode defines a
fully international character set that can represent all of the characters found in all human
languages. It is a unification of dozens of character sets, such as Latin, Greek, Arabic, Cyrillic,
Hebrew, Katakana, Hangul, and many more. At the time of Java's creation, Unicode required
16 bits. Thus, in Java char is a 16-bit type. The range of a char is 0 to 65,536. There are no
negative chars. The standard set of characters known as ASCII still ranges from 0 to 127 as
always, and the extended 8-bit character set, ISO-Latin-1, ranges from 0 to 255. Since Java is
designed to allow programs to be written for worldwide use, it makes sense that it would use
Unicode to represent characters. Of course, the use of Unicode is somewhat inefficient for
languages such as English, German, Spanish, or French, whose characters can easily be
contained within 8 bits. But such is the price that must be paid for global portability.

NOTE More information about Unicode can be found at http://www.unicode.org.

Here is a program that demonstrates char variables:

// Demonstrate char data type.
class CharDemo {
 public static void main(String args[]) {
 char ch1, ch2;

 ch1 = 88; // code for X
 ch2 = 'Y';

 System.out.print("ch1 and ch2: ");
 System.out.println(ch1 + " " + ch2);
 }
}

This program displays the following output:

 ch1 and ch2: X Y

Notice that ch1 is assigned the value 88, which is the ASCII (and Unicode) value that
corresponds to the letter X. As mentioned, the ASCII character set occupies the first 127
values in the Unicode character set. For this reason, all the “old tricks” that you may have
used with characters in other languages will work in Java, too.

03-ch03.indd 39 17/02/14 2:23 PM

http://www.unicode.org

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

40 PART I The Java Language

Although char is designed to hold Unicode characters, it can also be used as an integer
type on which you can perform arithmetic operations. For example, you can add two
characters together, or increment the value of a character variable. Consider the following
program:

// char variables behave like integers.
class CharDemo2 {
 public static void main(String args[]) {
 char ch1;

 ch1 = 'X';
 System.out.println("ch1 contains " + ch1);

 ch1++; // increment ch1
 System.out.println("ch1 is now " + ch1);
 }
}

The output generated by this program is shown here:

 ch1 contains X
 ch1 is now Y

In the program, ch1 is first given the value X. Next, ch1 is incremented. This results in ch1
containing Y, the next character in the ASCII (and Unicode) sequence.

NOTE In the formal specification for Java, char is referred to as an integral type, which means that it is
in the same general category as int, short, long, and byte. However, because its principal use is for
representing Unicode characters, char is commonly considered to be in a category of its own.

Booleans
Java has a primitive type, called boolean, for logical values. It can have only one of two
possible values, true or false. This is the type returned by all relational operators, as in the
case of a	<	b. boolean is also the type required by the conditional expressions that govern the
control statements such as if and for.

Here is a program that demonstrates the boolean type:

// Demonstrate boolean values.
class BoolTest {
 public static void main(String args[]) {
 boolean b;

 b = false;
 System.out.println("b is " + b);
 b = true;
 System.out.println("b is " + b);

 // a boolean value can control the if statement
 if(b) System.out.println("This is executed.");

 b = false;

03-ch03.indd 40 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 41

Pa
rt

 I

 if(b) System.out.println("This is not executed.");

 // outcome of a relational operator is a boolean value
 System.out.println("10 > 9 is " + (10 > 9));
 }
}

The output generated by this program is shown here:

 b is false
 b is true
 This is executed.
 10 > 9 is true

There are three interesting things to notice about this program. First, as you can see,
when a boolean value is output by println(), "true" or "false" is displayed. Second, the value
of a boolean variable is sufficient, by itself, to control the if statement. There is no need to
write an if statement like this:

if(b == true) …

Third, the outcome of a relational operator, such as <, is a boolean value. This is why the
expression 10>9 displays the value "true." Further, the extra set of parentheses around 10>9	
is necessary because the + operator has a higher precedence than the >.

A Closer Look at Literals
Literals were mentioned briefly in Chapter 2. Now that the built-in types have been formally
described, let’s take a closer look at them.

Integer Literals
Integers are probably the most commonly used type in the typical program. Any whole
number value is an integer literal. Examples are 1, 2, 3, and 42. These are all decimal values,
meaning they are describing a base 10 number. Two other bases that can be used in integer
literals are octal (base eight) and hexadecimal (base 16). Octal values are denoted in Java by a
leading zero. Normal decimal numbers cannot have a leading zero. Thus, the seemingly
valid value 09 will produce an error from the compiler, since 9 is outside of octal’s 0 to 7
range. A more common base for numbers used by programmers is hexadecimal, which
matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits. You signify a
hexadecimal constant with a leading zero-x, (0x or 0X). The range of a hexadecimal digit is
0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Integer literals create an int value, which in Java is a 32-bit integer value. Since Java is
strongly typed, you might be wondering how it is possible to assign an integer literal to one
of Java’s other integer types, such as byte or long, without causing a type mismatch error.
Fortunately, such situations are easily handled. When a literal value is assigned to a byte or
short variable, no error is generated if the literal value is within the range of the target type.
An integer literal can always be assigned to a long variable. However, to specify a long
literal, you will need to explicitly tell the compiler that the literal value is of type long. You
do this by appending an upper- or lowercase L to the literal. For example, 0x7ffffffffffffffL

03-ch03.indd 41 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

42 PART I The Java Language

or 9223372036854775807L is the largest long. An integer can also be assigned to a char as
long as it is within range.

Beginning with JDK 7, you can also specify integer literals using binary. To do so, prefix
the value with 0b or 0B. For example, this specifies the decimal value 10 using a binary
literal:

int x = 0b1010;

Among other uses, the addition of binary literals makes it easier to enter values used as
bitmasks. In such a case, the decimal (or hexadecimal) representation of the value does not
visually convey its meaning relative to its use. The binary literal does.

Also beginning with JDK 7, you can embed one or more underscores in an integer
literal. Doing so makes it easier to read large integer literals. When the literal is compiled,
the underscores are discarded. For example, given

int x = 123_456_789;

the value given to x will be 123,456,789. The underscores will be ignored. Underscores can
only be used to separate digits. They cannot come at the beginning or the end of a literal. It
is, however, permissible for more than one underscore to be used between two digits. For
example, this is valid:

int x = 123___456___789;

The use of underscores in an integer literal is especially useful when encoding such
things as telephone numbers, customer ID numbers, part numbers, and so on. They are
also useful for providing visual groupings when specifying binary literals. For example,
binary values are often visually grouped in four-digits units, as shown here:

int x = 0b1101_0101_0001_1010;

Floating-Point Literals
Floating-point numbers represent decimal values with a fractional component. They can be
expressed in either standard or scientific notation. Standard notation consists of a whole
number component followed by a decimal point followed by a fractional component. For
example, 2.0, 3.14159, and 0.6667 represent valid standard-notation floating-point numbers.
Scientific notation uses a standard-notation, floating-point number plus a suffix that specifies
a power of 10 by which the number is to be multiplied. The exponent is indicated by an E
or e followed by a decimal number, which can be positive or negative. Examples include
6.022E23, 314159E–05, and 2e+100.

Floating-point literals in Java default to double precision. To specify a float literal, you
must append an F or f to the constant. You can also explicitly specify a double literal by
appending a D or d. Doing so is, of course, redundant. The default double type consumes
64 bits of storage, while the smaller float type requires only 32 bits.

Hexadecimal floating-point literals are also supported, but they are rarely used. They
must be in a form similar to scientific notation, but a P or p, rather than an E or e, is used.
For example, 0x12.2P2 is a valid floating-point literal. The value following the P, called the

03-ch03.indd 42 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 43

Pa
rt

 I

binary exponent, indicates the power-of-two by which the number is multiplied. Therefore,
0x12.2P2 represents 72.5.

Beginning with JDK 7, you can embed one or more underscores in a floating-point
literal. This feature works the same as it does for integer literals, which were just described.
Its purpose is to make it easier to read large floating-point literals. When the literal is
compiled, the underscores are discarded. For example, given

double num = 9_423_497_862.0;

the value given to num will be 9,423,497,862.0. The underscores will be ignored. As is the
case with integer literals, underscores can only be used to separate digits. They cannot
come at the beginning or the end of a literal. It is, however, permissible for more than one
underscore to be used between two digits. It is also permissible to use underscores in the
fractional portion of the number. For example,

double num = 9_423_497.1_0_9;

is legal. In this case, the fractional part is .109.

Boolean Literals
Boolean literals are simple. There are only two logical values that a boolean value can have,
true and false. The values of true and false do not convert into any numerical representation.
The true literal in Java does not equal 1, nor does the false literal equal 0. In Java, the
Boolean literals can only be assigned to variables declared as boolean or used in expressions
with Boolean operators.

Character Literals
Characters in Java are indices into the Unicode character set. They are 16-bit values that
can be converted into integers and manipulated with the integer operators, such as the
addition and subtraction operators. A literal character is represented inside a pair of single
quotes. All of the visible ASCII characters can be directly entered inside the quotes, such as
'a', 'z', and '@'. For characters that are impossible to enter directly, there are several escape
sequences that allow you to enter the character you need, such as ' \' ' for the single-quote
character itself and ' \n' for the newline character. There is also a mechanism for directly
entering the value of a character in octal or hexadecimal. For octal notation, use the
backslash followed by the three-digit number. For example, ' \141' is the letter 'a'. For
hexadecimal, you enter a backslash-u (\u), then exactly four hexadecimal digits. For example,
' \u0061' is the ISO-Latin-1 'a' because the top byte is zero. ' \ua432 ' is a Japanese Katakana
character. Table 3-1 shows the character escape sequences.

String Literals
String literals in Java are specified like they are in most other languages—by enclosing a
sequence of characters between a pair of double quotes. Examples of string literals are

03-ch03.indd 43 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

44 PART I The Java Language

"Hello World"
"two\nlines"
" \"This is in quotes\""

The escape sequences and octal/hexadecimal notations that were defined for character
literals work the same way inside of string literals. One important thing to note about Java
strings is that they must begin and end on the same line. There is no line-continuation
escape sequence as there is in some other languages.

NOTE As you may know, in some other languages, including C/C++, strings are implemented as arrays of
characters. However, this is not the case in Java. Strings are actually object types. As you will see later
in this book, because Java implements strings as objects, Java includes extensive string-handling
capabilities that are both powerful and easy to use.

Variables
The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have
a scope, which defines their visibility, and a lifetime. These elements are examined next.

Declaring a Variable
In Java, all variables must be declared before they can be used. The basic form of a variable
declaration is shown here:

type identifier [= value][, identifier [= value] …];

Here, type is one of Java’s atomic types, or the name of a class or interface. (Class and
interface types are discussed later in Part I of this book.) The identifier is the name of the
variable. You can initialize the variable by specifying an equal sign and a value. Keep in
mind that the initialization expression must result in a value of the same (or compatible)

Table 3-1 Character Escape Sequences

Escape Sequence Description
\ddd Octal character (ddd)

\uxxxx Hexadecimal Unicode character (xxxx)

\' Single quote

\" Double quote

\\ Backslash

\r Carriage return

\n New line (also known as line feed)

\f Form feed

\t Tab

\b Backspace

03-ch03.indd 44 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 45

Pa
rt

 I

type as that specified for the variable. To declare more than one variable of the specified type,
use a comma-separated list.

Here are several examples of variable declarations of various types. Note that some
include an initialization.

int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints, initializing
 // d and f.
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

The identifiers that you choose have nothing intrinsic in their names that indicates
their type. Java allows any properly formed identifier to have any declared type.

Dynamic Initialization
Although the preceding examples have used only constants as initializers, Java allows
variables to be initialized dynamically, using any expression valid at the time the variable
is declared.

For example, here is a short program that computes the length of the hypotenuse of a
right triangle given the lengths of its two opposing sides:

// Demonstrate dynamic initialization.
class DynInit {
 public static void main(String args[]) {
 double a = 3.0, b = 4.0;

 // c is dynamically initialized
 double c = Math.sqrt(a * a + b * b);

 System.out.println("Hypotenuse is " + c);
 }
}

Here, three local variables—a, b, and c—are declared. The first two, a and b, are initialized
by constants. However, c is initialized dynamically to the length of the hypotenuse (using
the Pythagorean theorem). The program uses another of Java’s built-in methods, sqrt(),
which is a member of the Math class, to compute the square root of its argument. The key
point here is that the initialization expression may use any element valid at the time of the
initialization, including calls to methods, other variables, or literals.

The Scope and Lifetime of Variables
So far, all of the variables used have been declared at the start of the main() method.
However, Java allows variables to be declared within any block. As explained in Chapter 2,
a block is begun with an opening curly brace and ended by a closing curly brace. A block
defines a scope. Thus, each time you start a new block, you are creating a new scope. A scope
determines what objects are visible to other parts of your program. It also determines the
lifetime of those objects.

03-ch03.indd 45 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

46 PART I The Java Language

Many other computer languages define two general categories of scopes: global and
local. However, these traditional scopes do not fit well with Java’s strict, object-oriented
model. While it is possible to create what amounts to being a global scope, it is by far the
exception, not the rule. In Java, the two major scopes are those defined by a class and those
defined by a method. Even this distinction is somewhat artificial. However, since the class
scope has several unique properties and attributes that do not apply to the scope defined
by a method, this distinction makes some sense. Because of the differences, a discussion of
class scope (and variables declared within it) is deferred until Chapter 6, when classes are
described. For now, we will only examine the scopes defined by or within a method.

The scope defined by a method begins with its opening curly brace. However, if that
method has parameters, they too are included within the method’s scope. Although this
book will look more closely at parameters in Chapter 6, for the sake of this discussion, they
work the same as any other method variable.

As a general rule, variables declared inside a scope are not visible (that is, accessible)
to code that is defined outside that scope. Thus, when you declare a variable within a
scope, you are localizing that variable and protecting it from unauthorized access and/or
modification. Indeed, the scope rules provide the foundation for encapsulation.

Scopes can be nested. For example, each time you create a block of code, you are
creating a new, nested scope. When this occurs, the outer scope encloses the inner scope.
This means that objects declared in the outer scope will be visible to code within the inner
scope. However, the reverse is not true. Objects declared within the inner scope will not be
visible outside it.

To understand the effect of nested scopes, consider the following program:

// Demonstrate block scope.
class Scope {
 public static void main(String args[]) {
 int x; // known to all code within main

 x = 10;
 if(x == 10) { // start new scope
 int y = 20; // known only to this block

 // x and y both known here.
 System.out.println("x and y: " + x + " " + y);
 x = y * 2;
 }
 // y = 100; // Error! y not known here

 // x is still known here.
 System.out.println("x is " + x);
 }
}

As the comments indicate, the variable x is declared at the start of main()’s scope and is
accessible to all subsequent code within main(). Within the if block, y is declared. Since a
block defines a scope, y is only visible to other code within its block. This is why outside of
its block, the line y	=	100; is commented out. If you remove the leading comment symbol,
a compile-time error will occur, because y is not visible outside of its block. Within the if
block, x can be used because code within a block (that is, a nested scope) has access to
variables declared by an enclosing scope.

03-ch03.indd 46 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 47

Pa
rt

 I

Within a block, variables can be declared at any point, but are valid only after they are
declared. Thus, if you define a variable at the start of a method, it is available to all of the
code within that method. Conversely, if you declare a variable at the end of a block, it is
effectively useless, because no code will have access to it. For example, this fragment is
invalid because count cannot be used prior to its declaration:

// This fragment is wrong!
count = 100; // oops! cannot use count before it is declared!
int count;

Here is another important point to remember: variables are created when their scope is
entered, and destroyed when their scope is left. This means that a variable will not hold its
value once it has gone out of scope. Therefore, variables declared within a method will not
hold their values between calls to that method. Also, a variable declared within a block will
lose its value when the block is left. Thus, the lifetime of a variable is confined to its scope.

If a variable declaration includes an initializer, then that variable will be reinitialized
each time the block in which it is declared is entered. For example, consider the next
program:

// Demonstrate lifetime of a variable.
class LifeTime {
 public static void main(String args[]) {
 int x;

 for(x = 0; x < 3; x++) {
 int y = -1; // y is initialized each time block is entered
 System.out.println("y is: " + y); // this always prints -1
 y = 100;
 System.out.println("y is now: " + y);
 }
 }
}

The output generated by this program is shown here:

 y is: -1
 y is now: 100
 y is: -1
 y is now: 100
 y is: -1
 y is now: 100

As you can see, y is reinitialized to –1 each time the inner for loop is entered. Even though
it is subsequently assigned the value 100, this value is lost.

One last point: Although blocks can be nested, you cannot declare a variable to have
the same name as one in an outer scope. For example, the following program is illegal:

// This program will not compile
class ScopeErr {
 public static void main(String args[]) {
 int bar = 1;

03-ch03.indd 47 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

48 PART I The Java Language

 { // creates a new scope
 int bar = 2; // Compile-time error – bar already defined!
 }
 }
}

Type Conversion and Casting
If you have previous programming experience, then you already know that it is fairly common
to assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to
assign an int value to a long variable. However, not all types are compatible, and thus, not
all type conversions are implicitly allowed. For instance, there is no automatic conversion
defined from double to byte. Fortunately, it is still possible to obtain a conversion between
incompatible types. To do so, you must use a cast, which performs an explicit conversion
between incompatible types. Let’s look at both automatic type conversions and casting.

Java’s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type conversion
will take place if the following two conditions are met:

•	 The two types are compatible.

•	 The destination type is larger than the source type.

When these two conditions are met, a widening conversion takes place. For example, the
int type is always large enough to hold all valid byte values, so no explicit cast statement is
required.

For widening conversions, the numeric types, including integer and floating-point types,
are compatible with each other. However, there are no automatic conversions from the
numeric types to char or boolean. Also, char and boolean are not compatible with each other.

As mentioned earlier, Java also performs an automatic type conversion when storing a
literal integer constant into variables of type byte, short, long, or char.

Casting Incompatible Types
Although the automatic type conversions are helpful, they will not fulfill all needs. For
example, what if you want to assign an int value to a byte variable? This conversion will not
be performed automatically, because a byte is smaller than an int. This kind of conversion
is sometimes called a narrowing conversion, since you are explicitly making the value narrower
so that it will fit into the target type.

To create a conversion between two incompatible types, you must use a cast. A cast is
simply an explicit type conversion. It has this general form:

(target-type) value

03-ch03.indd 48 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 49

Pa
rt

 I

Here, target-type specifies the desired type to convert the specified value to. For example, the
following fragment casts an int to a byte. If the integer’s value is larger than the range of a
byte, it will be reduced modulo (the remainder of an integer division by the) byte’s range.

int a;
byte b;
// …
b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an
integer type: truncation. As you know, integers do not have fractional components. Thus,
when a floating-point value is assigned to an integer type, the fractional component is lost.
For example, if the value 1.23 is assigned to an integer, the resulting value will simply be 1.
The 0.23 will have been truncated. Of course, if the size of the whole number component is
too large to fit into the target integer type, then that value will be reduced modulo the
target type’s range.

The following program demonstrates some type conversions that require casts:

// Demonstrate casts.
class Conversion {
 public static void main(String args[]) {
 byte b;
 int i = 257;
 double d = 323.142;

 System.out.println("\nConversion of int to byte.");
 b = (byte) i;
 System.out.println("i and b " + i + " " + b);

 System.out.println("\nConversion of double to int.");
 i = (int) d;
 System.out.println("d and i " + d + " " + i);

 System.out.println("\nConversion of double to byte.");
 b = (byte) d;
 System.out.println("d and b " + d + " " + b);
 }
}

This program generates the following output:

 Conversion of int to byte.
 i and b 257 1

 Conversion of double to int.
 d and i 323.142 323

 Conversion of double to byte.
 d and b 323.142 67

Let’s look at each conversion. When the value 257 is cast into a byte variable, the result is the
remainder of the division of 257 by 256 (the range of a byte), which is 1 in this case. When

03-ch03.indd 49 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

50 PART I The Java Language

the d is converted to an int, its fractional component is lost. When d is converted to a byte, its
fractional component is lost, and the value is reduced modulo 256, which in this case is 67.

Automatic Type Promotion in Expressions
In addition to assignments, there is another place where certain type conversions may
occur: in expressions. To see why, consider the following. In an expression, the precision
required of an intermediate value will sometimes exceed the range of either operand. For
example, examine the following expression:

byte a = 40;
byte b = 50;
byte c = 100;
int d = a * b / c;

The result of the intermediate term a	*	b easily exceeds the range of either of its byte
operands. To handle this kind of problem, Java automatically promotes each byte, short,
or char operand to int when evaluating an expression. This means that the subexpression
a*b is performed using integers—not bytes. Thus, 2,000, the result of the intermediate
expression, 50	*	40, is legal even though a and b are both specified as type byte.

As useful as the automatic promotions are, they can cause confusing compile-time
errors. For example, this seemingly correct code causes a problem:

byte b = 50;
b = b * 2; // Error! Cannot assign an int to a byte!

The code is attempting to store 50 * 2, a perfectly valid byte value, back into a byte
variable. However, because the operands were automatically promoted to int when the
expression was evaluated, the result has also been promoted to int. Thus, the result of the
expression is now of type int, which cannot be assigned to a byte without the use of a cast.
This is true even if, as in this particular case, the value being assigned would still fit in the
target type.

In cases where you understand the consequences of overflow, you should use an explicit
cast, such as

byte b = 50;
b = (byte)(b * 2);

which yields the correct value of 100.

The Type Promotion Rules
Java defines several type promotion rules that apply to expressions. They are as follows: First,
all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands are double, the result is double.

The following program demonstrates how each value in the expression gets promoted
to match the second argument to each binary operator:

03-ch03.indd 50 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 51

Pa
rt

 I

class Promote {
 public static void main(String args[]) {
 byte b = 42;
 char c = 'a';
 short s = 1024;
 int i = 50000;
 float f = 5.67f;
 double d = .1234;
 double result = (f * b) + (i / c) - (d * s);
 System.out.println((f * b) + " + " + (i / c) + " - " + (d * s));
 System.out.println("result = " + result);
 }
}

Let’s look closely at the type promotions that occur in this line from the program:

double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f	*	b,	b is promoted to a float and the result of the subexpression
is float. Next, in the subexpression i/c,	c is promoted to int, and the result is of type int.
Then, in d	*	s, the value of s is promoted to double, and the type of the subexpression is
double. Finally, these three intermediate values, float, int, and double, are considered. The
outcome of float plus an int is a float. Then the resultant float minus the last double is
promoted to double, which is the type for the final result of the expression.

Arrays
An array is a group of like-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an
array is accessed by its index. Arrays offer a convenient means of grouping related
information.

NOTE If you are familiar with C/C++, be careful. Arrays in Java work differently than they do in those
languages.

One-Dimensional Arrays
A one-dimensional array is, essentially, a list of like-typed variables. To create an array, you first
must create an array variable of the desired type. The general form of a one-dimensional
array declaration is

type var-name[];

Here, type declares the element type (also called the base type) of the array. The element type
determines the data type of each element that comprises the array. Thus, the element
type for the array determines what type of data the array will hold. For example, the
following declares an array named month_days with the type “array of int”:

int month_days[];

03-ch03.indd 51 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

52 PART I The Java Language

Although this declaration establishes the fact that month_days is an array variable, no
array actually exists. To link month_days with an actual, physical array of integers, you must
allocate one using new and assign it to month_days. new is a special operator that allocates
memory.

You will look more closely at new in a later chapter, but you need to use it now to
allocate memory for arrays. The general form of new as it applies to one-dimensional
arrays appears as follows:

array-var = new type [size];

Here, type specifies the type of data being allocated, size specifies the number of elements in
the array, and array-var is the array variable that is linked to the array. That is, to use new to
allocate an array, you must specify the type and number of elements to allocate. The elements
in the array allocated by new will automatically be initialized to zero (for numeric types), false
(for boolean), or null (for reference types, which are described in a later chapter). This
example allocates a 12-element array of integers and links them to month_days:

month_days = new int[12];

After this statement executes, month_days will refer to an array of 12 integers. Further, all
elements in the array will be initialized to zero.

Let’s review: Obtaining an array is a two-step process. First, you must declare a variable
of the desired array type. Second, you must allocate the memory that will hold the array,
using new, and assign it to the array variable. Thus, in Java all arrays are dynamically
allocated. If the concept of dynamic allocation is unfamiliar to you, don’t worry. It will
be described at length later in this book.

Once you have allocated an array, you can access a specific element in the array by
specifying its index within square brackets. All array indexes start at zero. For example,
this statement assigns the value 28 to the second element of month_days:

month_days[1] = 28;

The next line displays the value stored at index 3:

System.out.println(month_days[3]);

Putting together all the pieces, here is a program that creates an array of the number of
days in each month:

// Demonstrate a one-dimensional array.
class Array {
 public static void main(String args[]) {
 int month_days[];
 month_days = new int[12];
 month_days[0] = 31;
 month_days[1] = 28;
 month_days[2] = 31;
 month_days[3] = 30;
 month_days[4] = 31;
 month_days[5] = 30;

03-ch03.indd 52 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 53

Pa
rt

 I

 month_days[6] = 31;
 month_days[7] = 31;
 month_days[8] = 30;
 month_days[9] = 31;
 month_days[10] = 30;
 month_days[11] = 31;
 System.out.println("April has " + month_days[3] + " days.");
 }
}

When you run this program, it prints the number of days in April. As mentioned, Java array
indexes start with zero, so the number of days in April is month_days[3] or 30.

It is possible to combine the declaration of the array variable with the allocation of the
array itself, as shown here:

int month_days[] = new int[12];

This is the way that you will normally see it done in professionally written Java programs.
Arrays can be initialized when they are declared. The process is much the same as that

used to initialize the simple types. An array initializer is a list of comma-separated expressions
surrounded by curly braces. The commas separate the values of the array elements. The
array will automatically be created large enough to hold the number of elements you specify
in the array initializer. There is no need to use new. For example, to store the number of
days in each month, the following code creates an initialized array of integers:

// An improved version of the previous program.
class AutoArray {
 public static void main(String args[]) {

 int month_days[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,
 30, 31 };
 System.out.println("April has " + month_days[3] + " days.");
 }
}

When you run this program, you see the same output as that generated by the previous
version.

Java strictly checks to make sure you do not accidentally try to store or reference values
outside of the range of the array. The Java run-time system will check to be sure that all
array indexes are in the correct range. For example, the run-time system will check the
value of each index into month_days to make sure that it is between 0 and 11 inclusive. If
you try to access elements outside the range of the array (negative numbers or numbers
greater than the length of the array), you will cause a run-time error.

Here is one more example that uses a one-dimensional array. It finds the average of a
set of numbers.

// Average an array of values.
class Average {
 public static void main(String args[]) {
 double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
 double result = 0;
 int i;

03-ch03.indd 53 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

54 PART I The Java Language

 for(i=0; i<5; i++)
 result = result + nums[i];
 System.out.println("Average is " + result / 5);
 }
}

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. These, as you might expect, look
and act like regular multidimensional arrays. However, as you will see, there are a couple
of subtle differences. To declare a multidimensional array variable, specify each additional
index using another set of square brackets. For example, the following declares a two-
dimensional array variable called twoD:

int twoD[][] = new int[4][5];

This allocates a 4 by 5 array and assigns it to twoD. Internally, this matrix is implemented as
an array of arrays of int. Conceptually, this array will look like the one shown in Figure 3-1.

The following program numbers each element in the array from left to right, top to
bottom, and then displays these values:

// Demonstrate a two-dimensional array.
class TwoDArray {
 public static void main(String args[]) {
 int twoD[][]= new int[4][5];
 int i, j, k = 0;

 for(i=0; i<4; i++)
 for(j=0; j<5; j++) {
 twoD[i][j] = k;
 k++;
 }

 for(i=0; i<4; i++) {
 for(j=0; j<5; j++)
 System.out.print(twoD[i][j] + " ");
 System.out.println();
 }
 }
}

This program generates the following output:

 0 1 2 3 4
 5 6 7 8 9
 10 11 12 13 14
 15 16 17 18 19

When you allocate memory for a multidimensional array, you need only specify the
memory for the first (leftmost) dimension. You can allocate the remaining dimensions

03-ch03.indd 54 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 55

Pa
rt

 I

separately. For example, this following code allocates memory for the first dimension of
twoD when it is declared. It allocates the second dimension manually.

int twoD[][] = new int[4][];
twoD[0] = new int[5];
twoD[1] = new int[5];
twoD[2] = new int[5];
twoD[3] = new int[5];

While there is no advantage to individually allocating the second dimension arrays in
this situation, there may be in others. For example, when you allocate dimensions manually,
you do not need to allocate the same number of elements for each dimension. As stated
earlier, since multidimensional arrays are actually arrays of arrays, the length of each array
is under your control. For example, the following program creates a two-dimensional array
in which the sizes of the second dimension are unequal:

// Manually allocate differing size second dimensions.
class TwoDAgain {
 public static void main(String args[]) {
 int twoD[][] = new int[4][];
 twoD[0] = new int[1];
 twoD[1] = new int[2];
 twoD[2] = new int[3];
 twoD[3] = new int[4];

 int i, j, k = 0;

 for(i=0; i<4; i++)
 for(j=0; j<i+1; j++) {
 twoD[i][j] = k;
 k++;

Figure 3-1 A conceptual view of a 4 by 5, two-dimensional array

03-ch03.indd 55 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

56 PART I The Java Language

 }

 for(i=0; i<4; i++) {
 for(j=0; j<i+1; j++)
 System.out.print(twoD[i][j] + " ");
 System.out.println();
 }
 }
}

This program generates the following output:

0
1 2
3 4 5
6 7 8 9

The array created by this program looks like this:

The use of uneven (or irregular) multidimensional arrays may not be appropriate
for many applications, because it runs contrary to what people expect to find when a
multidimensional array is encountered. However, irregular arrays can be used effectively in
some situations. For example, if you need a very large two-dimensional array that is sparsely
populated (that is, one in which not all of the elements will be used), then an irregular
array might be a perfect solution.

It is possible to initialize multidimensional arrays. To do so, simply enclose each
dimension’s initializer within its own set of curly braces. The following program creates
a matrix where each element contains the product of the row and column indexes. Also
notice that you can use expressions as well as literal values inside of array initializers.

// Initialize a two-dimensional array.
class Matrix {
 public static void main(String args[]) {
 double m[][] = {
 { 0*0, 1*0, 2*0, 3*0 },
 { 0*1, 1*1, 2*1, 3*1 },
 { 0*2, 1*2, 2*2, 3*2 },
 { 0*3, 1*3, 2*3, 3*3 }

03-ch03.indd 56 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 57

Pa
rt

 I

 };
 int i, j;

 for(i=0; i<4; i++) {
 for(j=0; j<4; j++)
 System.out.print(m[i][j] + " ");
 System.out.println();
 }
 }
}

When you run this program, you will get the following output:

 0.0 0.0 0.0 0.0
 0.0 1.0 2.0 3.0
 0.0 2.0 4.0 6.0
 0.0 3.0 6.0 9.0

As you can see, each row in the array is initialized as specified in the initialization lists.
Let’s look at one more example that uses a multidimensional array. The following

program creates a 3 by 4 by 5, three-dimensional array. It then loads each element with
the product of its indexes. Finally, it displays these products.

// Demonstrate a three-dimensional array.
class ThreeDMatrix {
 public static void main(String args[]) {
 int threeD[][][] = new int[3][4][5];
 int i, j, k;

 for(i=0; i<3; i++)
 for(j=0; j<4; j++)
 for(k=0; k<5; k++)
 threeD[i][j][k] = i * j * k;

 for(i=0; i<3; i++) {
 for(j=0; j<4; j++) {
 for(k=0; k<5; k++)
 System.out.print(threeD[i][j][k] + " ");
 System.out.println();
 }
 System.out.println();
 }
 }
}

This program generates the following output:

 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0
 0 0 0 0 0

03-ch03.indd 57 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

58 PART I The Java Language

 0 0 0 0 0
 0 1 2 3 4
 0 2 4 6 8
 0 3 6 9 12

 0 0 0 0 0
 0 2 4 6 8
 0 4 8 12 16
 0 6 12 18 24

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

type[] var-name;

Here, the square brackets follow the type specifier, and not the name of the array variable.
For example, the following two declarations are equivalent:

int al[] = new int[3];
int[] a2 = new int[3];

The following declarations are also equivalent:

char twod1[][] = new char[3][4];
char[][] twod2 = new char[3][4];

This alternative declaration form offers convenience when declaring several arrays at the
same time. For example,

int[] nums, nums2, nums3; // create three arrays

creates three array variables of type int. It is the same as writing

int nums[], nums2[], nums3[]; // create three arrays

The alternative declaration form is also useful when specifying an array as a return type for
a method. Both forms are used in this book.

A Few Words About Strings
As you may have noticed, in the preceding discussion of data types and arrays there has
been no mention of strings or a string data type. This is not because Java does not support
such a type—it does. It is just that Java’s string type, called String, is not a primitive type.
Nor is it simply an array of characters. Rather, String defines an object, and a full description
of it requires an understanding of several object-related features. As such, it will be covered
later in this book, after objects are described. However, so that you can use simple strings in
example programs, the following brief introduction is in order.

The String type is used to declare string variables. You can also declare arrays of strings.
A quoted string constant can be assigned to a String variable. A variable of type String can

03-ch03.indd 58 17/02/14 2:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 3 Data Types, Variables, and Arrays 59

Pa
rt

 I

be assigned to another variable of type String. You can use an object of type String as an
argument to println(). For example, consider the following fragment:

String str = "this is a test";
System.out.println(str);

Here, str is an object of type String. It is assigned the string "this is a test". This string is
displayed by the println() statement.

As you will see later, String objects have many special features and attributes that make
them quite powerful and easy to use. However, for the next few chapters, you will be using
them only in their simplest form.

A Note to C/C++ Programmers About Pointers
If you are an experienced C/C++ programmer, then you know that these languages provide
support for pointers. However, no mention of pointers has been made in this chapter. The
reason for this is simple: Java does not support or allow pointers. (Or more properly, Java
does not support pointers that can be accessed and/or modified by the programmer.) Java
cannot allow pointers, because doing so would allow Java programs to breach the firewall
between the Java execution environment and the host computer. (Remember, a pointer can
be given any address in memory—even addresses that might be outside the Java run-time
system.) Since C/C++ make extensive use of pointers, you might be thinking that their loss
is a significant disadvantage to Java. However, this is not true. Java is designed in such a way
that as long as you stay within the confines of the execution environment, you will never
need to use a pointer, nor would there be any benefit in using one.

03-ch03.indd 59 17/02/14 2:23 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

4
CHAPTER

 61

Operators

Java provides a rich operator environment. Most of its operators can be divided into the
following four groups: arithmetic, bitwise, relational, and logical. Java also defines some
additional operators that handle certain special situations. This chapter describes all of
Java’s operators except for the type comparison operator instanceof, which is examined
in Chapter 13 and the new arrow operator (−>), which is described in Chapter 15.

Arithmetic Operators
Arithmetic operators are used in mathematical expressions in the same way that they are
used in algebra. The following table lists the arithmetic operators:

Operator Result
+ Addition (also unary plus)

– Subtraction (also unary minus)

* Multiplication

/ Division

% Modulus

++ Increment

+= Addition assignment

– = Subtraction assignment

*= Multiplication assignment

/= Division assignment

%= Modulus assignment

– – Decrement

The operands of the arithmetic operators must be of a numeric type. You cannot use
them on boolean types, but you can use them on char types, since the char type in Java is,
essentially, a subset of int.

04-ch04.indd 61 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

62 PART I The Java Language

The Basic Arithmetic Operators
The basic arithmetic operations—addition, subtraction, multiplication, and division—all
behave as you would expect for all numeric types. The unary minus operator negates its
single operand. The unary plus operator simply returns the value of its operand. Remember
that when the division operator is applied to an integer type, there will be no fractional
component attached to the result.

The following simple example program demonstrates the arithmetic operators. It also
illustrates the difference between floating-point division and integer division.

// Demonstrate the basic arithmetic operators.
class BasicMath {
 public static void main(String args[]) {
 // arithmetic using integers
 System.out.println("Integer Arithmetic");
 int a = 1 + 1;
 int b = a * 3;
 int c = b / 4;
 int d = c - a;
 int e = -d;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 System.out.println("e = " + e);

 // arithmetic using doubles
 System.out.println("\nFloating Point Arithmetic");
 double da = 1 + 1;
 double db = da * 3;
 double dc = db / 4;
 double dd = dc - a;
 double de = -dd;
 System.out.println("da = " + da);
 System.out.println("db = " + db);
 System.out.println("dc = " + dc);
 System.out.println("dd = " + dd);
 System.out.println("de = " + de);
 }
}

When you run this program, you will see the following output:

 Integer Arithmetic
 a = 2
 b = 6
 c = 1
 d = -1
 e = 1

 Floating Point Arithmetic
 da = 2.0
 db = 6.0

04-ch04.indd 62 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 63

Pa
rt

 I

 dc = 1.5
 dd = -0.5
 de = 0.5

The Modulus Operator
The modulus operator, %, returns the remainder of a division operation. It can be
applied to floating-point types as well as integer types. The following example program
demonstrates the %:

// Demonstrate the % operator.
class Modulus {
 public static void main(String args[]) {
 int x = 42;
 double y = 42.25;

 System.out.println("x mod 10 = " + x % 10);
 System.out.println("y mod 10 = " + y % 10);
 }
}

When you run this program, you will get the following output:

 x mod 10 = 2
 y mod 10 = 2.25

Arithmetic Compound Assignment Operators
Java provides special operators that can be used to combine an arithmetic operation with
an assignment. As you probably know, statements like the following are quite common in
programming:

a = a + 4;

In Java, you can rewrite this statement as shown here:

a += 4;

This version uses the += compound assignment operator. Both statements perform the same
action: they increase the value of a by 4.

Here is another example,

a = a % 2;

which can be expressed as

a %= 2;

In this case, the %= obtains the remainder of a /2 and puts that result back into a.
There are compound assignment operators for all of the arithmetic, binary operators.

Thus, any statement of the form

var = var op expression;

04-ch04.indd 63 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

64 PART I The Java Language

can be rewritten as

var op= expression;

The compound assignment operators provide two benefits. First, they save you a bit
of typing, because they are “shorthand” for their equivalent long forms. Second, in some
cases they are more efficient than are their equivalent long forms. For these reasons, you
will often see the compound assignment operators used in professionally written Java
programs.

Here is a sample program that shows several op= assignments in action:

// Demonstrate several assignment operators.
class OpEquals {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c = 3;

 a += 5;
 b *= 4;
 c += a * b;
 c %= 6;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 }
}

The output of this program is shown here:

 a = 6
 b = 8
 c = 3

Increment and Decrement
The ++ and the – – are Java’s increment and decrement operators. They were introduced
in Chapter 2. Here they will be discussed in detail. As you will see, they have some special
properties that make them quite interesting. Let’s begin by reviewing precisely what the
increment and decrement operators do.

The increment operator increases its operand by one. The decrement operator
decreases its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use of the increment operator:

x++;

Similarly, this statement:

x = x - 1;

04-ch04.indd 64 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 65

Pa
rt

 I

is equivalent to

x--;

These operators are unique in that they can appear both in postfix form, where they
follow the operand as just shown, and prefix form, where they precede the operand. In the
foregoing examples, there is no difference between the prefix and postfix forms. However,
when the increment and/or decrement operators are part of a larger expression, then a
subtle, yet powerful, difference between these two forms appears. In the prefix form,
the operand is incremented or decremented before the value is obtained for use in the
expression. In postfix form, the previous value is obtained for use in the expression, and
then the operand is modified. For example:

x = 42;
y = ++x;

In this case, y is set to 43 as you would expect, because the increment occurs before x is
assigned to y. Thus, the line y = ++x; is the equivalent of these two statements:

x = x + 1;
y = x;

However, when written like this,

x = 42;
y = x++;

the value of x is obtained before the increment operator is executed, so the value of y is 42.
Of course, in both cases x is set to 43. Here, the line y = x++; is the equivalent of these two
statements:

y = x;
x = x + 1;

The following program demonstrates the increment operator.

// Demonstrate ++.
class IncDec {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c;
 int d;
 c = ++b;
 d = a++;
 c++;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 System.out.println("d = " + d);
 }
}

04-ch04.indd 65 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

66 PART I The Java Language

The output of this program follows:

 a = 2
 b = 3
 c = 4
 d = 1

The Bitwise Operators
Java defines several bitwise operators that can be applied to the integer types: long, int, short,
char, and byte. These operators act upon the individual bits of their operands. They are
summarized in the following table:

Operator Result
~ Bitwise unary NOT

& Bitwise AND

| Bitwise OR

^ Bitwise exclusive OR

>> Shift right

>>> Shift right zero fill

<< Shift left

&= Bitwise AND assignment

|= Bitwise OR assignment

^= Bitwise exclusive OR assignment

>>= Shift right assignment

>>>= Shift right zero fill assignment

<<= Shift left assignment

Since the bitwise operators manipulate the bits within an integer: it is important to
understand what effects such manipulations may have on a value. Specifically, it is useful
to know how Java stores integer values and how it represents negative numbers. So, before
continuing, let’s briefly review these two topics.

All of the integer types are represented by binary numbers of varying bit widths. For
example, the byte value for 42 in binary is 00101010, where each position represents a
power of two, starting with 20 at the rightmost bit. The next bit position to the left would be
21, or 2, continuing toward the left with 22, or 4, then 8, 16, 32, and so on. So 42 has 1 bits
set at positions 1, 3, and 5 (counting from 0 at the right); thus, 42 is the sum of 21 + 23 + 25,
which is 2 + 8 + 32.

All of the integer types (except char) are signed integers. This means that they can
represent negative values as well as positive ones. Java uses an encoding known as two’s
complement, which means that negative numbers are represented by inverting (changing 1’s
to 0’s and vice versa) all of the bits in a value, then adding 1 to the result. For example, –42
is represented by inverting all of the bits in 42, or 00101010, which yields 11010101, then
adding 1, which results in 11010110, or –42. To decode a negative number, first invert all

04-ch04.indd 66 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 67

Pa
rt

 I

of the bits, then add 1. For example, –42, or 11010110 inverted, yields 00101001, or 41, so
when you add 1 you get 42.

The reason Java (and most other computer languages) uses two’s complement is easy to
see when you consider the issue of zero crossing. Assuming a byte value, zero is represented
by 00000000. In one’s complement, simply inverting all of the bits creates 11111111, which
creates negative zero. The trouble is that negative zero is invalid in integer math. This
problem is solved by using two’s complement to represent negative values. When using
two’s complement, 1 is added to the complement, producing 100000000. This produces a 1
bit too far to the left to fit back into the byte value, resulting in the desired behavior, where
–0 is the same as 0, and 11111111 is the encoding for –1. Although we used a byte value in
the preceding example, the same basic principle applies to all of Java’s integer types.

Because Java uses two’s complement to store negative numbers—and because all
integers are signed values in Java—applying the bitwise operators can easily produce
unexpected results. For example, turning on the high-order bit will cause the resulting
value to be interpreted as a negative number, whether this is what you intended or not. To
avoid unpleasant surprises, just remember that the high-order bit determines the sign of an
integer no matter how that high-order bit gets set.

The Bitwise Logical Operators
The bitwise logical operators are &, |, ^, and ~. The following table shows the outcome of
each operation. In the discussion that follows, keep in mind that the bitwise operators are
applied to each individual bit within each operand.

A B A | B A & B A ^ B ~A
0 0 0 0 0 1

1 0 1 0 1 0

0 1 1 0 1 1

1 1 1 1 0 0

The Bitwise NOT
Also called the bitwise complement, the unary NOT operator, ~, inverts all of the bits of its
operand. For example, the number 42, which has the following bit pattern:

00101010

becomes

11010101

after the NOT operator is applied.

The Bitwise AND
The AND operator, &, produces a 1 bit if both operands are also 1. A zero is produced in
all other cases. Here is an example:

 00101010 42
&00001111 15

 00001010 10

04-ch04.indd 67 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

68 PART I The Java Language

The Bitwise OR
The OR operator, |, combines bits such that if either of the bits in the operands is a 1, then
the resultant bit is a 1, as shown here:

 00101010 42
| 00001111 15

 00101111 47

The Bitwise XOR
The XOR operator, ^, combines bits such that if exactly one operand is 1, then the result
is 1. Otherwise, the result is zero. The following example shows the effect of the ^. This
example also demonstrates a useful attribute of the XOR operation. Notice how the bit
pattern of 42 is inverted wherever the second operand has a 1 bit. Wherever the second
operand has a 0 bit, the first operand is unchanged. You will find this property useful when
performing some types of bit manipulations.

 00101010 42
^ 00001111 15

 00100101 37

Using the Bitwise Logical Operators
The following program demonstrates the bitwise logical operators:

// Demonstrate the bitwise logical operators.
class BitLogic {
 public static void main(String args[]) {
 String binary[] = {
 "0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111",
 "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"
 };
 int a = 3; // 0 + 2 + 1 or 0011 in binary
 int b = 6; // 4 + 2 + 0 or 0110 in binary
 int c = a | b;
 int d = a & b;
 int e = a ^ b;
 int f = (~a & b)|(a & ~b);
 int g = ~a & 0x0f;

 System.out.println(" a = " + binary[a]);
 System.out.println(" b = " + binary[b]);
 System.out.println(" a|b = " + binary[c]);
 System.out.println(" a&b = " + binary[d]);
 System.out.println(" a^b = " + binary[e]);
 System.out.println("~a&b|a&~b = " + binary[f]);
 System.out.println(" ~a = " + binary[g]);
 }
}

In this example, a and b have bit patterns that present all four possibilities for two
binary digits: 0-0, 0-1, 1-0, and 1-1. You can see how the | and & operate on each bit by the

04-ch04.indd 68 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 69

Pa
rt

 I

results in c and d. The values assigned to e and f are the same and illustrate how the ^ works.
The string array named binary holds the human-readable, binary representation of the
numbers 0 through 15. In this example, the array is indexed to show the binary representation
of each result. The array is constructed such that the correct string representation of a
binary value n is stored in binary[n]. The value of ~a is ANDed with 0x0f (0000 1111 in
binary) in order to reduce its value to less than 16, so it can be printed by use of the binary
array. Here is the output from this program:

 a = 0011
 b = 0110
 a|b = 0111
 a&b = 0010
 a^b = 0101
 ~a&b|a&~b = 0101
 ~a = 1100

The Left Shift
The left shift operator, <<, shifts all of the bits in a value to the left a specified number of
times. It has this general form:

value << num

Here, num specifies the number of positions to left-shift the value in value. That is, the
<< moves all of the bits in the specified value to the left by the number of bit positions
specified by num. For each shift left, the high-order bit is shifted out (and lost), and a zero
is brought in on the right. This means that when a left shift is applied to an int operand,
bits are lost once they are shifted past bit position 31. If the operand is a long, then bits are
lost after bit position 63.

Java’s automatic type promotions produce unexpected results when you are shifting
byte and short values. As you know, byte and short values are promoted to int when an
expression is evaluated. Furthermore, the result of such an expression is also an int. This
means that the outcome of a left shift on a byte or short value will be an int, and the bits
shifted left will not be lost until they shift past bit position 31. Furthermore, a negative byte
or short value will be sign-extended when it is promoted to int. Thus, the high-order bits
will be filled with 1’s. For these reasons, to perform a left shift on a byte or short implies
that you must discard the high-order bytes of the int result. For example, if you left-shift a
byte value, that value will first be promoted to int and then shifted. This means that you
must discard the top three bytes of the result if what you want is the result of a shifted byte
value. The easiest way to do this is to simply cast the result back into a byte. The following
program demonstrates this concept:

// Left shifting a byte value.
class ByteShift {
 public static void main(String args[]) {
 byte a = 64, b;
 int i;

 i = a << 2;
 b = (byte) (a << 2);

04-ch04.indd 69 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

70 PART I The Java Language

 System.out.println("Original value of a: " + a);
 System.out.println("i and b: " + i + " " + b);
 }
}

The output generated by this program is shown here:

 Original value of a: 64
 i and b: 256 0

Since a is promoted to int for the purposes of evaluation, left-shifting the value 64
(0100 0000) twice results in i containing the value 256 (1 0000 0000). However, the value
in b contains 0 because after the shift, the low-order byte is now zero. Its only 1 bit has been
shifted out.

Since each left shift has the effect of doubling the original value, programmers
frequently use this fact as an efficient alternative to multiplying by 2. But you need to watch
out. If you shift a 1 bit into the high-order position (bit 31 or 63), the value will become
negative. The following program illustrates this point:

// Left shifting as a quick way to multiply by 2.
class MultByTwo {
 public static void main(String args[]) {
 int i;
 int num = 0xFFFFFFE;

 for(i=0; i<4; i++) {
 num = num << 1;
 System.out.println(num);
 }
 }
}

The program generates the following output:

 536870908
 1073741816
 2147483632
 -32

The starting value was carefully chosen so that after being shifted left 4 bit positions, it
would produce –32. As you can see, when a 1 bit is shifted into bit 31, the number is
interpreted as negative.

The Right Shift
The right shift operator, >>, shifts all of the bits in a value to the right a specified number of
times. Its general form is shown here:

value >> num

Here, num specifies the number of positions to right-shift the value in value. That is, the >>
moves all of the bits in the specified value to the right the number of bit positions specified
by num.

04-ch04.indd 70 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 71

Pa
rt

 I

The following code fragment shifts the value 32 to the right by two positions, resulting
in a being set to 8:

int a = 32;
a = a >> 2; // a now contains 8

When a value has bits that are “shifted off,” those bits are lost. For example, the next
code fragment shifts the value 35 to the right two positions, which causes the two low-order
bits to be lost, resulting again in a being set to 8:

int a = 35;
a = a >> 2; // a contains 8

Looking at the same operation in binary shows more clearly how this happens:

00100011 35
>> 2
00001000 8

Each time you shift a value to the right, it divides that value by two—and discards any
remainder. In some cases, you can take advantage of this for high-performance integer
division by 2.

When you are shifting right, the top (leftmost) bits exposed by the right shift are filled
in with the previous contents of the top bit. This is called sign extension and serves to preserve
the sign of negative numbers when you shift them right. For example, –8 >> 1 is –4, which,
in binary, is

11111000 –8
>> 1
11111100 –4

It is interesting to note that if you shift –1 right, the result always remains –1, since sign
extension keeps bringing in more ones in the high-order bits.

Sometimes it is not desirable to sign-extend values when you are shifting them to the
right. For example, the following program converts a byte value to its hexadecimal string
representation. Notice that the shifted value is masked by ANDing it with 0x0f to discard
any sign-extended bits so that the value can be used as an index into the array of
hexadecimal characters.

// Masking sign extension.
class HexByte {
 static public void main(String args[]) {
 char hex[] = {
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 };

 byte b = (byte) 0xf1;

 System.out.println("b = 0x" + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
 }
}

04-ch04.indd 71 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

72 PART I The Java Language

Here is the output of this program:

 b = 0xf1

The Unsigned Right Shift
As you have just seen, the >> operator automatically fills the high-order bit with its previous
contents each time a shift occurs. This preserves the sign of the value. However, sometimes
this is undesirable. For example, if you are shifting something that does not represent a
numeric value, you may not want sign extension to take place. This situation is common
when you are working with pixel-based values and graphics. In these cases, you will
generally want to shift a zero into the high-order bit no matter what its initial value was.
This is known as an unsigned shift. To accomplish this, you will use Java’s unsigned, shift-
right operator, >>>, which always shifts zeros into the high-order bit.

The following code fragment demonstrates the >>>. Here, a is set to –1, which sets all
32 bits to 1 in binary. This value is then shifted right 24 bits, filling the top 24 bits with
zeros, ignoring normal sign extension. This sets a to 255.

int a = -1;
a = a >>> 24;

Here is the same operation in binary form to further illustrate what is happening:

11111111 11111111 11111111 11111111 –1 in binary as an int
>>>24
00000000 00000000 00000000 11111111 255 in binary as an int

The >>> operator is often not as useful as you might like, since it is only meaningful
for 32- and 64-bit values. Remember, smaller values are automatically promoted to int in
expressions. This means that sign-extension occurs and that the shift will take place on a
32-bit rather than on an 8- or 16-bit value. That is, one might expect an unsigned right shift
on a byte value to zero-fill beginning at bit 7. But this is not the case, since it is a 32-bit value
that is actually being shifted. The following program demonstrates this effect:

// Unsigned shifting a byte value.
class ByteUShift {
 static public void main(String args[]) {
 char hex[] = {
 '0', '1', '2', '3', '4', '5', '6', '7',
 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
 };
 byte b = (byte) 0xf1;
 byte c = (byte) (b >> 4);
 byte d = (byte) (b >>> 4);
 byte e = (byte) ((b & 0xff) >> 4);

 System.out.println(" b = 0x"
 + hex[(b >> 4) & 0x0f] + hex[b & 0x0f]);
 System.out.println(" b >> 4 = 0x"
 + hex[(c >> 4) & 0x0f] + hex[c & 0x0f]);
 System.out.println(" b >>> 4 = 0x"
 + hex[(d >> 4) & 0x0f] + hex[d & 0x0f]);

04-ch04.indd 72 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 73

Pa
rt

 I

 System.out.println("(b & 0xff) >> 4 = 0x"
 + hex[(e >> 4) & 0x0f] + hex[e & 0x0f]);
 }
}

The following output of this program shows how the >>> operator appears to do nothing
when dealing with bytes. The variable b is set to an arbitrary negative byte value for this
demonstration. Then c is assigned the byte value of b shifted right by four, which is 0xff
because of the expected sign extension. Then d is assigned the byte value of b unsigned
shifted right by four, which you might have expected to be 0x0f, but is actually 0xff because
of the sign extension that happened when b was promoted to int before the shift. The last
expression sets e to the byte value of b masked to 8 bits using the AND operator, then shifted
right by four, which produces the expected value of 0x0f. Notice that the unsigned shift right
operator was not used for d, since the state of the sign bit after the AND was known.

 b = 0xf1
 b >> 4 = 0xff
 b >>> 4 = 0xff
 (b & 0xff) >> 4 = 0x0f

Bitwise Operator Compound Assignments
All of the binary bitwise operators have a compound form similar to that of the algebraic
operators, which combines the assignment with the bitwise operation. For example, the
following two statements, which shift the value in a right by four bits, are equivalent:

a = a >> 4;
a >>= 4;

Likewise, the following two statements, which result in a being assigned the bitwise
expression a OR b, are equivalent:

a = a | b;
a |= b;

The following program creates a few integer variables and then uses compound bitwise
operator assignments to manipulate the variables:

class OpBitEquals {
 public static void main(String args[]) {
 int a = 1;
 int b = 2;
 int c = 3;

 a |= 4;
 b >>= 1;
 c <<= 1;
 a ^= c;
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 System.out.println("c = " + c);
 }
}

04-ch04.indd 73 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

74 PART I The Java Language

The output of this program is shown here:

 a = 3
 b = 1
 c = 6

Relational Operators
The relational operators determine the relationship that one operand has to the other.
Specifically, they determine equality and ordering. The relational operators are shown here:

Operator Result
== Equal to

!= Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

The outcome of these operations is a boolean value. The relational operators are most
frequently used in the expressions that control the if statement and the various loop
statements.

Any type in Java, including integers, floating-point numbers, characters, and Booleans
can be compared using the equality test, ==, and the inequality test, !=. Notice that in Java
equality is denoted with two equal signs, not one. (Remember: a single equal sign is the
assignment operator.) Only numeric types can be compared using the ordering operators.
That is, only integer, floating-point, and character operands may be compared to see which
is greater or less than the other.

As stated, the result produced by a relational operator is a boolean value. For example,
the following code fragment is perfectly valid:

int a = 4;
int b = 1;
boolean c = a < b;

In this case, the result of a<b (which is false) is stored in c.
If you are coming from a C/C++ background, please note the following. In C/C++,

these types of statements are very common:

int done;
//...
if(!done)... // Valid in C/C++
if(done)... // but not in Java.

In Java, these statements must be written like this:

if(done == 0)... // This is Java-style.
if(done != 0)...

04-ch04.indd 74 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 75

Pa
rt

 I

The reason is that Java does not define true and false in the same way as C/C++. In C/
C++, true is any nonzero value and false is zero. In Java, true and false are nonnumeric
values that do not relate to zero or nonzero. Therefore, to test for zero or nonzero, you
must explicitly employ one or more of the relational operators.

Boolean Logical Operators
The Boolean logical operators shown here operate only on boolean operands. All of the
binary logical operators combine two boolean values to form a resultant boolean value.

Operator Result
& Logical AND

| Logical OR

^ Logical XOR (exclusive OR)

|| Short-circuit OR

&& Short-circuit AND

! Logical unary NOT

&= AND assignment

|= OR assignment

^= XOR assignment

== Equal to

!= Not equal to

?: Ternary if-then-else

The logical Boolean operators, &, |, and ^, operate on boolean values in the same way
that they operate on the bits of an integer. The logical ! operator inverts the Boolean state:
!true == false and !false == true. The following table shows the effect of each logical
operation:

A B A | B A & B A ^ B !A
False False False False False True

True False True False True False

False True True False True True

True True True True False False

Here is a program that is almost the same as the BitLogic example shown earlier, but it
operates on boolean logical values instead of binary bits:

// Demonstrate the boolean logical operators.
class BoolLogic {
 public static void main(String args[]) {
 boolean a = true;
 boolean b = false;
 boolean c = a | b;
 boolean d = a & b;

04-ch04.indd 75 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

76 PART I The Java Language

 boolean e = a ^ b;
 boolean f = (!a & b) | (a & !b);
 boolean g = !a;
 System.out.println(" a = " + a);
 System.out.println(" b = " + b);
 System.out.println(" a|b = " + c);
 System.out.println(" a&b = " + d);
 System.out.println(" a^b = " + e);
 System.out.println("!a&b|a&!b = " + f);
 System.out.println(" !a = " + g);
 }
}

After running this program, you will see that the same logical rules apply to boolean
values as they did to bits. As you can see from the following output, the string
representation of a Java boolean value is one of the literal values true or false:

 a = true
 b = false
 a|b = true
 a&b = false
 a^b = true
 !a&b|a&!b = true
 !a = false

Short-Circuit Logical Operators
Java provides two interesting Boolean operators not found in some other computer
languages. These are secondary versions of the Boolean AND and OR operators, and are
commonly known as short-circuit logical operators. As you can see from the preceding table,
the OR operator results in true when A is true, no matter what B is. Similarly, the AND
operator results in false when A is false, no matter what B is. If you use the || and && forms,
rather than the | and & forms of these operators, Java will not bother to evaluate the right-
hand operand when the outcome of the expression can be determined by the left operand
alone. This is very useful when the right-hand operand depends on the value of the left one
in order to function properly. For example, the following code fragment shows how you
can take advantage of short-circuit logical evaluation to be sure that a division operation
will be valid before evaluating it:

if (denom != 0 && num / denom > 10)

Since the short-circuit form of AND (&&) is used, there is no risk of causing a run-time
exception when denom is zero. If this line of code were written using the single & version
of AND, both sides would be evaluated, causing a run-time exception when denom is zero.

It is standard practice to use the short-circuit forms of AND and OR in cases involving
Boolean logic, leaving the single-character versions exclusively for bitwise operations.
However, there are exceptions to this rule. For example, consider the following statement:

if(c==1 & e++ < 100) d = 100;

Here, using a single & ensures that the increment operation will be applied to e whether c
is equal to 1 or not.

04-ch04.indd 76 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 77

Pa
rt

 I

NOTE The formal specification for Java refers to the short-circuit operators as the conditional-and and
the conditional-or.

The Assignment Operator
You have been using the assignment operator since Chapter 2. Now it is time to take a
formal look at it. The assignment operator is the single equal sign, =. The assignment operator
works in Java much as it does in any other computer language. It has this general form:

var = expression;

Here, the type of var must be compatible with the type of expression.
The assignment operator does have one interesting attribute that you may not be

familiar with: it allows you to create a chain of assignments. For example, consider this
fragment:

int x, y, z;

x = y = z = 100; // set x, y, and z to 100

This fragment sets the variables x, y, and z to 100 using a single statement. This works
because the = is an operator that yields the value of the right-hand expression. Thus, the
value of z = 100 is 100, which is then assigned to y, which in turn is assigned to x. Using a
“chain of assignment” is an easy way to set a group of variables to a common value.

The ? Operator
Java includes a special ternary (three-way) operator that can replace certain types of if-then-
else statements. This operator is the ?. It can seem somewhat confusing at first, but the ?
can be used very effectively once mastered. The ? has this general form:

expression1 ? expression2 : expression3

Here, expression1 can be any expression that evaluates to a boolean value. If expression1 is
true, then expression2 is evaluated; otherwise, expression3 is evaluated. The result of the ?
operation is that of the expression evaluated. Both expression2 and expression3 are required
to return the same (or compatible) type, which can’t be void.

Here is an example of the way that the ? is employed:

ratio = denom == 0 ? 0 : num / denom;

When Java evaluates this assignment expression, it first looks at the expression to the left of
the question mark. If denom equals zero, then the expression between the question mark
and the colon is evaluated and used as the value of the entire ? expression. If denom does
not equal zero, then the expression after the colon is evaluated and used for the value of the
entire ? expression. The result produced by the ? operator is then assigned to ratio.

Here is a program that demonstrates the ? operator. It uses it to obtain the absolute
value of a variable.

// Demonstrate ?.
class Ternary {
 public static void main(String args[]) {
 int i, k;

04-ch04.indd 77 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

78 PART I The Java Language

 i = 10;
 k = i < 0 ? -i : i; // get absolute value of i
 System.out.print("Absolute value of ");
 System.out.println(i + " is " + k);

 i = -10;
 k = i < 0 ? -i : i; // get absolute value of i
 System.out.print("Absolute value of ");
 System.out.println(i + " is " + k);
 }
}

The output generated by the program is shown here:

 Absolute value of 10 is 10
 Absolute value of -10 is 10

Operator Precedence
Table 4-1 shows the order of precedence for Java operators, from highest to lowest.
Operators in the same row are equal in precedence. In binary operations, the order of
evaluation is left to right (except for assignment, which evaluates right to left). Although
they are technically separators, the [], (), and . can also act like operators. In that capacity,
they would have the highest precedence. Also, notice the arrow operator (->). It was added
by JDK 8 and is used in lambda expressions.

Table 4-1 The Precedence of the Java Operators

Highest
++ (postfix) – – (postfix)

++ (prefix) – – (prefix) ~ ! + (unary) – (unary) (type-cast)

* / %

+ –

>> >>> <<

> >= < <= instanceof

== !=

&

^

|

&&

||

?:

−>

= op=

Lowest

04-ch04.indd 78 14/02/14 4:45 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 4 Operators 79

Pa
rt

 I

Using Parentheses
Parentheses raise the precedence of the operations that are inside them. This is often
necessary to obtain the result you desire. For example, consider the following expression:

a >> b + 3

This expression first adds 3 to b and then shifts a right by that result. That is, this
expression can be rewritten using redundant parentheses like this:

a >> (b + 3)

However, if you want to first shift a right by b positions and then add 3 to that result, you
will need to parenthesize the expression like this:

(a >> b) + 3

In addition to altering the normal precedence of an operator, parentheses can
sometimes be used to help clarify the meaning of an expression. For anyone reading your
code, a complicated expression can be difficult to understand. Adding redundant but
clarifying parentheses to complex expressions can help prevent confusion later. For
example, which of the following expressions is easier to read?

a | 4 + c >> b & 7
(a | (((4 + c) >> b) & 7))

One other point: parentheses (redundant or not) do not degrade the performance
of your program. Therefore, adding parentheses to reduce ambiguity does not negatively
affect your program.

04-ch04.indd 79 14/02/14 4:45 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

5
CHAPTER

 81

Control Statements

A programming language uses control statements to cause the flow of execution to advance
and branch based on changes to the state of a program. Java’s program control statements
can be put into the following categories: selection, iteration, and jump. Selection statements
allow your program to choose different paths of execution based upon the outcome of an
expression or the state of a variable. Iteration statements enable program execution to
repeat one or more statements (that is, iteration statements form loops). Jump statements
allow your program to execute in a nonlinear fashion. All of Java’s control statements are
examined here.

Java’s Selection Statements
Java supports two selection statements: if and switch. These statements allow you to control
the flow of your program’s execution based upon conditions known only during run time.
You will be pleasantly surprised by the power and flexibility contained in these two statements.

if
The if statement was introduced in Chapter 2. It is examined in detail here. The if statement
is Java’s conditional branch statement. It can be used to route program execution through
two different paths. Here is the general form of the if statement:

if (condition) statement1;
else statement2;

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a boolean value. The
else clause is optional.

The if works like this: If the condition is true, then statement1 is executed. Otherwise,
statement2 (if it exists) is executed. In no case will both statements be executed. For example,
consider the following:

int a, b;
//...
if(a < b) a = 0;
else b = 0;

05-ch05.indd 81 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

82 PART I The Java Language

Here, if a is less than b, then a is set to zero. Otherwise, b is set to zero. In no case are they
both set to zero.

Most often, the expression used to control the if will involve the relational operators.
However, this is not technically necessary. It is possible to control the if using a single boolean
variable, as shown in this code fragment:

boolean dataAvailable;
//...
if (dataAvailable)
 ProcessData();
else
 waitForMoreData();

Remember, only one statement can appear directly after the if or the else. If you want to
include more statements, you’ll need to create a block, as in this fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
} else
 waitForMoreData();

Here, both statements within the if block will execute if bytesAvailable is greater than zero.
Some programmers find it convenient to include the curly braces when using the if, even

when there is only one statement in each clause. This makes it easy to add another statement
at a later date, and you don’t have to worry about forgetting the braces. In fact, forgetting to
define a block when one is needed is a common cause of errors. For example, consider the
following code fragment:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
} else
 waitForMoreData();
 bytesAvailable = n;

It seems clear that the statement bytesAvailable = n; was intended to be executed inside the
else clause, because of the indentation level. However, as you recall, whitespace is insignificant
to Java, and there is no way for the compiler to know what was intended. This code will
compile without complaint, but it will behave incorrectly when run. The preceding example
is fixed in the code that follows:

int bytesAvailable;
// ...
if (bytesAvailable > 0) {
 ProcessData();
 bytesAvailable -= n;
} else {

05-ch05.indd 82 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 83

Pa
rt

 I

 waitForMoreData();
 bytesAvailable = n;
}

Nested ifs
A nested if is an if statement that is the target of another if or else. Nested ifs are very
common in programming. When you nest ifs, the main thing to remember is that an else
statement always refers to the nearest if statement that is within the same block as the else
and that is not already associated with an else. Here is an example:

if(i == 10) {
 if(j < 20) a = b;
 if(k > 100) c = d; // this if is
 else a = c; // associated with this else
}
else a = d; // this else refers to if(i == 10)

As the comments indicate, the final else is not associated with if(j<20) because it is not in
the same block (even though it is the nearest if without an else). Rather, the final else is
associated with if(i==10). The inner else refers to if(k>100) because it is the closest if within
the same block.

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if-else-
if ladder. It looks like this:

if(condition)
 statement;
else if(condition)
 statement;
else if(condition)
 statement;
.
.
.
else
 statement;

The if statements are executed from the top down. As soon as one of the conditions
controlling the if is true, the statement associated with that if is executed, and the rest of
the ladder is bypassed. If none of the conditions is true, then the final else statement will be
executed. The final else acts as a default condition; that is, if all other conditional tests fail,
then the last else statement is performed. If there is no final else and all other conditions
are false, then no action will take place.

Here is a program that uses an if-else-if ladder to determine which season a particular
month is in.

// Demonstrate if-else-if statements.
class IfElse {
 public static void main(String args[]) {
 int month = 4; // April
 String season;

05-ch05.indd 83 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

84 PART I The Java Language

 if(month == 12 || month == 1 || month == 2)
 season = "Winter";
 else if(month == 3 || month == 4 || month == 5)
 season = "Spring";
 else if(month == 6 || month == 7 || month == 8)
 season = "Summer";
 else if(month == 9 || month == 10 || month == 11)
 season = "Autumn";
 else
 season = "Bogus Month";

 System.out.println("April is in the " + season + ".");
 }
}

Here is the output produced by the program:

 April is in the Spring.

You might want to experiment with this program before moving on. As you will find, no
matter what value you give month, one and only one assignment statement within the ladder
will be executed.

switch
The switch statement is Java’s multiway branch statement. It provides an easy way to
dispatch execution to different parts of your code based on the value of an expression. As
such, it often provides a better alternative than a large series of if-else-if statements. Here is
the general form of a switch statement:

switch (expression) {
 case value1:
 // statement sequence
 break;
 case value2:
 // statement sequence
 break;
.
.
.
 case valueN :
 // statement sequence
 break;
 default:
 // default statement sequence
}

For versions of Java prior to JDK 7, expression must be of type byte, short, int, char, or an
enumeration. (Enumerations are described in Chapter 12.) Beginning with JDK 7, expression

05-ch05.indd 84 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 85

Pa
rt

 I

can also be of type String. Each value specified in the case statements must be a unique
constant expression (such as a literal value). Duplicate case values are not allowed. The type
of each value must be compatible with the type of expression.

The switch statement works like this: The value of the expression is compared with each of
the values in the case statements. If a match is found, the code sequence following that case
statement is executed. If none of the constants matches the value of the expression, then the
default statement is executed. However, the default statement is optional. If no case matches
and no default is present, then no further action is taken.

The break statement is used inside the switch to terminate a statement sequence. When a
break statement is encountered, execution branches to the first line of code that follows the
entire switch statement. This has the effect of “jumping out” of the switch.

Here is a simple example that uses a switch statement:

// A simple example of the switch.
class SampleSwitch {
 public static void main(String args[]) {
 for(int i=0; i<6; i++)
 switch(i) {
 case 0:
 System.out.println("i is zero.");
 break;
 case 1:
 System.out.println("i is one.");
 break;
 case 2:
 System.out.println("i is two.");
 break;
 case 3:
 System.out.println("i is three.");
 break;
 default:
 System.out.println("i is greater than 3.");
 }
 }
}

The output produced by this program is shown here:

 i is zero.
 i is one.
 i is two.
 i is three.
 i is greater than 3.
 i is greater than 3.

As you can see, each time through the loop, the statements associated with the case
constant that matches i are executed. All others are bypassed. After i is greater than 3,
no case statements match, so the default statement is executed.

05-ch05.indd 85 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

86 PART I The Java Language

The break statement is optional. If you omit the break, execution will continue on into the
next case. It is sometimes desirable to have multiple cases without break statements between
them. For example, consider the following program:

// In a switch, break statements are optional.
class MissingBreak {
 public static void main(String args[]) {
 for(int i=0; i<12; i++)
 switch(i) {
 case 0:
 case 1:
 case 2:
 case 3:
 case 4:
 System.out.println("i is less than 5");
 break;
 case 5:
 case 6:
 case 7:
 case 8:
 case 9:
 System.out.println("i is less than 10");
 break;
 default:
 System.out.println("i is 10 or more");
 }
 }
}

This program generates the following output:

 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 5
 i is less than 10
 i is less than 10
 i is less than 10
 i is less than 10
 i is less than 10
 i is 10 or more
 i is 10 or more

As you can see, execution falls through each case until a break statement (or the end of the
switch) is reached.

While the preceding example is, of course, contrived for the sake of illustration, omitting
the break statement has many practical applications in real programs. To sample its more
realistic usage, consider the following rewrite of the season example shown earlier. This version
uses a switch to provide a more efficient implementation.

// An improved version of the season program.
class Switch {
 public static void main(String args[]) {
 int month = 4;

05-ch05.indd 86 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 87

Pa
rt

 I

 String season;

 switch (month) {
 case 12:
 case 1:
 case 2:
 season = "Winter";
 break;
 case 3:
 case 4:
 case 5:
 season = "Spring";
 break;
 case 6:
 case 7:
 case 8:
 season = "Summer";
 break;
 case 9:
 case 10:
 case 11:
 season = "Autumn";
 break;
 default:
 season = "Bogus Month";
 }
 System.out.println("April is in the " + season + ".");
 }
}

As mentioned, beginning with JDK 7, you can use a string to control a switch statement.
For example,

// Use a string to control a switch statement.

class StringSwitch {
 public static void main(String args[]) {

 String str = "two";

 switch(str) {
 case "one":
 System.out.println("one");
 break;
 case "two":
 System.out.println("two");
 break;
 case "three":
 System.out.println("three");
 break;
 default:
 System.out.println("no match");
 break;
 }
 }
}

05-ch05.indd 87 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

88 PART I The Java Language

As you would expect, the output from the program is

 two

The string contained in str (which is "two" in this program) is tested against the case
constants. When a match is found (as it is in the second case), the code sequence associated
with that sequence is executed.

Being able to use strings in a switch statement streamlines many situations. For example,
using a string-based switch is an improvement over using the equivalent sequence of if/else
statements. However, switching on strings can be more expensive than switching on integers.
Therefore, it is best to switch on strings only in cases in which the controlling data is already
in string form. In other words, don’t use strings in a switch unnecessarily.

Nested switch Statements
You can use a switch as part of the statement sequence of an outer switch. This is called a
nested switch. Since a switch statement defines its own block, no conflicts arise between the
case constants in the inner switch and those in the outer switch. For example, the following
fragment is perfectly valid:

switch(count) {
 case 1:
 switch(target) { // nested switch
 case 0:
 System.out.println("target is zero");
 break;
 case 1: // no conflicts with outer switch
 System.out.println("target is one");
 break;
 }
 break;
 case 2: // ...

Here, the case 1: statement in the inner switch does not conflict with the case 1: statement
in the outer switch. The count variable is compared only with the list of cases at the outer
level. If count is 1, then target is compared with the inner list cases.

In summary, there are three important features of the switch statement to note:

•	 The switch differs from the if in that switch can only test for equality, whereas if can
evaluate any type of Boolean expression. That is, the switch looks only for a match
between the value of the expression and one of its case constants.

•	 No two case constants in the same switch can have identical values. Of course, a
switch statement and an enclosing outer switch can have case constants in common.

•	 A switch statement is usually more efficient than a set of nested ifs.

The last point is particularly interesting because it gives insight into how the Java compiler
works. When it compiles a switch statement, the Java compiler will inspect each of the case
constants and create a “jump table” that it will use for selecting the path of execution
depending on the value of the expression. Therefore, if you need to select among a large

05-ch05.indd 88 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 89

Pa
rt

 I

group of values, a switch statement will run much faster than the equivalent logic coded using
a sequence of if-elses. The compiler can do this because it knows that the case constants are
all the same type and simply must be compared for equality with the switch expression. The
compiler has no such knowledge of a long list of if expressions.

Iteration Statements
Java’s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met. As you will see, Java has a loop to fit any
programming need.

while
The while loop is Java’s most fundamental loop statement. It repeats a statement or block
while its controlling expression is true. Here is its general form:

while(condition) {
 // body of loop
}

The condition can be any Boolean expression. The body of the loop will be executed as long
as the conditional expression is true. When condition becomes false, control passes to the
next line of code immediately following the loop. The curly braces are unnecessary if only a
single statement is being repeated.

Here is a while loop that counts down from 10, printing exactly ten lines of "tick":

// Demonstrate the while loop.
class While {
 public static void main(String args[]) {
 int n = 10;

 while(n > 0) {
 System.out.println("tick " + n);
 n--;
 }
 }
}

When you run this program, it will “tick” ten times:

 tick 10
 tick 9
 tick 8
 tick 7
 tick 6
 tick 5
 tick 4
 tick 3
 tick 2
 tick 1

05-ch05.indd 89 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

90 PART I The Java Language

Since the while loop evaluates its conditional expression at the top of the loop, the body of
the loop will not execute even once if the condition is false to begin with. For example, in the
following fragment, the call to println() is never executed:

int a = 10, b = 20;

while(a > b)
 System.out.println("This will not be displayed");

The body of the while (or any other of Java’s loops) can be empty. This is because a null
statement (one that consists only of a semicolon) is syntactically valid in Java. For example,
consider the following program:

// The target of a loop can be empty.
class NoBody {
 public static void main(String args[]) {
 int i, j;

 i = 100;
 j = 200;

 // find midpoint between i and j
 while(++i < --j); // no body in this loop

 System.out.println("Midpoint is " + i);
 }
}

This program finds the midpoint between i and j. It generates the following output:

 Midpoint is 150

Here is how this while loop works. The value of i is incremented, and the value of j is
decremented. These values are then compared with one another. If the new value of i is still
less than the new value of j, then the loop repeats. If i is equal to or greater than j, the loop
stops. Upon exit from the loop, i will hold a value that is midway between the original values of
i and j. (Of course, this procedure only works when i is less than j to begin with.) As you can
see, there is no need for a loop body; all of the action occurs within the conditional expression,
itself. In professionally written Java code, short loops are frequently coded without bodies
when the controlling expression can handle all of the details itself.

do-while
As you just saw, if the conditional expression controlling a while loop is initially false, then
the body of the loop will not be executed at all. However, sometimes it is desirable to
execute the body of a loop at least once, even if the conditional expression is false to begin
with. In other words, there are times when you would like to test the termination expression
at the end of the loop rather than at the beginning. Fortunately, Java supplies a loop that
does just that: the do-while. The do-while loop always executes its body at least once,
because its conditional expression is at the bottom of the loop. Its general form is

05-ch05.indd 90 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 91

Pa
rt

 I

do {
 // body of loop
} while (condition);

Each iteration of the do-while loop first executes the body of the loop and then evaluates
the conditional expression. If this expression is true, the loop will repeat. Otherwise, the
loop terminates. As with all of Java’s loops, condition must be a Boolean expression.

Here is a reworked version of the “tick” program that demonstrates the do-while loop. It
generates the same output as before.

// Demonstrate the do-while loop.
class DoWhile {
 public static void main(String args[]) {
 int n = 10;

 do {
 System.out.println("tick " + n);
 n--;
 } while(n > 0);
 }
}

The loop in the preceding program, while technically correct, can be written more
efficiently as follows:

do {
 System.out.println("tick " + n);
} while(--n > 0);

In this example, the expression (– –n > 0) combines the decrement of n and the test for zero
into one expression. Here is how it works. First, the – –n statement executes, decrementing
n and returning the new value of n. This value is then compared with zero. If it is greater
than zero, the loop continues; otherwise, it terminates.

The do-while loop is especially useful when you process a menu selection, because you will
usually want the body of a menu loop to execute at least once. Consider the following program,
which implements a very simple help system for Java’s selection and iteration statements:

// Using a do-while to process a menu selection
class Menu {
 public static void main(String args[])
 throws java.io.IOException {
 char choice;

 do {
 System.out.println("Help on: ");
 System.out.println(" 1. if");
 System.out.println(" 2. switch");
 System.out.println(" 3. while");
 System.out.println(" 4. do-while");
 System.out.println(" 5. for\n");
 System.out.println("Choose one:");

05-ch05.indd 91 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

92 PART I The Java Language

 choice = (char) System.in.read();
 } while(choice < '1' || choice > '5');

 System.out.println("\n");

 switch(choice) {
 case '1':
 System.out.println("The if:\n");
 System.out.println("if(condition) statement;");
 System.out.println("else statement;");
 break;
 case '2':
 System.out.println("The switch:\n");
 System.out.println("switch(expression) {");
 System.out.println(" case constant:");
 System.out.println(" statement sequence");
 System.out.println(" break;");
 System.out.println(" //...");
 System.out.println("}");
 break;
 case '3':
 System.out.println("The while:\n");
 System.out.println("while(condition) statement;");
 break;
 case '4':
 System.out.println("The do-while:\n");
 System.out.println("do {");
 System.out.println(" statement;");
 System.out.println("} while (condition);");
 break;
 case '5':
 System.out.println("The for:\n");
 System.out.print("for(init; condition; iteration)");
 System.out.println(" statement;");
 break;
 }
 }
}

Here is a sample run produced by this program:

 Help on:
 1. if
 2. switch
 3. while
 4. do-while
 5. for
 Choose one:
 4
 The do-while:
 do {
 statement;
 } while (condition);

05-ch05.indd 92 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 93

Pa
rt

 I

In the program, the do-while loop is used to verify that the user has entered a valid choice.
If not, then the user is reprompted. Since the menu must be displayed at least once, the
do-while is the perfect loop to accomplish this.

A few other points about this example: Notice that characters are read from the keyboard
by calling System.in.read(). This is one of Java’s console input functions. Although Java’s
console I/O methods won’t be discussed in detail until Chapter 13, System.in.read() is used
here to obtain the user’s choice. It reads characters from standard input (returned as integers,
which is why the return value was cast to char). By default, standard input is line buffered, so
you must press enter before any characters that you type will be sent to your program.

Java’s console input can be a bit awkward to work with. Further, most real-world Java
programs will be graphical and window-based. For these reasons, not much use of console
input has been made in this book. However, it is useful in this context. One other point
to consider: Because System.in.read() is being used, the program must specify the
throws java.io.IOException clause. This line is necessary to handle input errors. It is
part of Java’s exception handling features, which are discussed in Chapter 10.

for
You were introduced to a simple form of the for loop in Chapter 2. As you will see, it is a
powerful and versatile construct.

Beginning with JDK 5, there are two forms of the for loop. The first is the traditional form
that has been in use since the original version of Java. The second is the newer “for-each” form.
Both types of for loops are discussed here, beginning with the traditional form.

Here is the general form of the traditional for statement:

for(initialization; condition; iteration) {
 // body
}

If only one statement is being repeated, there is no need for the curly braces.
The for loop operates as follows. When the loop first starts, the initialization portion of the

loop is executed. Generally, this is an expression that sets the value of the loop control variable,
which acts as a counter that controls the loop. It is important to understand that the initialization
expression is executed only once. Next, condition is evaluated. This must be a Boolean expression.
It usually tests the loop control variable against a target value. If this expression is true, then the
body of the loop is executed. If it is false, the loop terminates. Next, the iteration portion of the
loop is executed. This is usually an expression that increments or decrements the loop control
variable. The loop then iterates, first evaluating the conditional expression, then executing the
body of the loop, and then executing the iteration expression with each pass. This process
repeats until the controlling expression is false.

Here is a version of the “tick” program that uses a for loop:

// Demonstrate the for loop.
class ForTick {
 public static void main(String args[]) {
 int n;

 for(n=10; n>0; n--)

05-ch05.indd 93 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

94 PART I The Java Language

 System.out.println("tick " + n);
 }
}

Declaring Loop Control Variables Inside the for Loop
Often the variable that controls a for loop is needed only for the purposes of the loop and
is not used elsewhere. When this is the case, it is possible to declare the variable inside the
initialization portion of the for. For example, here is the preceding program recoded so
that the loop control variable n is declared as an int inside the for:

// Declare a loop control variable inside the for.
class ForTick {
 public static void main(String args[]) {

 // here, n is declared inside of the for loop
 for(int n=10; n>0; n--)
 System.out.println("tick " + n);
 }
}

When you declare a variable inside a for loop, there is one important point to remember:
the scope of that variable ends when the for statement does. (That is, the scope of the variable
is limited to the for loop.) Outside the for loop, the variable will cease to exist. If you need to
use the loop control variable elsewhere in your program, you will not be able to declare it
inside the for loop.

When the loop control variable will not be needed elsewhere, most Java programmers
declare it inside the for. For example, here is a simple program that tests for prime numbers.
Notice that the loop control variable, i, is declared inside the for since it is not needed
elsewhere.

// Test for primes.
class FindPrime {
 public static void main(String args[]) {
 int num;
 boolean isPrime;

 num = 14;

 if(num < 2) isPrime = false;
 else isPrime = true;

 for(int i=2; i <= num/i; i++) {
 if((num % i) == 0) {
 isPrime = false;
 break;
 }
 }

 if(isPrime) System.out.println("Prime");
 else System.out.println("Not Prime");
 }
}

05-ch05.indd 94 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 95

Pa
rt

 I

Using the Comma
There will be times when you will want to include more than one statement in the
initialization and iteration portions of the for loop. For example, consider the loop in
the following program:

class Sample {
 public static void main(String args[]) {
 int a, b;

 b = 4;
 for(a=1; a<b; a++) {
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 b--;
 }
 }
}

As you can see, the loop is controlled by the interaction of two variables. Since the loop is
governed by two variables, it would be useful if both could be included in the for statement,
itself, instead of b being handled manually. Fortunately, Java provides a way to accomplish
this. To allow two or more variables to control a for loop, Java permits you to include
multiple statements in both the initialization and iteration portions of the for. Each
statement is separated from the next by a comma.

Using the comma, the preceding for loop can be more efficiently coded, as shown here:

// Using the comma.
class Comma {
 public static void main(String args[]) {
 int a, b;

 for(a=1, b=4; a<b; a++, b--) {
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 }
 }
}

In this example, the initialization portion sets the values of both a and b. The two comma-
separated statements in the iteration portion are executed each time the loop repeats. The
program generates the following output:

 a = 1
 b = 4
 a = 2
 b = 3

NOTE If you are familiar with C/C++, then you know that in those languages the comma is an operator
that can be used in any valid expression. However, this is not the case with Java. In Java, the comma
is a separator.

05-ch05.indd 95 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

96 PART I The Java Language

Some for Loop Variations
The for loop supports a number of variations that increase its power and applicability. The
reason it is so flexible is that its three parts—the initialization, the conditional test, and
the iteration—do not need to be used for only those purposes. In fact, the three sections of the
for can be used for any purpose you desire. Let’s look at some examples.

One of the most common variations involves the conditional expression. Specifically, this
expression does not need to test the loop control variable against some target value. In fact,
the condition controlling the for can be any Boolean expression. For example, consider the
following fragment:

boolean done = false;

for(int i=1; !done; i++) {
 // ...
 if(interrupted()) done = true;
}

In this example, the for loop continues to run until the boolean variable done is set to true.
It does not test the value of i.

Here is another interesting for loop variation. Either the initialization or the iteration
expression or both may be absent, as in this next program:

// Parts of the for loop can be empty.
class ForVar {
 public static void main(String args[]) {
 int i;
 boolean done = false;

 i = 0;
 for(; !done;) {
 System.out.println("i is " + i);
 if(i == 10) done = true;
 i++;
 }
 }
}

Here, the initialization and iteration expressions have been moved out of the for. Thus,
parts of the for are empty. While this is of no value in this simple example—indeed, it
would be considered quite poor style—there can be times when this type of approach
makes sense. For example, if the initial condition is set through a complex expression
elsewhere in the program or if the loop control variable changes in a nonsequential
manner determined by actions that occur within the body of the loop, it may be
appropriate to leave these parts of the for empty.

Here is one more for loop variation. You can intentionally create an infinite loop (a loop
that never terminates) if you leave all three parts of the for empty. For example:

for(; ;) {
 // ...
}

05-ch05.indd 96 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 97

Pa
rt

 I

This loop will run forever because there is no condition under which it will terminate.
Although there are some programs, such as operating system command processors, that
require an infinite loop, most “infinite loops” are really just loops with special termination
requirements. As you will soon see, there is a way to terminate a loop—even an infinite loop
like the one shown—that does not make use of the normal loop conditional expression.

The For-Each Version of the for Loop
Beginning with JDK 5, a second form of for was defined that implements a “for-each” style
loop. As you may know, contemporary language theory has embraced the for-each concept,
and it has become a standard feature that programmers have come to expect. A for-each
style loop is designed to cycle through a collection of objects, such as an array, in strictly
sequential fashion, from start to finish. Unlike some languages, such as C#, that implement
a for-each loop by using the keyword foreach, Java adds the for-each capability by enhancing
the for statement. The advantage of this approach is that no new keyword is required, and
no preexisting code is broken. The for-each style of for is also referred to as the enhanced
for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

Here, type specifies the type and itr-var specifies the name of an iteration variable that will
receive the elements from a collection, one at a time, from beginning to end. The collection
being cycled through is specified by collection. There are various types of collections that can
be used with the for, but the only type used in this chapter is the array. (Other types of
collections that can be used with the for, such as those defined by the Collections
Framework, are discussed later in this book.) With each iteration of the loop, the next
element in the collection is retrieved and stored in itr-var. The loop repeats until all
elements in the collection have been obtained.

Because the iteration variable receives values from the collection, type must be the same as
(or compatible with) the elements stored in the collection. Thus, when iterating over arrays,
type must be compatible with the element type of the array.

To understand the motivation behind a for-each style loop, consider the type of for loop
that it is designed to replace. The following fragment uses a traditional for loop to compute
the sum of the values in an array:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int i=0; i < 10; i++) sum += nums[i];

To compute the sum, each element in nums is read, in order, from start to finish. Thus, the
entire array is read in strictly sequential order. This is accomplished by manually indexing the
nums array by i, the loop control variable.

The for-each style for automates the preceding loop. Specifically, it eliminates the need to
establish a loop counter, specify a starting and ending value, and manually index the array.
Instead, it automatically cycles through the entire array, obtaining one element at a time, in

05-ch05.indd 97 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

98 PART I The Java Language

sequence, from beginning to end. For example, here is the preceding fragment rewritten
using a for-each version of the for:

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;

for(int x: nums) sum += x;

With each pass through the loop, x is automatically given a value equal to the next element
in nums. Thus, on the first iteration, x contains 1; on the second iteration, x contains 2; and so
on. Not only is the syntax streamlined, but it also prevents boundary errors.

Here is an entire program that demonstrates the for-each version of the for just described:

// Use a for-each style for loop.
class ForEach {
 public static void main(String args[]) {
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
 int sum = 0;

 // use for-each style for to display and sum the values
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 }

 System.out.println("Summation: " + sum);
 }
}

The output from the program is shown here:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Value is: 6
 Value is: 7
 Value is: 8
 Value is: 9
 Value is: 10
 Summation: 55

As this output shows, the for-each style for automatically cycles through an array in
sequence from the lowest index to the highest.

Although the for-each for loop iterates until all elements in an array have been examined,
it is possible to terminate the loop early by using a break statement. For example, this program
sums only the first five elements of nums:

// Use break with a for-each style for.
class ForEach2 {
 public static void main(String args[]) {
 int sum = 0;

05-ch05.indd 98 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 99

Pa
rt

 I

 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 // use for to display and sum the values
 for(int x : nums) {
 System.out.println("Value is: " + x);
 sum += x;
 if(x == 5) break; // stop the loop when 5 is obtained
 }
 System.out.println("Summation of first 5 elements: " + sum);
 }
}

This is the output produced:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Summation of first 5 elements: 15

As is evident, the for loop stops after the fifth element has been obtained. The break
statement can also be used with Java’s other loops, and it is discussed in detail later in this
chapter.

There is one important point to understand about the for-each style loop. Its iteration
variable is “read-only” as it relates to the underlying array. An assignment to the iteration
variable has no effect on the underlying array. In other words, you can’t change the contents of
the array by assigning the iteration variable a new value. For example, consider this program:

// The for-each loop is essentially read-only.
class NoChange {
 public static void main(String args[]) {
 int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

 for(int x: nums) {
 System.out.print(x + " ");
 x = x * 10; // no effect on nums
 }

 System.out.println();

 for(int x : nums)
 System.out.print(x + " ");

 System.out.println();
 }
}

The first for loop increases the value of the iteration variable by a factor of 10. However,
this assignment has no effect on the underlying array nums, as the second for loop illustrates.
The output, shown here, proves this point:

 1 2 3 4 5 6 7 8 9 10
 1 2 3 4 5 6 7 8 9 10

05-ch05.indd 99 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

100 PART I The Java Language

Iterating Over Multidimensional Arrays
The enhanced version of the for also works on multidimensional arrays. Remember,
however, that in Java, multidimensional arrays consist of arrays of arrays. (For example,
a two-dimensional array is an array of one-dimensional arrays.) This is important when
iterating over a multidimensional array, because each iteration obtains the next array, not an
individual element. Furthermore, the iteration variable in the for loop must be compatible
with the type of array being obtained. For example, in the case of a two-dimensional array,
the iteration variable must be a reference to a one-dimensional array. In general, when
using the for-each for to iterate over an array of N dimensions, the objects obtained will be
arrays of N–1 dimensions. To understand the implications of this, consider the following
program. It uses nested for loops to obtain the elements of a two-dimensional array in row-
order, from first to last.

// Use for-each style for on a two-dimensional array.
class ForEach3 {
 public static void main(String args[]) {
 int sum = 0;
 int nums[][] = new int[3][5];

 // give nums some values
 for(int i = 0; i < 3; i++)
 for(int j = 0; j < 5; j++)
 nums[i][j] = (i+1)*(j+1);

 // use for-each for to display and sum the values
 for(int x[] : nums) {
 for(int y : x) {
 System.out.println("Value is: " + y);
 sum += y;
 }
 }
 System.out.println("Summation: " + sum);
 }
}

The output from this program is shown here:

 Value is: 1
 Value is: 2
 Value is: 3
 Value is: 4
 Value is: 5
 Value is: 2
 Value is: 4
 Value is: 6
 Value is: 8
 Value is: 10
 Value is: 3
 Value is: 6
 Value is: 9

05-ch05.indd 100 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 101

Pa
rt

 I

 Value is: 12
 Value is: 15
 Summation: 90

In the program, pay special attention to this line:

for(int x[]: nums) {

Notice how x is declared. It is a reference to a one-dimensional array of integers. This is
necessary because each iteration of the for obtains the next array in nums, beginning with
the array specified by nums[0]. The inner for loop then cycles through each of these arrays,
displaying the values of each element.

Applying the Enhanced for
Since the for-each style for can only cycle through an array sequentially, from start to finish,
you might think that its use is limited, but this is not true. A large number of algorithms
require exactly this mechanism. One of the most common is searching. For example, the
following program uses a for loop to search an unsorted array for a value. It stops if the
value is found.

// Search an array using for-each style for.
class Search {
 public static void main(String args[]) {
 int nums[] = { 6, 8, 3, 7, 5, 6, 1, 4 };
 int val = 5;
 boolean found = false;

 // use for-each style for to search nums for val
 for(int x : nums) {
 if(x == val) {
 found = true;
 break;
 }
 }

 if(found)
 System.out.println("Value found!");
 }
}

The for-each style for is an excellent choice in this application because searching an
unsorted array involves examining each element in sequence. (Of course, if the array were
sorted, a binary search could be used, which would require a different style loop.) Other types
of applications that benefit from for-each style loops include computing an average, finding
the minimum or maximum of a set, looking for duplicates, and so on.

Although we have been using arrays in the examples in this chapter, the for-each style for is
especially useful when operating on collections defined by the Collections Framework, which is
described in Part II. More generally, the for can cycle through the elements of any collection
of objects, as long as that collection satisfies a certain set of constraints, which are described in
Chapter 18.

05-ch05.indd 101 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

102 PART I The Java Language

Nested Loops
Like all other programming languages, Java allows loops to be nested. That is, one loop
may be inside another. For example, here is a program that nests for loops:

// Loops may be nested.
class Nested {
 public static void main(String args[]) {
 int i, j;

 for(i=0; i<10; i++) {
 for(j=i; j<10; j++)
 System.out.print(".");
 System.out.println();
 }
 }
}

The output produced by this program is shown here:

 ...
 ..
 .

Jump Statements
Java supports three jump statements: break, continue, and return. These statements transfer
control to another part of your program. Each is examined here.

NOTE In addition to the jump statements discussed here, Java supports one other way that you can
change your program’s flow of execution: through exception handling. Exception handling provides
a structured method by which run-time errors can be trapped and handled by your program. It is
supported by the keywords try, catch, throw, throws, and finally. In essence, the exception handling
mechanism allows your program to perform a nonlocal branch. Since exception handling is a large
topic, it is discussed in its own chapter, Chapter 10.

Using break
In Java, the break statement has three uses. First, as you have seen, it terminates a statement
sequence in a switch statement. Second, it can be used to exit a loop. Third, it can be used
as a “civilized” form of goto. The last two uses are explained here.

05-ch05.indd 102 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 103

Pa
rt

 I

Using break to Exit a Loop
By using break, you can force immediate termination of a loop, bypassing the conditional
expression and any remaining code in the body of the loop. When a break statement is
encountered inside a loop, the loop is terminated and program control resumes at the next
statement following the loop. Here is a simple example:

// Using break to exit a loop.
class BreakLoop {
 public static void main(String args[]) {
 for(int i=0; i<100; i++) {
 if(i == 10) break; // terminate loop if i is 10
 System.out.println("i: " + i);
 }
 System.out.println("Loop complete.");
 }
}

This program generates the following output:

 i: 0
 i: 1
 i: 2
 i: 3
 i: 4
 i: 5
 i: 6
 i: 7
 i: 8
 i: 9
 Loop complete.

As you can see, although the for loop is designed to run from 0 to 99, the break statement
causes it to terminate early, when i equals 10.

The break statement can be used with any of Java’s loops, including intentionally infinite
loops. For example, here is the preceding program coded by use of a while loop. The output
from this program is the same as just shown.

// Using break to exit a while loop.
class BreakLoop2 {
 public static void main(String args[]) {
 int i = 0;

 while(i < 100) {
 if(i == 10) break; // terminate loop if i is 10
 System.out.println("i: " + i);
 i++;
 }
 System.out.println("Loop complete.");
 }
}

05-ch05.indd 103 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

104 PART I The Java Language

When used inside a set of nested loops, the break statement will only break out of the
innermost loop. For example:

// Using break with nested loops.
class BreakLoop3 {
 public static void main(String args[]) {
 for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 for(int j=0; j<100; j++) {
 if(j == 10) break; // terminate loop if j is 10
 System.out.print(j + " ");
 }
 System.out.println();
 }
 System.out.println("Loops complete.");
 }
}

This program generates the following output:

 Pass 0: 0 1 2 3 4 5 6 7 8 9
 Pass 1: 0 1 2 3 4 5 6 7 8 9
 Pass 2: 0 1 2 3 4 5 6 7 8 9
 Loops complete.

As you can see, the break statement in the inner loop only causes termination of that loop.
The outer loop is unaffected.

Here are two other points to remember about break. First, more than one break statement
may appear in a loop. However, be careful. Too many break statements have the tendency to
destructure your code. Second, the break that terminates a switch statement affects only that
switch statement and not any enclosing loops.

REMEMBER break was not designed to provide the normal means by which a loop is terminated. The
loop’s conditional expression serves this purpose. The break statement should be used to cancel a
loop only when some sort of special situation occurs.

Using break as a Form of Goto
In addition to its uses with the switch statement and loops, the break statement can also be
employed by itself to provide a “civilized” form of the goto statement. Java does not have a
goto statement because it provides a way to branch in an arbitrary and unstructured
manner. This usually makes goto-ridden code hard to understand and hard to maintain. It
also prohibits certain compiler optimizations. There are, however, a few places where the
goto is a valuable and legitimate construct for flow control. For example, the goto can be
useful when you are exiting from a deeply nested set of loops. To handle such situations,
Java defines an expanded form of the break statement. By using this form of break, you can,
for example, break out of one or more blocks of code. These blocks need not be part of a
loop or a switch. They can be any block. Further, you can specify precisely where execution
will resume, because this form of break works with a label. As you will see, break gives you
the benefits of a goto without its problems.

05-ch05.indd 104 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 105

Pa
rt

 I

The general form of the labeled break statement is shown here:

break label;

Most often, label is the name of a label that identifies a block of code. This can be a stand-
alone block of code but it can also be a block that is the target of another statement. When
this form of break executes, control is transferred out of the named block. The labeled
block must enclose the break statement, but it does not need to be the immediately
enclosing block. This means, for example, that you can use a labeled break statement to
exit from a set of nested blocks. But you cannot use break to transfer control out of a block
that does not enclose the break statement.

To name a block, put a label at the start of it. A label is any valid Java identifier followed by
a colon. Once you have labeled a block, you can then use this label as the target of a break
statement. Doing so causes execution to resume at the end of the labeled block. For example,
the following program shows three nested blocks, each with its own label. The break statement
causes execution to jump forward, past the end of the block labeled second, skipping the two
println() statements.

// Using break as a civilized form of goto.
class Break {
 public static void main(String args[]) {
 boolean t = true;

 first: {
 second: {
 third: {
 System.out.println("Before the break.");
 if(t) break second; // break out of second block
 System.out.println("This won't execute");
 }
 System.out.println("This won't execute");
 }
 System.out.println("This is after second block.");
 }
 }
}

Running this program generates the following output:

 Before the break.
 This is after second block.

One of the most common uses for a labeled break statement is to exit from nested loops.
For example, in the following program, the outer loop executes only once:

// Using break to exit from nested loops
class BreakLoop4 {
 public static void main(String args[]) {
 outer: for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 for(int j=0; j<100; j++) {
 if(j == 10) break outer; // exit both loops

05-ch05.indd 105 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

106 PART I The Java Language

 System.out.print(j + " ");
 }
 System.out.println("This will not print");
 }
 System.out.println("Loops complete.");
 }
}

This program generates the following output:

 Pass 0: 0 1 2 3 4 5 6 7 8 9 Loops complete.

As you can see, when the inner loop breaks to the outer loop, both loops have been
terminated. Notice that this example labels the for statement, which has a block of code as
its target.

Keep in mind that you cannot break to any label which is not defined for an enclosing
block. For example, the following program is invalid and will not compile:

// This program contains an error.
class BreakErr {
 public static void main(String args[]) {

 one: for(int i=0; i<3; i++) {
 System.out.print("Pass " + i + ": ");
 }

 for(int j=0; j<100; j++) {
 if(j == 10) break one; // WRONG
 System.out.print(j + " ");
 }
 }
}

Since the loop labeled one does not enclose the break statement, it is not possible to
transfer control out of that block.

Using continue
Sometimes it is useful to force an early iteration of a loop. That is, you might want to
continue running the loop but stop processing the remainder of the code in its body for
this particular iteration. This is, in effect, a goto just past the body of the loop, to the loop’s
end. The continue statement performs such an action. In while and do-while loops, a
continue statement causes control to be transferred directly to the conditional expression
that controls the loop. In a for loop, control goes first to the iteration portion of the for
statement and then to the conditional expression. For all three loops, any intermediate
code is bypassed.

Here is an example program that uses continue to cause two numbers to be printed on
each line:

// Demonstrate continue.
class Continue {
 public static void main(String args[]) {

05-ch05.indd 106 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 5 Control Statements 107

Pa
rt

 I

 for(int i=0; i<10; i++) {
 System.out.print(i + " ");
 if (i%2 == 0) continue;
 System.out.println("");
 }
 }
}

This code uses the % operator to check if i is even. If it is, the loop continues without
printing a newline. Here is the output from this program:

 0 1
 2 3
 4 5
 6 7
 8 9

As with the break statement, continue may specify a label to describe which enclosing
loop to continue. Here is an example program that uses continue to print a triangular
multiplication table for 0 through 9:

// Using continue with a label.
class ContinueLabel {
 public static void main(String args[]) {
outer: for (int i=0; i<10; i++) {
 for(int j=0; j<10; j++) {
 if(j > i) {
 System.out.println();
 continue outer;
 }
 System.out.print(" " + (i * j));
 }
 }
 System.out.println();
 }
}

The continue statement in this example terminates the loop counting j and continues with
the next iteration of the loop counting i. Here is the output of this program:

 0
 0 1
 0 2 4
 0 3 6 9
 0 4 8 12 16
 0 5 10 15 20 25
 0 6 12 18 24 30 36
 0 7 14 21 28 35 42 49
 0 8 16 24 32 40 48 56 64
 0 9 18 27 36 45 54 63 72 81

Good uses of continue are rare. One reason is that Java provides a rich set of loop
statements which fit most applications. However, for those special circumstances in which
early iteration is needed, the continue statement provides a structured way to accomplish it.

05-ch05.indd 107 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

108 PART I The Java Language

return
The last control statement is return. The return statement is used to explicitly return from a
method. That is, it causes program control to transfer back to the caller of the method. As
such, it is categorized as a jump statement. Although a full discussion of return must wait
until methods are discussed in Chapter 6, a brief look at return is presented here.

At any time in a method, the return statement can be used to cause execution to branch
back to the caller of the method. Thus, the return statement immediately terminates the
method in which it is executed. The following example illustrates this point. Here, return
causes execution to return to the Java run-time system, since it is the run-time system that calls
main():

// Demonstrate return.
class Return {
 public static void main(String args[]) {
 boolean t = true;

 System.out.println("Before the return.");

 if(t) return; // return to caller

 System.out.println("This won't execute.");
 }
}

The output from this program is shown here:

 Before the return.

As you can see, the final println() statement is not executed. As soon as return is executed,
control passes back to the caller.

One last point: In the preceding program, the if(t) statement is necessary. Without it, the
Java compiler would flag an “unreachable code” error because the compiler would know that
the last println() statement would never be executed. To prevent this error, the if statement is
used here to trick the compiler for the sake of this demonstration.

05-ch05.indd 108 14/02/14 4:46 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

6
CHAPTER

 109

Introducing Classes

The class is at the core of Java. It is the logical construct upon which the entire Java language
is built because it defines the shape and nature of an object. As such, the class forms the
basis for object-oriented programming in Java. Any concept you wish to implement in a Java
program must be encapsulated within a class.

Because the class is so fundamental to Java, this and the next few chapters will be devoted
to it. Here, you will be introduced to the basic elements of a class and learn how a class can be
used to create objects. You will also learn about methods, constructors, and the this keyword.

Class Fundamentals
Classes have been used since the beginning of this book. However, until now, only the most
rudimentary form of a class has been shown. The classes created in the preceding chapters
primarily exist simply to encapsulate the main() method, which has been used to demonstrate
the basics of the Java syntax. As you will see, classes are substantially more powerful than the
limited ones presented so far.

Perhaps the most important thing to understand about a class is that it defines a new
data type. Once defined, this new type can be used to create objects of that type. Thus, a
class is a template for an object, and an object is an instance of a class. Because an object is an
instance of a class, you will often see the two words object and instance used interchangeably.

The General Form of a Class
When you define a class, you declare its exact form and nature. You do this by specifying
the data that it contains and the code that operates on that data. While very simple classes
may contain only code or only data, most real-world classes contain both. As you will see, a
class’ code defines the interface to its data.

A class is declared by use of the class keyword. The classes that have been used up to
this point are actually very limited examples of its complete form. Classes can (and usually
do) get much more complex. A simplified general form of a class definition is shown here:

class classname {
 type instance-variable1;

06-ch06.indd 109 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

110 PART I The Java Language

 type instance-variable2;
 // ...
 type instance-variableN;

 type methodname1(parameter-list) {
 // body of method
 }
 type methodname2(parameter-list) {
 // body of method
 }
 // ...
 type methodnameN(parameter-list) {
 // body of method
 }
}

The data, or variables, defined within a class are called instance variables. The code is
contained within methods. Collectively, the methods and variables defined within a class
are called members of the class. In most classes, the instance variables are acted upon and
accessed by the methods defined for that class. Thus, as a general rule, it is the methods
that determine how a class’ data can be used.

Variables defined within a class are called instance variables because each instance of
the class (that is, each object of the class) contains its own copy of these variables. Thus, the
data for one object is separate and unique from the data for another. We will come back to
this point shortly, but it is an important concept to learn early.

All methods have the same general form as main(), which we have been using thus far.
However, most methods will not be specified as static or public. Notice that the general
form of a class does not specify a main() method. Java classes do not need to have a main()
method. You only specify one if that class is the starting point for your program. Further,
some kinds of Java applications, such as applets, don’t require a main() method at all.

A Simple Class
Let’s begin our study of the class with a simple example. Here is a class called Box that
defines three instance variables: width, height, and depth. Currently, Box does not contain
any methods (but some will be added soon).

class Box {
 double width;
 double height;
 double depth;
}

As stated, a class defines a new type of data. In this case, the new data type is called Box. You
will use this name to declare objects of type Box. It is important to remember that a class
declaration only creates a template; it does not create an actual object. Thus, the preceding
code does not cause any objects of type Box to come into existence.

06-ch06.indd 110 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 111

Pa
rt

 I

To actually create a Box object, you will use a statement like the following:

Box mybox = new Box(); // create a Box object called mybox

After this statement executes, mybox will be an instance of Box. Thus, it will have “physical”
reality. For the moment, don’t worry about the details of this statement.

As mentioned earlier, each time you create an instance of a class, you are creating an
object that contains its own copy of each instance variable defined by the class. Thus, every
Box object will contain its own copies of the instance variables width, height, and depth. To
access these variables, you will use the dot (.) operator. The dot operator links the name of
the object with the name of an instance variable. For example, to assign the width variable
of mybox the value 100, you would use the following statement:

mybox.width = 100;

This statement tells the compiler to assign the copy of width that is contained within the
mybox object the value of 100. In general, you use the dot operator to access both the
instance variables and the methods within an object. One other point: Although commonly
referred to as the dot operator, the formal specification for Java categorizes the . as a separator.
However, since the use of the term “dot operator” is widespread, it is used in this book.

Here is a complete program that uses the Box class:

/* A program that uses the Box class.

 Call this file BoxDemo.java
*/
class Box {
 double width;
 double height;
 double depth;
}

// This class declares an object of type Box.
class BoxDemo {
 public static void main(String args[]) {
 Box mybox = new Box();
 double vol;

 // assign values to mybox's instance variables
 mybox.width = 10;
 mybox.height = 20;
 mybox.depth = 15;

 // compute volume of box
 vol = mybox.width * mybox.height * mybox.depth;

 System.out.println("Volume is " + vol);
 }
}

You should call the file that contains this program BoxDemo.java, because the main()
method is in the class called BoxDemo, not the class called Box. When you compile this

06-ch06.indd 111 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

112 PART I The Java Language

program, you will find that two .class files have been created, one for Box and one for
BoxDemo. The Java compiler automatically puts each class into its own .class file. It is not
necessary for both the Box and the BoxDemo class to actually be in the same source file.
You could put each class in its own file, called Box.java and BoxDemo.java, respectively.

To run this program, you must execute BoxDemo.class. When you do, you will see the
following output:

 Volume is 3000.0

As stated earlier, each object has its own copies of the instance variables. This means
that if you have two Box objects, each has its own copy of depth, width, and height. It is
important to understand that changes to the instance variables of one object have no
effect on the instance variables of another. For example, the following program declares
two Box objects:

// This program declares two Box objects.

class Box {
 double width;
 double height;
 double depth;
}

class BoxDemo2 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // compute volume of first box
 vol = mybox1.width * mybox1.height * mybox1.depth;
 System.out.println("Volume is " + vol);

 // compute volume of second box
 vol = mybox2.width * mybox2.height * mybox2.depth;
 System.out.println("Volume is " + vol);
 }
}

06-ch06.indd 112 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 113

Pa
rt

 I

The output produced by this program is shown here:

 Volume is 3000.0
 Volume is 162.0

As you can see, mybox1’s data is completely separate from the data contained in mybox2.

Declaring Objects
As just explained, when you create a class, you are creating a new data type. You can use this
type to declare objects of that type. However, obtaining objects of a class is a two-step process.
First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object. Second, you must acquire an actual,
physical copy of the object and assign it to that variable. You can do this using the new
operator. The new operator dynamically allocates (that is, allocates at run time) memory
for an object and returns a reference to it. This reference is, more or less, the address in
memory of the object allocated by new. This reference is then stored in the variable. Thus,
in Java, all class objects must be dynamically allocated. Let’s look at the details of this
procedure.

In the preceding sample programs, a line similar to the following is used to declare an
object of type Box:

Box mybox = new Box();

This statement combines the two steps just described. It can be rewritten like this to show
each step more clearly:

Box mybox; // declare reference to object
mybox = new Box(); // allocate a Box object

The first line declares mybox as a reference to an object of type Box. At this point, mybox
does not yet refer to an actual object. The next line allocates an object and assigns a
reference to it to mybox. After the second line executes, you can use mybox as if it were a
Box object. But in reality, mybox simply holds, in essence, the memory address of the actual
Box object. The effect of these two lines of code is depicted in Figure 6-1.

NOTE Those readers familiar with C/C++ have probably noticed that object references appear to be
similar to pointers. This suspicion is, essentially, correct. An object reference is similar to a memory
pointer. The main difference—and the key to Java’s safety—is that you cannot manipulate references
as you can actual pointers. Thus, you cannot cause an object reference to point to an arbitrary
memory location or manipulate it like an integer.

A Closer Look at new
As just explained, the new operator dynamically allocates memory for an object. It has this
general form:

class-var = new classname ();

06-ch06.indd 113 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

114 PART I The Java Language

Here, class-var is a variable of the class type being created. The classname is the name of
the class that is being instantiated. The class name followed by parentheses specifies the
constructor for the class. A constructor defines what occurs when an object of a class is
created. Constructors are an important part of all classes and have many significant
attributes. Most real-world classes explicitly define their own constructors within their
class definition. However, if no explicit constructor is specified, then Java will automatically
supply a default constructor. This is the case with Box. For now, we will use the default
constructor. Soon, you will see how to define your own constructors.

At this point, you might be wondering why you do not need to use new for such things
as integers or characters. The answer is that Java’s primitive types are not implemented as
objects. Rather, they are implemented as “normal” variables. This is done in the interest of
efficiency. As you will see, objects have many features and attributes that require Java to
treat them differently than it treats the primitive types. By not applying the same overhead
to the primitive types that applies to objects, Java can implement the primitive types more
efficiently. Later, you will see object versions of the primitive types that are available for your
use in those situations in which complete objects of these types are needed.

It is important to understand that new allocates memory for an object during run time.
The advantage of this approach is that your program can create as many or as few objects as
it needs during the execution of your program. However, since memory is finite, it is possible
that new will not be able to allocate memory for an object because insufficient memory
exists. If this happens, a run-time exception will occur. (You will learn how to handle
exceptions in Chapter 10.) For the sample programs in this book, you won’t need to worry
about running out of memory, but you will need to consider this possibility in real-world
programs that you write.

Let’s once again review the distinction between a class and an object. A class creates a
new data type that can be used to create objects. That is, a class creates a logical framework
that defines the relationship between its members. When you declare an object of a class,
you are creating an instance of that class. Thus, a class is a logical construct. An object has
physical reality. (That is, an object occupies space in memory.) It is important to keep this
distinction clearly in mind.

Figure 6-1 Declaring an object of type Box

06-ch06.indd 114 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 115

Pa
rt

 I

Assigning Object Reference Variables
Object reference variables act differently than you might expect when an assignment takes
place. For example, what do you think the following fragment does?

Box b1 = new Box();
Box b2 = b1;

You might think that b2 is being assigned a reference to a copy of the object referred to by
b1. That is, you might think that b1 and b2 refer to separate and distinct objects. However,
this would be wrong. Instead, after this fragment executes, b1 and b2 will both refer to the
same object. The assignment of b1 to b2 did not allocate any memory or copy any part of
the original object. It simply makes b2 refer to the same object as does b1. Thus, any
changes made to the object through b2 will affect the object to which b1 is referring, since
they are the same object.

This situation is depicted here:

Although b1 and b2 both refer to the same object, they are not linked in any other way.
For example, a subsequent assignment to b1 will simply unhook b1 from the original object
without affecting the object or affecting b2. For example:

Box b1 = new Box();
Box b2 = b1;
// ...
b1 = null;

Here, b1 has been set to null, but b2 still points to the original object.

REMEMBER When you assign one object reference variable to another object reference variable, you are
not creating a copy of the object, you are only making a copy of the reference.

Introducing Methods
As mentioned at the beginning of this chapter, classes usually consist of two things: instance
variables and methods. The topic of methods is a large one because Java gives them so much
power and flexibility. In fact, much of the next chapter is devoted to methods. However,
there are some fundamentals that you need to learn now so that you can begin to add
methods to your classes.

06-ch06.indd 115 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

116 PART I The Java Language

This is the general form of a method:

type name(parameter-list) {
 // body of method
}

Here, type specifies the type of data returned by the method. This can be any valid type,
including class types that you create. If the method does not return a value, its return type
must be void. The name of the method is specified by name. This can be any legal identifier
other than those already used by other items within the current scope. The parameter-list is a
sequence of type and identifier pairs separated by commas. Parameters are essentially
variables that receive the value of the arguments passed to the method when it is called.
If the method has no parameters, then the parameter list will be empty.

Methods that have a return type other than void return a value to the calling routine
using the following form of the return statement:

return value;

Here, value is the value returned.
In the next few sections, you will see how to create various types of methods, including

those that take parameters and those that return values.

Adding a Method to the Box Class
Although it is perfectly fine to create a class that contains only data, it rarely happens. Most
of the time, you will use methods to access the instance variables defined by the class. In
fact, methods define the interface to most classes. This allows the class implementor to
hide the specific layout of internal data structures behind cleaner method abstractions. In
addition to defining methods that provide access to data, you can also define methods that
are used internally by the class itself.

Let’s begin by adding a method to the Box class. It may have occurred to you while
looking at the preceding programs that the computation of a box’s volume was something
that was best handled by the Box class rather than the BoxDemo class. After all, since the
volume of a box is dependent upon the size of the box, it makes sense to have the Box class
compute it. To do this, you must add a method to Box, as shown here:

// This program includes a method inside the box class.

class Box {
 double width;
 double height;
 double depth;

 // display volume of a box
 void volume() {
 System.out.print("Volume is ");
 System.out.println(width * height * depth);
 }
}

class BoxDemo3 {
 public static void main(String args[]) {

06-ch06.indd 116 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 117

Pa
rt

 I

 Box mybox1 = new Box();
 Box mybox2 = new Box();

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // display volume of first box
 mybox1.volume();

 // display volume of second box
 mybox2.volume();
 }
}

This program generates the following output, which is the same as the previous version.

 Volume is 3000.0
 Volume is 162.0

Look closely at the following two lines of code:

mybox1.volume();
mybox2.volume();

The first line here invokes the volume() method on mybox1. That is, it calls volume()
relative to the mybox1 object, using the object’s name followed by the dot operator. Thus,
the call to mybox1.volume() displays the volume of the box defined by mybox1, and the
call to mybox2.volume() displays the volume of the box defined by mybox2. Each time
volume() is invoked, it displays the volume for the specified box.

If you are unfamiliar with the concept of calling a method, the following discussion will
help clear things up. When mybox1.volume() is executed, the Java run-time system transfers
control to the code defined inside volume(). After the statements inside volume() have
executed, control is returned to the calling routine, and execution resumes with the line of
code following the call. In the most general sense, a method is Java’s way of implementing
subroutines.

There is something very important to notice inside the volume() method: the instance
variables width, height, and depth are referred to directly, without preceding them with an
object name or the dot operator. When a method uses an instance variable that is defined
by its class, it does so directly, without explicit reference to an object and without use of the
dot operator. This is easy to understand if you think about it. A method is always invoked
relative to some object of its class. Once this invocation has occurred, the object is known.
Thus, within a method, there is no need to specify the object a second time. This means
that width, height, and depth inside volume() implicitly refer to the copies of those
variables found in the object that invokes volume().

06-ch06.indd 117 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

118 PART I The Java Language

Let’s review: When an instance variable is accessed by code that is not part of the class
in which that instance variable is defined, it must be done through an object, by use of the
dot operator. However, when an instance variable is accessed by code that is part of the
same class as the instance variable, that variable can be referred to directly. The same thing
applies to methods.

Returning a Value
While the implementation of volume() does move the computation of a box’s volume
inside the Box class where it belongs, it is not the best way to do it. For example, what if
another part of your program wanted to know the volume of a box, but not display its
value? A better way to implement volume() is to have it compute the volume of the box
and return the result to the caller. The following example, an improved version of the
preceding program, does just that:

// Now, volume() returns the volume of a box.

class Box {
 double width;
 double height;
 double depth;

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class BoxDemo4 {
 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // assign values to mybox1's instance variables
 mybox1.width = 10;
 mybox1.height = 20;
 mybox1.depth = 15;

 /* assign different values to mybox2's
 instance variables */
 mybox2.width = 3;
 mybox2.height = 6;
 mybox2.depth = 9;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

06-ch06.indd 118 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 119

Pa
rt

 I

As you can see, when volume() is called, it is put on the right side of an assignment
statement. On the left is a variable, in this case vol, that will receive the value returned by
volume(). Thus, after

vol = mybox1.volume();

executes, the value of mybox1.volume() is 3,000 and this value then is stored in vol.
There are two important things to understand about returning values:

•	 The type of data returned by a method must be compatible with the return type
specified by the method. For example, if the return type of some method is
boolean, you could not return an integer.

•	 The variable receiving the value returned by a method (such as vol, in this case)
must also be compatible with the return type specified for the method.

One more point: The preceding program can be written a bit more efficiently because
there is actually no need for the vol variable. The call to volume() could have been used in
the println() statement directly, as shown here:

System.out.println("Volume is" + mybox1.volume());

In this case, when println() is executed, mybox1.volume() will be called automatically and
its value will be passed to println().

Adding a Method That Takes Parameters
While some methods don’t need parameters, most do. Parameters allow a method to be
generalized. That is, a parameterized method can operate on a variety of data and/or be
used in a number of slightly different situations. To illustrate this point, let’s use a very
simple example. Here is a method that returns the square of the number 10:

int square()
{
 return 10 * 10;
}

While this method does, indeed, return the value of 10 squared, its use is very limited.
However, if you modify the method so that it takes a parameter, as shown next, then you
can make square() much more useful.

int square(int i)
{
 return i * i;
}

Now, square() will return the square of whatever value it is called with. That is, square() is
now a general-purpose method that can compute the square of any integer value, rather
than just 10.

Here is an example:

int x, y;
x = square(5); // x equals 25
x = square(9); // x equals 81

06-ch06.indd 119 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

120 PART I The Java Language

y = 2;
x = square(y); // x equals 4

In the first call to square(), the value 5 will be passed into parameter i. In the second call, i
will receive the value 9. The third invocation passes the value of y, which is 2 in this example.
As these examples show, square() is able to return the square of whatever data it is passed.

It is important to keep the two terms parameter and argument straight. A parameter is a
variable defined by a method that receives a value when the method is called. For example,
in square(), i is a parameter. An argument is a value that is passed to a method when it is
invoked. For example, square(100) passes 100 as an argument. Inside square(), the
parameter i receives that value.

You can use a parameterized method to improve the Box class. In the preceding
examples, the dimensions of each box had to be set separately by use of a sequence of
statements, such as:

mybox1.width = 10;
mybox1.height = 20;
mybox1.depth = 15;

While this code works, it is troubling for two reasons. First, it is clumsy and error prone.
For example, it would be easy to forget to set a dimension. Second, in well-designed Java
programs, instance variables should be accessed only through methods defined by their
class. In the future, you can change the behavior of a method, but you can’t change the
behavior of an exposed instance variable.

Thus, a better approach to setting the dimensions of a box is to create a method that
takes the dimensions of a box in its parameters and sets each instance variable
appropriately. This concept is implemented by the following program:

// This program uses a parameterized method.

class Box {
 double width;
 double height;
 double depth;

 // compute and return volume
 double volume() {
 return width * height * depth;
 }

 // sets dimensions of box
 void setDim(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }
}

class BoxDemo5 {

06-ch06.indd 120 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 121

Pa
rt

 I

 public static void main(String args[]) {
 Box mybox1 = new Box();
 Box mybox2 = new Box();
 double vol;

 // initialize each box
 mybox1.setDim(10, 20, 15);
 mybox2.setDim(3, 6, 9);

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

As you can see, the setDim() method is used to set the dimensions of each box. For
example, when

mybox1.setDim(10, 20, 15);

is executed, 10 is copied into parameter w, 20 is copied into h, and 15 is copied into d.
Inside setDim() the values of w, h, and d are then assigned to width, height, and depth,
respectively.

For many readers, the concepts presented in the preceding sections will be familiar.
However, if such things as method calls, arguments, and parameters are new to you, then
you might want to take some time to experiment before moving on. The concepts of the
method invocation, parameters, and return values are fundamental to Java programming.

Constructors
It can be tedious to initialize all of the variables in a class each time an instance is created.
Even when you add convenience functions like setDim(), it would be simpler and more
concise to have all of the setup done at the time the object is first created. Because the
requirement for initialization is so common, Java allows objects to initialize themselves
when they are created. This automatic initialization is performed through the use of a
constructor.

A constructor initializes an object immediately upon creation. It has the same name as
the class in which it resides and is syntactically similar to a method. Once defined, the
constructor is automatically called when the object is created, before the new operator
completes. Constructors look a little strange because they have no return type, not even
void. This is because the implicit return type of a class’ constructor is the class type itself.
It is the constructor’s job to initialize the internal state of an object so that the code
creating an instance will have a fully initialized, usable object immediately.

You can rework the Box example so that the dimensions of a box are automatically
initialized when an object is constructed. To do so, replace setDim() with a constructor.

06-ch06.indd 121 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

122 PART I The Java Language

Let’s begin by defining a simple constructor that simply sets the dimensions of each box to
the same values. This version is shown here:

/* Here, Box uses a constructor to initialize the
 dimensions of a box.
*/
class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box() {
 System.out.println("Constructing Box");
 width = 10;
 height = 10;
 depth = 10;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class BoxDemo6 {
 public static void main(String args[]) {
 // declare, allocate, and initialize Box objects
 Box mybox1 = new Box();
 Box mybox2 = new Box();

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

When this program is run, it generates the following results:

 Constructing Box
 Constructing Box
 Volume is 1000.0
 Volume is 1000.0

As you can see, both mybox1 and mybox2 were initialized by the Box() constructor
when they were created. Since the constructor gives all boxes the same dimensions, 10 by
10 by 10, both mybox1 and mybox2 will have the same volume. The println() statement

06-ch06.indd 122 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 123

Pa
rt

 I

inside Box() is for the sake of illustration only. Most constructors will not display anything.
They will simply initialize an object.

Before moving on, let’s reexamine the new operator. As you know, when you allocate an
object, you use the following general form:

class-var = new classname ();

Now you can understand why the parentheses are needed after the class name. What is
actually happening is that the constructor for the class is being called. Thus, in the line

Box mybox1 = new Box();

new Box() is calling the Box() constructor. When you do not explicitly define a constructor
for a class, then Java creates a default constructor for the class. This is why the preceding
line of code worked in earlier versions of Box that did not define a constructor. The default
constructor automatically initializes all instance variables to their default values, which are
zero, null, and false, for numeric types, reference types, and boolean, respectively. The
default constructor is often sufficient for simple classes, but it usually won’t do for more
sophisticated ones. Once you define your own constructor, the default constructor is no
longer used.

Parameterized Constructors
While the Box() constructor in the preceding example does initialize a Box object, it is not
very useful—all boxes have the same dimensions. What is needed is a way to construct Box
objects of various dimensions. The easy solution is to add parameters to the constructor. As
you can probably guess, this makes it much more useful. For example, the following version
of Box defines a parameterized constructor that sets the dimensions of a box as specified by
those parameters. Pay special attention to how Box objects are created.

/* Here, Box uses a parameterized constructor to
 initialize the dimensions of a box.
*/
class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

06-ch06.indd 123 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

124 PART I The Java Language

class BoxDemo7 {
 public static void main(String args[]) {
 // declare, allocate, and initialize Box objects
 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box(3, 6, 9);

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume is " + vol);
 }
}

The output from this program is shown here:

 Volume is 3000.0
 Volume is 162.0

As you can see, each object is initialized as specified in the parameters to its constructor.
For example, in the following line,

Box mybox1 = new Box(10, 20, 15);

the values 10, 20, and 15 are passed to the Box() constructor when new creates the object.
Thus, mybox1’s copy of width, height, and depth will contain the values 10, 20, and 15,
respectively.

The this Keyword
Sometimes a method will need to refer to the object that invoked it. To allow this, Java
defines the this keyword. this can be used inside any method to refer to the current object.
That is, this is always a reference to the object on which the method was invoked. You can
use this anywhere a reference to an object of the current class’ type is permitted.

To better understand what this refers to, consider the following version of Box():

// A redundant use of this.
Box(double w, double h, double d) {
 this.width = w;
 this.height = h;
 this.depth = d;
}

This version of Box() operates exactly like the earlier version. The use of this is redundant,
but perfectly correct. Inside Box(), this will always refer to the invoking object. While it is

06-ch06.indd 124 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 125

Pa
rt

 I

redundant in this case, this is useful in other contexts, one of which is explained in the next
section.

Instance Variable Hiding
As you know, it is illegal in Java to declare two local variables with the same name inside the
same or enclosing scopes. Interestingly, you can have local variables, including formal
parameters to methods, which overlap with the names of the class’ instance variables. However,
when a local variable has the same name as an instance variable, the local variable hides the
instance variable. This is why width, height, and depth were not used as the names of the
parameters to the Box() constructor inside the Box class. If they had been, then width, for
example, would have referred to the formal parameter, hiding the instance variable width.
While it is usually easier to simply use different names, there is another way around this
situation. Because this lets you refer directly to the object, you can use it to resolve any
namespace collisions that might occur between instance variables and local variables. For
example, here is another version of Box(), which uses width, height, and depth for parameter
names and then uses this to access the instance variables by the same name:

// Use this to resolve name-space collisions.
Box(double width, double height, double depth) {
 this.width = width;
 this.height = height;
 this.depth = depth;
}

A word of caution: The use of this in such a context can sometimes be confusing, and
some programmers are careful not to use local variables and formal parameter names that
hide instance variables. Of course, other programmers believe the contrary—that it is a
good convention to use the same names for clarity, and use this to overcome the instance
variable hiding. It is a matter of taste which approach you adopt.

Garbage Collection
Since objects are dynamically allocated by using the new operator, you might be wondering
how such objects are destroyed and their memory released for later reallocation. In some
languages, such as C++, dynamically allocated objects must be manually released by use of a
delete operator. Java takes a different approach; it handles deallocation for you automatically.
The technique that accomplishes this is called garbage collection. It works like this: when no
references to an object exist, that object is assumed to be no longer needed, and the memory
occupied by the object can be reclaimed. There is no explicit need to destroy objects as in
C++. Garbage collection only occurs sporadically (if at all) during the execution of your
program. It will not occur simply because one or more objects exist that are no longer
used. Furthermore, different Java run-time implementations will take varying approaches to
garbage collection, but for the most part, you should not have to think about it while writing
your programs.

06-ch06.indd 125 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

126 PART I The Java Language

The finalize() Method
Sometimes an object will need to perform some action when it is destroyed. For example,
if an object is holding some non-Java resource such as a file handle or character font, then
you might want to make sure these resources are freed before an object is destroyed. To
handle such situations, Java provides a mechanism called finalization. By using finalization,
you can define specific actions that will occur when an object is just about to be reclaimed
by the garbage collector.

To add a finalizer to a class, you simply define the finalize() method. The Java run time
calls that method whenever it is about to recycle an object of that class. Inside the finalize()
method, you will specify those actions that must be performed before an object is destroyed.
The garbage collector runs periodically, checking for objects that are no longer referenced
by any running state or indirectly through other referenced objects. Right before an asset is
freed, the Java run time calls the finalize() method on the object.

The finalize() method has this general form:

protected void finalize()
{
// finalization code here
}

Here, the keyword protected is a specifier that limits access to finalize(). This and the other
access modifiers are explained in Chapter 7.

It is important to understand that finalize() is only called just prior to garbage collection.
It is not called when an object goes out-of-scope, for example. This means that you cannot
know when—or even if—finalize() will be executed. Therefore, your program should
provide other means of releasing system resources, etc., used by the object. It must not
rely on finalize() for normal program operation.

NOTE If you are familiar with C++, then you know that C++ allows you to define a destructor for a class,
which is called when an object goes out-of-scope. Java does not support this idea or provide for
destructors. The finalize() method only approximates the function of a destructor. As you get more
experienced with Java, you will see that the need for destructor functions is minimal because of
Java’s garbage collection subsystem.

A Stack Class
While the Box class is useful to illustrate the essential elements of a class, it is of little
practical value. To show the real power of classes, this chapter will conclude with a more
sophisticated example. As you recall from the discussion of object-oriented programming
(OOP) presented in Chapter 2, one of OOP’s most important benefits is the encapsulation
of data and the code that manipulates that data. As you have seen, the class is the mechanism
by which encapsulation is achieved in Java. By creating a class, you are creating a new data
type that defines both the nature of the data being manipulated and the routines used to
manipulate it. Further, the methods define a consistent and controlled interface to the
class’ data. Thus, you can use the class through its methods without having to worry about
the details of its implementation or how the data is actually managed within the class. In a
sense, a class is like a “data engine.” No knowledge of what goes on inside the engine is
required to use the engine through its controls. In fact, since the details are hidden, its

06-ch06.indd 126 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 6 Introducing Classes 127

Pa
rt

 I

inner workings can be changed as needed. As long as your code uses the class through
its methods, internal details can change without causing side effects outside the class.

To see a practical application of the preceding discussion, let’s develop one of the
archetypal examples of encapsulation: the stack. A stack stores data using first-in, last-out
ordering. That is, a stack is like a stack of plates on a table—the first plate put down on the
table is the last plate to be used. Stacks are controlled through two operations traditionally
called push and pop. To put an item on top of the stack, you will use push. To take an item
off the stack, you will use pop. As you will see, it is easy to encapsulate the entire stack
mechanism.

Here is a class called Stack that implements a stack for up to ten integers:

// This class defines an integer stack that can hold 10 values
class Stack {
 int stck[] = new int[10];
 int tos;

 // Initialize top-of-stack
 Stack() {
 tos = -1;
 }

 // Push an item onto the stack
 void push(int item) {
 if(tos==9)
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

As you can see, the Stack class defines two data items and three methods. The stack of
integers is held by the array stck. This array is indexed by the variable tos, which always
contains the index of the top of the stack. The Stack() constructor initializes tos to –1,
which indicates an empty stack. The method push() puts an item on the stack. To retrieve
an item, call pop(). Since access to the stack is through push() and pop(), the fact that the
stack is held in an array is actually not relevant to using the stack. For example, the stack
could be held in a more complicated data structure, such as a linked list, yet the interface
defined by push() and pop() would remain the same.

The class TestStack, shown here, demonstrates the Stack class. It creates two integer
stacks, pushes some values onto each, and then pops them off.

06-ch06.indd 127 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

128 PART I The Java Language

class TestStack {
 public static void main(String args[]) {
 Stack mystack1 = new Stack();
 Stack mystack2 = new Stack();

 // push some numbers onto the stack
 for(int i=0; i<10; i++) mystack1.push(i);
 for(int i=10; i<20; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<10; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<10; i++)
 System.out.println(mystack2.pop());
 }
}

This program generates the following output:

 Stack in mystack1:
 9
 8
 7
 6
 5
 4
 3
 2
 1
 0
 Stack in mystack2:
 19
 18
 17
 16
 15
 14
 13
 12
 11
 10

As you can see, the contents of each stack are separate.
One last point about the Stack class. As it is currently implemented, it is possible for the

array that holds the stack, stck, to be altered by code outside of the Stack class. This leaves
Stack open to misuse or mischief. In the next chapter, you will see how to remedy this
situation.

06-ch06.indd 128 14/02/14 4:47 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

7
CHAPTER

 129

A Closer Look at
Methods and Classes

This chapter continues the discussion of methods and classes begun in the preceding
chapter. It examines several topics relating to methods, including overloading, parameter
passing, and recursion. The chapter then returns to the class, discussing access control, the
use of the keyword static, and one of Java’s most important built-in classes: String.

Overloading Methods
In Java, it is possible to define two or more methods within the same class that share the
same name, as long as their parameter declarations are different. When this is the case,
the methods are said to be overloaded, and the process is referred to as method overloading.
Method overloading is one of the ways that Java supports polymorphism. If you have never
used a language that allows the overloading of methods, then the concept may seem
strange at first. But as you will see, method overloading is one of Java’s most exciting and
useful features.

When an overloaded method is invoked, Java uses the type and/or number of arguments
as its guide to determine which version of the overloaded method to actually call. Thus,
overloaded methods must differ in the type and/or number of their parameters. While
overloaded methods may have different return types, the return type alone is insufficient to
distinguish two versions of a method. When Java encounters a call to an overloaded method,
it simply executes the version of the method whose parameters match the arguments used in
the call.

Here is a simple example that illustrates method overloading:

// Demonstrate method overloading.
class OverloadDemo {
 void test() {
 System.out.println("No parameters");
 }

 // Overload test for one integer parameter.
 void test(int a) {
 System.out.println("a: " + a);
 }

07-ch07.indd 129 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

130 PART I The Java Language

 // Overload test for two integer parameters.
 void test(int a, int b) {
 System.out.println("a and b: " + a + " " + b);
 }

 // Overload test for a double parameter
 double test(double a) {
 System.out.println("double a: " + a);
 return a*a;
 }
}

class Overload {
 public static void main(String args[]) {
 OverloadDemo ob = new OverloadDemo();
 double result;

 // call all versions of test()
 ob.test();
 ob.test(10);
 ob.test(10, 20);
 result = ob.test(123.25);
 System.out.println("Result of ob.test(123.25): " + result);
 }
}

This program generates the following output:

 No parameters
 a: 10
 a and b: 10 20
 double a: 123.25
 Result of ob.test(123.25): 15190.5625

As you can see, test() is overloaded four times. The first version takes no parameters,
the second takes one integer parameter, the third takes two integer parameters, and the
fourth takes one double parameter. The fact that the fourth version of test() also returns a
value is of no consequence relative to overloading, since return types do not play a role in
overload resolution.

When an overloaded method is called, Java looks for a match between the arguments
used to call the method and the method’s parameters. However, this match need not always
be exact. In some cases, Java’s automatic type conversions can play a role in overload
resolution. For example, consider the following program:

// Automatic type conversions apply to overloading.
class OverloadDemo {
 void test() {
 System.out.println("No parameters");
 }

 // Overload test for two integer parameters.
 void test(int a, int b) {
 System.out.println("a and b: " + a + " " + b);

07-ch07.indd 130 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 131

Pa
rt

 I

 }

 // Overload test for a double parameter
 void test(double a) {
 System.out.println("Inside test(double) a: " + a);
 }
}

class Overload {
 public static void main(String args[]) {
 OverloadDemo ob = new OverloadDemo();
 int i = 88;

 ob.test();
 ob.test(10, 20);

 ob.test(i); // this will invoke test(double)
 ob.test(123.2); // this will invoke test(double)
 }
}

This program generates the following output:

 No parameters
 a and b: 10 20
 Inside test(double) a: 88
 Inside test(double) a: 123.2

As you can see, this version of OverloadDemo does not define test(int). Therefore,
when test() is called with an integer argument inside Overload, no matching method is
found. However, Java can automatically convert an integer into a double, and this conversion
can be used to resolve the call. Therefore, after test(int) is not found, Java elevates i to double
and then calls test(double). Of course, if test(int) had been defined, it would have been
called instead. Java will employ its automatic type conversions only if no exact match is found.

Method overloading supports polymorphism because it is one way that Java implements
the “one interface, multiple methods” paradigm. To understand how, consider the following.
In languages that do not support method overloading, each method must be given a unique
name. However, frequently you will want to implement essentially the same method for
different types of data. Consider the absolute value function. In languages that do not
support overloading, there are usually three or more versions of this function, each with a
slightly different name. For instance, in C, the function abs() returns the absolute value of
an integer, labs() returns the absolute value of a long integer, and fabs() returns the
absolute value of a floating-point value. Since C does not support overloading, each
function has its own name, even though all three functions do essentially the same thing.
This makes the situation more complex, conceptually, than it actually is. Although the
underlying concept of each function is the same, you still have three names to remember.
This situation does not occur in Java, because each absolute value method can use the same
name. Indeed, Java’s standard class library includes an absolute value method, called abs().
This method is overloaded by Java’s Math class to handle all numeric types. Java determines
which version of abs() to call based upon the type of argument.

07-ch07.indd 131 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

132 PART I The Java Language

The value of overloading is that it allows related methods to be accessed by use of a
common name. Thus, the name abs represents the general action that is being performed. It
is left to the compiler to choose the right specific version for a particular circumstance. You,
the programmer, need only remember the general operation being performed. Through
the application of polymorphism, several names have been reduced to one. Although this
example is fairly simple, if you expand the concept, you can see how overloading can help
you manage greater complexity.

When you overload a method, each version of that method can perform any activity you
desire. There is no rule stating that overloaded methods must relate to one another. However,
from a stylistic point of view, method overloading implies a relationship. Thus, while you
can use the same name to overload unrelated methods, you should not. For example, you
could use the name sqr to create methods that return the square of an integer and the
square root of a floating-point value. But these two operations are fundamentally different.
Applying method overloading in this manner defeats its original purpose. In practice, you
should only overload closely related operations.

Overloading Constructors
In addition to overloading normal methods, you can also overload constructor methods. In
fact, for most real-world classes that you create, overloaded constructors will be the norm,
not the exception. To understand why, let’s return to the Box class developed in the
preceding chapter. Following is the latest version of Box:

class Box {
 double width;
 double height;
 double depth;

 // This is the constructor for Box.
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

As you can see, the Box() constructor requires three parameters. This means that all
declarations of Box objects must pass three arguments to the Box() constructor. For
example, the following statement is currently invalid:

Box ob = new Box();

Since Box() requires three arguments, it’s an error to call it without them. This raises
some important questions. What if you simply wanted a box and did not care (or know)
what its initial dimensions were? Or, what if you want to be able to initialize a cube by
specifying only one value that would be used for all three dimensions? As the Box class is
currently written, these other options are not available to you.

07-ch07.indd 132 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 133

Pa
rt

 I

Fortunately, the solution to these problems is quite easy: simply overload the Box
constructor so that it handles the situations just described. Here is a program that contains
an improved version of Box that does just that:

/* Here, Box defines three constructors to initialize
 the dimensions of a box various ways.
*/
class Box {
 double width;
 double height;
 double depth;

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class OverloadCons {
 public static void main(String args[]) {
 // create boxes using the various constructors
 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box();
 Box mycube = new Box(7);

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);

07-ch07.indd 133 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

134 PART I The Java Language

 // get volume of cube
 vol = mycube.volume();
 System.out.println("Volume of mycube is " + vol);
 }
}

The output produced by this program is shown here:

 Volume of mybox1 is 3000.0
 Volume of mybox2 is -1.0
 Volume of mycube is 343.0

As you can see, the proper overloaded constructor is called based upon the parameters
specified when new is executed.

Using Objects as Parameters
So far, we have only been using simple types as parameters to methods. However, it is both
correct and common to pass objects to methods. For example, consider the following short
program:

// Objects may be passed to methods.
class Test {
 int a, b;

 Test(int i, int j) {
 a = i;
 b = j;
 }

 // return true if o is equal to the invoking object
 boolean equalTo(Test o) {
 if(o.a == a && o.b == b) return true;
 else return false;
 }
}

class PassOb {
 public static void main(String args[]) {
 Test ob1 = new Test(100, 22);
 Test ob2 = new Test(100, 22);
 Test ob3 = new Test(-1, -1);

 System.out.println("ob1 == ob2: " + ob1.equalTo(ob2));
 System.out.println("ob1 == ob3: " + ob1.equalTo(ob3));
 }
}

This program generates the following output:

 ob1 == ob2: true
 ob1 == ob3: false

07-ch07.indd 134 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 135

Pa
rt

 I

As you can see, the equalTo() method inside Test compares two objects for equality
and returns the result. That is, it compares the invoking object with the one that it is
passed. If they contain the same values, then the method returns true. Otherwise, it returns
false. Notice that the parameter o in equalTo() specifies Test as its type. Although Test is a
class type created by the program, it is used in just the same way as Java’s built-in types.

One of the most common uses of object parameters involves constructors. Frequently,
you will want to construct a new object so that it is initially the same as some existing object.
To do this, you must define a constructor that takes an object of its class as a parameter. For
example, the following version of Box allows one object to initialize another:

// Here, Box allows one object to initialize another.

class Box {
 double width;
 double height;
 double depth;

 // Notice this constructor. It takes an object of type Box.
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

class OverloadCons2 {
 public static void main(String args[]) {
 // create boxes using the various constructors

07-ch07.indd 135 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

136 PART I The Java Language

 Box mybox1 = new Box(10, 20, 15);
 Box mybox2 = new Box();
 Box mycube = new Box(7);

 Box myclone = new Box(mybox1); // create copy of mybox1

 double vol;

 // get volume of first box
 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);

 // get volume of second box
 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);

 // get volume of cube
 vol = mycube.volume();
 System.out.println("Volume of cube is " + vol);

 // get volume of clone
 vol = myclone.volume();
 System.out.println("Volume of clone is " + vol);
 }
}

As you will see when you begin to create your own classes, providing many forms of
constructors is usually required to allow objects to be constructed in a convenient and
efficient manner.

A Closer Look at Argument Passing
In general, there are two ways that a computer language can pass an argument to a subroutine.
The first way is call-by-value. This approach copies the value of an argument into the formal
parameter of the subroutine. Therefore, changes made to the parameter of the subroutine
have no effect on the argument. The second way an argument can be passed is call-by-reference.
In this approach, a reference to an argument (not the value of the argument) is passed to
the parameter. Inside the subroutine, this reference is used to access the actual argument
specified in the call. This means that changes made to the parameter will affect the
argument used to call the subroutine. As you will see, although Java uses call-by-value
to pass all arguments, the precise effect differs between whether a primitive type or a
reference type is passed.

When you pass a primitive type to a method, it is passed by value. Thus, a copy of the
argument is made, and what occurs to the parameter that receives the argument has no
effect outside the method. For example, consider the following program:

// Primitive types are passed by value.
class Test {
 void meth(int i, int j) {
 i *= 2;
 j /= 2;
 }
}

07-ch07.indd 136 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 137

Pa
rt

 I

class CallByValue {
 public static void main(String args[]) {
 Test ob = new Test();

 int a = 15, b = 20;

 System.out.println("a and b before call: " +
 a + " " + b);

 ob.meth(a, b);

 System.out.println("a and b after call: " +
 a + " " + b);
 }
}

The output from this program is shown here:

 a and b before call: 15 20
 a and b after call: 15 20

As you can see, the operations that occur inside meth() have no effect on the values of a
and b used in the call; their values here did not change to 30 and 10.

When you pass an object to a method, the situation changes dramatically, because
objects are passed by what is effectively call-by-reference. Keep in mind that when you
create a variable of a class type, you are only creating a reference to an object. Thus, when
you pass this reference to a method, the parameter that receives it will refer to the same
object as that referred to by the argument. This effectively means that objects act as if they
are passed to methods by use of call-by-reference. Changes to the object inside the method
do affect the object used as an argument. For example, consider the following program:

// Objects are passed through their references.

class Test {
 int a, b;

 Test(int i, int j) {
 a = i;
 b = j;
 }

 // pass an object
 void meth(Test o) {
 o.a *= 2;
 o.b /= 2;
 }
}

class PassObjRef {
 public static void main(String args[]) {
 Test ob = new Test(15, 20);

07-ch07.indd 137 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

138 PART I The Java Language

 System.out.println("ob.a and ob.b before call: " +
 ob.a + " " + ob.b);

 ob.meth(ob);

 System.out.println("ob.a and ob.b after call: " +
 ob.a + " " + ob.b);
 }
}

This program generates the following output:

 ob.a and ob.b before call: 15 20
 ob.a and ob.b after call: 30 10

As you can see, in this case, the actions inside meth() have affected the object used as an
argument.

REMEMBER When an object reference is passed to a method, the reference itself is passed by use of
call-by-value. However, since the value being passed refers to an object, the copy of that value will
still refer to the same object that its corresponding argument does.

Returning Objects
A method can return any type of data, including class types that you create. For example, in
the following program, the incrByTen() method returns an object in which the value of a is
ten greater than it is in the invoking object.

// Returning an object.
class Test {
 int a;

 Test(int i) {
 a = i;
 }

 Test incrByTen() {
 Test temp = new Test(a+10);
 return temp;
 }
}

class RetOb {
 public static void main(String args[]) {
 Test ob1 = new Test(2);
 Test ob2;

 ob2 = ob1.incrByTen();
 System.out.println("ob1.a: " + ob1.a);
 System.out.println("ob2.a: " + ob2.a);

07-ch07.indd 138 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 139

Pa
rt

 I

 ob2 = ob2.incrByTen();
 System.out.println("ob2.a after second increase: "
 + ob2.a);
 }
}

The output generated by this program is shown here:

 ob1.a: 2
 ob2.a: 12
 ob2.a after second increase: 22

As you can see, each time incrByTen() is invoked, a new object is created, and a reference
to it is returned to the calling routine.

The preceding program makes another important point: Since all objects are
dynamically allocated using new, you don’t need to worry about an object going out-of-
scope because the method in which it was created terminates. The object will continue to
exist as long as there is a reference to it somewhere in your program. When there are no
references to it, the object will be reclaimed the next time garbage collection takes place.

Recursion
Java supports recursion. Recursion is the process of defining something in terms of itself. As
it relates to Java programming, recursion is the attribute that allows a method to call itself.
A method that calls itself is said to be recursive.

The classic example of recursion is the computation of the factorial of a number. The
factorial of a number N is the product of all the whole numbers between 1 and N. For
example, 3 factorial is 1 × 2 × 3 ×, or 6. Here is how a factorial can be computed by use
of a recursive method:

// A simple example of recursion.
class Factorial {
 // this is a recursive method
 int fact(int n) {
 int result;

 if(n==1) return 1;
 result = fact(n-1) * n;
 return result;
 }
}

class Recursion {
 public static void main(String args[]) {
 Factorial f = new Factorial();

 System.out.println("Factorial of 3 is " + f.fact(3));
 System.out.println("Factorial of 4 is " + f.fact(4));
 System.out.println("Factorial of 5 is " + f.fact(5));
 }
}

07-ch07.indd 139 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

140 PART I The Java Language

The output from this program is shown here:

 Factorial of 3 is 6
 Factorial of 4 is 24
 Factorial of 5 is 120

If you are unfamiliar with recursive methods, then the operation of fact() may seem
a bit confusing. Here is how it works. When fact() is called with an argument of 1, the
function returns 1; otherwise, it returns the product of fact(n–1)*n. To evaluate this
expression, fact() is called with n–1. This process repeats until n equals 1 and the calls
to the method begin returning.

To better understand how the fact() method works, let’s go through a short example.
When you compute the factorial of 3, the first call to fact() will cause a second call to be
made with an argument of 2. This invocation will cause fact() to be called a third time with
an argument of 1. This call will return 1, which is then multiplied by 2 (the value of n in the
second invocation). This result (which is 2) is then returned to the original invocation of
fact() and multiplied by 3 (the original value of n). This yields the answer, 6. You might
find it interesting to insert println() statements into fact(), which will show at what level
each call is and what the intermediate answers are.

When a method calls itself, new local variables and parameters are allocated storage on
the stack, and the method code is executed with these new variables from the start. As each
recursive call returns, the old local variables and parameters are removed from the stack,
and execution resumes at the point of the call inside the method. Recursive methods could
be said to “telescope” out and back.

Recursive versions of many routines may execute a bit more slowly than the iterative
equivalent because of the added overhead of the additional method calls. Many recursive
calls to a method could cause a stack overrun. Because storage for parameters and local
variables is on the stack and each new call creates a new copy of these variables, it is possible
that the stack could be exhausted. If this occurs, the Java run-time system will cause an
exception. However, you probably will not have to worry about this unless a recursive
routine runs wild.

The main advantage to recursive methods is that they can be used to create clearer and
simpler versions of several algorithms than can their iterative relatives. For example, the
QuickSort sorting algorithm is quite difficult to implement in an iterative way. Also, some
types of AI-related algorithms are most easily implemented using recursive solutions.

When writing recursive methods, you must have an if statement somewhere to force the
method to return without the recursive call being executed. If you don’t do this, once you
call the method, it will never return. This is a very common error in working with recursion.
Use println() statements liberally during development so that you can watch what is going
on and abort execution if you see that you have made a mistake.

Here is one more example of recursion. The recursive method printArray() prints the
first i elements in the array values.

// Another example that uses recursion.

class RecTest {
 int values[];

07-ch07.indd 140 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 141

Pa
rt

 I

 RecTest(int i) {
 values = new int[i];
 }

 // display array -- recursively
 void printArray(int i) {
 if(i==0) return;
 else printArray(i-1);
 System.out.println("[" + (i-1) + "] " + values[i-1]);
 }
}

class Recursion2 {
 public static void main(String args[]) {
 RecTest ob = new RecTest(10);
 int i;

 for(i=0; i<10; i++) ob.values[i] = i;

 ob.printArray(10);
 }
}

This program generates the following output:

 [0] 0
 [1] 1
 [2] 2
 [3] 3
 [4] 4
 [5] 5
 [6] 6
 [7] 7
 [8] 8
 [9] 9

Introducing Access Control
As you know, encapsulation links data with the code that manipulates it. However,
encapsulation provides another important attribute: access control. Through encapsulation,
you can control what parts of a program can access the members of a class. By controlling
access, you can prevent misuse. For example, allowing access to data only through a well-
defined set of methods, you can prevent the misuse of that data. Thus, when correctly
implemented, a class creates a “black box” which may be used, but the inner workings of
which are not open to tampering. However, the classes that were presented earlier do not
completely meet this goal. For example, consider the Stack class shown at the end of
Chapter 6. While it is true that the methods push() and pop() do provide a controlled
interface to the stack, this interface is not enforced. That is, it is possible for another part of
the program to bypass these methods and access the stack directly. Of course, in the wrong
hands, this could lead to trouble. In this section, you will be introduced to the mechanism
by which you can precisely control access to the various members of a class.

07-ch07.indd 141 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

142 PART I The Java Language

How a member can be accessed is determined by the access modifier attached to its
declaration. Java supplies a rich set of access modifiers. Some aspects of access control are
related mostly to inheritance or packages. (A package is, essentially, a grouping of classes.)
These parts of Java’s access control mechanism will be discussed later. Here, let’s begin by
examining access control as it applies to a single class. Once you understand the fundamentals
of access control, the rest will be easy.

Java’s access modifiers are public, private, and protected. Java also defines a default
access level. protected applies only when inheritance is involved. The other access modifiers
are described next.

Let’s begin by defining public and private. When a member of a class is modified by
public, then that member can be accessed by any other code. When a member of a class is
specified as private, then that member can only be accessed by other members of its class.
Now you can understand why main() has always been preceded by the public modifier. It
is called by code that is outside the program—that is, by the Java run-time system. When
no access modifier is used, then by default the member of a class is public within its own
package, but cannot be accessed outside of its package. (Packages are discussed in the
following chapter.)

In the classes developed so far, all members of a class have used the default access
mode. However, this is not what you will typically want to be the case. Usually, you will want
to restrict access to the data members of a class—allowing access only through methods.
Also, there will be times when you will want to define methods that are private to a class.

An access modifier precedes the rest of a member’s type specification. That is, it must
begin a member’s declaration statement. Here is an example:

public int i;
private double j;

private int myMethod(int a, char b) { //...

To understand the effects of public and private access, consider the following program:

/* This program demonstrates the difference between
 public and private.
*/
class Test {
 int a; // default access
 public int b; // public access
 private int c; // private access

 // methods to access c
 void setc(int i) { // set c's value
 c = i;
 }
 int getc() { // get c's value
 return c;
 }
}

07-ch07.indd 142 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 143

Pa
rt

 I

class AccessTest {
 public static void main(String args[]) {
 Test ob = new Test();

 // These are OK, a and b may be accessed directly
 ob.a = 10;
 ob.b = 20;

 // This is not OK and will cause an error
// ob.c = 100; // Error!

 // You must access c through its methods
 ob.setc(100); // OK
 System.out.println("a, b, and c: " + ob.a + " " +
 ob.b + " " + ob.getc());
 }
}

As you can see, inside the Test class, a uses default access, which for this example is
the same as specifying public. b is explicitly specified as public. Member c is given private
access. This means that it cannot be accessed by code outside of its class. So, inside the
AccessTest class, c cannot be used directly. It must be accessed through its public methods:
setc() and getc(). If you were to remove the comment symbol from the beginning of the
following line,

// ob.c = 100; // Error!

then you would not be able to compile this program because of the access violation.
To see how access control can be applied to a more practical example, consider the

following improved version of the Stack class shown at the end of Chapter 6.

// This class defines an integer stack that can hold 10 values.
class Stack {
 /* Now, both stck and tos are private. This means
 that they cannot be accidentally or maliciously
 altered in a way that would be harmful to the stack.
 */
 private int stck[] = new int[10];
 private int tos;

 // Initialize top-of-stack
 Stack() {
 tos = -1;
 }

 // Push an item onto the stack
 void push(int item) {
 if(tos==9)
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

07-ch07.indd 143 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

144 PART I The Java Language

 // Pop an item from the stack
 int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

As you can see, now both stck, which holds the stack, and tos, which is the index of the
top of the stack, are specified as private. This means that they cannot be accessed or altered
except through push() and pop(). Making tos private, for example, prevents other parts of
your program from inadvertently setting it to a value that is beyond the end of the stck array.

The following program demonstrates the improved Stack class. Try removing the
commented-out lines to prove to yourself that the stck and tos members are, indeed,
inaccessible.

class TestStack {
 public static void main(String args[]) {
 Stack mystack1 = new Stack();
 Stack mystack2 = new Stack();

 // push some numbers onto the stack
 for(int i=0; i<10; i++) mystack1.push(i);
 for(int i=10; i<20; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<10; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");

 for(int i=0; i<10; i++)
 System.out.println(mystack2.pop());

 // these statements are not legal
 // mystack1.tos = -2;
 // mystack2.stck[3] = 100;
 }
}

Although methods will usually provide access to the data defined by a class, this does
not always have to be the case. It is perfectly proper to allow an instance variable to be
public when there is good reason to do so. For example, most of the simple classes in this
book were created with little concern about controlling access to instance variables for the
sake of simplicity. However, in most real-world classes, you will need to allow operations on
data only through methods. The next chapter will return to the topic of access control. As
you will see, it is particularly important when inheritance is involved.

07-ch07.indd 144 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 145

Pa
rt

 I

Understanding static
There will be times when you will want to define a class member that will be used
independently of any object of that class. Normally, a class member must be accessed only
in conjunction with an object of its class. However, it is possible to create a member that can
be used by itself, without reference to a specific instance. To create such a member, precede
its declaration with the keyword static. When a member is declared static, it can be accessed
before any objects of its class are created, and without reference to any object. You can declare
both methods and variables to be static. The most common example of a static member is
main(). main() is declared as static because it must be called before any objects exist.

Instance variables declared as static are, essentially, global variables. When objects of
its class are declared, no copy of a static variable is made. Instead, all instances of the class
share the same static variable.

Methods declared as static have several restrictions:

•	 They can only directly call other static methods.

•	 They can only directly access static data.

•	 They cannot refer to this or super in any way. (The keyword super relates to
inheritance and is described in the next chapter.)

If you need to do computation in order to initialize your static variables, you can
declare a static block that gets executed exactly once, when the class is first loaded. The
following example shows a class that has a static method, some static variables, and a static
initialization block:

// Demonstrate static variables, methods, and blocks.
class UseStatic {
 static int a = 3;
 static int b;

 static void meth(int x) {
 System.out.println("x = " + x);
 System.out.println("a = " + a);
 System.out.println("b = " + b);
 }

 static {
 System.out.println("Static block initialized.");
 b = a * 4;
 }

 public static void main(String args[]) {
 meth(42);
 }
}

As soon as the UseStatic class is loaded, all of the static statements are run. First, a is
set to 3, then the static block executes, which prints a message and then initializes b to a*4
or 12. Then main() is called, which calls meth(), passing 42 to x. The three println()
statements refer to the two static variables a and b, as well as to the local variable x.

07-ch07.indd 145 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

146 PART I The Java Language

Here is the output of the program:

 Static block initialized.
 x = 42
 a = 3
 b = 12

Outside of the class in which they are defined, static methods and variables can be
used independently of any object. To do so, you need only specify the name of their class
followed by the dot operator. For example, if you wish to call a static method from outside
its class, you can do so using the following general form:

classname.method()

Here, classname is the name of the class in which the static method is declared. As you
can see, this format is similar to that used to call non-static methods through object-
reference variables. A static variable can be accessed in the same way—by use of the dot
operator on the name of the class. This is how Java implements a controlled version of
global methods and global variables.

Here is an example. Inside main(), the static method callme() and the static variable b
are accessed through their class name StaticDemo.

class StaticDemo {
 static int a = 42;
 static int b = 99;

 static void callme() {
 System.out.println("a = " + a);
 }
}

class StaticByName {
 public static void main(String args[]) {
 StaticDemo.callme();
 System.out.println("b = " + StaticDemo.b);
 }
}

Here is the output of this program:

 a = 42
 b = 99

Introducing final
A field can be declared as final. Doing so prevents its contents from being modified,
making it, essentially, a constant. This means that you must initialize a final field when
it is declared. You can do this in one of two ways: First, you can give it a value when it is
declared. Second, you can assign it a value within a constructor. The first approach is the
most common. Here is an example:

07-ch07.indd 146 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 147

Pa
rt

 I

final int FILE_NEW = 1;
final int FILE_OPEN = 2;
final int FILE_SAVE = 3;
final int FILE_SAVEAS = 4;
final int FILE_QUIT = 5;

Subsequent parts of your program can now use FILE_OPEN, etc., as if they were constants,
without fear that a value has been changed. It is a common coding convention to choose all
uppercase identifiers for final fields, as this example shows.

In addition to fields, both method parameters and local variables can be declared final.
Declaring a parameter final prevents it from being changed within the method. Declaring a
local variable final prevents it from being assigned a value more than once.

The keyword final can also be applied to methods, but its meaning is substantially
different than when it is applied to variables. This additional usage of final is described
in the next chapter, when inheritance is described.

Arrays Revisited
Arrays were introduced earlier in this book, before classes had been discussed. Now that
you know about classes, an important point can be made about arrays: they are implemented
as objects. Because of this, there is a special array attribute that you will want to take
advantage of. Specifically, the size of an array—that is, the number of elements that an array
can hold—is found in its length instance variable. All arrays have this variable, and it will
always hold the size of the array. Here is a program that demonstrates this property:

// This program demonstrates the length array member.
class Length {
 public static void main(String args[]) {
 int a1[] = new int[10];
 int a2[] = {3, 5, 7, 1, 8, 99, 44, -10};
 int a3[] = {4, 3, 2, 1};

 System.out.println("length of a1 is " + a1.length);
 System.out.println("length of a2 is " + a2.length);
 System.out.println("length of a3 is " + a3.length);
 }
}

This program displays the following output:

 length of a1 is 10
 length of a2 is 8
 length of a3 is 4

As you can see, the size of each array is displayed. Keep in mind that the value of length
has nothing to do with the number of elements that are actually in use. It only reflects the
number of elements that the array is designed to hold.

You can put the length member to good use in many situations. For example, here is
an improved version of the Stack class. As you might recall, the earlier versions of this class

07-ch07.indd 147 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

148 PART I The Java Language

always created a ten-element stack. The following version lets you create stacks of any size.
The value of stck.length is used to prevent the stack from overflowing.

// Improved Stack class that uses the length array member.
class Stack {
 private int stck[];
 private int tos;

 // allocate and initialize stack
 Stack(int size) {
 stck = new int[size];
 tos = -1;
 }

 // Push an item onto the stack
 void push(int item) {
 if(tos==stck.length-1) // use length member
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

class TestStack2 {
 public static void main(String args[]) {
 Stack mystack1 = new Stack(5);
 Stack mystack2 = new Stack(8);

 // push some numbers onto the stack
 for(int i=0; i<5; i++) mystack1.push(i);
 for(int i=0; i<8; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<5; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<8; i++)
 System.out.println(mystack2.pop());
 }
}

07-ch07.indd 148 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 149

Pa
rt

 I

Notice that the program creates two stacks: one five elements deep and the other eight
elements deep. As you can see, the fact that arrays maintain their own length information
makes it easy to create stacks of any size.

Introducing Nested and Inner Classes
It is possible to define a class within another class; such classes are known as nested classes.
The scope of a nested class is bounded by the scope of its enclosing class. Thus, if class B is
defined within class A, then B does not exist independently of A. A nested class has access
to the members, including private members, of the class in which it is nested. However, the
enclosing class does not have access to the members of the nested class. A nested class that
is declared directly within its enclosing class scope is a member of its enclosing class. It is
also possible to declare a nested class that is local to a block.

There are two types of nested classes: static and non-static. A static nested class is one
that has the static modifier applied. Because it is static, it must access the non-static members
of its enclosing class through an object. That is, it cannot refer to non-static members of its
enclosing class directly. Because of this restriction, static nested classes are seldom used.

The most important type of nested class is the inner class. An inner class is a non-static
nested class. It has access to all of the variables and methods of its outer class and may refer
to them directly in the same way that other non-static members of the outer class do.

The following program illustrates how to define and use an inner class. The class named
Outer has one instance variable named outer_x, one instance method named test(), and
defines one inner class called Inner.

// Demonstrate an inner class.
class Outer {
 int outer_x = 100;

 void test() {
 Inner inner = new Inner();
 inner.display();
 }

 // this is an inner class
 class Inner {
 void display() {
 System.out.println("display: outer_x = " + outer_x);
 }
 }
}

class InnerClassDemo {
 public static void main(String args[]) {
 Outer outer = new Outer();
 outer.test();
 }
}

07-ch07.indd 149 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

150 PART I The Java Language

Output from this application is shown here:

 display: outer_x = 100

In the program, an inner class named Inner is defined within the scope of class Outer.
Therefore, any code in class Inner can directly access the variable outer_x. An instance
method named display() is defined inside Inner. This method displays outer_x on the
standard output stream. The main() method of InnerClassDemo creates an instance of
class Outer and invokes its test() method. That method creates an instance of class Inner
and the display() method is called.

It is important to realize that an instance of Inner can be created only in the context of
class Outer. The Java compiler generates an error message otherwise. In general, an inner
class instance is often created by code within its enclosing scope, as the example does.

As explained, an inner class has access to all of the members of its enclosing class, but
the reverse is not true. Members of the inner class are known only within the scope of the
inner class and may not be used by the outer class. For example,

// This program will not compile.
class Outer {
 int outer_x = 100;

 void test() {
 Inner inner = new Inner();
 inner.display();
 }

 // this is an inner class
 class Inner {
 int y = 10; // y is local to Inner

 void display() {
 System.out.println("display: outer_x = " + outer_x);
 }
 }

 void showy() {
 System.out.println(y); // error, y not known here!
 }
}

class InnerClassDemo {
 public static void main(String args[]) {
 Outer outer = new Outer();
 outer.test();
 }
}

Here, y is declared as an instance variable of Inner. Thus, it is not known outside of that
class and it cannot be used by showy().

07-ch07.indd 150 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 151

Pa
rt

 I

Although we have been focusing on inner classes declared as members within an outer
class scope, it is possible to define inner classes within any block scope. For example, you
can define a nested class within the block defined by a method or even within the body of
a for loop, as this next program shows:

// Define an inner class within a for loop.
class Outer {
 int outer_x = 100;

 void test() {
 for(int i=0; i<10; i++) {
 class Inner {
 void display() {
 System.out.println("display: outer_x = " + outer_x);
 }
 }
 Inner inner = new Inner();
 inner.display();
 }
 }
}

class InnerClassDemo {
 public static void main(String args[]) {
 Outer outer = new Outer();
 outer.test();
 }
}

The output from this version of the program is shown here:

 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100
 display: outer_x = 100

While nested classes are not applicable to all situations, they are particularly helpful
when handling events. We will return to the topic of nested classes in Chapter 24. There
you will see how inner classes can be used to simplify the code needed to handle certain
types of events. You will also learn about anonymous inner classes, which are inner classes that
don’t have a name.

One final point: Nested classes were not allowed by the original 1.0 specification for
Java. They were added by Java 1.1.

07-ch07.indd 151 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

152 PART I The Java Language

Exploring the String Class
Although the String class will be examined in depth in Part II of this book, a short
exploration of it is warranted now, because we will be using strings in some of the example
programs shown toward the end of Part I. String is probably the most commonly used class
in Java’s class library. The obvious reason for this is that strings are a very important part of
programming.

The first thing to understand about strings is that every string you create is actually an
object of type String. Even string constants are actually String objects. For example, in the
statement

System.out.println("This is a String, too");

the string "This is a String, too" is a String object.
The second thing to understand about strings is that objects of type String are immutable;

once a String object is created, its contents cannot be altered. While this may seem like a
serious restriction, it is not, for two reasons:

•	 If you need to change a string, you can always create a new one that contains the
modifications.

•	 Java defines peer classes of String, called StringBuffer and StringBuilder, which
allow strings to be altered, so all of the normal string manipulations are still
available in Java. (StringBuffer and StringBuilder are described in Part II of this
book.)

Strings can be constructed in a variety of ways. The easiest is to use a statement like this:

String myString = "this is a test";

Once you have created a String object, you can use it anywhere that a string is allowed.
For example, this statement displays myString:

System.out.println(myString);

Java defines one operator for String objects: +. It is used to concatenate two strings. For
example, this statement

String myString = "I" + " like " + "Java.";

results in myString containing "I like Java."
The following program demonstrates the preceding concepts:

// Demonstrating Strings.
class StringDemo {
 public static void main(String args[]) {
 String strOb1 = "First String";
 String strOb2 = "Second String";
 String strOb3 = strOb1 + " and " + strOb2;

 System.out.println(strOb1);

07-ch07.indd 152 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 153

Pa
rt

 I

 System.out.println(strOb2);
 System.out.println(strOb3);
 }
}

The output produced by this program is shown here:

 First String
 Second String
 First String and Second String

The String class contains several methods that you can use. Here are a few. You can test
two strings for equality by using equals(). You can obtain the length of a string by calling
the length() method. You can obtain the character at a specified index within a string by
calling charAt(). The general forms of these three methods are shown here:

boolean equals(secondStr)
int length()
char charAt(index)

Here is a program that demonstrates these methods:

// Demonstrating some String methods.
class StringDemo2 {
 public static void main(String args[]) {
 String strOb1 = "First String";
 String strOb2 = "Second String";
 String strOb3 = strOb1;

 System.out.println("Length of strOb1: " +
 strOb1.length());

 System.out.println("Char at index 3 in strOb1: " +
 strOb1.charAt(3));

 if(strOb1.equals(strOb2))
 System.out.println("strOb1 == strOb2");
 else
 System.out.println("strOb1 != strOb2");

 if(strOb1.equals(strOb3))
 System.out.println("strOb1 == strOb3");
 else
 System.out.println("strOb1 != strOb3");
 }
}

This program generates the following output:

 Length of strOb1: 12
 Char at index 3 in strOb1: s
 strOb1 != strOb2
 strOb1 == strOb3

07-ch07.indd 153 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

154 PART I The Java Language

Of course, you can have arrays of strings, just like you can have arrays of any other type
of object. For example:

// Demonstrate String arrays.
class StringDemo3 {
 public static void main(String args[]) {
 String str[] = { "one", "two", "three" };

 for(int i=0; i<str.length; i++)
 System.out.println("str[" + i + "]: " +
 str[i]);
 }
}

Here is the output from this program:

 str[0]: one
 str[1]: two
 str[2]: three

As you will see in the following section, string arrays play an important part in many Java
programs.

Using Command-Line Arguments
Sometimes you will want to pass information into a program when you run it. This is
accomplished by passing command-line arguments to main(). A command-line argument is
the information that directly follows the program’s name on the command line when it is
executed. To access the command-line arguments inside a Java program is quite easy—they
are stored as strings in a String array passed to the args parameter of main(). The first
command-line argument is stored at args[0], the second at args[1], and so on. For example,
the following program displays all of the command-line arguments that it is called with:

// Display all command-line arguments.
class CommandLine {
 public static void main(String args[]) {
 for(int i=0; i<args.length; i++)
 System.out.println("args[" + i + "]: " +
 args[i]);
 }
}

Try executing this program, as shown here:

java CommandLine this is a test 100 -1

When you do, you will see the following output:

 args[0]: this
 args[1]: is
 args[2]: a
 args[3]: test
 args[4]: 100
 args[5]: -1

07-ch07.indd 154 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 155

Pa
rt

 I

REMEMBER All command-line arguments are passed as strings. You must convert numeric values to
their internal forms manually, as explained in Chapter 17.

Varargs: Variable-Length Arguments
Beginning with JDK 5, Java has included a feature that simplifies the creation of methods
that need to take a variable number of arguments. This feature is called varargs and it is
short for variable-length arguments. A method that takes a variable number of arguments is
called a variable-arity method, or simply a varargs method.

Situations that require that a variable number of arguments be passed to a method are
not unusual. For example, a method that opens an Internet connection might take a user
name, password, filename, protocol, and so on, but supply defaults if some of this information
is not provided. In this situation, it would be convenient to pass only the arguments to
which the defaults did not apply. Another example is the printf() method that is part of
Java’s I/O library. As you will see in Chapter 20, it takes a variable number of arguments,
which it formats and then outputs.

Prior to JDK 5, variable-length arguments could be handled two ways, neither of which
was particularly pleasing. First, if the maximum number of arguments was small and known,
then you could create overloaded versions of the method, one for each way the method
could be called. Although this works and is suitable for some cases, it applies to only a
narrow class of situations.

In cases where the maximum number of potential arguments was larger, or unknowable,
a second approach was used in which the arguments were put into an array, and then the
array was passed to the method. This approach is illustrated by the following program:

// Use an array to pass a variable number of
// arguments to a method. This is the old-style
// approach to variable-length arguments.
class PassArray {
 static void vaTest(int v[]) {
 System.out.print("Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");
 System.out.println();
 }

 public static void main(String args[])
 {
 // Notice how an array must be created to
 // hold the arguments.
 int n1[] = { 10 };
 int n2[] = { 1, 2, 3 };
 int n3[] = { };

 vaTest(n1); // 1 arg
 vaTest(n2); // 3 args
 vaTest(n3); // no args
 }
}

07-ch07.indd 155 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

156 PART I The Java Language

The output from the program is shown here:

 Number of args: 1 Contents: 10
 Number of args: 3 Contents: 1 2 3
 Number of args: 0 Contents:

In the program, the method vaTest() is passed its arguments through the array v. This
old-style approach to variable-length arguments does enable vaTest() to take an arbitrary
number of arguments. However, it requires that these arguments be manually packaged
into an array prior to calling vaTest(). Not only is it tedious to construct an array each time
vaTest() is called, it is potentially error-prone. The varargs feature offers a simpler, better
option.

A variable-length argument is specified by three periods (…). For example, here is how
vaTest() is written using a vararg:

static void vaTest(int ... v) {

This syntax tells the compiler that vaTest() can be called with zero or more arguments. As a
result, v is implicitly declared as an array of type int[]. Thus, inside vaTest(), v is accessed
using the normal array syntax. Here is the preceding program rewritten using a vararg:

// Demonstrate variable-length arguments.
class VarArgs {

 // vaTest() now uses a vararg.
 static void vaTest(int ... v) {
 System.out.print("Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {
 // Notice how vaTest() can be called with a
 // variable number of arguments.
 vaTest(10); // 1 arg
 vaTest(1, 2, 3); // 3 args
 vaTest(); // no args
 }
}

The output from the program is the same as the original version.
There are two important things to notice about this program. First, as explained, inside

vaTest(), v is operated on as an array. This is because v is an array. The … syntax simply tells
the compiler that a variable number of arguments will be used, and that these arguments will
be stored in the array referred to by v. Second, in main(), vaTest() is called with different
numbers of arguments, including no arguments at all. The arguments are automatically put
in an array and passed to v. In the case of no arguments, the length of the array is zero.

07-ch07.indd 156 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 157

Pa
rt

 I

A method can have “normal” parameters along with a variable-length parameter.
However, the variable-length parameter must be the last parameter declared by the
method. For example, this method declaration is perfectly acceptable:

int doIt(int a, int b, double c, int ... vals) {

In this case, the first three arguments used in a call to doIt() are matched to the first three
parameters. Then, any remaining arguments are assumed to belong to vals.

Remember, the varargs parameter must be last. For example, the following declaration
is incorrect:

int doIt(int a, int b, double c, int ... vals, boolean stopFlag) { // Error!

Here, there is an attempt to declare a regular parameter after the varargs parameter, which
is illegal.

There is one more restriction to be aware of: there must be only one varargs parameter.
For example, this declaration is also invalid:

int doIt(int a, int b, double c, int ... vals, double ... morevals) { // Error!

The attempt to declare the second varargs parameter is illegal.
Here is a reworked version of the vaTest() method that takes a regular argument and a

variable-length argument:

// Use varargs with standard arguments.
class VarArgs2 {

 // Here, msg is a normal parameter and v is a
 // varargs parameter.
 static void vaTest(String msg, int ... v) {
 System.out.print(msg + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {
 vaTest("One vararg: ", 10);
 vaTest("Three varargs: ", 1, 2, 3);
 vaTest("No varargs: ");
 }
}

The output from this program is shown here:

 One vararg: 1 Contents: 10
 Three varargs: 3 Contents: 1 2 3
 No varargs: 0 Contents:

07-ch07.indd 157 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

158 PART I The Java Language

Overloading Vararg Methods
You can overload a method that takes a variable-length argument. For example, the
following program overloads vaTest() three times:

// Varargs and overloading.
class VarArgs3 {

 static void vaTest(int ... v) {
 System.out.print("vaTest(int ...): " +
 "Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 static void vaTest(boolean ... v) {
 System.out.print("vaTest(boolean ...) " +
 "Number of args: " + v.length +
 " Contents: ");

 for(boolean x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 static void vaTest(String msg, int ... v) {
 System.out.print("vaTest(String, int ...): " +
 msg + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {
 vaTest(1, 2, 3);
 vaTest("Testing: ", 10, 20);
 vaTest(true, false, false);
 }
}

The output produced by this program is shown here:

 vaTest(int ...): Number of args: 3 Contents: 1 2 3
 vaTest(String, int ...): Testing: 2 Contents: 10 20
 vaTest(boolean ...) Number of args: 3 Contents: true false false

07-ch07.indd 158 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 7 A Closer Look at Methods and Classes 159

Pa
rt

 I

This program illustrates both ways that a varargs method can be overloaded. First, the types
of its vararg parameter can differ. This is the case for vaTest(int ...) and vaTest(boolean ...).
Remember, the ... causes the parameter to be treated as an array of the specified type.
Therefore, just as you can overload methods by using different types of array parameters,
you can overload vararg methods by using different types of varargs. In this case, Java uses
the type difference to determine which overloaded method to call.

The second way to overload a varargs method is to add one or more normal parameters.
This is what was done with vaTest(String, int ...). In this case, Java uses both the number of
arguments and the type of the arguments to determine which method to call.

NOTE A varargs method can also be overloaded by a non-varargs method. For example, vaTest(int x)
is a valid overload of vaTest() in the foregoing program. This version is invoked only when one int
argument is present. When two or more int arguments are passed, the varargs version vaTest (int…v)
is used.

Varargs and Ambiguity
Somewhat unexpected errors can result when overloading a method that takes a variable-
length argument. These errors involve ambiguity because it is possible to create an
ambiguous call to an overloaded varargs method. For example, consider the following
program:

// Varargs, overloading, and ambiguity.
//
// This program contains an error and will
// not compile!
class VarArgs4 {

 static void vaTest(int ... v) {
 System.out.print("vaTest(int ...): " +
 "Number of args: " + v.length +
 " Contents: ");

 for(int x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 static void vaTest(boolean ... v) {
 System.out.print("vaTest(boolean ...) " +
 "Number of args: " + v.length +
 " Contents: ");

 for(boolean x : v)
 System.out.print(x + " ");

 System.out.println();
 }

 public static void main(String args[])
 {

07-ch07.indd 159 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

160 PART I The Java Language

 vaTest(1, 2, 3); // OK
 vaTest(true, false, false); // OK

 vaTest(); // Error: Ambiguous!
 }
}

In this program, the overloading of vaTest() is perfectly correct. However, this program will
not compile because of the following call:

vaTest(); // Error: Ambiguous!

Because the vararg parameter can be empty, this call could be translated into a call to
vaTest(int …) or vaTest(boolean …). Both are equally valid. Thus, the call is inherently
ambiguous.

Here is another example of ambiguity. The following overloaded versions of vaTest()
are inherently ambiguous even though one takes a normal parameter:

static void vaTest(int ... v) { // ...

static void vaTest(int n, int ... v) { // ...

Although the parameter lists of vaTest() differ, there is no way for the compiler to
resolve the following call:

vaTest(1)

Does this translate into a call to vaTest(int …), with one varargs argument, or into a call to
vaTest(int, int …) with no varargs arguments? There is no way for the compiler to answer
this question. Thus, the situation is ambiguous.

Because of ambiguity errors like those just shown, sometimes you will need to forego
overloading and simply use two different method names. Also, in some cases, ambiguity
errors expose a conceptual flaw in your code, which you can remedy by more carefully
crafting a solution.

07-ch07.indd 160 14/02/14 4:48 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

8
CHAPTER

 161

Inheritance

Inheritance is one of the cornerstones of object-oriented programming because it allows
the creation of hierarchical classifications. Using inheritance, you can create a general class
that defines traits common to a set of related items. This class can then be inherited by
other, more specific classes, each adding those things that are unique to it. In the terminology
of Java, a class that is inherited is called a superclass. The class that does the inheriting is
called a subclass. Therefore, a subclass is a specialized version of a superclass. It inherits
all of the members defined by the superclass and adds its own, unique elements.

Inheritance Basics
To inherit a class, you simply incorporate the definition of one class into another by using
the extends keyword. To see how, let’s begin with a short example. The following program
creates a superclass called A and a subclass called B. Notice how the keyword extends is
used to create a subclass of A.

// A simple example of inheritance.

// Create a superclass.
class A {
 int i, j;

 void showij() {
 System.out.println("i and j: " + i + " " + j);
 }
}

// Create a subclass by extending class A.
class B extends A {
 int k;

 void showk() {
 System.out.println("k: " + k);
 }

08-ch08.indd 161 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

162 PART I The Java Language

 void sum() {
 System.out.println("i+j+k: " + (i+j+k));
 }
}

class SimpleInheritance {
 public static void main(String args []) {
 A superOb = new A();
 B subOb = new B();

 // The superclass may be used by itself.
 superOb.i = 10;
 superOb.j = 20;
 System.out.println("Contents of superOb: ");
 superOb.showij();
 System.out.println();

 /* The subclass has access to all public members of
 its superclass. */
 subOb.i = 7;
 subOb.j = 8;
 subOb.k = 9;
 System.out.println("Contents of subOb: ");
 subOb.showij();
 subOb.showk();
 System.out.println();

 System.out.println("Sum of i, j and k in subOb:");
 subOb.sum();
 }
}

The output from this program is shown here:

 Contents of superOb:
 i and j: 10 20

 Contents of subOb:
 i and j: 7 8
 k: 9

 Sum of i, j and k in subOb:
 i+j+k: 24

As you can see, the subclass B includes all of the members of its superclass, A. This is
why subOb can access i and j and call showij(). Also, inside sum(), i and j can be referred
to directly, as if they were part of B.

Even though A is a superclass for B, it is also a completely independent, stand-alone
class. Being a superclass for a subclass does not mean that the superclass cannot be used
by itself. Further, a subclass can be a superclass for another subclass.

The general form of a class declaration that inherits a superclass is shown here:

08-ch08.indd 162 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 163

Pa
rt

 I

class subclass-name extends superclass-name {
 // body of class
}

You can only specify one superclass for any subclass that you create. Java does not
support the inheritance of multiple superclasses into a single subclass. You can, as stated,
create a hierarchy of inheritance in which a subclass becomes a superclass of another
subclass. However, no class can be a superclass of itself.

Member Access and Inheritance
Although a subclass includes all of the members of its superclass, it cannot access those
members of the superclass that have been declared as private. For example, consider the
following simple class hierarchy:

/* In a class hierarchy, private members remain
 private to their class.

 This program contains an error and will not
 compile.
*/

// Create a superclass.
class A {
 int i; // public by default
 private int j; // private to A

 void setij(int x, int y) {
 i = x;
 j = y;
 }
}

// A's j is not accessible here.
class B extends A {
 int total;

 void sum() {
 total = i + j; // ERROR, j is not accessible here
 }
}

class Access {
 public static void main(String args[]) {
 B subOb = new B();

 subOb.setij(10, 12);

 subOb.sum();
 System.out.println("Total is " + subOb.total);
 }
}

08-ch08.indd 163 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

164 PART I The Java Language

This program will not compile because the use of j inside the sum() method of B
causes an access violation. Since j is declared as private, it is only accessible by other members
of its own class. Subclasses have no access to it.

REMEMBER A class member that has been declared as private will remain private to its class. It is not
accessible by any code outside its class, including subclasses.

A More Practical Example
Let’s look at a more practical example that will help illustrate the power of inheritance. Here,
the final version of the Box class developed in the preceding chapter will be extended to
include a fourth component called weight. Thus, the new class will contain a box’s width,
height, depth, and weight.

// This program uses inheritance to extend Box.
class Box {
 double width;
 double height;
 double depth;

 // construct clone of an object
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

// Here, Box is extended to include weight.
class BoxWeight extends Box {

08-ch08.indd 164 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 165

Pa
rt

 I

 double weight; // weight of box

 // constructor for BoxWeight
 BoxWeight(double w, double h, double d, double m) {
 width = w;
 height = h;
 depth = d;
 weight = m;
 }
}

class DemoBoxWeight {
 public static void main(String args[]) {
 BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
 BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
 double vol;

 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);
 System.out.println("Weight of mybox1 is " + mybox1.weight);
 System.out.println();

 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);
 System.out.println("Weight of mybox2 is " + mybox2.weight);
 }
}

The output from this program is shown here:

 Volume of mybox1 is 3000.0
 Weight of mybox1 is 34.3

 Volume of mybox2 is 24.0
 Weight of mybox2 is 0.076

BoxWeight inherits all of the characteristics of Box and adds to them the weight
component. It is not necessary for BoxWeight to re-create all of the features found in
Box. It can simply extend Box to meet its own purposes.

A major advantage of inheritance is that once you have created a superclass that defines
the attributes common to a set of objects, it can be used to create any number of more
specific subclasses. Each subclass can precisely tailor its own classification. For example,
the following class inherits Box and adds a color attribute:

// Here, Box is extended to include color.
class ColorBox extends Box {
 int color; // color of box

 ColorBox(double w, double h, double d, int c) {
 width = w;
 height = h;
 depth = d;
 color = c;
 }
}

08-ch08.indd 165 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

166 PART I The Java Language

Remember, once you have created a superclass that defines the general aspects of an
object, that superclass can be inherited to form specialized classes. Each subclass simply
adds its own unique attributes. This is the essence of inheritance.

A Superclass Variable Can Reference a Subclass Object
A reference variable of a superclass can be assigned a reference to any subclass derived
from that superclass. You will find this aspect of inheritance quite useful in a variety of
situations. For example, consider the following:

class RefDemo {
 public static void main(String args[]) {
 BoxWeight weightbox = new BoxWeight(3, 5, 7, 8.37);
 Box plainbox = new Box();
 double vol;

 vol = weightbox.volume();
 System.out.println("Volume of weightbox is " + vol);
 System.out.println("Weight of weightbox is " +
 weightbox.weight);
 System.out.println();

 // assign BoxWeight reference to Box reference
 plainbox = weightbox;

 vol = plainbox.volume(); // OK, volume() defined in Box
 System.out.println("Volume of plainbox is " + vol);

 /* The following statement is invalid because plainbox
 does not define a weight member. */
// System.out.println("Weight of plainbox is " + plainbox.weight);
 }
}

Here, weightbox is a reference to BoxWeight objects, and plainbox is a reference to Box
objects. Since BoxWeight is a subclass of Box, it is permissible to assign plainbox a reference
to the weightbox object.

It is important to understand that it is the type of the reference variable—not the type
of the object that it refers to—that determines what members can be accessed. That is,
when a reference to a subclass object is assigned to a superclass reference variable, you will
have access only to those parts of the object defined by the superclass. This is why plainbox
can’t access weight even when it refers to a BoxWeight object. If you think about it, this
makes sense, because the superclass has no knowledge of what a subclass adds to it. This is
why the last line of code in the preceding fragment is commented out. It is not possible for
a Box reference to access the weight field, because Box does not define one.

Although the preceding may seem a bit esoteric, it has some important practical
applications—two of which are discussed later in this chapter.

08-ch08.indd 166 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 167

Pa
rt

 I

Using super
In the preceding examples, classes derived from Box were not implemented as efficiently
or as robustly as they could have been. For example, the constructor for BoxWeight explicitly
initializes the width, height, and depth fields of Box. Not only does this duplicate code
found in its superclass, which is inefficient, but it implies that a subclass must be granted
access to these members. However, there will be times when you will want to create a
superclass that keeps the details of its implementation to itself (that is, that keeps its data
members private). In this case, there would be no way for a subclass to directly access or
initialize these variables on its own. Since encapsulation is a primary attribute of OOP, it is
not surprising that Java provides a solution to this problem. Whenever a subclass needs to
refer to its immediate superclass, it can do so by use of the keyword super.

super has two general forms. The first calls the superclass’ constructor. The second is
used to access a member of the superclass that has been hidden by a member of a subclass.
Each use is examined here.

Using super to Call Superclass Constructors
A subclass can call a constructor defined by its superclass by use of the following form of
super:

super(arg-list);

Here, arg-list specifies any arguments needed by the constructor in the superclass. super()
must always be the first statement executed inside a subclass’ constructor.

To see how super() is used, consider this improved version of the BoxWeight class:

// BoxWeight now uses super to initialize its Box attributes.
class BoxWeight extends Box {
 double weight; // weight of box

 // initialize width, height, and depth using super()
 BoxWeight(double w, double h, double d, double m) {
 super(w, h, d); // call superclass constructor
 weight = m;
 }
}

Here, BoxWeight() calls super() with the arguments w, h, and d. This causes the Box
constructor to be called, which initializes width, height, and depth using these values.
BoxWeight no longer initializes these values itself. It only needs to initialize the value
unique to it: weight. This leaves Box free to make these values private if desired.

In the preceding example, super() was called with three arguments. Since constructors
can be overloaded, super() can be called using any form defined by the superclass. The
constructor executed will be the one that matches the arguments. For example, here is a
complete implementation of BoxWeight that provides constructors for the various ways that

08-ch08.indd 167 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

168 PART I The Java Language

a box can be constructed. In each case, super() is called using the appropriate arguments.
Notice that width, height, and depth have been made private within Box.

// A complete implementation of BoxWeight.
class Box {
 private double width;
 private double height;
 private double depth;

 // construct clone of an object
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
 }

// BoxWeight now fully implements all constructors.
class BoxWeight extends Box {
 double weight; // weight of box

 // construct clone of an object
 BoxWeight(BoxWeight ob) { // pass object to constructor
 super(ob);
 weight = ob.weight;
 }

 // constructor when all parameters are specified
 BoxWeight(double w, double h, double d, double m) {

08-ch08.indd 168 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 169

Pa
rt

 I

 super(w, h, d); // call superclass constructor
 weight = m;
 }

 // default constructor
 BoxWeight() {
 super();
 weight = -1;
 }

 // constructor used when cube is created
 BoxWeight(double len, double m) {
 super(len);
 weight = m;
 }
}

class DemoSuper {
 public static void main(String args[]) {
 BoxWeight mybox1 = new BoxWeight(10, 20, 15, 34.3);
 BoxWeight mybox2 = new BoxWeight(2, 3, 4, 0.076);
 BoxWeight mybox3 = new BoxWeight(); // default
 BoxWeight mycube = new BoxWeight(3, 2);
 BoxWeight myclone = new BoxWeight(mybox1);
 double vol;

 vol = mybox1.volume();
 System.out.println("Volume of mybox1 is " + vol);
 System.out.println("Weight of mybox1 is " + mybox1.weight);
 System.out.println();

 vol = mybox2.volume();
 System.out.println("Volume of mybox2 is " + vol);
 System.out.println("Weight of mybox2 is " + mybox2.weight);
 System.out.println();

 vol = mybox3.volume();
 System.out.println("Volume of mybox3 is " + vol);
 System.out.println("Weight of mybox3 is " + mybox3.weight);
 System.out.println();

 vol = myclone.volume();
 System.out.println("Volume of myclone is " + vol);
 System.out.println("Weight of myclone is " + myclone.weight);
 System.out.println();

 vol = mycube.volume();
 System.out.println("Volume of mycube is " + vol);
 System.out.println("Weight of mycube is " + mycube.weight);
 System.out.println();
 }
}

08-ch08.indd 169 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

170 PART I The Java Language

This program generates the following output:

 Volume of mybox1 is 3000.0
 Weight of mybox1 is 34.3

 Volume of mybox2 is 24.0
 Weight of mybox2 is 0.076

 Volume of mybox3 is -1.0
 Weight of mybox3 is -1.0

 Volume of myclone is 3000.0
 Weight of myclone is 34.3

 Volume of mycube is 27.0
 Weight of mycube is 2.0

Pay special attention to this constructor in BoxWeight:

// construct clone of an object
BoxWeight(BoxWeight ob) { // pass object to constructor
 super(ob);
 weight = ob.weight;
}

Notice that super() is passed an object of type BoxWeight—not of type Box. This still
invokes the constructor Box(Box ob). As mentioned earlier, a superclass variable can be
used to reference any object derived from that class. Thus, we are able to pass a BoxWeight
object to the Box constructor. Of course, Box only has knowledge of its own members.

Let’s review the key concepts behind super(). When a subclass calls super(), it is calling
the constructor of its immediate superclass. Thus, super() always refers to the superclass
immediately above the calling class. This is true even in a multileveled hierarchy. Also,
super() must always be the first statement executed inside a subclass constructor.

A Second Use for super
The second form of super acts somewhat like this, except that it always refers to the
superclass of the subclass in which it is used. This usage has the following general form:

super.member

Here, member can be either a method or an instance variable.
This second form of super is most applicable to situations in which member names

of a subclass hide members by the same name in the superclass. Consider this simple class
hierarchy:

// Using super to overcome name hiding.
class A {
 int i;
}

// Create a subclass by extending class A.

08-ch08.indd 170 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 171

Pa
rt

 I

class B extends A {
 int i; // this i hides the i in A

 B(int a, int b) {
 super.i = a; // i in A
 i = b; // i in B
 }

 void show() {
 System.out.println("i in superclass: " + super.i);
 System.out.println("i in subclass: " + i);
 }
}

class UseSuper {
 public static void main(String args[]) {
 B subOb = new B(1, 2);

 subOb.show();
 }
}

This program displays the following:

 i in superclass: 1
 i in subclass: 2

Although the instance variable i in B hides the i in A, super allows access to the i
defined in the superclass. As you will see, super can also be used to call methods that are
hidden by a subclass.

Creating a Multilevel Hierarchy
Up to this point, we have been using simple class hierarchies that consist of only a superclass
and a subclass. However, you can build hierarchies that contain as many layers of inheritance
as you like. As mentioned, it is perfectly acceptable to use a subclass as a superclass of
another. For example, given three classes called A, B, and C, C can be a subclass of B, which
is a subclass of A. When this type of situation occurs, each subclass inherits all of the traits
found in all of its superclasses. In this case, C inherits all aspects of B and A. To see how a
multilevel hierarchy can be useful, consider the following program. In it, the subclass
BoxWeight is used as a superclass to create the subclass called Shipment. Shipment inherits
all of the traits of BoxWeight and Box, and adds a field called cost, which holds the cost of
shipping such a parcel.

// Extend BoxWeight to include shipping costs.

// Start with Box.
class Box {
 private double width;
 private double height;
 private double depth;

08-ch08.indd 171 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

172 PART I The Java Language

 // construct clone of an object
 Box(Box ob) { // pass object to constructor
 width = ob.width;
 height = ob.height;
 depth = ob.depth;
 }

 // constructor used when all dimensions specified
 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 // constructor used when no dimensions specified
 Box() {
 width = -1; // use -1 to indicate
 height = -1; // an uninitialized
 depth = -1; // box
 }

 // constructor used when cube is created
 Box(double len) {
 width = height = depth = len;
 }

 // compute and return volume
 double volume() {
 return width * height * depth;
 }
}

// Add weight.
class BoxWeight extends Box {
 double weight; // weight of box

 // construct clone of an object
 BoxWeight(BoxWeight ob) { // pass object to constructor
 super(ob);
 weight = ob.weight;
 }

 // constructor when all parameters are specified
 BoxWeight(double w, double h, double d, double m) {
 super(w, h, d); // call superclass constructor
 weight = m;
 }

 // default constructor
 BoxWeight() {
 super();
 weight = -1;
 }

08-ch08.indd 172 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 173

Pa
rt

 I

 // constructor used when cube is created
 BoxWeight(double len, double m) {
 super(len);
 weight = m;
 }
}

// Add shipping costs.
class Shipment extends BoxWeight {
 double cost;

 // construct clone of an object
 Shipment(Shipment ob) { // pass object to constructor
 super(ob);
 cost = ob.cost;
 }

 // constructor when all parameters are specified
 Shipment(double w, double h, double d,
 double m, double c) {
 super(w, h, d, m); // call superclass constructor
 cost = c;
 }

 // default constructor
 Shipment() {
 super();
 cost = -1;
 }

 // constructor used when cube is created
 Shipment(double len, double m, double c) {
 super(len, m);
 cost = c;
 }
}

class DemoShipment {
 public static void main(String args[]) {
 Shipment shipment1 =
 new Shipment(10, 20, 15, 10, 3.41);
 Shipment shipment2 =
 new Shipment(2, 3, 4, 0.76, 1.28);

 double vol;

 vol = shipment1.volume();
 System.out.println("Volume of shipment1 is " + vol);
 System.out.println("Weight of shipment1 is "
 + shipment1.weight);
 System.out.println("Shipping cost: $" + shipment1.cost);
 System.out.println();

08-ch08.indd 173 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

174 PART I The Java Language

 vol = shipment2.volume();
 System.out.println("Volume of shipment2 is " + vol);
 System.out.println("Weight of shipment2 is "
 + shipment2.weight);
 System.out.println("Shipping cost: $" + shipment2.cost);
 }
}

The output of this program is shown here:

 Volume of shipment1 is 3000.0
 Weight of shipment1 is 10.0
 Shipping cost: $3.41

 Volume of shipment2 is 24.0
 Weight of shipment2 is 0.76
 Shipping cost: $1.28

Because of inheritance, Shipment can make use of the previously defined classes of Box
and BoxWeight, adding only the extra information it needs for its own, specific application.
This is part of the value of inheritance; it allows the reuse of code.

This example illustrates one other important point: super() always refers to the
constructor in the closest superclass. The super() in Shipment calls the constructor in
BoxWeight. The super() in BoxWeight calls the constructor in Box. In a class hierarchy, if a
superclass constructor requires parameters, then all subclasses must pass those parameters
“up the line.” This is true whether or not a subclass needs parameters of its own.

NOTE In the preceding program, the entire class hierarchy, including Box, BoxWeight, and Shipment, is
shown all in one file. This is for your convenience only. In Java, all three classes could have been
placed into their own files and compiled separately. In fact, using separate files is the norm, not the
exception, in creating class hierarchies.

When Constructors Are Executed
When a class hierarchy is created, in what order are the constructors for the classes that
make up the hierarchy executed? For example, given a subclass called B and a superclass
called A, is A’s constructor executed before B’s, or vice versa? The answer is that in a class
hierarchy, constructors complete their execution in order of derivation, from superclass to
subclass. Further, since super() must be the first statement executed in a subclass’
constructor, this order is the same whether or not super() is used. If super() is not used,
then the default or parameterless constructor of each superclass will be executed. The
following program illustrates when constructors are executed:

// Demonstrate when constructors are executed.

// Create a super class.
class A {
 A() {
 System.out.println("Inside A's constructor.");
 }
}

08-ch08.indd 174 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 175

Pa
rt

 I

// Create a subclass by extending class A.
class B extends A {
 B() {
 System.out.println("Inside B's constructor.");
 }
}

// Create another subclass by extending B.
class C extends B {
 C() {
 System.out.println("Inside C's constructor.");
 }
}

class CallingCons {
 public static void main(String args[]) {
 C c = new C();
 }
}

The output from this program is shown here:

 Inside A's constructor
 Inside B's constructor
 Inside C's constructor

As you can see, the constructors are executed in order of derivation.
If you think about it, it makes sense that constructors complete their execution in order

of derivation. Because a superclass has no knowledge of any subclass, any initialization it
needs to perform is separate from and possibly prerequisite to any initialization performed
by the subclass. Therefore, it must complete its execution first.

Method Overriding
In a class hierarchy, when a method in a subclass has the same name and type signature as
a method in its superclass, then the method in the subclass is said to override the method in
the superclass. When an overridden method is called from within its subclass, it will always
refer to the version of that method defined by the subclass. The version of the method
defined by the superclass will be hidden. Consider the following:

// Method overriding.
class A {
 int i, j;
 A(int a, int b) {
 i = a;
 j = b;
 }

 // display i and j
 void show() {
 System.out.println("i and j: " + i + " " + j);
 }
}

08-ch08.indd 175 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

176 PART I The Java Language

class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 // display k – this overrides show() in A
 void show() {
 System.out.println("k: " + k);
 }
}

class Override {
 public static void main(String args[]) {
 B subOb = new B(1, 2, 3);

 subOb.show(); // this calls show() in B
 }
}

The output produced by this program is shown here:

 k: 3

When show() is invoked on an object of type B, the version of show() defined within B
is used. That is, the version of show() inside B overrides the version declared in A.

If you wish to access the superclass version of an overridden method, you can do so by
using super. For example, in this version of B, the superclass version of show() is invoked
within the subclass’ version. This allows all instance variables to be displayed.

class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 void show() {
 super.show(); // this calls A's show()
 System.out.println("k: " + k);
 }
}

If you substitute this version of A into the previous program, you will see the following
output:

 i and j: 1 2
 k: 3

Here, super.show() calls the superclass version of show().

08-ch08.indd 176 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 177

Pa
rt

 I

Method overriding occurs only when the names and the type signatures of the two
methods are identical. If they are not, then the two methods are simply overloaded. For
example, consider this modified version of the preceding example:

// Methods with differing type signatures are overloaded – not
// overridden.
class A {
 int i, j;

 A(int a, int b) {
 i = a;
 j = b;
 }

 // display i and j
 void show() {
 System.out.println("i and j: " + i + " " + j);
 }
}

// Create a subclass by extending class A.
class B extends A {
 int k;

 B(int a, int b, int c) {
 super(a, b);
 k = c;
 }

 // overload show()
 void show(String msg) {
 System.out.println(msg + k);
 }
}

class Override {
 public static void main(String args[]) {
 B subOb = new B(1, 2, 3);

 subOb.show("This is k: "); // this calls show() in B
 subOb.show(); // this calls show() in A
 }
}

The output produced by this program is shown here:

 This is k: 3
 i and j: 1 2

The version of show() in B takes a string parameter. This makes its type signature
different from the one in A, which takes no parameters. Therefore, no overriding (or name
hiding) takes place. Instead, the version of show() in B simply overloads the version of
show() in A.

08-ch08.indd 177 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

178 PART I The Java Language

Dynamic Method Dispatch
While the examples in the preceding section demonstrate the mechanics of method
overriding, they do not show its power. Indeed, if there were nothing more to method
overriding than a name space convention, then it would be, at best, an interesting curiosity,
but of little real value. However, this is not the case. Method overriding forms the basis for
one of Java’s most powerful concepts: dynamic method dispatch. Dynamic method dispatch is
the mechanism by which a call to an overridden method is resolved at run time, rather than
compile time. Dynamic method dispatch is important because this is how Java implements
run-time polymorphism.

Let’s begin by restating an important principle: a superclass reference variable can refer
to a subclass object. Java uses this fact to resolve calls to overridden methods at run time.
Here is how. When an overridden method is called through a superclass reference, Java
determines which version of that method to execute based upon the type of the object
being referred to at the time the call occurs. Thus, this determination is made at run time.
When different types of objects are referred to, different versions of an overridden method
will be called. In other words, it is the type of the object being referred to (not the type of the
reference variable) that determines which version of an overridden method will be executed.
Therefore, if a superclass contains a method that is overridden by a subclass, then when
different types of objects are referred to through a superclass reference variable, different
versions of the method are executed.

Here is an example that illustrates dynamic method dispatch:

// Dynamic Method Dispatch
class A {
 void callme() {
 System.out.println("Inside A's callme method");
 }
}

class B extends A {
 // override callme()
 void callme() {
 System.out.println("Inside B's callme method");
 }
}

class C extends A {
 // override callme()
 void callme() {
 System.out.println("Inside C's callme method");
 }
}

class Dispatch {
 public static void main(String args[]) {
 A a = new A(); // object of type A
 B b = new B(); // object of type B
 C c = new C(); // object of type C

08-ch08.indd 178 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 179

Pa
rt

 I

 A r; // obtain a reference of type A

 r = a; // r refers to an A object
 r.callme(); // calls A's version of callme

 r = b; // r refers to a B object
 r.callme(); // calls B's version of callme

 r = c; // r refers to a C object
 r.callme(); // calls C's version of callme
 }
}

The output from the program is shown here:

 Inside A's callme method
 Inside B's callme method
 Inside C's callme method

This program creates one superclass called A and two subclasses of it, called B and C.
Subclasses B and C override callme() declared in A. Inside the main() method, objects of
type A, B, and C are declared. Also, a reference of type A, called r, is declared. The program
then in turn assigns a reference to each type of object to r and uses that reference to invoke
callme(). As the output shows, the version of callme() executed is determined by the type
of object being referred to at the time of the call. Had it been determined by the type of
the reference variable, r, you would see three calls to A’s callme() method.

NOTE Readers familiar with C++ or C# will recognize that overridden methods in Java are similar to
virtual functions in those languages.

Why Overridden Methods?
As stated earlier, overridden methods allow Java to support run-time polymorphism.
Polymorphism is essential to object-oriented programming for one reason: it allows a
general class to specify methods that will be common to all of its derivatives, while allowing
subclasses to define the specific implementation of some or all of those methods.
Overridden methods are another way that Java implements the “one interface, multiple
methods” aspect of polymorphism.

Part of the key to successfully applying polymorphism is understanding that the
superclasses and subclasses form a hierarchy which moves from lesser to greater
specialization. Used correctly, the superclass provides all elements that a subclass can use
directly. It also defines those methods that the derived class must implement on its own.
This allows the subclass the flexibility to define its own methods, yet still enforces a
consistent interface. Thus, by combining inheritance with overridden methods, a superclass
can define the general form of the methods that will be used by all of its subclasses.

Dynamic, run-time polymorphism is one of the most powerful mechanisms that object-
oriented design brings to bear on code reuse and robustness. The ability of existing code
libraries to call methods on instances of new classes without recompiling while maintaining
a clean abstract interface is a profoundly powerful tool.

08-ch08.indd 179 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

180 PART I The Java Language

Applying Method Overriding
Let’s look at a more practical example that uses method overriding. The following program
creates a superclass called Figure that stores the dimensions of a two-dimensional object. It
also defines a method called area() that computes the area of an object. The program
derives two subclasses from Figure. The first is Rectangle and the second is Triangle. Each
of these subclasses overrides area() so that it returns the area of a rectangle and a triangle,
respectively.

// Using run-time polymorphism.
class Figure {
 double dim1;
 double dim2;

 Figure(double a, double b) {
 dim1 = a;
 dim2 = b;
 }

 double area() {
 System.out.println("Area for Figure is undefined.");
 return 0;
 }
}

class Rectangle extends Figure {
 Rectangle(double a, double b) {
 super(a, b);
 }

 // override area for rectangle
 double area() {
 System.out.println("Inside Area for Rectangle.");
 return dim1 * dim2;
 }
}

class Triangle extends Figure {
 Triangle(double a, double b) {
 super(a, b);
 }

 // override area for right triangle
 double area() {
 System.out.println("Inside Area for Triangle.");
 return dim1 * dim2 / 2;
 }
}

class FindAreas {
 public static void main(String args[]) {
 Figure f = new Figure(10, 10);
 Rectangle r = new Rectangle(9, 5);

08-ch08.indd 180 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 181

Pa
rt

 I

 Triangle t = new Triangle(10, 8);
 Figure figref;

 figref = r;
 System.out.println("Area is " + figref.area());

 figref = t;
 System.out.println("Area is " + figref.area());

 figref = f;
 System.out.println("Area is " + figref.area());
 }
}

The output from the program is shown here:

 Inside Area for Rectangle.
 Area is 45
 Inside Area for Triangle.
 Area is 40
 Area for Figure is undefined.
 Area is 0

Through the dual mechanisms of inheritance and run-time polymorphism, it is possible
to define one consistent interface that is used by several different, yet related, types of
objects. In this case, if an object is derived from Figure, then its area can be obtained by
calling area(). The interface to this operation is the same no matter what type of figure is
being used.

Using Abstract Classes
There are situations in which you will want to define a superclass that declares the structure
of a given abstraction without providing a complete implementation of every method. That
is, sometimes you will want to create a superclass that only defines a generalized form that
will be shared by all of its subclasses, leaving it to each subclass to fill in the details. Such a
class determines the nature of the methods that the subclasses must implement. One way
this situation can occur is when a superclass is unable to create a meaningful implementation
for a method. This is the case with the class Figure used in the preceding example. The
definition of area() is simply a placeholder. It will not compute and display the area of any
type of object.

As you will see as you create your own class libraries, it is not uncommon for a method
to have no meaningful definition in the context of its superclass. You can handle this
situation two ways. One way, as shown in the previous example, is to simply have it report
a warning message. While this approach can be useful in certain situations—such as
debugging—it is not usually appropriate. You may have methods that must be overridden
by the subclass in order for the subclass to have any meaning. Consider the class Triangle.
It has no meaning if area() is not defined. In this case, you want some way to ensure that a
subclass does, indeed, override all necessary methods. Java’s solution to this problem is the
abstract method.

08-ch08.indd 181 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

182 PART I The Java Language

You can require that certain methods be overridden by subclasses by specifying the
abstract type modifier. These methods are sometimes referred to as subclasser responsibility
because they have no implementation specified in the superclass. Thus, a subclass must
override them—it cannot simply use the version defined in the superclass. To declare an
abstract method, use this general form:

abstract type name(parameter-list);

As you can see, no method body is present.
Any class that contains one or more abstract methods must also be declared abstract. To

declare a class abstract, you simply use the abstract keyword in front of the class keyword at
the beginning of the class declaration. There can be no objects of an abstract class. That is,
an abstract class cannot be directly instantiated with the new operator. Such objects would
be useless, because an abstract class is not fully defined. Also, you cannot declare abstract
constructors, or abstract static methods. Any subclass of an abstract class must either
implement all of the abstract methods in the superclass, or be declared abstract itself.

Here is a simple example of a class with an abstract method, followed by a class which
implements that method:

// A Simple demonstration of abstract.
abstract class A {
 abstract void callme();

 // concrete methods are still allowed in abstract classes
 void callmetoo() {
 System.out.println("This is a concrete method.");
 }
}

class B extends A {
 void callme() {
 System.out.println("B's implementation of callme.");
 }
}

class AbstractDemo {
 public static void main(String args[]) {
 B b = new B();

 b.callme();
 b.callmetoo();
 }
}

Notice that no objects of class A are declared in the program. As mentioned, it is not
possible to instantiate an abstract class. One other point: class A implements a concrete
method called callmetoo(). This is perfectly acceptable. Abstract classes can include as
much implementation as they see fit.

Although abstract classes cannot be used to instantiate objects, they can be used to
create object references, because Java’s approach to run-time polymorphism is implemented
through the use of superclass references. Thus, it must be possible to create a reference to
an abstract class so that it can be used to point to a subclass object. You will see this feature
put to use in the next example.

08-ch08.indd 182 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 183

Pa
rt

 I

Using an abstract class, you can improve the Figure class shown earlier. Since there is no
meaningful concept of area for an undefined two-dimensional figure, the following version
of the program declares area() as abstract inside Figure. This, of course, means that all
classes derived from Figure must override area().

// Using abstract methods and classes.
abstract class Figure {
 double dim1;
 double dim2;

 Figure(double a, double b) {
 dim1 = a;
 dim2 = b;
 }

 // area is now an abstract method
 abstract double area();
}

class Rectangle extends Figure {
 Rectangle(double a, double b) {
 super(a, b);
 }

 // override area for rectangle
 double area() {
 System.out.println("Inside Area for Rectangle.");
 return dim1 * dim2;
 }
}

class Triangle extends Figure {
 Triangle(double a, double b) {
 super(a, b);
 }

 // override area for right triangle
 double area() {
 System.out.println("Inside Area for Triangle.");
 return dim1 * dim2 / 2;
 }
}

class AbstractAreas {
 public static void main(String args[]) {
 // Figure f = new Figure(10, 10); // illegal now
 Rectangle r = new Rectangle(9, 5);
 Triangle t = new Triangle(10, 8);
 Figure figref; // this is OK, no object is created

 figref = r;
 System.out.println("Area is " + figref.area());

 figref = t;

08-ch08.indd 183 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

184 PART I The Java Language

 System.out.println("Area is " + figref.area());
 }
}

As the comment inside main() indicates, it is no longer possible to declare objects of
type Figure, since it is now abstract. And, all subclasses of Figure must override area(). To
prove this to yourself, try creating a subclass that does not override area(). You will receive
a compile-time error.

Although it is not possible to create an object of type Figure, you can create a reference
variable of type Figure. The variable figref is declared as a reference to Figure, which means
that it can be used to refer to an object of any class derived from Figure. As explained, it is
through superclass reference variables that overridden methods are resolved at run time.

Using final with Inheritance
The keyword final has three uses. First, it can be used to create the equivalent of a named
constant. This use was described in the preceding chapter. The other two uses of final apply
to inheritance. Both are examined here.

Using final to Prevent Overriding
While method overriding is one of Java’s most powerful features, there will be times when
you will want to prevent it from occurring. To disallow a method from being overridden,
specify final as a modifier at the start of its declaration. Methods declared as final cannot
be overridden. The following fragment illustrates final:

class A {
 final void meth() {
 System.out.println("This is a final method.");
 }
}

class B extends A {
 void meth() { // ERROR! Can't override.
 System.out.println("Illegal!");
 }
}

Because meth() is declared as final, it cannot be overridden in B. If you attempt to do
so, a compile-time error will result.

Methods declared as final can sometimes provide a performance enhancement: The
compiler is free to inline calls to them because it “knows” they will not be overridden by a
subclass. When a small final method is called, often the Java compiler can copy the bytecode
for the subroutine directly inline with the compiled code of the calling method, thus
eliminating the costly overhead associated with a method call. Inlining is an option only with
final methods. Normally, Java resolves calls to methods dynamically, at run time. This is called
late binding. However, since final methods cannot be overridden, a call to one can be resolved
at compile time. This is called early binding.

08-ch08.indd 184 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 8 Inheritance 185

Pa
rt

 I

Using final to Prevent Inheritance
Sometimes you will want to prevent a class from being inherited. To do this, precede the
class declaration with final. Declaring a class as final implicitly declares all of its methods as
final, too. As you might expect, it is illegal to declare a class as both abstract and final since
an abstract class is incomplete by itself and relies upon its subclasses to provide complete
implementations.

Here is an example of a final class:

final class A {
 //...
}

// The following class is illegal.
class B extends A { // ERROR! Can't subclass A
 //...
}

As the comments imply, it is illegal for B to inherit A since A is declared as final.

The Object Class
There is one special class, Object, defined by Java. All other classes are subclasses of Object.
That is, Object is a superclass of all other classes. This means that a reference variable of
type Object can refer to an object of any other class. Also, since arrays are implemented as
classes, a variable of type Object can also refer to any array.

Object defines the following methods, which means that they are available in every object.

Method Purpose
Object clone() Creates a new object that is the same as the object

being cloned.

boolean equals(Object object) Determines whether one object is equal to another.

void finalize() Called before an unused object is recycled.

Class<?> getClass() Obtains the class of an object at run time.

int hashCode() Returns the hash code associated with the invoking
object.

void notify() Resumes execution of a thread waiting on the
invoking object.

void notifyAll() Resumes execution of all threads waiting on the
invoking object.

String toString() Returns a string that describes the object.

void wait()
void wait(long milliseconds)
void wait(long milliseconds,
 int nanoseconds)

Waits on another thread of execution.

08-ch08.indd 185 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

186 PART I The Java Language

The methods getClass(), notify(), notifyAll(), and wait() are declared as final. You may
override the others. These methods are described elsewhere in this book. However, notice
two methods now: equals() and toString(). The equals() method compares two objects. It
returns true if the objects are equal, and false otherwise. The precise definition of equality
can vary, depending on the type of objects being compared. The toString() method returns
a string that contains a description of the object on which it is called. Also, this method is
automatically called when an object is output using println(). Many classes override this
method. Doing so allows them to tailor a description specifically for the types of objects that
they create.

One last point: Notice the unusual syntax in the return type for getClass(). This relates
to Java’s generics feature, which is described in Chapter 14.

08-ch08.indd 186 14/02/14 4:49 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

9
CHAPTER

 187

Packages and Interfaces

This chapter examines two of Java’s most innovative features: packages and interfaces. Packages
are containers for classes. They are used to keep the class name space compartmentalized. For
example, a package allows you to create a class named List, which you can store in your own
package without concern that it will collide with some other class named List stored elsewhere.
Packages are stored in a hierarchical manner and are explicitly imported into new class
definitions.

In previous chapters, you have seen how methods define the interface to the data in a
class. Through the use of the interface keyword, Java allows you to fully abstract an interface
from its implementation. Using interface, you can specify a set of methods that can be
implemented by one or more classes. In its traditional form, the interface, itself, does not
actually define any implementation. Although they are similar to abstract classes, interfaces
have an additional capability: A class can implement more than one interface. By contrast, a
class can only inherit a single superclass (abstract or otherwise).

Packages
In the preceding chapters, the name of each example class was taken from the same name
space. This means that a unique name had to be used for each class to avoid name collisions.
After a while, without some way to manage the name space, you could run out of convenient,
descriptive names for individual classes. You also need some way to be assured that the
name you choose for a class will be reasonably unique and not collide with class names
chosen by other programmers. (Imagine a small group of programmers fighting over who
gets to use the name “Foobar” as a class name. Or, imagine the entire Internet community
arguing over who first named a class “Espresso.”) Thankfully, Java provides a mechanism for
partitioning the class name space into more manageable chunks. This mechanism is the
package. The package is both a naming and a visibility control mechanism. You can define
classes inside a package that are not accessible by code outside that package. You can also
define class members that are exposed only to other members of the same package. This
allows your classes to have intimate knowledge of each other, but not expose that knowledge
to the rest of the world.

09-ch09.indd 187 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

188 PART I The Java Language

Defining a Package
To create a package is quite easy: simply include a package command as the first statement
in a Java source file. Any classes declared within that file will belong to the specified package.
The package statement defines a name space in which classes are stored. If you omit the
package statement, the class names are put into the default package, which has no name.
(This is why you haven’t had to worry about packages before now.) While the default
package is fine for short, sample programs, it is inadequate for real applications. Most of
the time, you will define a package for your code.

This is the general form of the package statement:

package pkg;

Here, pkg is the name of the package. For example, the following statement creates a
package called MyPackage:

package MyPackage;

Java uses file system directories to store packages. For example, the .class files for any
classes you declare to be part of MyPackage must be stored in a directory called MyPackage.
Remember that case is significant, and the directory name must match the package name
exactly.

More than one file can include the same package statement. The package statement
simply specifies to which package the classes defined in a file belong. It does not exclude
other classes in other files from being part of that same package. Most real-world packages
are spread across many files.

You can create a hierarchy of packages. To do so, simply separate each package name
from the one above it by use of a period. The general form of a multileveled package
statement is shown here:

package pkg1[.pkg2[.pkg3]];

A package hierarchy must be reflected in the file system of your Java development
system. For example, a package declared as

package java.awt.image;

needs to be stored in java\awt\image in a Windows environment. Be sure to choose your
package names carefully. You cannot rename a package without renaming the directory in
which the classes are stored.

Finding Packages and CLASSPATH
As just explained, packages are mirrored by directories. This raises an important question:
How does the Java run-time system know where to look for packages that you create? The
answer has three parts. First, by default, the Java run-time system uses the current working
directory as its starting point. Thus, if your package is in a subdirectory of the current
directory, it will be found. Second, you can specify a directory path or paths by setting the
CLASSPATH environmental variable. Third, you can use the -classpath option with java
and javac to specify the path to your classes.

188 PART I The Java Language

09-ch09.indd 188 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 189

Pa
rt

 I

For example, consider the following package specification:

package MyPack

In order for a program to find MyPack, one of three things must be true. Either the program
can be executed from a directory immediately above MyPack, or the CLASSPATH must be
set to include the path to MyPack, or the -classpath option must specify the path to MyPack
when the program is run via java.

When the second two options are used, the class path must not include MyPack, itself. It
must simply specify the path to MyPack. For example, in a Windows environment, if the path
to MyPack is

C:\MyPrograms\Java\MyPack

then the class path to MyPack is

C:\MyPrograms\Java

The easiest way to try the examples shown in this book is to simply create the package
directories below your current development directory, put the .class files into the
appropriate directories, and then execute the programs from the development directory.
This is the approach used in the following example.

A Short Package Example
Keeping the preceding discussion in mind, you can try this simple package:

// A simple package
package MyPack;

class Balance {
 String name;
 double bal;

 Balance(String n, double b) {
 name = n;
 bal = b;
 }

 void show() {
 if(bal<0)
 System.out.print("--> ");
 System.out.println(name + ": $" + bal);
 }
}

class AccountBalance {
 public static void main(String args[]) {
 Balance current[] = new Balance[3];

 current[0] = new Balance("K. J. Fielding", 123.23);
 current[1] = new Balance("Will Tell", 157.02);
 current[2] = new Balance("Tom Jackson", -12.33);

09-ch09.indd 189 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

190 PART I The Java Language

 for(int i=0; i<3; i++) current[i].show();
 }
}

Call this file AccountBalance.java and put it in a directory called MyPack.
Next, compile the file. Make sure that the resulting .class file is also in the MyPack

directory. Then, try executing the AccountBalance class, using the following command line:

java MyPack.AccountBalance

Remember, you will need to be in the directory above MyPack when you execute this
command. (Alternatively, you can use one of the other two options described in the
preceding section to specify the path MyPack.)

As explained, AccountBalance is now part of the package MyPack. This means that it
cannot be executed by itself. That is, you cannot use this command line:

java AccountBalance

AccountBalance must be qualified with its package name.

Access Protection
In the preceding chapters, you learned about various aspects of Java’s access control
mechanism and its access modifiers. For example, you already know that access to a private
member of a class is granted only to other members of that class. Packages add another
dimension to access control. As you will see, Java provides many levels of protection to allow
fine-grained control over the visibility of variables and methods within classes, subclasses,
and packages.

Classes and packages are both means of encapsulating and containing the name space
and scope of variables and methods. Packages act as containers for classes and other
subordinate packages. Classes act as containers for data and code. The class is Java’s
smallest unit of abstraction. Because of the interplay between classes and packages, Java
addresses four categories of visibility for class members:

•	 Subclasses in the same package

•	 Non-subclasses in the same package

•	 Subclasses in different packages

•	 Classes that are neither in the same package nor subclasses

The three access modifiers, private, public, and protected, provide a variety of ways to
produce the many levels of access required by these categories. Table 9-1 sums up the
interactions.

While Java’s access control mechanism may seem complicated, we can simplify it as
follows. Anything declared public can be accessed from anywhere. Anything declared
private cannot be seen outside of its class. When a member does not have an explicit access
specification, it is visible to subclasses as well as to other classes in the same package. This is
the default access. If you want to allow an element to be seen outside your current package,
but only to classes that subclass your class directly, then declare that element protected.

09-ch09.indd 190 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 191

Pa
rt

 I

Table 9-1 applies only to members of classes. A non-nested class has only two possible
access levels: default and public. When a class is declared as public, it is accessible by any
other code. If a class has default access, then it can only be accessed by other code within its
same package. When a class is public, it must be the only public class declared in the file,
and the file must have the same name as the class.

An Access Example
The following example shows all combinations of the access control modifiers. This
example has two packages and five classes. Remember that the classes for the two different
packages need to be stored in directories named after their respective packages—in this
case, p1 and p2.

The source for the first package defines three classes: Protection, Derived, and
SamePackage. The first class defines four int variables in each of the legal protection
modes. The variable n is declared with the default protection, n_pri is private, n_pro is
protected, and n_pub is public.

Each subsequent class in this example will try to access the variables in an instance of
this class. The lines that will not compile due to access restrictions are commented out.
Before each of these lines is a comment listing the places from which this level of
protection would allow access.

The second class, Derived, is a subclass of Protection in the same package, p1. This
grants Derived access to every variable in Protection except for n_pri, the private one. The
third class, SamePackage, is not a subclass of Protection, but is in the same package and
also has access to all but n_pri.

This is file Protection.java:

package p1;

public class Protection {
 int n = 1;
 private int n_pri = 2;
 protected int n_pro = 3;
 public int n_pub = 4;

 public Protection() {
 System.out.println("base constructor");
 System.out.println("n = " + n);
 System.out.println("n_pri = " + n_pri);
 System.out.println("n_pro = " + n_pro);

Table 9-1 Class Member Access

Private No Modifier Protected Public
Same class Yes Yes Yes Yes

Same package subclass No Yes Yes Yes

Same package non-subclass No Yes Yes Yes

Different package subclass No No Yes Yes

Different package non-subclass No No No Yes

09-ch09.indd 191 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

192 PART I The Java Language

 System.out.println("n_pub = " + n_pub);
 }
}

This is file Derived.java:

package p1;

class Derived extends Protection {
 Derived() {
 System.out.println("derived constructor");
 System.out.println("n = " + n);

// class only
// System.out.println("n_pri = "4 + n_pri);

 System.out.println("n_pro = " + n_pro);
 System.out.println("n_pub = " + n_pub);
 }
}

This is file SamePackage.java:

package p1;

class SamePackage {
 SamePackage() {

 Protection p = new Protection();
 System.out.println("same package constructor");
 System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

 System.out.println("n_pro = " + p.n_pro);
 System.out.println("n_pub = " + p.n_pub);
 }
}

Following is the source code for the other package, p2. The two classes defined in p2
cover the other two conditions that are affected by access control. The first class, Protection2,
is a subclass of p1.Protection. This grants access to all of p1.Protection’s variables except
for n_pri (because it is private) and n, the variable declared with the default protection.
Remember, the default only allows access from within the class or the package, not extra-
package subclasses. Finally, the class OtherPackage has access to only one variable, n_pub,
which was declared public.

This is file Protection2.java:

package p2;

class Protection2 extends p1.Protection {
 Protection2() {

09-ch09.indd 192 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 193

Pa
rt

 I

 System.out.println("derived other package constructor");

// class or package only
// System.out.println("n = " + n);

// class only
// System.out.println("n_pri = " + n_pri);

 System.out.println("n_pro = " + n_pro);
 System.out.println("n_pub = " + n_pub);
 }
}

This is file OtherPackage.java:

package p2;

class OtherPackage {
 OtherPackage() {
 p1.Protection p = new p1.Protection();
 System.out.println("other package constructor");

// class or package only
// System.out.println("n = " + p.n);

// class only
// System.out.println("n_pri = " + p.n_pri);

// class, subclass or package only
// System.out.println("n_pro = " + p.n_pro);

 System.out.println("n_pub = " + p.n_pub);
 }
}

If you want to try these two packages, here are two test files you can use. The one for
package p1 is shown here:

// Demo package p1.
package p1;

// Instantiate the various classes in p1.
public class Demo {
 public static void main(String args[]) {
 Protection ob1 = new Protection();
 Derived ob2 = new Derived();
 SamePackage ob3 = new SamePackage();
 }
}

The test file for p2 is shown next:

// Demo package p2.
package p2;

09-ch09.indd 193 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

194 PART I The Java Language

// Instantiate the various classes in p2.
public class Demo {
 public static void main(String args[]) {
 Protection2 ob1 = new Protection2();
 OtherPackage ob2 = new OtherPackage();
 }
}

Importing Packages
Given that packages exist and are a good mechanism for compartmentalizing diverse classes
from each other, it is easy to see why all of the built-in Java classes are stored in packages.
There are no core Java classes in the unnamed default package; all of the standard classes
are stored in some named package. Since classes within packages must be fully qualified with
their package name or names, it could become tedious to type in the long dot-separated
package path name for every class you want to use. For this reason, Java includes the import
statement to bring certain classes, or entire packages, into visibility. Once imported, a class
can be referred to directly, using only its name. The import statement is a convenience to
the programmer and is not technically needed to write a complete Java program. If you are
going to refer to a few dozen classes in your application, however, the import statement will
save a lot of typing.

In a Java source file, import statements occur immediately following the package
statement (if it exists) and before any class definitions. This is the general form of the
import statement:

import pkg1 [.pkg2].(classname | *);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate
package inside the outer package separated by a dot (.). There is no practical limit on the
depth of a package hierarchy, except that imposed by the file system. Finally, you specify
either an explicit classname or a star (*), which indicates that the Java compiler should
import the entire package. This code fragment shows both forms in use:

import java.util.Date;
import java.io.*;

All of the standard Java classes included with Java are stored in a package called java.
The basic language functions are stored in a package inside of the java package called
java.lang. Normally, you have to import every package or class that you want to use, but
since Java is useless without much of the functionality in java.lang, it is implicitly imported
by the compiler for all programs. This is equivalent to the following line being at the top
of all of your programs:

import java.lang.*;

If a class with the same name exists in two different packages that you import using the
star form, the compiler will remain silent, unless you try to use one of the classes. In that
case, you will get a compile-time error and have to explicitly name the class specifying its
package.

09-ch09.indd 194 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 195

Pa
rt

 I

It must be emphasized that the import statement is optional. Any place you use a class
name, you can use its fully qualified name, which includes its full package hierarchy. For
example, this fragment uses an import statement:

import java.util.*;
class MyDate extends Date {
}

The same example without the import statement looks like this:

class MyDate extends java.util.Date {
}

In this version, Date is fully-qualified.
As shown in Table 9-1, when a package is imported, only those items within the package

declared as public will be available to non-subclasses in the importing code. For example, if
you want the Balance class of the package MyPack shown earlier to be available as a stand-
alone class for general use outside of MyPack, then you will need to declare it as public and
put it into its own file, as shown here:

package MyPack;

/* Now, the Balance class, its constructor, and its
 show() method are public. This means that they can
 be used by non-subclass code outside their package.
*/
public class Balance {
 String name;
 double bal;

 public Balance(String n, double b) {
 name = n;
 bal = b;
 }

 public void show() {
 if(bal<0)
 System.out.print("--> ");
 System.out.println(name + ": $" + bal);
 }
}

As you can see, the Balance class is now public. Also, its constructor and its show()
method are public, too. This means that they can be accessed by any type of code outside
the MyPack package. For example, here TestBalance imports MyPack and is then able to
make use of the Balance class:

import MyPack.*;

class TestBalance {
 public static void main(String args[]) {

09-ch09.indd 195 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

196 PART I The Java Language

 /* Because Balance is public, you may use Balance
 class and call its constructor. */
 Balance test = new Balance("J. J. Jaspers", 99.88);

 test.show(); // you may also call show()
 }
}

As an experiment, remove the public specifier from the Balance class and then try
compiling TestBalance. As explained, errors will result.

Interfaces
Using the keyword interface, you can fully abstract a class’ interface from its implementation.
That is, using interface, you can specify what a class must do, but not how it does it. Interfaces
are syntactically similar to classes, but they lack instance variables, and, as a general rule,
their methods are declared without any body. In practice, this means that you can define
interfaces that don’t make assumptions about how they are implemented. Once it is
defined, any number of classes can implement an interface. Also, one class can implement
any number of interfaces.

To implement an interface, a class must provide the complete set of methods required
by the interface. However, each class is free to determine the details of its own implementation.
By providing the interface keyword, Java allows you to fully utilize the “one interface,
multiple methods” aspect of polymorphism.

Interfaces are designed to support dynamic method resolution at run time. Normally,
in order for a method to be called from one class to another, both classes need to be
present at compile time so the Java compiler can check to ensure that the method
signatures are compatible. This requirement by itself makes for a static and nonextensible
classing environment. Inevitably in a system like this, functionality gets pushed up higher
and higher in the class hierarchy so that the mechanisms will be available to more and
more subclasses. Interfaces are designed to avoid this problem. They disconnect the
definition of a method or set of methods from the inheritance hierarchy. Since interfaces
are in a different hierarchy from classes, it is possible for classes that are unrelated in terms
of the class hierarchy to implement the same interface. This is where the real power of
interfaces is realized.

Defining an Interface
An interface is defined much like a class. This is a simplified general form of an interface:

access interface name {
 return-type method-name1(parameter-list);
 return-type method-name2(parameter-list);

 type final-varname1 = value;
 type final-varname2 = value;
 //...
 return-type method-nameN(parameter-list);
 type final-varnameN = value;
}

09-ch09.indd 196 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 197

Pa
rt

 I

When no access modifier is included, then default access results, and the interface is only
available to other members of the package in which it is declared. When it is declared as
public, the interface can be used by any other code. In this case, the interface must be the
only public interface declared in the file, and the file must have the same name as the
interface. name is the name of the interface, and can be any valid identifier. Notice that
the methods that are declared have no bodies. They end with a semicolon after the parameter
list. They are, essentially, abstract methods. Each class that includes such an interface must
implement all of the methods.

Before continuing an important point needs to be made. JDK 8 added a feature to
interface that makes a significant change to its capabilities. Prior to JDK 8, an interface
could not define any implementation whatsoever. This is the type of interface that the
preceding simplified form shows, in which no method declaration supplies a body. Thus,
prior to JDK 8, an interface could define only “what,” but not “how.” JDK 8 changes this.
Beginning with JDK 8, it is possible to add a default implementation to an interface method.
Thus, it is now possible for interface to specify some behavior. However, default methods
constitute what is, in essence, a special-use feature, and the original intent behind interface
still remains. Therefore, as a general rule, you will still often create and use interfaces in
which no default methods exist. For this reason, we will begin by discussing the interface in
its traditional form. The default method is described at the end of this chapter.

As the general form shows, variables can be declared inside of interface declarations.
They are implicitly final and static, meaning they cannot be changed by the implementing
class. They must also be initialized. All methods and variables are implicitly public.

Here is an example of an interface definition. It declares a simple interface that
contains one method called callback() that takes a single integer parameter.

interface Callback {
 void callback(int param);
}

Implementing Interfaces
Once an interface has been defined, one or more classes can implement that interface.
To implement an interface, include the implements clause in a class definition, and then
create the methods required by the interface. The general form of a class that includes the
implements clause looks like this:

class classname [extends superclass] [implements interface [,interface...]] {
 // class-body
}

If a class implements more than one interface, the interfaces are separated with a comma.
If a class implements two interfaces that declare the same method, then the same method
will be used by clients of either interface. The methods that implement an interface must
be declared public. Also, the type signature of the implementing method must match
exactly the type signature specified in the interface definition.

Here is a small example class that implements the Callback interface shown earlier:

class Client implements Callback {
 // Implement Callback's interface

09-ch09.indd 197 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

198 PART I The Java Language

 public void callback(int p) {

 System.out.println("callback called with " + p);
 }
}

Notice that callback() is declared using the public access modifier.

REMEMBER When you implement an interface method, it must be declared as public.

It is both permissible and common for classes that implement interfaces to define
additional members of their own. For example, the following version of Client implements
callback() and adds the method nonIfaceMeth():

class Client implements Callback {
 // Implement Callback's interface
 public void callback(int p) {
 System.out.println("callback called with " + p);
 }

 void nonIfaceMeth() {
 System.out.println("Classes that implement interfaces " +
 "may also define other members, too.");
 }
}

Accessing Implementations Through Interface References
You can declare variables as object references that use an interface rather than a class type.
Any instance of any class that implements the declared interface can be referred to by such
a variable. When you call a method through one of these references, the correct version
will be called based on the actual instance of the interface being referred to. This is one of
the key features of interfaces. The method to be executed is looked up dynamically at run
time, allowing classes to be created later than the code which calls methods on them. The
calling code can dispatch through an interface without having to know anything about the
“callee.” This process is similar to using a superclass reference to access a subclass object, as
described in Chapter 8.

CAUTION Because dynamic lookup of a method at run time incurs a significant overhead when
compared with the normal method invocation in Java, you should be careful not to use interfaces
casually in performance-critical code.

The following example calls the callback() method via an interface reference variable:

class TestIface {
 public static void main(String args[]) {
 Callback c = new Client();
 c.callback(42);
 }
}

09-ch09.indd 198 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 199

Pa
rt

 I

The output of this program is shown here:

 callback called with 42

Notice that variable c is declared to be of the interface type Callback, yet it was assigned an
instance of Client. Although c can be used to access the callback() method, it cannot access
any other members of the Client class. An interface reference variable has knowledge only
of the methods declared by its interface declaration. Thus, c could not be used to access
nonIfaceMeth() since it is defined by Client but not Callback.

While the preceding example shows, mechanically, how an interface reference variable
can access an implementation object, it does not demonstrate the polymorphic power of
such a reference. To sample this usage, first create the second implementation of Callback,
shown here:

// Another implementation of Callback.
class AnotherClient implements Callback {
 // Implement Callback's interface
 public void callback(int p) {
 System.out.println("Another version of callback");
 System.out.println("p squared is " + (p*p));
 }
}

Now, try the following class:

class TestIface2 {
 public static void main(String args[]) {
 Callback c = new Client();
 AnotherClient ob = new AnotherClient();

 c.callback(42);

 c = ob; // c now refers to AnotherClient object
 c.callback(42);
 }
}

The output from this program is shown here:

 callback called with 42
 Another version of callback
 p squared is 1764

As you can see, the version of callback() that is called is determined by the type of object
that c refers to at run time. While this is a very simple example, you will see another, more
practical one shortly.

Partial Implementations
If a class includes an interface but does not fully implement the methods required by that
interface, then that class must be declared as abstract. For example:

abstract class Incomplete implements Callback {
 int a, b;

09-ch09.indd 199 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

200 PART I The Java Language

 void show() {
 System.out.println(a + " " + b);
 }
 //...
}

Here, the class Incomplete does not implement callback() and must be declared
as abstract. Any class that inherits Incomplete must implement callback() or be declared
abstract itself.

Nested Interfaces
An interface can be declared a member of a class or another interface. Such an interface
is called a member interface or a nested interface. A nested interface can be declared as public,
private, or protected. This differs from a top-level interface, which must either be declared
as public or use the default access level, as previously described. When a nested interface is
used outside of its enclosing scope, it must be qualified by the name of the class or interface
of which it is a member. Thus, outside of the class or interface in which a nested interface is
declared, its name must be fully qualified.

Here is an example that demonstrates a nested interface:

// A nested interface example.

// This class contains a member interface.
class A {
 // this is a nested interface
 public interface NestedIF {
 boolean isNotNegative(int x);
 }
}

// B implements the nested interface.
class B implements A.NestedIF {
 public boolean isNotNegative(int x) {
 return x < 0 ? false: true;
 }
}

class NestedIFDemo {
 public static void main(String args[]) {

 // use a nested interface reference
 A.NestedIF nif = new B();

 if(nif.isNotNegative(10))
 System.out.println("10 is not negative");
 if(nif.isNotNegative(-12))
 System.out.println("this won't be displayed");
 }
}

09-ch09.indd 200 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 201

Pa
rt

 I

Notice that A defines a member interface called NestedIF and that it is declared public.
Next, B implements the nested interface by specifying

implements A.NestedIF

Notice that the name is fully qualified by the enclosing class’ name. Inside the main()
method, an A.NestedIF reference called nif is created, and it is assigned a reference to
a B object. Because B implements A.NestedIF, this is legal.

Applying Interfaces
To understand the power of interfaces, let’s look at a more practical example. In earlier
chapters, you developed a class called Stack that implemented a simple fixed-size stack.
However, there are many ways to implement a stack. For example, the stack can be of a
fixed size or it can be “growable.” The stack can also be held in an array, a linked list,
a binary tree, and so on. No matter how the stack is implemented, the interface to the
stack remains the same. That is, the methods push() and pop() define the interface to
the stack independently of the details of the implementation. Because the interface to a
stack is separate from its implementation, it is easy to define a stack interface, leaving it to
each implementation to define the specifics. Let’s look at two examples.

First, here is the interface that defines an integer stack. Put this in a file called
IntStack.java. This interface will be used by both stack implementations.

// Define an integer stack interface.
interface IntStack {
 void push(int item); // store an item
 int pop(); // retrieve an item
}

The following program creates a class called FixedStack that implements a fixed-length
version of an integer stack:

// An implementation of IntStack that uses fixed storage.
class FixedStack implements IntStack {
 private int stck[];
 private int tos;

 // allocate and initialize stack
 FixedStack(int size) {
 stck = new int[size];
 tos = -1;
 }

 // Push an item onto the stack
 public void push(int item) {
 if(tos==stck.length-1) // use length member
 System.out.println("Stack is full.");
 else
 stck[++tos] = item;
 }

09-ch09.indd 201 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

202 PART I The Java Language

 // Pop an item from the stack
 public int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

class IFTest {
 public static void main(String args[]) {
 FixedStack mystack1 = new FixedStack(5);
 FixedStack mystack2 = new FixedStack(8);

 // push some numbers onto the stack
 for(int i=0; i<5; i++) mystack1.push(i);
 for(int i=0; i<8; i++) mystack2.push(i);

 // pop those numbers off the stack
 System.out.println("Stack in mystack1:");
 for(int i=0; i<5; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<8; i++)
 System.out.println(mystack2.pop());
 }
}

Following is another implementation of IntStack that creates a dynamic stack by use
of the same interface definition. In this implementation, each stack is constructed with an
initial length. If this initial length is exceeded, then the stack is increased in size. Each time
more room is needed, the size of the stack is doubled.

// Implement a "growable" stack.
class DynStack implements IntStack {
 private int stck[];
 private int tos;

 // allocate and initialize stack
 DynStack(int size) {
 stck = new int[size];
 tos = -1;
 }

 // Push an item onto the stack
 public void push(int item) {
 // if stack is full, allocate a larger stack
 if(tos==stck.length-1) {
 int temp[] = new int[stck.length * 2]; // double size
 for(int i=0; i<stck.length; i++) temp[i] = stck[i];

09-ch09.indd 202 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 203

Pa
rt

 I

 stck = temp;
 stck[++tos] = item;
 }
 else
 stck[++tos] = item;
 }

 // Pop an item from the stack
 public int pop() {
 if(tos < 0) {
 System.out.println("Stack underflow.");
 return 0;
 }
 else
 return stck[tos--];
 }
}

class IFTest2 {
 public static void main(String args[]) {
 DynStack mystack1 = new DynStack(5);
 DynStack mystack2 = new DynStack(8);

 // these loops cause each stack to grow
 for(int i=0; i<12; i++) mystack1.push(i);
 for(int i=0; i<20; i++) mystack2.push(i);

 System.out.println("Stack in mystack1:");
 for(int i=0; i<12; i++)
 System.out.println(mystack1.pop());

 System.out.println("Stack in mystack2:");
 for(int i=0; i<20; i++)
 System.out.println(mystack2.pop());
 }
}

The following class uses both the FixedStack and DynStack implementations. It does so
through an interface reference. This means that calls to push() and pop() are resolved at
run time rather than at compile time.

/* Create an interface variable and
 access stacks through it.
*/
class IFTest3 {
 public static void main(String args[]) {
 IntStack mystack; // create an interface reference variable
 DynStack ds = new DynStack(5);
 FixedStack fs = new FixedStack(8);

 mystack = ds; // load dynamic stack
 // push some numbers onto the stack
 for(int i=0; i<12; i++) mystack.push(i);

09-ch09.indd 203 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

204 PART I The Java Language

 mystack = fs; // load fixed stack
 for(int i=0; i<8; i++) mystack.push(i);

 mystack = ds;
 System.out.println("Values in dynamic stack:");
 for(int i=0; i<12; i++)
 System.out.println(mystack.pop());

 mystack = fs;
 System.out.println("Values in fixed stack:");
 for(int i=0; i<8; i++)
 System.out.println(mystack.pop());
 }
}

In this program, mystack is a reference to the IntStack interface. Thus, when it refers to ds,
it uses the versions of push() and pop() defined by the DynStack implementation. When it
refers to fs, it uses the versions of push() and pop() defined by FixedStack. As explained,
these determinations are made at run time. Accessing multiple implementations of an
interface through an interface reference variable is the most powerful way that Java
achieves run-time polymorphism.

Variables in Interfaces
You can use interfaces to import shared constants into multiple classes by simply declaring
an interface that contains variables that are initialized to the desired values. When you
include that interface in a class (that is, when you “implement” the interface), all of those
variable names will be in scope as constants. (This is similar to using a header file in C/C++
to create a large number of #defined constants or const declarations.) If an interface
contains no methods, then any class that includes such an interface doesn’t actually
implement anything. It is as if that class were importing the constant fields into the class
name space as final variables. The next example uses this technique to implement an
automated “decision maker”:

import java.util.Random;

interface SharedConstants {
 int NO = 0;
 int YES = 1;
 int MAYBE = 2;
 int LATER = 3;
 int SOON = 4;
 int NEVER = 5;
}

class Question implements SharedConstants {
 Random rand = new Random();
 int ask() {
 int prob = (int) (100 * rand.nextDouble());
 if (prob < 30)

09-ch09.indd 204 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 205

Pa
rt

 I

 return NO; // 30%
 else if (prob < 60)
 return YES; // 30%
 else if (prob < 75)
 return LATER; // 15%
 else if (prob < 98)
 return SOON; // 13%

 else
 return NEVER; // 2%
 }
}

class AskMe implements SharedConstants {
 static void answer(int result) {
 switch(result) {
 case NO:
 System.out.println("No");
 break;
 case YES:
 System.out.println("Yes");
 break;
 case MAYBE:
 System.out.println("Maybe");
 break;
 case LATER:
 System.out.println("Later");
 break;
 case SOON:
 System.out.println("Soon");
 break;
 case NEVER:
 System.out.println("Never");
 break;
 }
 }

 public static void main(String args[]) {
 Question q = new Question();

 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 }
}

Notice that this program makes use of one of Java’s standard classes: Random. This class
provides pseudorandom numbers. It contains several methods that allow you to obtain
random numbers in the form required by your program. In this example, the method
nextDouble() is used. It returns random numbers in the range 0.0 to 1.0.

In this sample program, the two classes, Question and AskMe, both implement the
SharedConstants interface where NO, YES, MAYBE, SOON, LATER, and NEVER are

09-ch09.indd 205 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

206 PART I The Java Language

defined. Inside each class, the code refers to these constants as if each class had defined or
inherited them directly. Here is the output of a sample run of this program. Note that the
results are different each time it is run.

 Later
 Soon
 No
 Yes

NOTE The technique of using an interface to define shared constants, as just described, is controversial.
It is described here for completeness.

Interfaces Can Be Extended
One interface can inherit another by use of the keyword extends. The syntax is the same as
for inheriting classes. When a class implements an interface that inherits another interface,
it must provide implementations for all methods required by the interface inheritance
chain. Following is an example:

// One interface can extend another.
interface A {
 void meth1();
 void meth2();
}

// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {
 void meth3();
}

// This class must implement all of A and B
class MyClass implements B {
 public void meth1() {
 System.out.println("Implement meth1().");
 }

 public void meth2() {
 System.out.println("Implement meth2().");
 }

 public void meth3() {
 System.out.println("Implement meth3().");
 }
}

class IFExtend {
 public static void main(String arg[]) {
 MyClass ob = new MyClass();

09-ch09.indd 206 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 207

Pa
rt

 I

 ob.meth1();
 ob.meth2();
 ob.meth3();
 }
}

As an experiment, you might want to try removing the implementation for meth1() in
MyClass. This will cause a compile-time error. As stated earlier, any class that implements
an interface must implement all methods required by that interface, including any that are
inherited from other interfaces.

Default Interface Methods
As explained earlier, prior to JDK 8, an interface could not define any implementation
whatsoever. This meant that for all previous versions of Java, the methods specified by an
interface were abstract, containing no body. This is the traditional form of an interface and
is the type of interface that the preceding discussions have used. The release of JDK 8 has
changed this by adding a new capability to interface called the default method. A default
method lets you define a default implementation for an interface method. In other words,
by use of a default method, it is now possible for an interface method to provide a body,
rather than being abstract. During its development, the default method was also referred to
as an extension method, and you will likely see both terms used.

A primary motivation for the default method was to provide a means by which
interfaces could be expanded without breaking existing code. Recall that there must be
implementations for all methods defined by an interface. In the past, if a new method were
added to a popular, widely used interface, then the addition of that method would break
existing code because no implementation would be found for that new method. The
default method solves this problem by supplying an implementation that will be used if no
other implementation is explicitly provided. Thus, the addition of a default method will not
cause preexisting code to break.

Another motivation for the default method was the desire to specify methods in an
interface that are, essentially, optional, depending on how the interface is used. For
example, an interface might define a group of methods that act on a sequence of elements.
One of these methods might be called remove(), and its purpose is to remove an element
from the sequence. However, if the interface is intended to support both modifiable and
nonmodifiable sequences, then remove() is essentially optional because it won’t be used by
nonmodifiable sequences. In the past, a class that implemented a nonmodifiable sequence
would have had to define an empty implementation of remove(), even though it was not
needed. Today, a default implementation for remove() can be specified in the interface
that does nothing (or throws an exception). Providing this default prevents a class used for
nonmodifiable sequences from having to define its own, placeholder version of remove().
Thus, by providing a default, the interface makes the implementation of remove() by a
class optional.

It is important to point out that the addition of default methods does not change a key
aspect of interface: its inability to maintain state information. An interface still cannot have
instance variables, for example. Thus, the defining difference between an interface and a
class is that a class can maintain state information, but an interface cannot. Furthermore, it

09-ch09.indd 207 14/02/14 4:50 PM

Pitrick
Highlight

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

208 PART I The Java Language

is still not possible to create an instance of an interface by itself. It must be implemented by
a class. Therefore, even though, beginning with JDK 8, an interface can define default
methods, the interface must still be implemented by a class if an instance is to be created.

One last point: As a general rule, default methods constitute a special-purpose feature.
Interfaces that you create will still be used primarily to specify what and not how. However,
the inclusion of the default method gives you added flexibility.

Default Method Fundamentals
An interface default method is defined similar to the way a method is defined by a class.
The primary difference is that the declaration is preceded by the keyword default. For
example, consider this simple interface:

public interface MyIF {
 // This is a "normal" interface method declaration.
 // It does NOT define a default implementation.
 int getNumber();

 // This is a default method. Notice that it provides
 // a default implementation.
 default String getString() {
 return "Default String";
 }
}

MyIF declares two methods. The first, getNumber(), is a standard interface method
declaration. It defines no implementation whatsoever. The second method is getString(),
and it does include a default implementation. In this case, it simply returns the string
"Default String". Pay special attention to the way getString() is declared. Its declaration is
preceded by the default modifier. This syntax can be generalized. To define a default
method, precede its declaration with default.

Because getString() includes a default implementation, it is not necessary for an
implementing class to override it. In other words, if an implementing class does not provide
its own implementation, the default is used. For example, the MyIFImp class shown next is
perfectly valid:

// Implement MyIF.
class MyIFImp implements MyIF {
 // Only getNumber() defined by MyIF needs to be implemented.
 // getString() can be allowed to default.
 public int getNumber() {
 return 100;
 }
}

The following code creates an instance of MyIFImp and uses it to call both
getNumber() and getString().

// Use the default method.
class DefaultMethodDemo {

09-ch09.indd 208 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 209

Pa
rt

 I

 public static void main(String args[]) {

 MyIFImp obj = new MyIFImp();

 // Can call getNumber(), because it is explicitly
 // implemented by MyIFImp:
 System.out.println(obj.getNumber());

 // Can also call getString(), because of default
 // implementation:
 System.out.println(obj.getString());
 }
}

The output is shown here:

100
Default String

As you can see, the default implementation of getString() was automatically used. It was not
necessary for MyIFImp to define it. Thus, for getString(), implementation by a class is
optional. (Of course, its implementation by a class will be required if the class uses getString()
for some purpose beyond that supported by its default.)

It is both possible and common for an implementing class to define its own
implementation of a default method. For example, MyIFImp2 overrides getString():

class MyIFImp2 implements MyIF {
 // Here, implementations for both getNumber() and getString() are provided.
 public int getNumber() {
 return 100;
 }

 public String getString() {
 return "This is a different string.";
 }
}

Now, when getString() is called, a different string is returned.

A More Practical Example
Although the preceding shows the mechanics of using default methods, it doesn’t illustrate
their usefulness in a more practical setting. To do this, let’s once again return to the
IntStack interface shown earlier in this chapter. For the sake of discussion, assume that
IntStack is widely used and many programs rely on it. Further assume that we now want to
add a method to IntStack that clears the stack, enabling the stack to be re-used. Thus, we
want to evolve the IntStack interface so that it defines new functionality, but we don’t want
to break any preexisting code. In the past, this would be impossible, but with the inclusion

09-ch09.indd 209 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

210 PART I The Java Language

of default methods, it is now easy to do. For example, the IntStack interface can be
enhanced like this:

interface IntStack {
 void push(int item); // store an item
 int pop(); // retrieve an item

 // Because clear() has a default, it need not be
 // implemented by a preexisting class that uses IntStack.
 default void clear() {
 System.out.println("clear() not implemented.");
 }
}

Here, the default behavior of clear() simply displays a message indicating that it is not
implemented. This is acceptable because no preexisting class that implements IntStack
would ever call clear() because it was not defined by the earlier version of IntStack.
However, clear() can be implemented by a new class that implements IntStack.
Furthermore, clear() needs to be defined by a new implementation only if it is used.
Thus, the default method gives you

•	 a way to gracefully evolve interfaces over time, and

•	 a way to provide optional functionality without requiring that a class provide a
placeholder implementation when that functionality is not needed.

One other point: In real-world code, clear() would have thrown an exception, rather than
displaying an error message. Exceptions are described in the next chapter. After working
through that material, you might want to try modifying clear() so that its default
implementation throws an UnsupportedOperationException.

Multiple Inheritance Issues
As explained earlier in this book, Java does not support the multiple inheritance of classes.
Now that an interface can include default methods, you might be wondering if an interface
can provide a way around this restriction. The answer is, essentially, no. Recall that there is
still a key difference between a class and an interface: a class can maintain state information
(especially through the use of instance variables), but an interface cannot.

The preceding notwithstanding, default methods do offer a bit of what one would
normally associate with the concept of multiple inheritance. For example, you might have a
class that implements two interfaces. If each of these interfaces provides default methods,
then some behavior is inherited from both. Thus, to a limited extent, default methods do
support multiple inheritance of behavior. As you might guess, in such a situation, it is
possible that a name conflict will occur.

For example, assume that two interfaces called Alpha and Beta are implemented by a
class called MyClass. What happens if both Alpha and Beta provide a method called reset()
for which both declare a default implementation? Is the version by Alpha or the version by
Beta used by MyClass? Or, consider a situation in which Beta extends Alpha. Which version
of the default method is used? Or, what if MyClass provides its own implementation of the

09-ch09.indd 210 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 9 Packages and Interfaces 211

Pa
rt

 I

method? To handle these and other similar types of situations, Java defines a set of rules
that resolves such conflicts.

First, in all cases, a class implementation takes priority over an interface default
implementation. Thus, if MyClass provides an override of the reset() default method,
MyClass’ version is used. This is the case even if MyClass implements both Alpha and Beta.
In this case, both defaults are overridden by MyClass’ implementation.

Second, in cases in which a class implements two interfaces that both have the same
default method, but the class does not override that method, then an error will result.
Continuing with the example, if MyClass implements both Alpha and Beta, but does not
override reset(), then an error will occur.

In cases in which one interface inherits another, with both defining a common default
method, the inheriting interface’s version of the method takes precedence. Therefore,
continuing the example, if Beta extends Alpha, then Beta’s version of reset() will be used.

It is possible to explicitly refer to a default implementation in an inherited interface by
using a new form of super. Its general form is shown here:

InterfaceName.super.methodName()

For example, if Beta wants to refer to Alpha’s default for reset(), it can use this statement:

Alpha.super.reset();

Use static Methods in an Interface
JDK 8 added another new capability to interface: the ability to define one or more static
methods. Like static methods in a class, a static method defined by an interface can be
called independently of any object. Thus, no implementation of the interface is necessary,
and no instance of the interface is required, in order to call a static method. Instead, a
static method is called by specifying the interface name, followed by a period, followed by
the method name. Here is the general form:

InterfaceName.staticMethodName

Notice that this is similar to the way that a static method in a class is called.
The following shows an example of a static method in an interface by adding one

to MyIF, shown in the previous section. The static method is getDefaultNumber(). It
returns zero.

public interface MyIF {
 // This is a "normal" interface method declaration.
 // It does NOT define a default implementation.
 int getNumber();

 // This is a default method. Notice that it provides
 // a default implementation.
 default String getString() {
 return "Default String";
 }

09-ch09.indd 211 14/02/14 4:50 PM

Pitrick
Highlight

Pitrick
Highlight

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

212 PART I The Java Language

 // This is a static interface method.
 static int getDefaultNumber() {
 return 0;
 }
}

The getDefaultNumber() method can be called, as shown here:

int defNum = MyIF.getDefaultNumber();

As mentioned, no implementation or instance of MyIF is required to call
getDefaultNumber() because it is static.

One last point: static interface methods are not inherited by either an implementing
class or a subinterface.

Final Thoughts on Packages and Interfaces
Although the examples we’ve included in this book do not make frequent use of packages
or interfaces, both of these tools are an important part of the Java programming environment.
Virtually all real programs that you write in Java will be contained within packages. A
number will probably implement interfaces as well. It is important, therefore, that you be
comfortable with their usage.

09-ch09.indd 212 14/02/14 4:50 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

10
CHAPTER

 213

Exception Handling

This chapter examines Java’s exception-handling mechanism. An exception is an abnormal
condition that arises in a code sequence at run time. In other words, an exception is a run-
time error. In computer languages that do not support exception handling, errors must be
checked and handled manually—typically through the use of error codes, and so on. This
approach is as cumbersome as it is troublesome. Java’s exception handling avoids these
problems and, in the process, brings run-time error management into the object-oriented
world.

Exception-Handling Fundamentals
A Java exception is an object that describes an exceptional (that is, error) condition
that has occurred in a piece of code. When an exceptional condition arises, an object
representing that exception is created and thrown in the method that caused the error. That
method may choose to handle the exception itself, or pass it on. Either way, at some point,
the exception is caught and processed. Exceptions can be generated by the Java run-time
system, or they can be manually generated by your code. Exceptions thrown by Java relate
to fundamental errors that violate the rules of the Java language or the constraints of the
Java execution environment. Manually generated exceptions are typically used to report
some error condition to the caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and
finally. Briefly, here is how they work. Program statements that you want to monitor for
exceptions are contained within a try block. If an exception occurs within the try block,
it is thrown. Your code can catch this exception (using catch) and handle it in some
rational manner. System-generated exceptions are automatically thrown by the Java run-
time system. To manually throw an exception, use the keyword throw. Any exception that
is thrown out of a method must be specified as such by a throws clause. Any code that
absolutely must be executed after a try block completes is put in a finally block.

10-ch10.indd 213 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

214 PART I The Java Language

This is the general form of an exception-handling block:

 try {
 // block of code to monitor for errors
 }

 catch (ExceptionType1 exOb) {
 // exception handler for ExceptionType1
 }

 catch (ExceptionType2 exOb) {
 // exception handler for ExceptionType2
 }
 // ...
 finally {
 // block of code to be executed after try block ends
 }

Here, ExceptionType is the type of exception that has occurred. The remainder of this
chapter describes how to apply this framework.

NOTE Beginning with JDK 7, there is another form of the try statement that supports automatic resource
management. This form of try, called try-with-resources, is described in Chapter 13 in the context of
managing files because files are some of the most commonly used resources.

Exception Types
All exception types are subclasses of the built-in class Throwable. Thus, Throwable is at the
top of the exception class hierarchy. Immediately below Throwable are two subclasses that
partition exceptions into two distinct branches. One branch is headed by Exception. This
class is used for exceptional conditions that user programs should catch. This is also the
class that you will subclass to create your own custom exception types. There is an important
subclass of Exception, called RuntimeException. Exceptions of this type are automatically
defined for the programs that you write and include things such as division by zero and
invalid array indexing.

The other branch is topped by Error, which defines exceptions that are not expected to
be caught under normal circumstances by your program. Exceptions of type Error are used
by the Java run-time system to indicate errors having to do with the run-time environment,
itself. Stack overflow is an example of such an error. This chapter will not be dealing with
exceptions of type Error, because these are typically created in response to catastrophic
failures that cannot usually be handled by your program.

10-ch10.indd 214 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 215

Pa
rt

 I

The top-level exception hierarchy is shown here:

Uncaught Exceptions
Before you learn how to handle exceptions in your program, it is useful to see what
happens when you don’t handle them. This small program includes an expression that
intentionally causes a divide-by-zero error:

class Exc0 {
 public static void main(String args[]) {
 int d = 0;
 int a = 42 / d;
 }
}

When the Java run-time system detects the attempt to divide by zero, it constructs a new
exception object and then throws this exception. This causes the execution of Exc0 to stop,
because once an exception has been thrown, it must be caught by an exception handler and
dealt with immediately. In this example, we haven’t supplied any exception handlers of our
own, so the exception is caught by the default handler provided by the Java run-time
system. Any exception that is not caught by your program will ultimately be processed by
the default handler. The default handler displays a string describing the exception, prints a
stack trace from the point at which the exception occurred, and terminates the program.

Here is the exception generated when this example is executed:

 java.lang.ArithmeticException: / by zero
 at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java; and
the line number, 4, are all included in the simple stack trace. Also, notice that the type of
exception thrown is a subclass of Exception called ArithmeticException, which more
specifically describes what type of error happened. As discussed later in this chapter, Java
supplies several built-in exception types that match the various sorts of run-time errors that
can be generated.

10-ch10.indd 215 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

216 PART I The Java Language

The stack trace will always show the sequence of method invocations that led up to the
error. For example, here is another version of the preceding program that introduces the
same error but in a method separate from main():

class Exc1 {
 static void subroutine() {
 int d = 0;
 int a = 10 / d;
 }
 public static void main(String args[]) {
 Exc1.subroutine();
 }
}

The resulting stack trace from the default exception handler shows how the entire call
stack is displayed:

 java.lang.ArithmeticException: / by zero
 at Exc1.subroutine(Exc1.java:4)
 at Exc1.main(Exc1.java:7)

As you can see, the bottom of the stack is main’s line 7, which is the call to subroutine(),
which caused the exception at line 4. The call stack is quite useful for debugging, because it
pinpoints the precise sequence of steps that led to the error.

Using try and catch
Although the default exception handler provided by the Java run-time system is useful for
debugging, you will usually want to handle an exception yourself. Doing so provides two
benefits. First, it allows you to fix the error. Second, it prevents the program from
automatically terminating. Most users would be confused (to say the least) if your program
stopped running and printed a stack trace whenever an error occurred! Fortunately, it is
quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want to
monitor inside a try block. Immediately following the try block, include a catch clause that
specifies the exception type that you wish to catch. To illustrate how easily this can be done,
the following program includes a try block and a catch clause that processes the
ArithmeticException generated by the division-by-zero error:

class Exc2 {
 public static void main(String args[]) {
 int d, a;

 try { // monitor a block of code.
 d = 0;
 a = 42 / d;
 System.out.println("This will not be printed.");
 } catch (ArithmeticException e) { // catch divide-by-zero error
 System.out.println("Division by zero.");
 }

10-ch10.indd 216 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 217

Pa
rt

 I

 System.out.println("After catch statement.");
 }
}

This program generates the following output:

 Division by zero.
 After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception
is thrown, program control transfers out of the try block into the catch block. Put differently,
catch is not “called,” so execution never “returns” to the try block from a catch. Thus, the
line "This will not be printed." is not displayed. Once the catch statement has executed,
program control continues with the next line in the program following the entire try /
catch mechanism.

A try and its catch statement form a unit. The scope of the catch clause is restricted to
those statements specified by the immediately preceding try statement. A catch statement
cannot catch an exception thrown by another try statement (except in the case of nested
try statements, described shortly). The statements that are protected by try must be
surrounded by curly braces. (That is, they must be within a block.) You cannot use try
on a single statement.

The goal of most well-constructed catch clauses should be to resolve the exceptional
condition and then continue on as if the error had never happened. For example, in the
next program each iteration of the for loop obtains two random integers. Those two
integers are divided by each other, and the result is used to divide the value 12345. The
final result is put into a. If either division operation causes a divide-by-zero error, it is
caught, the value of a is set to zero, and the program continues.

// Handle an exception and move on.
import java.util.Random;

class HandleError {
 public static void main(String args[]) {
 int a=0, b=0, c=0;
 Random r = new Random();

 for(int i=0; i<32000; i++) {
 try {
 b = r.nextInt();
 c = r.nextInt();
 a = 12345 / (b/c);
 } catch (ArithmeticException e) {
 System.out.println("Division by zero.");
 a = 0; // set a to zero and continue
 }
 System.out.println("a: " + a);
 }
 }
}

10-ch10.indd 217 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

218 PART I The Java Language

Displaying a Description of an Exception
Throwable overrides the toString() method (defined by Object) so that it returns a string
containing a description of the exception. You can display this description in a println()
statement by simply passing the exception as an argument. For example, the catch block
in the preceding program can be rewritten like this:

catch (ArithmeticException e) {
 System.out.println("Exception: " + e);
 a = 0; // set a to zero and continue
}

When this version is substituted in the program, and the program is run, each divide-by-
zero error displays the following message:

 Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of
an exception is valuable in other circumstances—particularly when you are experimenting
with exceptions or when you are debugging.

Multiple catch Clauses
In some cases, more than one exception could be raised by a single piece of code. To
handle this type of situation, you can specify two or more catch clauses, each catching a
different type of exception. When an exception is thrown, each catch statement is inspected
in order, and the first one whose type matches that of the exception is executed. After one
catch statement executes, the others are bypassed, and execution continues after the try /
catch block. The following example traps two different exception types:

// Demonstrate multiple catch statements.
class MultipleCatches {
 public static void main(String args[]) {
 try {
 int a = args.length;
 System.out.println("a = " + a);
 int b = 42 / a;
 int c[] = { 1 };
 c[42] = 99;
 } catch(ArithmeticException e) {
 System.out.println("Divide by 0: " + e);
 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("Array index oob: " + e);
 }
 System.out.println("After try/catch blocks.");
 }
}

This program will cause a division-by-zero exception if it is started with no command-
line arguments, since a will equal zero. It will survive the division if you provide a command-

10-ch10.indd 218 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 219

Pa
rt

 I

line argument, setting a to something larger than zero. But it will cause an
ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet
the program attempts to assign a value to c[42].

Here is the output generated by running it both ways:

 C:\>java MultipleCatches
 a = 0
 Divide by 0: java.lang.ArithmeticException: / by zero
 After try/catch blocks.

 C:\>java MultipleCatches TestArg
 a = 1
 Array index oob: java.lang.ArrayIndexOutOfBoundsException:42
 After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception
subclasses must come before any of their superclasses. This is because a catch statement
that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a
subclass would never be reached if it came after its superclass. Further, in Java, unreachable
code is an error. For example, consider the following program:

/* This program contains an error.

 A subclass must come before its superclass in
 a series of catch statements. If not,
 unreachable code will be created and a
 compile-time error will result.
*/
class SuperSubCatch {
 public static void main(String args[]) {
 try {
 int a = 0;
 int b = 42 / a;
 } catch(Exception e) {
 System.out.println("Generic Exception catch.");
 }
 /* This catch is never reached because
 ArithmeticException is a subclass of Exception. */
 catch(ArithmeticException e) { // ERROR – unreachable
 System.out.println("This is never reached.");
 }
 }
}

If you try to compile this program, you will receive an error message stating that the
second catch statement is unreachable because the exception has already been caught.
Since ArithmeticException is a subclass of Exception, the first catch statement will handle
all Exception-based errors, including ArithmeticException. This means that the second
catch statement will never execute. To fix the problem, reverse the order of the catch
statements.

10-ch10.indd 219 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

220 PART I The Java Language

Nested try Statements
The try statement can be nested. That is, a try statement can be inside the block of another
try. Each time a try statement is entered, the context of that exception is pushed on the
stack. If an inner try statement does not have a catch handler for a particular exception,
the stack is unwound and the next try statement’s catch handlers are inspected for a match.
This continues until one of the catch statements succeeds, or until all of the nested try
statements are exhausted. If no catch statement matches, then the Java run-time system
will handle the exception. Here is an example that uses nested try statements:

// An example of nested try statements.
class NestTry {
 public static void main(String args[]) {
 try {
 int a = args.length;

 /* If no command-line args are present,
 the following statement will generate
 a divide-by-zero exception. */
 int b = 42 / a;

 System.out.println("a = " + a);

 try { // nested try block
 /* If one command-line arg is used,
 then a divide-by-zero exception
 will be generated by the following code. */
 if(a==1) a = a/(a-a); // division by zero

 /* If two command-line args are used,
 then generate an out-of-bounds exception. */
 if(a==2) {
 int c[] = { 1 };
 c[42] = 99; // generate an out-of-bounds exception
 }
 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("Array index out-of-bounds: " + e);
 }

 } catch(ArithmeticException e) {
 System.out.println("Divide by 0: " + e);
 }
 }
}

As you can see, this program nests one try block within another. The program works
as follows. When you execute the program with no command-line arguments, a divide-by-
zero exception is generated by the outer try block. Execution of the program with one
command-line argument generates a divide-by-zero exception from within the nested try
block. Since the inner block does not catch this exception, it is passed on to the outer try
block, where it is handled. If you execute the program with two command-line arguments,

10-ch10.indd 220 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 221

Pa
rt

 I

an array boundary exception is generated from within the inner try block. Here are sample
runs that illustrate each case:

 C:\>java NestTry
 Divide by 0: java.lang.ArithmeticException: / by zero

 C:\>java NestTry One
 a = 1
 Divide by 0: java.lang.ArithmeticException: / by zero

 C:\>java NestTry One Two
 a = 2
 Array index out-of-bounds:
 java.lang.ArrayIndexOutOfBoundsException:42

Nesting of try statements can occur in less obvious ways when method calls are involved.
For example, you can enclose a call to a method within a try block. Inside that method is
another try statement. In this case, the try within the method is still nested inside the outer
try block, which calls the method. Here is the previous program recoded so that the nested
try block is moved inside the method nesttry():

/* Try statements can be implicitly nested via
 calls to methods. */
class MethNestTry {
 static void nesttry(int a) {
 try { // nested try block
 /* If one command-line arg is used,
 then a divide-by-zero exception
 will be generated by the following code. */
 if(a==1) a = a/(a-a); // division by zero

 /* If two command-line args are used,
 then generate an out-of-bounds exception. */
 if(a==2) {
 int c[] = { 1 };
 c[42] = 99; // generate an out-of-bounds exception
 }
 } catch(ArrayIndexOutOfBoundsException e) {
 System.out.println("Array index out-of-bounds: " + e);
 }
 }

 public static void main(String args[]) {
 try {
 int a = args.length;

 /* If no command-line args are present,
 the following statement will generate
 a divide-by-zero exception. */
 int b = 42 / a;
 System.out.println("a = " + a);

10-ch10.indd 221 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

222 PART I The Java Language

 nesttry(a);
 } catch(ArithmeticException e) {
 System.out.println("Divide by 0: " + e);
 }
 }
}

The output of this program is identical to that of the preceding example.

throw
So far, you have only been catching exceptions that are thrown by the Java run-time system.
However, it is possible for your program to throw an exception explicitly, using the throw
statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.
Primitive types, such as int or char, as well as non-Throwable classes, such as String and
Object, cannot be used as exceptions. There are two ways you can obtain a Throwable
object: using a parameter in a catch clause or creating one with the new operator.

The flow of execution stops immediately after the throw statement; any subsequent
statements are not executed. The nearest enclosing try block is inspected to see if it has
a catch statement that matches the type of exception. If it does find a match, control is
transferred to that statement. If not, then the next enclosing try statement is inspected, and
so on. If no matching catch is found, then the default exception handler halts the program
and prints the stack trace.

Here is a sample program that creates and throws an exception. The handler that
catches the exception rethrows it to the outer handler.

// Demonstrate throw.
class ThrowDemo {
 static void demoproc() {
 try {
 throw new NullPointerException("demo");
 } catch(NullPointerException e) {
 System.out.println("Caught inside demoproc.");
 throw e; // rethrow the exception
 }
 }

 public static void main(String args[]) {
 try {
 demoproc();
 } catch(NullPointerException e) {
 System.out.println("Recaught: " + e);
 }
 }
}

This program gets two chances to deal with the same error. First, main() sets up an
exception context and then calls demoproc(). The demoproc() method then sets up

10-ch10.indd 222 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 223

Pa
rt

 I

another exception-handling context and immediately throws a new instance of
NullPointerException, which is caught on the next line. The exception is then rethrown.
Here is the resulting output:

 Caught inside demoproc.
 Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay
close attention to this line:

throw new NullPointerException("demo");

Here, new is used to construct an instance of NullPointerException. Many of Java’s built-in
run-time exceptions have at least two constructors: one with no parameter and one that
takes a string parameter. When the second form is used, the argument specifies a string that
describes the exception. This string is displayed when the object is used as an argument to
print() or println(). It can also be obtained by a call to getMessage(), which is defined by
Throwable.

throws
If a method is capable of causing an exception that it does not handle, it must specify this
behavior so that callers of the method can guard themselves against that exception. You do
this by including a throws clause in the method’s declaration. A throws clause lists the types
of exceptions that a method might throw. This is necessary for all exceptions, except those
of type Error or RuntimeException, or any of their subclasses. All other exceptions that a
method can throw must be declared in the throws clause. If they are not, a compile-time
error will result.

This is the general form of a method declaration that includes a throws clause:

type method-name(parameter-list) throws exception-list
{
 // body of method
}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.
Following is an example of an incorrect program that tries to throw an exception that

it does not catch. Because the program does not specify a throws clause to declare this fact,
the program will not compile.

// This program contains an error and will not compile.
class ThrowsDemo {
 static void throwOne() {
 System.out.println("Inside throwOne.");
 throw new IllegalAccessException("demo");
 }
 public static void main(String args[]) {
 throwOne();
 }
}

10-ch10.indd 223 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

224 PART I The Java Language

To make this example compile, you need to make two changes. First, you need to
declare that throwOne() throws IllegalAccessException. Second, main() must define
a try / catch statement that catches this exception.

The corrected example is shown here:

// This is now correct.
class ThrowsDemo {
 static void throwOne() throws IllegalAccessException {
 System.out.println("Inside throwOne.");
 throw new IllegalAccessException("demo");
 }
 public static void main(String args[]) {
 try {
 throwOne();
 } catch (IllegalAccessException e) {
 System.out.println("Caught " + e);
 }
 }
}

Here is the output generated by running this example program:

 inside throwOne
 caught java.lang.IllegalAccessException: demo

finally
When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path
that alters the normal flow through the method. Depending upon how the method is
coded, it is even possible for an exception to cause the method to return prematurely. This
could be a problem in some methods. For example, if a method opens a file upon entry
and closes it upon exit, then you will not want the code that closes the file to be bypassed
by the exception-handling mechanism. The finally keyword is designed to address this
contingency.

finally creates a block of code that will be executed after a try /catch block has completed
and before the code following the try/catch block. The finally block will execute whether
or not an exception is thrown. If an exception is thrown, the finally block will execute even
if no catch statement matches the exception. Any time a method is about to return to the
caller from inside a try/catch block, via an uncaught exception or an explicit return
statement, the finally clause is also executed just before the method returns. This can be
useful for closing file handles and freeing up any other resources that might have been
allocated at the beginning of a method with the intent of disposing of them before
returning. The finally clause is optional. However, each try statement requires at least
one catch or a finally clause.

10-ch10.indd 224 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 225

Pa
rt

 I

Here is an example program that shows three methods that exit in various ways, none
without executing their finally clauses:

// Demonstrate finally.
class FinallyDemo {
 // Throw an exception out of the method.
 static void procA() {
 try {
 System.out.println("inside procA");
 throw new RuntimeException("demo");
 } finally {
 System.out.println("procA's finally");
 }
 }

 // Return from within a try block.
 static void procB() {
 try {
 System.out.println("inside procB");
 return;
 } finally {
 System.out.println("procB's finally");
 }
 }

 // Execute a try block normally.
 static void procC() {
 try {
 System.out.println("inside procC");
 } finally {
 System.out.println("procC's finally");
 }
 }

 public static void main(String args[]) {
 try {
 procA();
 } catch (Exception e) {
 System.out.println("Exception caught");
 }

 procB();
 procC();
 }
}

In this example, procA() prematurely breaks out of the try by throwing an exception.
The finally clause is executed on the way out. procB()’s try statement is exited via a return
statement. The finally clause is executed before procB() returns. In procC(), the try
statement executes normally, without error. However, the finally block is still executed.

REMEMBER If a finally block is associated with a try, the finally block will be executed upon conclusion
of the try.

10-ch10.indd 225 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

226 PART I The Java Language

Here is the output generated by the preceding program:

 inside procA
 procA's finally
 Exception caught
 inside procB
 procB's finally
 inside procC
 procC's finally

Java’s Built-in Exceptions
Inside the standard package java.lang, Java defines several exception classes. A few have
been used by the preceding examples. The most general of these exceptions are subclasses
of the standard type RuntimeException. As previously explained, these exceptions need not
be included in any method’s throws list. In the language of Java, these are called unchecked
exceptions because the compiler does not check to see if a method handles or throws these
exceptions. The unchecked exceptions defined in java.lang are listed in Table 10-1. Table
10-2 lists those exceptions defined by java.lang that must be included in a method’s throws
list if that method can generate one of these exceptions and does not handle it itself. These
are called checked exceptions. In addition to the exceptions in java.lang, Java defines several
more that relate to its other standard packages.

Exception Meaning
ArithmeticException Arithmetic error, such as divide-by-zero.

ArrayIndexOutOfBoundsException Array index is out-of-bounds.

ArrayStoreException Assignment to an array element of an incompatible
type.

ClassCastException Invalid cast.

EnumConstantNotPresentException An attempt is made to use an undefined
enumeration value.

IllegalArgumentException Illegal argument used to invoke a method.

IllegalMonitorStateException Illegal monitor operation, such as waiting on an
unlocked thread.

IllegalStateException Environment or application is in incorrect state.

IllegalThreadStateException Requested operation not compatible with current
thread state.

IndexOutOfBoundsException Some type of index is out-of-bounds.

NegativeArraySizeException Array created with a negative size.

NullPointerException Invalid use of a null reference.

NumberFormatException Invalid conversion of a string to a numeric format.

SecurityException Attempt to violate security.

StringIndexOutOfBounds Attempt to index outside the bounds of a string.

TypeNotPresentException Type not found.

UnsupportedOperationException An unsupported operation was encountered.

Table 10-1 Java’s Unchecked RuntimeException Subclasses Defined in java.lang

10-ch10.indd 226 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 227

Pa
rt

 I

Creating Your Own Exception Subclasses
Although Java’s built-in exceptions handle most common errors, you will probably want to
create your own exception types to handle situations specific to your applications. This is
quite easy to do: just define a subclass of Exception (which is, of course, a subclass of
Throwable). Your subclasses don’t need to actually implement anything—it is their
existence in the type system that allows you to use them as exceptions.

The Exception class does not define any methods of its own. It does, of course, inherit
those methods provided by Throwable. Thus, all exceptions, including those that you
create, have the methods defined by Throwable available to them. They are shown in Table
10-3. You may also wish to override one or more of these methods in exception classes that
you create.

Exception defines four public constructors. Two support chained exceptions, described
in the next section. The other two are shown here:

Exception()
Exception(String msg)

The first form creates an exception that has no description. The second form lets you
specify a description of the exception.

Although specifying a description when an exception is created is often useful,
sometimes it is better to override toString(). Here’s why: The version of toString()
defined by Throwable (and inherited by Exception) first displays the name of the
exception followed by a colon, which is then followed by your description. By overriding
toString(), you can prevent the exception name and colon from being displayed. This
makes for a cleaner output, which is desirable in some cases.

Table 10-2 Java’s Checked Exceptions Defined in java.lang

Exception Meaning
ClassNotFoundException Class not found.

CloneNotSupportedException Attempt to clone an object that does not implement the
Cloneable interface.

IllegalAccessException Access to a class is denied.

InstantiationException Attempt to create an object of an abstract class or interface.

InterruptedException One thread has been interrupted by another thread.

NoSuchFieldException A requested field does not exist.

NoSuchMethodException A requested method does not exist.

ReflectiveOperationException Superclass of reflection-related exceptions.

10-ch10.indd 227 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

228 PART I The Java Language

Method Description
final void
 addSuppressed(Throwable exc)

Adds exc to the list of suppressed exceptions
associated with the invoking exception. Primarily
for use by the try-with-resources statement.

Throwable fillInStackTrace() Returns a Throwable object that contains a
completed stack trace. This object can be
rethrown.

Throwable getCause() Returns the exception that underlies the current
exception. If there is no underlying exception,
null is returned.

String getLocalizedMessage() Returns a localized description of the exception.

String getMessage() Returns a description of the exception.

StackTraceElement[] getStackTrace() Returns an array that contains the stack
trace, one element at a time, as an array of
StackTraceElement. The method at the top
of the stack is the last method called before
the exception was thrown. This method is
found in the first element of the array. The
StackTraceElement class gives your program
access to information about each element in the
trace, such as its method name.

final Throwable[] getSuppressed() Obtains the suppressed exceptions associated
with the invoking exception and returns an array
that contains the result. Suppressed exceptions
are primarily generated by the try-with-resources
statement.

Throwable initCause(Throwable causeExc) Associates causeExc with the invoking exception
as a cause of the invoking exception. Returns a
reference to the exception.

void printStackTrace() Displays the stack trace.

void printStackTrace(PrintStream stream) Sends the stack trace to the specified stream.

void printStackTrace(PrintWriter stream) Sends the stack trace to the specified stream.

void setStackTrace(StackTraceElement
 elements[])

Sets the stack trace to the elements passed
in elements. This method is for specialized
applications, not normal use.

String toString() Returns a String object containing a description
of the exception. This method is called by
println() when outputting a Throwable object.

Table 10-3 The Methods Defined by Throwable

10-ch10.indd 228 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 229

Pa
rt

 I

The following example declares a new subclass of Exception and then uses that subclass
to signal an error condition in a method. It overrides the toString() method, allowing a
carefully tailored description of the exception to be displayed.

// This program creates a custom exception type.
class MyException extends Exception {
 private int detail;

 MyException(int a) {
 detail = a;
 }

 public String toString() {
 return "MyException[" + detail + "]";
 }
}

class ExceptionDemo {
 static void compute(int a) throws MyException {
 System.out.println("Called compute(" + a + ")");
 if(a > 10)
 throw new MyException(a);
 System.out.println("Normal exit");
 }

 public static void main(String args[]) {
 try {
 compute(1);
 compute(20);
 } catch (MyException e) {
 System.out.println("Caught " + e);
 }
 }
}

This example defines a subclass of Exception called MyException. This subclass is quite
simple: It has only a constructor plus an overridden toString() method that displays the
value of the exception. The ExceptionDemo class defines a method named compute()
that throws a MyException object. The exception is thrown when compute()’s integer
parameter is greater than 10. The main() method sets up an exception handler for
MyException, then calls compute() with a legal value (less than 10) and an illegal one
to show both paths through the code. Here is the result:

 Called compute(1)
 Normal exit
 Called compute(20)
 Caught MyException[20]

10-ch10.indd 229 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

230 PART I The Java Language

Chained Exceptions
Beginning with JDK 1.4, a feature was incorporated into the exception subsystem: chained
exceptions. The chained exception feature allows you to associate another exception with an
exception. This second exception describes the cause of the first exception. For example,
imagine a situation in which a method throws an ArithmeticException because of an attempt
to divide by zero. However, the actual cause of the problem was that an I/O error occurred,
which caused the divisor to be set improperly. Although the method must certainly throw
an ArithmeticException, since that is the error that occurred, you might also want to let the
calling code know that the underlying cause was an I/O error. Chained exceptions let you
handle this, and any other situation in which layers of exceptions exist.

To allow chained exceptions, two constructors and two methods were added to
Throwable. The constructors are shown here:

Throwable(Throwable causeExc)
Throwable(String msg, Throwable causeExc)

In the first form, causeExc is the exception that causes the current exception. That is,
causeExc is the underlying reason that an exception occurred. The second form allows you
to specify a description at the same time that you specify a cause exception. These two
constructors have also been added to the Error, Exception, and RuntimeException classes.

The chained exception methods supported by Throwable are getCause() and
initCause(). These methods are shown in Table 10-3 and are repeated here for the sake
of discussion.

Throwable getCause()
Throwable initCause(Throwable causeExc)

The getCause() method returns the exception that underlies the current exception.
If there is no underlying exception, null is returned. The initCause() method associates
causeExc with the invoking exception and returns a reference to the exception. Thus, you
can associate a cause with an exception after the exception has been created. However, the
cause exception can be set only once. Thus, you can call initCause() only once for each
exception object. Furthermore, if the cause exception was set by a constructor, then you
can’t set it again using initCause(). In general, initCause() is used to set a cause for legacy
exception classes that don’t support the two additional constructors described earlier.

Here is an example that illustrates the mechanics of handling chained exceptions:

// Demonstrate exception chaining.
class ChainExcDemo {
 static void demoproc() {

 // create an exception
 NullPointerException e =
 new NullPointerException("top layer");

 // add a cause
 e.initCause(new ArithmeticException("cause"));

 throw e;
 }

10-ch10.indd 230 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 10 Exception Handling 231

Pa
rt

 I

 public static void main(String args[]) {
 try {
 demoproc();
 } catch(NullPointerException e) {
 // display top level exception
 System.out.println("Caught: " + e);

 // display cause exception
 System.out.println("Original cause: " +
 e.getCause());
 }
 }
}

The output from the program is shown here:

Caught: java.lang.NullPointerException: top layer
Original cause: java.lang.ArithmeticException: cause

In this example, the top-level exception is NullPointerException. To it is added a cause
exception, ArithmeticException. When the exception is thrown out of demoproc(), it is
caught by main(). There, the top-level exception is displayed, followed by the underlying
exception, which is obtained by calling getCause().

Chained exceptions can be carried on to whatever depth is necessary. Thus, the cause
exception can, itself, have a cause. Be aware that overly long chains of exceptions may
indicate poor design.

Chained exceptions are not something that every program will need. However, in cases
in which knowledge of an underlying cause is useful, they offer an elegant solution.

Three Recently Added Exception Features
Beginning with JDK 7, three interesting and useful features have been added to the
exception system. The first automates the process of releasing a resource, such as a file,
when it is no longer needed. It is based on an expanded form of the try statement called
try-with-resources, and is described in Chapter 13 when files are introduced. The second
feature is called multi-catch, and the third is sometimes referred to as final rethrow or more
precise rethrow. These two features are described here.

The multi-catch feature allows two or more exceptions to be caught by the same catch
clause. It is not uncommon for two or more exception handlers to use the same code
sequence even though they respond to different exceptions. Instead of having to catch
each exception type individually, you can use a single catch clause to handle all of the
exceptions without code duplication.

To use a multi-catch, separate each exception type in the catch clause with the OR
operator. Each multi-catch parameter is implicitly final. (You can explicitly specify final,
if desired, but it is not necessary.) Because each multi-catch parameter is implicitly final, it
can’t be assigned a new value.

10-ch10.indd 231 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

232 PART I The Java Language

Here is a catch statement that uses the multi-catch feature to catch both
ArithmeticException and ArrayIndexOutOfBoundsException:

catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {

The following program shows the multi-catch feature in action:

// Demonstrate the multi-catch feature.
class MultiCatch {
 public static void main(String args[]) {
 int a=10, b=0;
 int vals[] = { 1, 2, 3 };

 try {
 int result = a / b; // generate an ArithmeticException

// vals[10] = 19; // generate an ArrayIndexOutOfBoundsException

 // This catch clause catches both exceptions.
 } catch(ArithmeticException | ArrayIndexOutOfBoundsException e) {
 System.out.println("Exception caught: " + e);
 }

 System.out.println("After multi-catch.");
 }
}

The program will generate an ArithmeticException when the division by zero is attempted.
If you comment out the division statement and remove the comment symbol from the next
line, an ArrayIndexOutOfBoundsException is generated. Both exceptions are caught by
the single catch statement.

The more precise rethrow feature restricts the type of exceptions that can be rethrown
to only those checked exceptions that the associated try block throws, that are not handled
by a preceding catch clause, and that are a subtype or supertype of the parameter. Although
this capability might not be needed often, it is now available for use. For the more precise
rethrow feature to be in force, the catch parameter must be either effectively final, which
means that it must not be assigned a new value inside the catch block, or explicitly declared
final.

Using Exceptions
Exception handling provides a powerful mechanism for controlling complex programs that
have many dynamic run-time characteristics. It is important to think of try, throw, and catch
as clean ways to handle errors and unusual boundary conditions in your program’s logic.
Unlike some other languages in which error return codes are used to indicate failure, Java
uses exceptions. Thus, when a method can fail, have it throw an exception. This is a cleaner
way to handle failure modes.

One last point: Java’s exception-handling statements should not be considered a general
mechanism for nonlocal branching. If you do so, it will only confuse your code and make it
hard to maintain.

10-ch10.indd 232 14/02/14 4:50 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

11
CHAPTER

 233

Multithreaded
Programming

Java provides built-in support for multithreaded programming. A multithreaded program
contains two or more parts that can run concurrently. Each part of such a program is called a
thread, and each thread defines a separate path of execution. Thus, multithreading is a
specialized form of multitasking.

You are almost certainly acquainted with multitasking because it is supported by virtually
all modern operating systems. However, there are two distinct types of multitasking:
process-based and thread-based. It is important to understand the difference between the
two. For many readers, process-based multitasking is the more familiar form. A process is,
in essence, a program that is executing. Thus, process-based multitasking is the feature that
allows your computer to run two or more programs concurrently. For example, process-
based multitasking enables you to run the Java compiler at the same time that you are using
a text editor or visiting a web site. In process-based multitasking, a program is the smallest
unit of code that can be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable
code. This means that a single program can perform two or more tasks simultaneously. For
instance, a text editor can format text at the same time that it is printing, as long as these two
actions are being performed by two separate threads. Thus, process-based multitasking deals
with the “big picture,” and thread-based multitasking handles the details.

Multitasking threads require less overhead than multitasking processes. Processes are
heavyweight tasks that require their own separate address spaces. Interprocess communication
is expensive and limited. Context switching from one process to another is also costly. Threads,
on the other hand, are lighter weight. They share the same address space and cooperatively
share the same heavyweight process. Interthread communication is inexpensive, and context
switching from one thread to the next is lower in cost. While Java programs make use of
process-based multitasking environments, process-based multitasking is not under Java’s
control. However, multithreaded multitasking is.

Multithreading enables you to write efficient programs that make maximum use of the
processing power available in the system. One important way multithreading achieves this is
by keeping idle time to a minimum. This is especially important for the interactive, networked

11-ch11.indd 233 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

234 PART I The Java Language

environment in which Java operates because idle time is common. For example, the
transmission rate of data over a network is much slower than the rate at which the computer
can process it. Even local file system resources are read and written at a much slower pace
than they can be processed by the CPU. And, of course, user input is much slower than the
computer. In a single-threaded environment, your program has to wait for each of these tasks
to finish before it can proceed to the next one—even though most of the time the program is
idle, waiting for input. Multithreading helps you reduce this idle time because another thread
can run when one is waiting.

If you have programmed for operating systems such as Windows, then you are already
familiar with multithreaded programming. However, the fact that Java manages threads
makes multithreading especially convenient because many of the details are handled for you.

The Java Thread Model
The Java run-time system depends on threads for many things, and all the class libraries
are designed with multithreading in mind. In fact, Java uses threads to enable the entire
environment to be asynchronous. This helps reduce inefficiency by preventing the waste
of CPU cycles.

The value of a multithreaded environment is best understood in contrast to its
counterpart. Single-threaded systems use an approach called an event loop with polling. In
this model, a single thread of control runs in an infinite loop, polling a single event queue
to decide what to do next. Once this polling mechanism returns with, say, a signal that a
network file is ready to be read, then the event loop dispatches control to the appropriate
event handler. Until this event handler returns, nothing else can happen in the program.
This wastes CPU time. It can also result in one part of a program dominating the system
and preventing any other events from being processed. In general, in a single-threaded
environment, when a thread blocks (that is, suspends execution) because it is waiting for
some resource, the entire program stops running.

The benefit of Java’s multithreading is that the main loop/polling mechanism is
eliminated. One thread can pause without stopping other parts of your program. For
example, the idle time created when a thread reads data from a network or waits for user
input can be utilized elsewhere. Multithreading allows animation loops to sleep for a
second between each frame without causing the whole system to pause. When a thread
blocks in a Java program, only the single thread that is blocked pauses. All other threads
continue to run.

As most readers know, over the past few years, multi-core systems have become
commonplace. Of course, single-core systems are still in widespread use. It is important to
understand that Java’s multithreading features work in both types of systems. In a single-
core system, concurrently executing threads share the CPU, with each thread receiving a
slice of CPU time. Therefore, in a single-core system, two or more threads do not actually
run at the same time, but idle CPU time is utilized. However, in multi-core systems, it is
possible for two or more threads to actually execute simultaneously. In many cases, this
can further improve program efficiency and increase the speed of certain operations.

11-ch11.indd 234 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 235

Pa
rt

 I

NOTE Recently, the Fork/Join Framework was added to Java. It provides a powerful means of creating
multithreaded applications that automatically scale to make best use of multi-core environments. The
Fork/Join Framework is part of Java’s support for parallel programming, which is the name commonly
given to the techniques that optimize some types of algorithms for parallel execution in systems that have
more than one CPU. For a discussion of the Fork/Join Framework and other concurrency utilities, see
Chapter 28. Java’s traditional multithreading capabilities are described here.

Threads exist in several states. Here is a general description. A thread can be running.
It can be ready to run as soon as it gets CPU time. A running thread can be suspended, which
temporarily halts its activity. A suspended thread can then be resumed, allowing it to pick up
where it left off. A thread can be blocked when waiting for a resource. At any time, a thread
can be terminated, which halts its execution immediately. Once terminated, a thread
cannot be resumed.

Thread Priorities
Java assigns to each thread a priority that determines how that thread should be treated
with respect to the others. Thread priorities are integers that specify the relative priority
of one thread to another. As an absolute value, a priority is meaningless; a higher-priority
thread doesn’t run any faster than a lower-priority thread if it is the only thread running.
Instead, a thread’s priority is used to decide when to switch from one running thread to the
next. This is called a context switch. The rules that determine when a context switch takes
place are simple:

•	 A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping,
or blocking on pending I/O. In this scenario, all other threads are examined, and
the highest-priority thread that is ready to run is given the CPU.

•	 A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread
that does not yield the processor is simply preempted—no matter what it is doing—
by a higher-priority thread. Basically, as soon as a higher-priority thread wants to
run, it does. This is called preemptive multitasking.

In cases where two threads with the same priority are competing for CPU cycles, the
situation is a bit complicated. For operating systems such as Windows, threads of equal
priority are time-sliced automatically in round-robin fashion. For other types of operating
systems, threads of equal priority must voluntarily yield control to their peers. If they don’t,
the other threads will not run.

CAUTION Portability problems can arise from the differences in the way that operating systems
context-switch threads of equal priority.

Synchronization
Because multithreading introduces an asynchronous behavior to your programs, there must
be a way for you to enforce synchronicity when you need it. For example, if you want two
threads to communicate and share a complicated data structure, such as a linked list, you

11-ch11.indd 235 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

236 PART I The Java Language

need some way to ensure that they don’t conflict with each other. That is, you must prevent
one thread from writing data while another thread is in the middle of reading it. For
this purpose, Java implements an elegant twist on an age-old model of interprocess
synchronization: the monitor. The monitor is a control mechanism first defined by C.A.R.
Hoare. You can think of a monitor as a very small box that can hold only one thread. Once
a thread enters a monitor, all other threads must wait until that thread exits the monitor. In
this way, a monitor can be used to protect a shared asset from being manipulated by more
than one thread at a time.

In Java, there is no class “Monitor”; instead, each object has its own implicit monitor
that is automatically entered when one of the object’s synchronized methods is called.
Once a thread is inside a synchronized method, no other thread can call any other
synchronized method on the same object. This enables you to write very clear and concise
multithreaded code, because synchronization support is built into the language.

Messaging
After you divide your program into separate threads, you need to define how they will
communicate with each other. When programming with some other languages, you must
depend on the operating system to establish communication between threads. This, of
course, adds overhead. By contrast, Java provides a clean, low-cost way for two or more
threads to talk to each other, via calls to predefined methods that all objects have. Java’s
messaging system allows a thread to enter a synchronized method on an object, and then
wait there until some other thread explicitly notifies it to come out.

The Thread Class and the Runnable Interface
Java’s multithreading system is built upon the Thread class, its methods, and its companion
interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly
refer to the ethereal state of a running thread, you will deal with it through its proxy, the
Thread instance that spawned it. To create a new thread, your program will either extend
Thread or implement the Runnable interface.

The Thread class defines several methods that help manage threads. Several of those
used in this chapter are shown here:

Method Meaning
getName Obtain a thread’s name.

getPriority Obtain a thread’s priority.

isAlive Determine if a thread is still running.

join Wait for a thread to terminate.

run Entry point for the thread.

sleep Suspend a thread for a period of time.

start Start a thread by calling its run method.

Thus far, all the examples in this book have used a single thread of execution. The
remainder of this chapter explains how to use Thread and Runnable to create and manage
threads, beginning with the one thread that all Java programs have: the main thread.

11-ch11.indd 236 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 237

Pa
rt

 I

The Main Thread
When a Java program starts up, one thread begins running immediately. This is usually
called the main thread of your program, because it is the one that is executed when your
program begins. The main thread is important for two reasons:

•	 It is the thread from which other “child” threads will be spawned.

•	 Often, it must be the last thread to finish execution because it performs various
shutdown actions.

Although the main thread is created automatically when your program is started, it
can be controlled through a Thread object. To do so, you must obtain a reference to it by
calling the method currentThread(), which is a public static member of Thread. Its general
form is shown here:

static Thread currentThread()

This method returns a reference to the thread in which it is called. Once you have a
reference to the main thread, you can control it just like any other thread.

Let’s begin by reviewing the following example:

// Controlling the main Thread.
class CurrentThreadDemo {
 public static void main(String args[]) {
 Thread t = Thread.currentThread();

 System.out.println("Current thread: " + t);

 // change the name of the thread
 t.setName("My Thread");
 System.out.println("After name change: " + t);

 try {
 for(int n = 5; n > 0; n--) {
 System.out.println(n);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted");
 }
 }
}

In this program, a reference to the current thread (the main thread, in this case) is
obtained by calling currentThread(), and this reference is stored in the local variable t.
Next, the program displays information about the thread. The program then calls
setName() to change the internal name of the thread. Information about the thread is
then redisplayed. Next, a loop counts down from five, pausing one second between each
line. The pause is accomplished by the sleep() method. The argument to sleep() specifies
the delay period in milliseconds. Notice the try/catch block around this loop. The sleep()
method in Thread might throw an InterruptedException. This would happen if some other

11-ch11.indd 237 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

238 PART I The Java Language

thread wanted to interrupt this sleeping one. This example just prints a message if it gets
interrupted. In a real program, you would need to handle this differently. Here is the
output generated by this program:

Current thread: Thread[main,5,main]
After name change: Thread[My Thread,5,main]
5
4
3
2
1

Notice the output produced when t is used as an argument to println(). This displays, in
order: the name of the thread, its priority, and the name of its group. By default, the name of
the main thread is main. Its priority is 5, which is the default value, and main is also the name
of the group of threads to which this thread belongs. A thread group is a data structure that
controls the state of a collection of threads as a whole. After the name of the thread is
changed, t is again output. This time, the new name of the thread is displayed.

Let’s look more closely at the methods defined by Thread that are used in the program.
The sleep() method causes the thread from which it is called to suspend execution for the
specified period of milliseconds. Its general form is shown here:

static void sleep(long milliseconds) throws InterruptedException

The number of milliseconds to suspend is specified in milliseconds. This method may throw
an InterruptedException.

The sleep() method has a second form, shown next, which allows you to specify the
period in terms of milliseconds and nanoseconds:

static void sleep(long milliseconds, int nanoseconds) throws InterruptedException

This second form is useful only in environments that allow timing periods as short as
nanoseconds.

As the preceding program shows, you can set the name of a thread by using setName().
You can obtain the name of a thread by calling getName() (but note that this is not
shown in the program). These methods are members of the Thread class and are
declared like this:

final void setName(String threadName)
final String getName()

Here, threadName specifies the name of the thread.

Creating a Thread
In the most general sense, you create a thread by instantiating an object of type Thread.
Java defines two ways in which this can be accomplished:

•	 You can implement the Runnable interface.

•	 You can extend the Thread class, itself.

The following two sections look at each method, in turn.

11-ch11.indd 238 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 239

Pa
rt

 I

Implementing Runnable
The easiest way to create a thread is to create a class that implements the Runnable
interface. Runnable abstracts a unit of executable code. You can construct a thread on any
object that implements Runnable. To implement Runnable, a class need only implement a
single method called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to
understand that run() can call other methods, use other classes, and declare variables, just like
the main thread can. The only difference is that run() establishes the entry point for another,
concurrent thread of execution within your program. This thread will end when run()
returns.

After you create a class that implements Runnable, you will instantiate an object of type
Thread from within that class. Thread defines several constructors. The one that we will use
is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable
interface. This defines where execution of the thread will begin. The name of the new
thread is specified by threadName.

After the new thread is created, it will not start running until you call its start() method,
which is declared within Thread. In essence, start() executes a call to run(). The start()
method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.
class NewThread implements Runnable {
 Thread t;

 NewThread() {
 // Create a new, second thread
 t = new Thread(this, "Demo Thread");
 System.out.println("Child thread: " + t);
 t.start(); // Start the thread
 }

 // This is the entry point for the second thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Child Thread: " + i);
 Thread.sleep(500);
 }
 } catch (InterruptedException e) {
 System.out.println("Child interrupted.");
 }
 System.out.println("Exiting child thread.");
 }

11-ch11.indd 239 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

240 PART I The Java Language

}

class ThreadDemo {
 public static void main(String args[]) {
 new NewThread(); // create a new thread

 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Main Thread: " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {

 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread exiting.");
 }
}

Inside NewThread’s constructor, a new Thread object is created by the following statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run()
method on this object. Next, start() is called, which starts the thread of execution
beginning at the run() method. This causes the child thread’s for loop to begin. After
calling start(), NewThread’s constructor returns to main(). When the main thread
resumes, it enters its for loop. Both threads continue running, sharing the CPU in single-
core systems, until their loops finish. The output produced by this program is as follows.
(Your output may vary based upon the specific execution environment.)

 Child thread: Thread[Demo Thread,5,main]
 Main Thread: 5
 Child Thread: 5
 Child Thread: 4
 Main Thread: 4
 Child Thread: 3
 Child Thread: 2
 Main Thread: 3
 Child Thread: 1
 Exiting child thread.
 Main Thread: 2
 Main Thread: 1
 Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be the
last thread to finish running. In fact, for some older JVMs, if the main thread finishes before a
child thread has completed, then the Java run-time system may “hang.” The preceding
program ensures that the main thread finishes last, because the main thread sleeps for
1,000 milliseconds between iterations, but the child thread sleeps for only 500 milliseconds.
This causes the child thread to terminate earlier than the main thread. Shortly, you will see
a better way to wait for a thread to finish.

11-ch11.indd 240 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 241

Pa
rt

 I

Extending Thread
The second way to create a thread is to create a new class that extends Thread, and then to
create an instance of that class. The extending class must override the run() method, which
is the entry point for the new thread. It must also call start() to begin execution of the new
thread. Here is the preceding program rewritten to extend Thread:

// Create a second thread by extending Thread
class NewThread extends Thread {

 NewThread() {
 // Create a new, second thread
 super("Demo Thread");
 System.out.println("Child thread: " + this);
 start(); // Start the thread
 }

 // This is the entry point for the second thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Child Thread: " + i);
 Thread.sleep(500);
 }
 } catch (InterruptedException e) {
 System.out.println("Child interrupted.");
 }
 System.out.println("Exiting child thread.");
 }
}

class ExtendThread {
 public static void main(String args[]) {
 new NewThread(); // create a new thread

 try {
 for(int i = 5; i > 0; i--) {
 System.out.println("Main Thread: " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }
 System.out.println("Main thread exiting.");
 }
}

This program generates the same output as the preceding version. As you can see, the
child thread is created by instantiating an object of NewThread, which is derived from
Thread.

11-ch11.indd 241 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

242 PART I The Java Language

Notice the call to super() inside NewThread. This invokes the following form of the
Thread constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Choosing an Approach
At this point, you might be wondering why Java has two ways to create child threads, and
which approach is better. The answers to these questions turn on the same point. The
Thread class defines several methods that can be overridden by a derived class. Of these
methods, the only one that must be overridden is run(). This is, of course, the same
method required when you implement Runnable. Many Java programmers feel that classes
should be extended only when they are being enhanced or modified in some way. So, if you
will not be overriding any of Thread’s other methods, it is probably best simply to implement
Runnable. Also, by implementing Runnable, your thread class does not need to inherit
Thread, making it free to inherit a different class. Ultimately, which approach to use is up
to you. However, throughout the rest of this chapter, we will create threads by using classes
that implement Runnable.

Creating Multiple Threads
So far, you have been using only two threads: the main thread and one child thread.
However, your program can spawn as many threads as it needs. For example, the following
program creates three child threads:

// Create multiple threads.
class NewThread implements Runnable {
 String name; // name of thread
 Thread t;

 NewThread(String threadname) {
 name = threadname;
 t = new Thread(this, name);
 System.out.println("New thread: " + t);
 t.start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println(name + "Interrupted");
 }
 System.out.println(name + " exiting.");
 }
}

11-ch11.indd 242 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 243

Pa
rt

 I

class MultiThreadDemo {
 public static void main(String args[]) {
 new NewThread("One"); // start threads
 new NewThread("Two");
 new NewThread("Three");

 try {
 // wait for other threads to end
 Thread.sleep(10000);
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }
 System.out.println("Main thread exiting.");
 }
}

Sample output from this program is shown here. (Your output may vary based upon the
specific execution environment.)

 New thread: Thread[One,5,main]
 New thread: Thread[Two,5,main]
 New thread: Thread[Three,5,main]
 One: 5
 Two: 5
 Three: 5
 One: 4
 Two: 4
 Three: 4
 One: 3
 Three: 3
 Two: 3
 One: 2
 Three: 2
 Two: 2
 One: 1
 Three: 1
 Two: 1
 One exiting.
 Two exiting.
 Three exiting.
 Main thread exiting.

As you can see, once started, all three child threads share the CPU. Notice the call to
sleep(10000) in main(). This causes the main thread to sleep for ten seconds and ensures
that it will finish last.

Using isAlive() and join()
As mentioned, often you will want the main thread to finish last. In the preceding examples,
this is accomplished by calling sleep() within main(), with a long enough delay to ensure
that all child threads terminate prior to the main thread. However, this is hardly a

11-ch11.indd 243 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

244 PART I The Java Language

satisfactory solution, and it also raises a larger question: How can one thread know when
another thread has ended? Fortunately, Thread provides a means by which you can answer
this question.

Two ways exist to determine whether a thread has finished. First, you can call isAlive()
on the thread. This method is defined by Thread, and its general form is shown here:

final boolean isAlive()

The isAlive() method returns true if the thread upon which it is called is still running. It
returns false otherwise.

While isAlive() is occasionally useful, the method that you will more commonly use to
wait for a thread to finish is called join(), shown here:

final void join() throws InterruptedException

This method waits until the thread on which it is called terminates. Its name comes from
the concept of the calling thread waiting until the specified thread joins it. Additional forms
of join() allow you to specify a maximum amount of time that you want to wait for the
specified thread to terminate.

Here is an improved version of the preceding example that uses join() to ensure that
the main thread is the last to stop. It also demonstrates the isAlive() method.

// Using join() to wait for threads to finish.
class NewThread implements Runnable {
 String name; // name of thread
 Thread t;

 NewThread(String threadname) {
 name = threadname;
 t = new Thread(this, name);
 System.out.println("New thread: " + t);
 t.start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(1000);
 }
 } catch (InterruptedException e) {
 System.out.println(name + " interrupted.");
 }
 System.out.println(name + " exiting.");
 }
}

class DemoJoin {
 public static void main(String args[]) {
 NewThread ob1 = new NewThread("One");
 NewThread ob2 = new NewThread("Two");
 NewThread ob3 = new NewThread("Three");

11-ch11.indd 244 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 245

Pa
rt

 I

 System.out.println("Thread One is alive: "
 + ob1.t.isAlive());
 System.out.println("Thread Two is alive: "
 + ob2.t.isAlive());
 System.out.println("Thread Three is alive: "
 + ob3.t.isAlive());
 // wait for threads to finish
 try {
 System.out.println("Waiting for threads to finish.");
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 System.out.println("Thread One is alive: "
 + ob1.t.isAlive());
 System.out.println("Thread Two is alive: "
 + ob2.t.isAlive());
 System.out.println("Thread Three is alive: "
 + ob3.t.isAlive());

 System.out.println("Main thread exiting.");
 }
}

Sample output from this program is shown here. (Your output may vary based upon the
specific execution environment.)

 New thread: Thread[One,5,main]
 New thread: Thread[Two,5,main]
 New thread: Thread[Three,5,main]
 Thread One is alive: true
 Thread Two is alive: true
 Thread Three is alive: true
 Waiting for threads to finish.
 One: 5
 Two: 5
 Three: 5
 One: 4
 Two: 4
 Three: 4
 One: 3
 Two: 3
 Three: 3
 One: 2
 Two: 2
 Three: 2
 One: 1
 Two: 1
 Three: 1
 Two exiting.
 Three exiting.

11-ch11.indd 245 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

246 PART I The Java Language

 One exiting.
 Thread One is alive: false
 Thread Two is alive: false
 Thread Three is alive: false
 Main thread exiting.

As you can see, after the calls to join() return, the threads have stopped executing.

Thread Priorities
Thread priorities are used by the thread scheduler to decide when each thread should be
allowed to run. In theory, over a given period of time, higher-priority threads get more CPU
time than lower-priority threads. In practice, the amount of CPU time that a thread gets
often depends on several factors besides its priority. (For example, how an operating system
implements multitasking can affect the relative availability of CPU time.) A higher-priority
thread can also preempt a lower-priority one. For instance, when a lower-priority thread is
running and a higher-priority thread resumes (from sleeping or waiting on I/O, for
example), it will preempt the lower-priority thread.

In theory, threads of equal priority should get equal access to the CPU. But you need to
be careful. Remember, Java is designed to work in a wide range of environments. Some of
those environments implement multitasking fundamentally differently than others. For
safety, threads that share the same priority should yield control once in a while. This ensures
that all threads have a chance to run under a nonpreemptive operating system. In practice,
even in nonpreemptive environments, most threads still get a chance to run, because most
threads inevitably encounter some blocking situation, such as waiting for I/O. When this
happens, the blocked thread is suspended and other threads can run. But, if you want
smooth multithreaded execution, you are better off not relying on this. Also, some types
of tasks are CPU-intensive. Such threads dominate the CPU. For these types of threads, you
want to yield control occasionally so that other threads can run.

To set a thread’s priority, use the setPriority() method, which is a member of Thread.
This is its general form:

final void setPriority(int level)

Here, level specifies the new priority setting for the calling thread. The value of level must be
within the range MIN_PRIORITY and MAX_PRIORITY. Currently, these values are 1 and
10, respectively. To return a thread to default priority, specify NORM_PRIORITY, which is
currently 5. These priorities are defined as static final variables within Thread.

You can obtain the current priority setting by calling the getPriority() method of
Thread, shown here:

final int getPriority()

Implementations of Java may have radically different behavior when it comes to
scheduling. Most of the inconsistencies arise when you have threads that are relying on
preemptive behavior, instead of cooperatively giving up CPU time. The safest way to obtain
predictable, cross-platform behavior with Java is to use threads that voluntarily give up
control of the CPU.

11-ch11.indd 246 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 247

Pa
rt

 I

Synchronization
When two or more threads need access to a shared resource, they need some way to ensure
that the resource will be used by only one thread at a time. The process by which this is
achieved is called synchronization. As you will see, Java provides unique, language-level
support for it.

Key to synchronization is the concept of the monitor. A monitor is an object that is used
as a mutually exclusive lock. Only one thread can own a monitor at a given time. When a
thread acquires a lock, it is said to have entered the monitor. All other threads attempting to
enter the locked monitor will be suspended until the first thread exits the monitor. These
other threads are said to be waiting for the monitor. A thread that owns a monitor can
reenter the same monitor if it so desires.

You can synchronize your code in either of two ways. Both involve the use of the
synchronized keyword, and both are examined here.

Using Synchronized Methods
Synchronization is easy in Java, because all objects have their own implicit monitor associated
with them. To enter an object’s monitor, just call a method that has been modified with the
synchronized keyword. While a thread is inside a synchronized method, all other threads that
try to call it (or any other synchronized method) on the same instance have to wait. To exit
the monitor and relinquish control of the object to the next waiting thread, the owner of the
monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does
not use it—but should. The following program has three simple classes. The first one, Callme,
has a single method named call(). The call() method takes a String parameter called msg. This
method tries to print the msg string inside of square brackets. The interesting thing to notice
is that after call() prints the opening bracket and the msg string, it calls Thread.sleep(1000),
which pauses the current thread for one second.

The constructor of the next class, Caller, takes a reference to an instance of the Callme
class and a String, which are stored in target and msg, respectively. The constructor also
creates a new thread that will call this object’s run() method. The thread is started immediately.
The run() method of Caller calls the call() method on the target instance of Callme, passing
in the msg string. Finally, the Synch class starts by creating a single instance of Callme, and
three instances of Caller, each with a unique message string. The same instance of Callme
is passed to each Caller.

// This program is not synchronized.
class Callme {
 void call(String msg) {
 System.out.print("[" + msg);
 try {
 Thread.sleep(1000);
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 System.out.println("]");
 }

11-ch11.indd 247 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

248 PART I The Java Language

}

class Caller implements Runnable {
 String msg;
 Callme target;
 Thread t;

 public Caller(Callme targ, String s) {
 target = targ;
 msg = s;
 t = new Thread(this);
 t.start();
 }
 public void run() {
 target.call(msg);
 }
}

class Synch {
 public static void main(String args[]) {
 Callme target = new Callme();
 Caller ob1 = new Caller(target, "Hello");
 Caller ob2 = new Caller(target, "Synchronized");
 Caller ob3 = new Caller(target, "World");

 // wait for threads to end
 try {
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 }
}

Here is the output produced by this program:

 Hello[Synchronized[World]
]
]

As you can see, by calling sleep(), the call() method allows execution to switch to another
thread. This results in the mixed-up output of the three message strings. In this program,
nothing exists to stop all three threads from calling the same method, on the same object,
at the same time. This is known as a race condition, because the three threads are racing each
other to complete the method. This example used sleep() to make the effects repeatable
and obvious. In most situations, a race condition is more subtle and less predictable,
because you can’t be sure when the context switch will occur. This can cause a program
to run right one time and wrong the next.

11-ch11.indd 248 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 249

Pa
rt

 I

To fix the preceding program, you must serialize access to call(). That is, you must
restrict its access to only one thread at a time. To do this, you simply need to precede call()’s
definition with the keyword synchronized, as shown here:

class Callme {
 synchronized void call(String msg) {
 ...

This prevents other threads from entering call() while another thread is using it. After
synchronized has been added to call(), the output of the program is as follows:

 [Hello]
 [Synchronized]
 [World]

Any time that you have a method, or group of methods, that manipulates the internal
state of an object in a multithreaded situation, you should use the synchronized keyword to
guard the state from race conditions. Remember, once a thread enters any synchronized
method on an instance, no other thread can enter any other synchronized method on the
same instance. However, nonsynchronized methods on that instance will continue to be
callable.

The synchronized Statement
While creating synchronized methods within classes that you create is an easy and effective
means of achieving synchronization, it will not work in all cases. To understand why, consider
the following. Imagine that you want to synchronize access to objects of a class that was not
designed for multithreaded access. That is, the class does not use synchronized methods.
Further, this class was not created by you, but by a third party, and you do not have access to
the source code. Thus, you can’t add synchronized to the appropriate methods within the
class. How can access to an object of this class be synchronized? Fortunately, the solution to
this problem is quite easy: You simply put calls to the methods defined by this class inside a
synchronized block.

This is the general form of the synchronized statement:

synchronized(objRef) {
 // statements to be synchronized
}

Here, objRef is a reference to the object being synchronized. A synchronized block ensures
that a call to a synchronized method that is a member of objRef’s class occurs only after the
current thread has successfully entered objRef’s monitor.

Here is an alternative version of the preceding example, using a synchronized block
within the run() method:

// This program uses a synchronized block.
class Callme {
 void call(String msg) {

11-ch11.indd 249 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

250 PART I The Java Language

 System.out.print("[" + msg);
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 System.out.println("]");
 }
}

class Caller implements Runnable {
 String msg;
 Callme target;
 Thread t;

 public Caller(Callme targ, String s) {
 target = targ;
 msg = s;
 t = new Thread(this);
 t.start();
 }

 // synchronize calls to call()
 public void run() {
 synchronized(target) { // synchronized block
 target.call(msg);
 }
 }
}

class Synch1 {
 public static void main(String args[]) {
 Callme target = new Callme();
 Caller ob1 = new Caller(target, "Hello");
 Caller ob2 = new Caller(target, "Synchronized");
 Caller ob3 = new Caller(target, "World");

 // wait for threads to end
 try {
 ob1.t.join();
 ob2.t.join();
 ob3.t.join();
 } catch(InterruptedException e) {
 System.out.println("Interrupted");
 }
 }
}

Here, the call() method is not modified by synchronized. Instead, the synchronized
statement is used inside Caller’s run() method. This causes the same correct output as the
preceding example, because each thread waits for the prior one to finish before proceeding.

11-ch11.indd 250 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 251

Pa
rt

 I

Interthread Communication
The preceding examples unconditionally blocked other threads from asynchronous access
to certain methods. This use of the implicit monitors in Java objects is powerful, but you
can achieve a more subtle level of control through interprocess communication. As you will
see, this is especially easy in Java.

As discussed earlier, multithreading replaces event loop programming by dividing your
tasks into discrete, logical units. Threads also provide a secondary benefit: they do away
with polling. Polling is usually implemented by a loop that is used to check some condition
repeatedly. Once the condition is true, appropriate action is taken. This wastes CPU time.
For example, consider the classic queuing problem, where one thread is producing some
data and another is consuming it. To make the problem more interesting, suppose that the
producer has to wait until the consumer is finished before it generates more data. In a
polling system, the consumer would waste many CPU cycles while it waited for the producer
to produce. Once the producer was finished, it would start polling, wasting more CPU
cycles waiting for the consumer to finish, and so on. Clearly, this situation is undesirable.

To avoid polling, Java includes an elegant interprocess communication mechanism via
the wait(), notify(), and notifyAll() methods. These methods are implemented as final
methods in Object, so all classes have them. All three methods can be called only from
within a synchronized context. Although conceptually advanced from a computer science
perspective, the rules for using these methods are actually quite simple:

•	 wait() tells the calling thread to give up the monitor and go to sleep until some
other thread enters the same monitor and calls notify() or notifyAll().

•	 notify() wakes up a thread that called wait() on the same object.

•	 notifyAll() wakes up all the threads that called wait() on the same object. One of
the threads will be granted access.

These methods are declared within Object, as shown here:

final void wait() throws InterruptedException
final void notify()
final void notify All()

Additional forms of wait() exist that allow you to specify a period of time to wait.
Before working through an example that illustrates interthread communication, an

important point needs to be made. Although wait() normally waits until notify() or
notifyAll() is called, there is a possibility that in very rare cases the waiting thread could be
awakened due to a spurious wakeup. In this case, a waiting thread resumes without notify()
or notifyAll() having been called. (In essence, the thread resumes for no apparent reason.)
Because of this remote possibility, Oracle recommends that calls to wait() should take place
within a loop that checks the condition on which the thread is waiting. The following
example shows this technique.

Let’s now work through an example that uses wait() and notify(). To begin, consider
the following sample program that incorrectly implements a simple form of the producer/
consumer problem. It consists of four classes: Q, the queue that you’re trying to synchronize;
Producer, the threaded object that is producing queue entries; Consumer, the threaded

11-ch11.indd 251 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

252 PART I The Java Language

object that is consuming queue entries; and PC, the tiny class that creates the single Q,
Producer, and Consumer.

// An incorrect implementation of a producer and consumer.
class Q {
 int n;

 synchronized int get() {
 System.out.println("Got: " + n);
 return n;
 }

 synchronized void put(int n) {
 this.n = n;
 System.out.println("Put: " + n);
 }
}

class Producer implements Runnable {
 Q q;

 Producer(Q q) {
 this.q = q;
 new Thread(this, "Producer").start();
 }

 public void run() {
 int i = 0;

 while(true) {
 q.put(i++);
 }
 }
}

class Consumer implements Runnable {
 Q q;

 Consumer(Q q) {
 this.q = q;
 new Thread(this, "Consumer").start();
 }

 public void run() {
 while(true) {
 q.get();
 }
 }
}

class PC {
 public static void main(String args[]) {

11-ch11.indd 252 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 253

Pa
rt

 I

 Q q = new Q();
 new Producer(q);
 new Consumer(q);

 System.out.println("Press Control-C to stop.");
 }
}

Although the put() and get() methods on Q are synchronized, nothing stops the producer
from overrunning the consumer, nor will anything stop the consumer from consuming the
same queue value twice. Thus, you get the erroneous output shown here (the exact output
will vary with processor speed and task load):

 Put: 1
 Got: 1
 Got: 1
 Got: 1
 Got: 1
 Got: 1
 Put: 2
 Put: 3
 Put: 4
 Put: 5
 Put: 6
 Put: 7
 Got: 7

As you can see, after the producer put 1, the consumer started and got the same 1 five
times in a row. Then, the producer resumed and produced 2 through 7 without letting
the consumer have a chance to consume them.

The proper way to write this program in Java is to use wait() and notify() to signal in
both directions, as shown here:

// A correct implementation of a producer and consumer.
class Q {
 int n;
 boolean valueSet = false;

 synchronized int get() {
 while(!valueSet)
 try {
 wait();
 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

 System.out.println("Got: " + n);
 valueSet = false;
 notify();
 return n;
 }

 synchronized void put(int n) {

11-ch11.indd 253 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

254 PART I The Java Language

 while(valueSet)
 try {
 wait();
 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

 this.n = n;
 valueSet = true;
 System.out.println("Put: " + n);
 notify();
 }
}

class Producer implements Runnable {
 Q q;

 Producer(Q q) {
 this.q = q;
 new Thread(this, "Producer").start();
 }

 public void run() {
 int i = 0;

 while(true) {
 q.put(i++);
 }
 }
}

class Consumer implements Runnable {
 Q q;

 Consumer(Q q) {
 this.q = q;
 new Thread(this, "Consumer").start();
 }

 public void run() {
 while(true) {
 q.get();
 }
 }
}

class PCFixed {
 public static void main(String args[]) {
 Q q = new Q();
 new Producer(q);
 new Consumer(q);

 System.out.println("Press Control-C to stop.");
 }
}

11-ch11.indd 254 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 255

Pa
rt

 I

Inside get(), wait() is called. This causes its execution to suspend until Producer notifies
you that some data is ready. When this happens, execution inside get() resumes. After the
data has been obtained, get() calls notify(). This tells Producer that it is okay to put more
data in the queue. Inside put(), wait() suspends execution until Consumer has removed the
item from the queue. When execution resumes, the next item of data is put in the queue,
and notify() is called. This tells Consumer that it should now remove it.

Here is some output from this program, which shows the clean synchronous behavior:

 Put: 1
 Got: 1
 Put: 2
 Got: 2
 Put: 3
 Got: 3
 Put: 4
 Got: 4
 Put: 5
 Got: 5

Deadlock
A special type of error that you need to avoid that relates specifically to multitasking is deadlock,
which occurs when two threads have a circular dependency on a pair of synchronized objects.
For example, suppose one thread enters the monitor on object X and another thread enters
the monitor on object Y. If the thread in X tries to call any synchronized method on Y, it will
block as expected. However, if the thread in Y, in turn, tries to call any synchronized method
on X, the thread waits forever, because to access X, it would have to release its own lock on Y
so that the first thread could complete. Deadlock is a difficult error to debug for two reasons:

•	 In general, it occurs only rarely, when the two threads time-slice in just the right way.

•	 It may involve more than two threads and two synchronized objects. (That is,
deadlock can occur through a more convoluted sequence of events than just
described.)

To understand deadlock fully, it is useful to see it in action. The next example creates
two classes, A and B, with methods foo() and bar(), respectively, which pause briefly before
trying to call a method in the other class. The main class, named Deadlock, creates an A
and a B instance, and then starts a second thread to set up the deadlock condition. The
foo() and bar() methods use sleep() as a way to force the deadlock condition to occur.

// An example of deadlock.
class A {
 synchronized void foo(B b) {
 String name = Thread.currentThread().getName();

 System.out.println(name + " entered A.foo");

 try {
 Thread.sleep(1000);
 } catch(Exception e) {
 System.out.println("A Interrupted");

11-ch11.indd 255 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

256 PART I The Java Language

 }

 System.out.println(name + " trying to call B.last()");
 b.last();
 }

 synchronized void last() {
 System.out.println("Inside A.last");
 }
}

class B {
 synchronized void bar(A a) {
 String name = Thread.currentThread().getName();
 System.out.println(name + " entered B.bar");

 try {
 Thread.sleep(1000);
 } catch(Exception e) {
 System.out.println("B Interrupted");
 }

 System.out.println(name + " trying to call A.last()");
 a.last();
 }

 synchronized void last() {
 System.out.println("Inside A.last");
 }
}

class Deadlock implements Runnable {
 A a = new A();
 B b = new B();

 Deadlock() {
 Thread.currentThread().setName("MainThread");
 Thread t = new Thread(this, "RacingThread");
 t.start();

 a.foo(b); // get lock on a in this thread.
 System.out.println("Back in main thread");
 }

 public void run() {
 b.bar(a); // get lock on b in other thread.
 System.out.println("Back in other thread");
 }

 public static void main(String args[]) {
 new Deadlock();
 }
}

11-ch11.indd 256 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 257

Pa
rt

 I

When you run this program, you will see the output shown here:

 MainThread entered A.foo
 RacingThread entered B.bar
 MainThread trying to call B.last()
 RacingThread trying to call A.last()

Because the program has deadlocked, you need to press ctrl-c to end the program.
You can see a full thread and monitor cache dump by pressing ctrl-break on a PC. You
will see that RacingThread owns the monitor on b, while it is waiting for the monitor on a.
At the same time, MainThread owns a and is waiting to get b. This program will never
complete. As this example illustrates, if your multithreaded program locks up occasionally,
deadlock is one of the first conditions that you should check for.

Suspending, Resuming, and Stopping Threads
Sometimes, suspending execution of a thread is useful. For example, a separate thread can
be used to display the time of day. If the user doesn’t want a clock, then its thread can be
suspended. Whatever the case, suspending a thread is a simple matter. Once suspended,
restarting the thread is also a simple matter.

The mechanisms to suspend, stop, and resume threads differ between early versions of
Java, such as Java 1.0, and modern versions, beginning with Java 2. Prior to Java 2, a program
used suspend(), resume(), and stop(), which are methods defined by Thread, to pause,
restart, and stop the execution of a thread. Although these methods seem to be a perfectly
reasonable and convenient approach to managing the execution of threads, they must not
be used for new Java programs. Here’s why. The suspend() method of the Thread class was
deprecated by Java 2 several years ago. This was done because suspend() can sometimes
cause serious system failures. Assume that a thread has obtained locks on critical data
structures. If that thread is suspended at that point, those locks are not relinquished. Other
threads that may be waiting for those resources can be deadlocked.

The resume() method is also deprecated. It does not cause problems, but cannot be
used without the suspend() method as its counterpart.

The stop() method of the Thread class, too, was deprecated by Java 2. This was done
because this method can sometimes cause serious system failures. Assume that a thread is
writing to a critically important data structure and has completed only part of its changes. If
that thread is stopped at that point, that data structure might be left in a corrupted state.
The trouble is that stop() causes any lock the calling thread holds to be released. Thus, the
corrupted data might be used by another thread that is waiting on the same lock.

Because you can’t now use the suspend(), resume(), or stop() methods to control a
thread, you might be thinking that no way exists to pause, restart, or terminate a thread. But,
fortunately, this is not true. Instead, a thread must be designed so that the run() method
periodically checks to determine whether that thread should suspend, resume, or stop its
own execution. Typically, this is accomplished by establishing a flag variable that indicates
the execution state of the thread. As long as this flag is set to “running,” the run() method
must continue to let the thread execute. If this variable is set to “suspend,” the thread must
pause. If it is set to “stop,” the thread must terminate. Of course, a variety of ways exist in
which to write such code, but the central theme will be the same for all programs.

11-ch11.indd 257 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

258 PART I The Java Language

The following example illustrates how the wait() and notify() methods that are
inherited from Object can be used to control the execution of a thread. Let us consider its
operation. The NewThread class contains a boolean instance variable named suspendFlag,
which is used to control the execution of the thread. It is initialized to false by the
constructor. The run() method contains a synchronized statement block that checks
suspendFlag. If that variable is true, the wait() method is invoked to suspend the execution
of the thread. The mysuspend() method sets suspendFlag to true. The myresume()
method sets suspendFlag to false and invokes notify() to wake up the thread. Finally, the
main() method has been modified to invoke the mysuspend() and myresume() methods.

// Suspending and resuming a thread the modern way.
class NewThread implements Runnable {
 String name; // name of thread
 Thread t;
 boolean suspendFlag;

 NewThread(String threadname) {
 name = threadname;
 t = new Thread(this, name);
 System.out.println("New thread: " + t);
 suspendFlag = false;
 t.start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 15; i > 0; i--) {
 System.out.println(name + ": " + i);
 Thread.sleep(200);
 synchronized(this) {
 while(suspendFlag) {
 wait();
 }
 }
 }
 } catch (InterruptedException e) {
 System.out.println(name + " interrupted.");
 }

 System.out.println(name + " exiting.");
 }

 synchronized void mysuspend() {
 suspendFlag = true;
 }

 synchronized void myresume() {
 suspendFlag = false;
 notify();
 }
}

11-ch11.indd 258 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 259

Pa
rt

 I

class SuspendResume {
 public static void main(String args[]) {
 NewThread ob1 = new NewThread("One");
 NewThread ob2 = new NewThread("Two");

 try {
 Thread.sleep(1000);
 ob1.mysuspend();
 System.out.println("Suspending thread One");
 Thread.sleep(1000);
 ob1.myresume();
 System.out.println("Resuming thread One");
 ob2.mysuspend();
 System.out.println("Suspending thread Two");
 Thread.sleep(1000);
 ob2.myresume();
 System.out.println("Resuming thread Two");
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 // wait for threads to finish
 try {
 System.out.println("Waiting for threads to finish.");
 ob1.t.join();
 ob2.t.join();
 } catch (InterruptedException e) {
 System.out.println("Main thread Interrupted");
 }

 System.out.println("Main thread exiting.");
 }
}

When you run the program, you will see the threads suspend and resume. Later in this
book, you will see more examples that use the modern mechanism of thread control.
Although this mechanism isn’t as “clean” as the old way, nevertheless, it is the way required to
ensure that run-time errors don’t occur. It is the approach that must be used for all new code.

Obtaining A Thread’s State
As mentioned earlier in this chapter, a thread can exist in a number of different states. You
can obtain the current state of a thread by calling the getState() method defined by
Thread. It is shown here:

Thread.State getState()

It returns a value of type Thread.State that indicates the state of the thread at the time at
which the call was made. State is an enumeration defined by Thread. (An enumeration is a

11-ch11.indd 259 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

260 PART I The Java Language

list of named constants. It is discussed in detail in Chapter 12.) Here are the values that can
be returned by getState():

Value State
BLOCKED A thread that has suspended execution because it is waiting to

acquire a lock.

NEW A thread that has not begun execution.

RUNNABLE A thread that either is currently executing or will execute when it
gains access to the CPU.

TERMINATED A thread that has completed execution.

TIMED_WAITING A thread that has suspended execution for a specified period of
time, such as when it has called sleep(). This state is also entered
when a timeout version of wait() or join() is called.

WAITING A thread that has suspended execution because it is waiting for
some action to occur. For example, it is waiting because of a call to
a non-timeout version of wait() or join().

Figure 11-1 diagrams how the various thread states relate.

Figure 11-1 Thread states

11-ch11.indd 260 14/02/14 4:51 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 11 Multithreaded Programming 261

Pa
rt

 I

Given a Thread instance, you can use getState() to obtain the state of a thread. For
example, the following sequence determines if a thread called thrd is in the RUNNABLE
state at the time getState() is called:

Thread.State ts = thrd.getState();

if(ts == Thread.State.RUNNABLE) // ...

It is important to understand that a thread’s state may change after the call to getState().
Thus, depending on the circumstances, the state obtained by calling getState() may not
reflect the actual state of the thread only a moment later. For this (and other) reasons,
getState() is not intended to provide a means of synchronizing threads. It’s primarily used
for debugging or for profiling a thread’s run-time characteristics.

Using Multithreading
The key to utilizing Java’s multithreading features effectively is to think concurrently rather
than serially. For example, when you have two subsystems within a program that can execute
concurrently, make them individual threads. With the careful use of multithreading, you
can create very efficient programs. A word of caution is in order, however: If you create
too many threads, you can actually degrade the performance of your program rather than
enhance it. Remember, some overhead is associated with context switching. If you create
too many threads, more CPU time will be spent changing contexts than executing your
program! One last point: To create compute-intensive applications that can automatically
scale to make use of the available processors in a multi-core system, consider using the new
Fork/Join Framework, which is described in Chapter 28.

11-ch11.indd 261 14/02/14 4:51 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

12
CHAPTER

 263

Enumerations, Autoboxing,
and Annotations (Metadata)

This chapter examines three relatively recent additions to the Java language: enumerations,
autoboxing, and annotations (also referred to as metadata). Each expands the power of the
language by offering a streamlined approach to handling common programming tasks. This
chapter also discusses Java’s type wrappers and introduces reflection.

Enumerations
Versions of Java prior to JDK 5 lacked one feature that many programmers felt was needed:
enumerations. In its simplest form, an enumeration is a list of named constants. Although
Java offered other features that provide somewhat similar functionality, such as final
variables, many programmers still missed the conceptual purity of enumerations—
especially because enumerations are supported by many other commonly used languages.
Beginning with JDK 5, enumerations were added to the Java language, and they are now an
integral and widely used part of Java.

In their simplest form, Java enumerations appear similar to enumerations in other
languages. However, this similarity may be only skin deep because, in Java, an enumeration
defines a class type. By making enumerations into classes, the capabilities of the enumeration
are greatly expanded. For example, in Java, an enumeration can have constructors, methods,
and instance variables. Therefore, although enumerations were several years in the making,
Java’s rich implementation made them well worth the wait.

Enumeration Fundamentals
An enumeration is created using the enum keyword. For example, here is a simple
enumeration that lists various apple varieties:

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

12-ch12.indd 263 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

264 PART I The Java Language

The identifiers Jonathan, GoldenDel, and so on, are called enumeration constants. Each is
implicitly declared as a public, static final member of Apple. Furthermore, their type is the
type of the enumeration in which they are declared, which is Apple in this case. Thus, in
the language of Java, these constants are called self-typed, in which “self” refers to the
enclosing enumeration.

Once you have defined an enumeration, you can create a variable of that type. However,
even though enumerations define a class type, you do not instantiate an enum using new.
Instead, you declare and use an enumeration variable in much the same way as you do one
of the primitive types. For example, this declares ap as a variable of enumeration type Apple:

Apple ap;

Because ap is of type Apple, the only values that it can be assigned (or can contain) are
those defined by the enumeration. For example, this assigns ap the value RedDel:

ap = Apple.RedDel;

Notice that the symbol RedDel is preceded by Apple.
Two enumeration constants can be compared for equality by using the = = relational

operator. For example, this statement compares the value in ap with the GoldenDel
constant:

if(ap == Apple.GoldenDel) // ...

An enumeration value can also be used to control a switch statement. Of course, all
of the case statements must use constants from the same enum as that used by the switch
expression. For example, this switch is perfectly valid:

// Use an enum to control a switch statement.
switch(ap) {
 case Jonathan:
 // ...
 case Winesap:
 // ...

Notice that in the case statements, the names of the enumeration constants are used without
being qualified by their enumeration type name. That is, Winesap, not Apple.Winesap, is
used. This is because the type of the enumeration in the switch expression has already
implicitly specified the enum type of the case constants. There is no need to qualify the
constants in the case statements with their enum type name. In fact, attempting to do so
will cause a compilation error.

When an enumeration constant is displayed, such as in a println() statement, its name
is output. For example, given this statement:

System.out.println(Apple.Winesap);

the name Winesap is displayed.

12-ch12.indd 264 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 265

Pa
rt

 I

The following program puts together all of the pieces and demonstrates the Apple
enumeration:

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo {
 public static void main(String args[])
 {
 Apple ap;

 ap = Apple.RedDel;

 // Output an enum value.
 System.out.println("Value of ap: " + ap);
 System.out.println();

 ap = Apple.GoldenDel;

 // Compare two enum values.
 if(ap == Apple.GoldenDel)
 System.out.println("ap contains GoldenDel.\n");

 // Use an enum to control a switch statement.
 switch(ap) {
 case Jonathan:
 System.out.println("Jonathan is red.");
 break;
 case GoldenDel:
 System.out.println("Golden Delicious is yellow.");
 break;
 case RedDel:
 System.out.println("Red Delicious is red.");
 break;
 case Winesap:
 System.out.println("Winesap is red.");
 break;
 case Cortland:
 System.out.println("Cortland is red.");
 break;
 }
 }
}

The output from the program is shown here:

 Value of ap: RedDel

 ap contains GoldenDel.

 Golden Delicious is yellow.

12-ch12.indd 265 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

266 PART I The Java Language

The values() and valueOf() Methods
All enumerations automatically contain two predefined methods: values() and valueOf().
Their general forms are shown here:

public static enum-type [] values()
public static enum-type valueOf(String str)

The values() method returns an array that contains a list of the enumeration constants. The
valueOf() method returns the enumeration constant whose value corresponds to the string
passed in str. In both cases, enum-type is the type of the enumeration. For example, in the
case of the Apple enumeration shown earlier, the return type of Apple.valueOf("Winesap")
is Winesap.

The following program demonstrates the values() and valueOf() methods:

// Use the built-in enumeration methods.

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo2 {
 public static void main(String args[])
 {
 Apple ap;

 System.out.println("Here are all Apple constants:");

 // use values()
 Apple allapples[] = Apple.values();
 for(Apple a : allapples)
 System.out.println(a);

 System.out.println();

 // use valueOf()
 ap = Apple.valueOf("Winesap");
 System.out.println("ap contains " + ap);

 }
}

The output from the program is shown here:

 Here are all Apple constants:
 Jonathan
 GoldenDel
 RedDel
 Winesap
 Cortland

 ap contains Winesap

12-ch12.indd 266 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 267

Pa
rt

 I

Notice that this program uses a for-each style for loop to cycle through the array of
constants obtained by calling values(). For the sake of illustration, the variable allapples
was created and assigned a reference to the enumeration array. However, this step is not
necessary because the for could have been written as shown here, eliminating the need for
the allapples variable:

for(Apple a : Apple.values())
 System.out.println(a);

Now, notice how the value corresponding to the name Winesap was obtained by calling
valueOf().

ap = Apple.valueOf("Winesap");

As explained, valueOf() returns the enumeration value associated with the name of the
constant represented as a string.

Java Enumerations Are Class Types
As explained, a Java enumeration is a class type. Although you don’t instantiate an enum
using new, it otherwise has much the same capabilities as other classes. The fact that enum
defines a class gives the Java enumeration extraordinary power. For example, you can give
them constructors, add instance variables and methods, and even implement interfaces.

It is important to understand that each enumeration constant is an object of its
enumeration type. Thus, when you define a constructor for an enum, the constructor is
called when each enumeration constant is created. Also, each enumeration constant has its
own copy of any instance variables defined by the enumeration. For example, consider the
following version of Apple:

// Use an enum constructor, instance variable, and method.
enum Apple {
 Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

 private int price; // price of each apple

 // Constructor
 Apple(int p) { price = p; }

 int getPrice() { return price; }
}

class EnumDemo3 {
 public static void main(String args[])
 {
 Apple ap;

 // Display price of Winesap.
 System.out.println("Winesap costs " +
 Apple.Winesap.getPrice() +
 " cents.\n");

 // Display all apples and prices.

12-ch12.indd 267 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

268 PART I The Java Language

 System.out.println("All apple prices:");
 for(Apple a : Apple.values())
 System.out.println(a + " costs " + a.getPrice() +
 " cents.");
 }
}

The output is shown here:

 Winesap costs 15 cents.

 All apple prices:
 Jonathan costs 10 cents.
 GoldenDel costs 9 cents.
 RedDel costs 12 cents.
 Winesap costs 15 cents.
 Cortland costs 8 cents.

This version of Apple adds three things. The first is the instance variable price, which is
used to hold the price of each variety of apple. The second is the Apple constructor, which
is passed the price of an apple. The third is the method getPrice(), which returns the value
of price.

When the variable ap is declared in main(), the constructor for Apple is called once for
each constant that is specified. Notice how the arguments to the constructor are specified,
by putting them inside parentheses after each constant, as shown here:

Jonathan(10), GoldenDel(9), RedDel(12), Winesap(15), Cortland(8);

These values are passed to the p parameter of Apple(), which then assigns this value to
price. Again, the constructor is called once for each constant.

Because each enumeration constant has its own copy of price, you can obtain the price
of a specified type of apple by calling getPrice(). For example, in main() the price of a
Winesap is obtained by the following call:

Apple.Winesap.getPrice()

The prices of all varieties are obtained by cycling through the enumeration using a for
loop. Because there is a copy of price for each enumeration constant, the value associated
with one constant is separate and distinct from the value associated with another constant.
This is a powerful concept, which is only available when enumerations are implemented as
classes, as Java does.

Although the preceding example contains only one constructor, an enum can offer two
or more overloaded forms, just as can any other class. For example, this version of Apple
provides a default constructor that initializes the price to –1, to indicate that no price data
is available:

// Use an enum constructor.
enum Apple {
 Jonathan(10), GoldenDel(9), RedDel, Winesap(15), Cortland(8);

 private int price; // price of each apple

12-ch12.indd 268 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 269

Pa
rt

 I

 // Constructor
 Apple(int p) { price = p; }

 // Overloaded constructor
 Apple() { price = -1; }

 int getPrice() { return price; }
}

Notice that in this version, RedDel is not given an argument. This means that the default
constructor is called, and RedDel’s price variable is given the value –1.

Here are two restrictions that apply to enumerations. First, an enumeration can’t
inherit another class. Second, an enum cannot be a superclass. This means that an enum
can’t be extended. Otherwise, enum acts much like any other class type. The key is to
remember that each of the enumeration constants is an object of the class in which it is
defined.

Enumerations Inherit Enum
Although you can’t inherit a superclass when declaring an enum, all enumerations
automatically inherit one: java.lang.Enum. This class defines several methods that are
available for use by all enumerations. The Enum class is described in detail in Part II, but
three of its methods warrant a discussion at this time.

You can obtain a value that indicates an enumeration constant’s position in the list of
constants. This is called its ordinal value, and it is retrieved by calling the ordinal() method,
shown here:

final int ordinal()

It returns the ordinal value of the invoking constant. Ordinal values begin at zero. Thus, in
the Apple enumeration, Jonathan has an ordinal value of zero, GoldenDel has an ordinal
value of 1, RedDel has an ordinal value of 2, and so on.

You can compare the ordinal value of two constants of the same enumeration by using
the compareTo() method. It has this general form:

final int compareTo(enum-type e)

Here, enum-type is the type of the enumeration, and e is the constant being compared to
the invoking constant. Remember, both the invoking constant and e must be of the same
enumeration. If the invoking constant has an ordinal value less than e’s, then compareTo()
returns a negative value. If the two ordinal values are the same, then zero is returned. If the
invoking constant has an ordinal value greater than e’s, then a positive value is returned.

You can compare for equality an enumeration constant with any other object by using
equals(), which overrides the equals() method defined by Object. Although equals() can
compare an enumeration constant to any other object, those two objects will be equal only
if they both refer to the same constant, within the same enumeration. Simply having
ordinal values in common will not cause equals() to return true if the two constants are
from different enumerations.

Remember, you can compare two enumeration references for equality by using = =.

12-ch12.indd 269 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

270 PART I The Java Language

The following program demonstrates the ordinal(), compareTo(), and equals() methods:

// Demonstrate ordinal(), compareTo(), and equals().

// An enumeration of apple varieties.
enum Apple {
 Jonathan, GoldenDel, RedDel, Winesap, Cortland
}

class EnumDemo4 {
 public static void main(String args[])
 {
 Apple ap, ap2, ap3;

 // Obtain all ordinal values using ordinal().
 System.out.println("Here are all apple constants" +
 " and their ordinal values: ");
 for(Apple a : Apple.values())
 System.out.println(a + " " + a.ordinal());

 ap = Apple.RedDel;
 ap2 = Apple.GoldenDel;
 ap3 = Apple.RedDel;

 System.out.println();

 // Demonstrate compareTo() and equals()
 if(ap.compareTo(ap2) < 0)
 System.out.println(ap + " comes before " + ap2);

 if(ap.compareTo(ap2) > 0)
 System.out.println(ap2 + " comes before " + ap);

 if(ap.compareTo(ap3) == 0)
 System.out.println(ap + " equals " + ap3);

 System.out.println();

 if(ap.equals(ap2))
 System.out.println("Error!");

 if(ap.equals(ap3))
 System.out.println(ap + " equals " + ap3);

 if(ap == ap3)
 System.out.println(ap + " == " + ap3);

 }
}

The output from the program is shown here:

 Here are all apple constants and their ordinal values:
 Jonathan 0

12-ch12.indd 270 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 271

Pa
rt

 I

 GoldenDel 1
 RedDel 2
 Winesap 3
 Cortland 4

 GoldenDel comes before RedDel
 RedDel equals RedDel

 RedDel equals RedDel
 RedDel == RedDel

Another Enumeration Example
Before moving on, we will look at a different example that uses an enum. In Chapter 9, an
automated “decision maker” program was created. In that version, variables called NO,
YES, MAYBE, LATER, SOON, and NEVER were declared within an interface and used to
represent the possible answers. While there is nothing technically wrong with that approach,
the enumeration is a better choice. Here is an improved version of that program that uses
an enum called Answers to define the answers. You should compare this version to the
original in Chapter 9.

// An improved version of the "Decision Maker"
// program from Chapter 9. This version uses an
// enum, rather than interface variables, to
// represent the answers.

import java.util.Random;

// An enumeration of the possible answers.
enum Answers {
 NO, YES, MAYBE, LATER, SOON, NEVER
}

class Question {
 Random rand = new Random();
 Answers ask() {
 int prob = (int) (100 * rand.nextDouble());

 if (prob < 15)
 return Answers.MAYBE; // 15%
 else if (prob < 30)
 return Answers.NO; // 15%
 else if (prob < 60)
 return Answers.YES; // 30%
 else if (prob < 75)
 return Answers.LATER; // 15%
 else if (prob < 98)
 return Answers.SOON; // 13%
 else
 return Answers.NEVER; // 2%
 }
}

12-ch12.indd 271 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

272 PART I The Java Language

class AskMe {
 static void answer(Answers result) {
 switch(result) {
 case NO:
 System.out.println("No");
 break;
 case YES:
 System.out.println("Yes");
 break;
 case MAYBE:
 System.out.println("Maybe");
 break;
 case LATER:
 System.out.println("Later");
 break;
 case SOON:
 System.out.println("Soon");
 break;
 case NEVER:
 System.out.println("Never");
 break;
 }
 }

 public static void main(String args[]) {
 Question q = new Question();
 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 answer(q.ask());
 }
}

Type Wrappers
As you know, Java uses primitive types (also called simple types), such as int or double, to
hold the basic data types supported by the language. Primitive types, rather than objects,
are used for these quantities for the sake of performance. Using objects for these values
would add an unacceptable overhead to even the simplest of calculations. Thus, the
primitive types are not part of the object hierarchy, and they do not inherit Object.

Despite the performance benefit offered by the primitive types, there are times when
you will need an object representation. For example, you can’t pass a primitive type by
reference to a method. Also, many of the standard data structures implemented by Java
operate on objects, which means that you can’t use these data structures to store primitive
types. To handle these (and other) situations, Java provides type wrappers, which are classes
that encapsulate a primitive type within an object. The type wrapper classes are described
in detail in Part II, but they are introduced here because they relate directly to Java’s
autoboxing feature.

The type wrappers are Double, Float, Long, Integer, Short, Byte, Character, and
Boolean. These classes offer a wide array of methods that allow you to fully integrate the
primitive types into Java’s object hierarchy. Each is briefly examined next.

12-ch12.indd 272 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 273

Pa
rt

 I

Character
Character is a wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.
To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the encapsulated character.

Boolean
Boolean is a wrapper around boolean values. It defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

In the first version, boolValue must be either true or false. In the second version, if boolString
contains the string "true" (in uppercase or lowercase), then the new Boolean object will be
true. Otherwise, it will be false.

To obtain a boolean value from a Boolean object, use booleanValue(), shown here:

boolean booleanValue()

It returns the boolean equivalent of the invoking object.

The Numeric Type Wrappers
By far, the most commonly used type wrappers are those that represent numeric values.
These are Byte, Short, Integer, Long, Float, and Double. All of the numeric type wrappers
inherit the abstract class Number. Number declares methods that return the value of an
object in each of the different number formats. These methods are shown here:

byte byteValue()
double doubleValue()
float floatValue()
int intValue()
long longValue()
short shortValue()

For example, doubleValue() returns the value of an object as a double, floatValue()
returns the value as a float, and so on. These methods are implemented by each of the
numeric type wrappers.

All of the numeric type wrappers define constructors that allow an object to be
constructed from a given value, or a string representation of that value. For example, here
are the constructors defined for Integer:

Integer(int num)
Integer(String str)

If str does not contain a valid numeric value, then a NumberFormatException is thrown.
All of the type wrappers override toString(). It returns the human-readable form of the

value contained within the wrapper. This allows you to output the value by passing a type
wrapper object to println(), for example, without having to convert it into its primitive type.

12-ch12.indd 273 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

274 PART I The Java Language

The following program demonstrates how to use a numeric type wrapper to encapsulate
a value and then extract that value.

// Demonstrate a type wrapper.
class Wrap {
 public static void main(String args[]) {

 Integer iOb = new Integer(100);

 int i = iOb.intValue();

 System.out.println(i + " " + iOb); // displays 100 100
 }
}

This program wraps the integer value 100 inside an Integer object called iOb. The
program then obtains this value by calling intValue() and stores the result in i.

The process of encapsulating a value within an object is called boxing. Thus, in the
program, this line boxes the value 100 into an Integer:

Integer iOb = new Integer(100);

The process of extracting a value from a type wrapper is called unboxing. For example, the
program unboxes the value in iOb with this statement:

int i = iOb.intValue();

The same general procedure used by the preceding program to box and unbox values has
been employed since the original version of Java. However, since JDK 5, Java fundamentally
improved on this through the addition of autoboxing, described next.

Autoboxing
Beginning with JDK 5, Java added two important features: autoboxing and auto-unboxing.
Autoboxing is the process by which a primitive type is automatically encapsulated (boxed)
into its equivalent type wrapper whenever an object of that type is needed. There is no need
to explicitly construct an object. Auto-unboxing is the process by which the value of a
boxed object is automatically extracted (unboxed) from a type wrapper when its value
is needed. There is no need to call a method such as intValue() or doubleValue().

The addition of autoboxing and auto-unboxing greatly streamlines the coding of
several algorithms, removing the tedium of manually boxing and unboxing values. It also
helps prevent errors. Moreover, it is very important to generics, which operate only on
objects. Finally, autoboxing makes working with the Collections Framework (described in
Part II) much easier.

With autoboxing, it is no longer necessary to manually construct an object in order to
wrap a primitive type. You need only assign that value to a type-wrapper reference. Java
automatically constructs the object for you. For example, here is the modern way to
construct an Integer object that has the value 100:

Integer iOb = 100; // autobox an int

12-ch12.indd 274 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 275

Pa
rt

 I

Notice that the object is not explicitly created through the use of new. Java handles this for
you, automatically.

To unbox an object, simply assign that object reference to a primitive-type variable. For
example, to unbox iOb, you can use this line:

int i = iOb; // auto-unbox

Java handles the details for you.
Here is the preceding program rewritten to use autoboxing/unboxing:

// Demonstrate autoboxing/unboxing.
class AutoBox {
 public static void main(String args[]) {

 Integer iOb = 100; // autobox an int

 int i = iOb; // auto-unbox

 System.out.println(i + " " + iOb); // displays 100 100
 }
}

Autoboxing and Methods
In addition to the simple case of assignments, autoboxing automatically occurs whenever a
primitive type must be converted into an object; auto-unboxing takes place whenever an
object must be converted into a primitive type. Thus, autoboxing/unboxing might occur
when an argument is passed to a method, or when a value is returned by a method. For
example, consider this:

// Autoboxing/unboxing takes place with
// method parameters and return values.

class AutoBox2 {
 // Take an Integer parameter and return
 // an int value;
 static int m(Integer v) {
 return v ; // auto-unbox to int
 }

 public static void main(String args[]) {
 // Pass an int to m() and assign the return value
 // to an Integer. Here, the argument 100 is autoboxed
 // into an Integer. The return value is also autoboxed
 // into an Integer.
 Integer iOb = m(100);

 System.out.println(iOb);
 }
}

This program displays the following result:

100

12-ch12.indd 275 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

276 PART I The Java Language

In the program, notice that m() specifies an Integer parameter and returns an int
result. Inside main(), m() is passed the value 100. Because m() is expecting an Integer,
this value is automatically boxed. Then, m() returns the int equivalent of its argument. This
causes v to be auto-unboxed. Next, this int value is assigned to iOb in main(), which causes
the int return value to be autoboxed.

Autoboxing/Unboxing Occurs in Expressions
In general, autoboxing and unboxing take place whenever a conversion into an object or
from an object is required. This applies to expressions. Within an expression, a numeric
object is automatically unboxed. The outcome of the expression is reboxed, if necessary.
For example, consider the following program:

// Autoboxing/unboxing occurs inside expressions.

class AutoBox3 {
 public static void main(String args[]) {

 Integer iOb, iOb2;
 int i;

 iOb = 100;
 System.out.println("Original value of iOb: " + iOb);

 // The following automatically unboxes iOb,
 // performs the increment, and then reboxes
 // the result back into iOb.
 ++iOb;
 System.out.println("After ++iOb: " + iOb);

 // Here, iOb is unboxed, the expression is
 // evaluated, and the result is reboxed and
 // assigned to iOb2.
 iOb2 = iOb + (iOb / 3);
 System.out.println("iOb2 after expression: " + iOb2);

 // The same expression is evaluated, but the
 // result is not reboxed.
 i = iOb + (iOb / 3);
 System.out.println("i after expression: " + i);

 }
}

The output is shown here:

 Original value of iOb: 100
 After ++iOb: 101
 iOb2 after expression: 134
 i after expression: 134

12-ch12.indd 276 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 277

Pa
rt

 I

In the program, pay special attention to this line:

++iOb;

This causes the value in iOb to be incremented. It works like this: iOb is unboxed, the value
is incremented, and the result is reboxed.

Auto-unboxing also allows you to mix different types of numeric objects in an
expression. Once the values are unboxed, the standard type promotions and conversions
are applied. For example, the following program is perfectly valid:

class AutoBox4 {
 public static void main(String args[]) {

 Integer iOb = 100;
 Double dOb = 98.6;

 dOb = dOb + iOb;
 System.out.println("dOb after expression: " + dOb);
 }
}

The output is shown here:

 dOb after expression: 198.6

As you can see, both the Double object dOb and the Integer object iOb participated in the
addition, and the result was reboxed and stored in dOb.

Because of auto-unboxing, you can use Integer numeric objects to control a switch
statement. For example, consider this fragment:

Integer iOb = 2;

switch(iOb) {
 case 1: System.out.println("one");
 break;
 case 2: System.out.println("two");
 break;
 default: System.out.println("error");
}

When the switch expression is evaluated, iOb is unboxed and its int value is obtained.
As the examples in the program show, because of autoboxing/unboxing, using numeric

objects in an expression is both intuitive and easy. In the past, such code would have
involved casts and calls to methods such as intValue().

12-ch12.indd 277 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

278 PART I The Java Language

Autoboxing/Unboxing Boolean and Character Values
As described earlier, Java also supplies wrappers for boolean and char. These are Boolean
and Character. Autoboxing/unboxing applies to these wrappers, too. For example, consider
the following program:

// Autoboxing/unboxing a Boolean and Character.

class AutoBox5 {
 public static void main(String args[]) {

 // Autobox/unbox a boolean.
 Boolean b = true;

 // Below, b is auto-unboxed when used in
 // a conditional expression, such as an if.
 if(b) System.out.println("b is true");

 // Autobox/unbox a char.
 Character ch = 'x'; // box a char
 char ch2 = ch; // unbox a char

 System.out.println("ch2 is " + ch2);
 }
}

The output is shown here:

 b is true
 ch2 is x

The most important thing to notice about this program is the auto-unboxing of b inside
the if conditional expression. As you should recall, the conditional expression that controls
an if must evaluate to type boolean. Because of auto-unboxing, the boolean value contained
within b is automatically unboxed when the conditional expression is evaluated. Thus, with
the advent of autoboxing/unboxing, a Boolean object can be used to control an if statement.

Because of auto-unboxing, a Boolean object can now also be used to control any of
Java’s loop statements. When a Boolean is used as the conditional expression of a while, for,
or do/while, it is automatically unboxed into its boolean equivalent. For example, this is
now perfectly valid code:

Boolean b;
// ...
while(b) { // ...

Autoboxing/Unboxing Helps Prevent Errors
In addition to the convenience that it offers, autoboxing/unboxing can also help prevent
errors. For example, consider the following program:

// An error produced by manual unboxing.
class UnboxingError {
 public static void main(String args[]) {

12-ch12.indd 278 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 279

Pa
rt

 I

 Integer iOb = 1000; // autobox the value 1000

 int i = iOb.byteValue(); // manually unbox as byte !!!

 System.out.println(i); // does not display 1000 !
 }
}

This program displays not the expected value of 1000, but –24! The reason is that the value
inside iOb is manually unboxed by calling byteValue(), which causes the truncation of the
value stored in iOb, which is 1,000. This results in the garbage value of –24 being assigned
to i. Auto-unboxing prevents this type of error because the value in iOb will always auto-
unbox into a value compatible with int.

In general, because autoboxing always creates the proper object, and auto-unboxing
always produces the proper value, there is no way for the process to produce the wrong type
of object or value. In the rare instances where you want a type different than that produced
by the automated process, you can still manually box and unbox values. Of course, the
benefits of autoboxing/unboxing are lost. In general, new code should employ
autoboxing/unboxing. It is the way that modern Java code is written.

A Word of Warning
Because of autoboxing and auto-unboxing, some might be tempted to use objects such
as Integer or Double exclusively, abandoning primitives altogether. For example, with
autoboxing/unboxing it is possible to write code like this:

// A bad use of autoboxing/unboxing!
Double a, b, c;

a = 10.0;
b = 4.0;

c = Math.sqrt(a*a + b*b);

System.out.println("Hypotenuse is " + c);

In this example, objects of type Double hold values that are used to calculate the hypotenuse
of a right triangle. Although this code is technically correct and does, in fact, work properly,
it is a very bad use of autoboxing/unboxing. It is far less efficient than the equivalent code
written using the primitive type double. The reason is that each autobox and auto-unbox
adds overhead that is not present if the primitive type is used.

In general, you should restrict your use of the type wrappers to only those cases in
which an object representation of a primitive type is required. Autoboxing/unboxing was
not added to Java as a “back door” way of eliminating the primitive types.

Annotations (Metadata)
Since JDK 5, Java has supported a feature that enables you to embed supplemental
information into a source file. This information, called an annotation, does not change the
actions of a program. Thus, an annotation leaves the semantics of a program unchanged.

12-ch12.indd 279 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

280 PART I The Java Language

However, this information can be used by various tools during both development and
deployment. For example, an annotation might be processed by a source-code generator.
The term metadata is also used to refer to this feature, but the term annotation is the most
descriptive and more commonly used.

Annotation Basics
An annotation is created through a mechanism based on the interface. Let’s begin with an
example. Here is the declaration for an annotation called MyAnno:

// A simple annotation type.
@interface MyAnno {
 String str();
 int val();
}

First, notice the @ that precedes the keyword interface. This tells the compiler that an
annotation type is being declared. Next, notice the two members str() and val(). All
annotations consist solely of method declarations. However, you don’t provide bodies for
these methods. Instead, Java implements these methods. Moreover, the methods act much
like fields, as you will see.

An annotation cannot include an extends clause. However, all annotation types
automatically extend the Annotation interface. Thus, Annotation is a super-interface of all
annotations. It is declared within the java.lang.annotation package. It overrides hashCode(),
equals(), and toString(), which are defined by Object. It also specifies annotationType(),
which returns a Class object that represents the invoking annotation.

Once you have declared an annotation, you can use it to annotate something. Prior to
JDK 8, annotations could be used only on declarations, and that is where we will begin.
(JDK 8 adds the ability to annotate type use, and this is described later in this chapter.
However, the same basic techniques apply to both kinds of annotations.) Any type of
declaration can have an annotation associated with it. For example, classes, methods, fields,
parameters, and enum constants can be annotated. Even an annotation can be annotated.
In all cases, the annotation precedes the rest of the declaration.

When you apply an annotation, you give values to its members. For example, here is an
example of MyAnno being applied to a method declaration:

// Annotate a method.
@MyAnno(str = "Annotation Example", val = 100)
public static void myMeth() { // ...

This annotation is linked with the method myMeth(). Look closely at the annotation
syntax. The name of the annotation, preceded by an @, is followed by a parenthesized list
of member initializations. To give a member a value, that member’s name is assigned a
value. Therefore, in the example, the string "Annotation Example" is assigned to the str
member of MyAnno. Notice that no parentheses follow str in this assignment. When an
annotation member is given a value, only its name is used. Thus, annotation members look
like fields in this context.

12-ch12.indd 280 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 281

Pa
rt

 I

Specifying a Retention Policy
Before exploring annotations further, it is necessary to discuss annotation retention policies.
A retention policy determines at what point an annotation is discarded. Java defines three
such policies, which are encapsulated within the java.lang.annotation.RetentionPolicy
enumeration. They are SOURCE, CLASS, and RUNTIME.

An annotation with a retention policy of SOURCE is retained only in the source file
and is discarded during compilation.

An annotation with a retention policy of CLASS is stored in the .class file during
compilation. However, it is not available through the JVM during run time.

An annotation with a retention policy of RUNTIME is stored in the .class file during
compilation and is available through the JVM during run time. Thus, RUNTIME retention
offers the greatest annotation persistence.

NOTE An annotation on a local variable declaration is not retained in the .class file.

A retention policy is specified for an annotation by using one of Java’s built-in
annotations: @Retention. Its general form is shown here:

@Retention(retention-policy)

Here, retention-policy must be one of the previously discussed enumeration constants. If no
retention policy is specified for an annotation, then the default policy of CLASS is used.

The following version of MyAnno uses @Retention to specify the RUNTIME retention
policy. Thus, MyAnno will be available to the JVM during program execution.

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

Obtaining Annotations at Run Time by Use of Reflection
Although annotations are designed mostly for use by other development or deployment
tools, if they specify a retention policy of RUNTIME, then they can be queried at run time
by any Java program through the use of reflection. Reflection is the feature that enables
information about a class to be obtained at run time. The reflection API is contained in
the java.lang.reflect package. There are a number of ways to use reflection, and we won’t
examine them all here. We will, however, walk through a few examples that apply to
annotations.

The first step to using reflection is to obtain a Class object that represents the class
whose annotations you want to obtain. Class is one of Java’s built-in classes and is defined in
java.lang. It is described in detail in Part II. There are various ways to obtain a Class object.
One of the easiest is to call getClass(), which is a method defined by Object. Its general
form is shown here:

final Class<?> getClass()

It returns the Class object that represents the invoking object.

12-ch12.indd 281 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

282 PART I The Java Language

NOTE Notice the <?> that follows Class in the declaration of getClass() just shown. This is related to
Java’s generics feature. getClass() and several other reflection-related methods discussed in this
chapter make use of generics. Generics are described in Chapter 14. However, an understanding of
generics is not needed to grasp the fundamental principles of reflection.

After you have obtained a Class object, you can use its methods to obtain information
about the various items declared by the class, including its annotations. If you want to
obtain the annotations associated with a specific item declared within a class, you must first
obtain an object that represents that item. For example, Class supplies (among others) the
getMethod(), getField(), and getConstructor() methods, which obtain information about
a method, field, and constructor, respectively. These methods return objects of type
Method, Field, and Constructor.

To understand the process, let’s work through an example that obtains the annotations
associated with a method. To do this, you first obtain a Class object that represents the
class, and then call getMethod() on that Class object, specifying the name of the method.
getMethod() has this general form:

Method getMethod(String methName, Class<?> ... paramTypes)

The name of the method is passed in methName. If the method has arguments, then Class
objects representing those types must also be specified by paramTypes. Notice that
paramTypes is a varargs parameter. This means that you can specify as many parameter
types as needed, including zero. getMethod() returns a Method object that represents the
method. If the method can’t be found, NoSuchMethodException is thrown.

From a Class, Method, Field, or Constructor object, you can obtain a specific annotation
associated with that object by calling getAnnotation(). Its general form is shown here:

<A extends Annotation> getAnnotation(Class<A> annoType)

Here, annoType is a Class object that represents the annotation in which you are interested.
The method returns a reference to the annotation. Using this reference, you can obtain the
values associated with the annotation’s members. The method returns null if the annotation
is not found, which will be the case if the annotation does not have RUNTIME retention.

Here is a program that assembles all of the pieces shown earlier and uses reflection to
display the annotation associated with a method:

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

class Meta {

 // Annotate a method.
 @MyAnno(str = "Annotation Example", val = 100)

12-ch12.indd 282 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 283

Pa
rt

 I

 public static void myMeth() {
 Meta ob = new Meta();

 // Obtain the annotation for this method
 // and display the values of the members.
 try {
 // First, get a Class object that represents
 // this class.
 Class<?> c = ob.getClass();

 // Now, get a Method object that represents
 // this method.
 Method m = c.getMethod("myMeth");

 // Next, get the annotation for this class.
 MyAnno anno = m.getAnnotation(MyAnno.class);

 // Finally, display the values.
 System.out.println(anno.str() + " " + anno.val());
 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth();
 }
}

The output from the program is shown here:

 Annotation Example 100

This program uses reflection as described to obtain and display the values of str and val
in the MyAnno annotation associated with myMeth() in the Meta class. There are two things
to pay special attention to. First, in this line

MyAnno anno = m.getAnnotation(MyAnno.class);

notice the expression MyAnno.class. This expression evaluates to a Class object of type
MyAnno, the annotation. This construct is called a class literal. You can use this type of
expression whenever a Class object of a known class is needed. For example, this statement
could have been used to obtain the Class object for Meta:

Class<?> c = Meta.class;

Of course, this approach only works when you know the class name of an object in advance,
which might not always be the case. In general, you can obtain a class literal for classes,
interfaces, primitive types, and arrays. (Remember, the <?> syntax relates to Java’s generics
feature. It is described in Chapter 14.)

12-ch12.indd 283 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

284 PART I The Java Language

The second point of interest is the way the values associated with str and val are
obtained when they are output by the following line:

System.out.println(anno.str() + " " + anno.val());

Notice that they are invoked using the method-call syntax. This same approach is used
whenever the value of an annotation member is required.

A Second Reflection Example
In the preceding example, myMeth() has no parameters. Thus, when getMethod() was
called, only the name myMeth was passed. However, to obtain a method that has parameters,
you must specify class objects representing the types of those parameters as arguments to
getMethod(). For example, here is a slightly different version of the preceding program:

import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

class Meta {

 // myMeth now has two arguments.
 @MyAnno(str = "Two Parameters", val = 19)
 public static void myMeth(String str, int i)
 {
 Meta ob = new Meta();

 try {
 Class<?> c = ob.getClass();

 // Here, the parameter types are specified.
 Method m = c.getMethod("myMeth", String.class, int.class);

 MyAnno anno = m.getAnnotation(MyAnno.class);

 System.out.println(anno.str() + " " + anno.val());
 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth("test", 10);
 }
}

The output from this version is shown here:

 Two Parameters 19

12-ch12.indd 284 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 285

Pa
rt

 I

In this version, myMeth() takes a String and an int parameter. To obtain information
about this method, getMethod() must be called as shown here:

Method m = c.getMethod("myMeth", String.class, int.class);

Here, the Class objects representing String and int are passed as additional arguments.

Obtaining All Annotations
You can obtain all annotations that have RUNTIME retention that are associated with an
item by calling getAnnotations() on that item. It has this general form:

Annotation[] getAnnotations()

It returns an array of the annotations. getAnnotations() can be called on objects of type
Class, Method, Constructor, and Field, among others.

Here is another reflection example that shows how to obtain all annotations associated
with a class and with a method. It declares two annotations. It then uses those annotations
to annotate a class and a method.

// Show all annotations for a class and a method.
import java.lang.annotation.*;
import java.lang.reflect.*;

@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str();
 int val();
}

@Retention(RetentionPolicy.RUNTIME)
@interface What {
 String description();
}

@What(description = "An annotation test class")
@MyAnno(str = "Meta2", val = 99)
class Meta2 {

 @What(description = "An annotation test method")
 @MyAnno(str = "Testing", val = 100)
 public static void myMeth() {
 Meta2 ob = new Meta2();

 try {
 Annotation annos[] = ob.getClass().getAnnotations();

 // Display all annotations for Meta2.
 System.out.println("All annotations for Meta2:");
 for(Annotation a : annos)
 System.out.println(a);

 System.out.println();

 // Display all annotations for myMeth.

12-ch12.indd 285 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

286 PART I The Java Language

 Method m = ob.getClass().getMethod("myMeth");
 annos = m.getAnnotations();

 System.out.println("All annotations for myMeth:");
 for(Annotation a : annos)
 System.out.println(a);

 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth();
 }
}

The output is shown here:

 All annotations for Meta2:
 @What(description=An annotation test class)
 @MyAnno(str=Meta2, val=99)

 All annotations for myMeth:
 @What(description=An annotation test method)
 @MyAnno(str=Testing, val=100)

The program uses getAnnotations() to obtain an array of all annotations associated
with the Meta2 class and with the myMeth() method. As explained, getAnnotations()
returns an array of Annotation objects. Recall that Annotation is a super-interface of all
annotation interfaces and that it overrides toString() in Object. Thus, when a reference to
an Annotation is output, its toString() method is called to generate a string that describes
the annotation, as the preceding output shows.

The AnnotatedElement Interface
The methods getAnnotation() and getAnnotations() used by the preceding examples are
defined by the AnnotatedElement interface, which is defined in java.lang.reflect. This
interface supports reflection for annotations and is implemented by the classes Method,
Field, Constructor, Class, and Package, among others.

In addition to getAnnotation() and getAnnotations(), AnnotatedElement defines several
other methods. Two have been available since JDK 5. The first is getDeclaredAnnotations(),
which has this general form:

Annotation[] getDeclaredAnnotations()

It returns all non-inherited annotations present in the invoking object. The second is
isAnnotationPresent(), which has this general form:

boolean isAnnotationPresent(Class<? extends Annotation> annoType)

It returns true if the annotation specified by annoType is associated with the invoking object.
It returns false otherwise. To these, JDK 8 adds getDeclaredAnnotation(),

12-ch12.indd 286 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 287

Pa
rt

 I

getAnnotationsByType(), and getDeclaredAnnotationsByType(). Of these, the last two
automatically work with a repeated annotation.(Repeated annotations are discussed at the
end of this chapter.)

Using Default Values
You can give annotation members default values that will be used if no value is specified
when the annotation is applied. A default value is specified by adding a default clause to
a member’s declaration. It has this general form:

type member() default value ;

Here, value must be of a type compatible with type.
Here is @MyAnno rewritten to include default values:

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str() default "Testing";
 int val() default 9000;
}

This declaration gives a default value of "Testing" to str and 9000 to val. This means that
neither value needs to be specified when @MyAnno is used. However, either or both can be
given values if desired. Therefore, following are the four ways that @MyAnno can be used:

@MyAnno() // both str and val default
@MyAnno(str = "some string") // val defaults
@MyAnno(val = 100) // str defaults
@MyAnno(str = "Testing", val = 100) // no defaults

The following program demonstrates the use of default values in an annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// An annotation type declaration that includes defaults.
@Retention(RetentionPolicy.RUNTIME)
@interface MyAnno {
 String str() default "Testing";
 int val() default 9000;
}

class Meta3 {

 // Annotate a method using the default values.
 @MyAnno()
 public static void myMeth() {
 Meta3 ob = new Meta3();

 // Obtain the annotation for this method
 // and display the values of the members.
 try {
 Class<?> c = ob.getClass();

12-ch12.indd 287 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

288 PART I The Java Language

 Method m = c.getMethod("myMeth");

 MyAnno anno = m.getAnnotation(MyAnno.class);

 System.out.println(anno.str() + " " + anno.val());
 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth();
 }
}

The output is shown here:

 Testing 9000

Marker Annotations
A marker annotation is a special kind of annotation that contains no members. Its sole
purpose is to mark an item. Thus, its presence as an annotation is sufficient. The best way to
determine if a marker annotation is present is to use the method isAnnotationPresent(), which
is defined by the AnnotatedElement interface.

Here is an example that uses a marker annotation. Because a marker interface contains
no members, simply determining whether it is present or absent is sufficient.

import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MyMarker { }

class Marker {

 // Annotate a method using a marker.
 // Notice that no () is needed.
 @MyMarker
 public static void myMeth() {
 Marker ob = new Marker();

 try {
 Method m = ob.getClass().getMethod("myMeth");

 // Determine if the annotation is present.
 if(m.isAnnotationPresent(MyMarker.class))
 System.out.println("MyMarker is present.");

 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

12-ch12.indd 288 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 289

Pa
rt

 I

 public static void main(String args[]) {
 myMeth();
 }
}

The output, shown here, confirms that @MyMarker is present:

 MyMarker is present.

In the program, notice that you do not need to follow @MyMarker with parentheses
when it is applied. Thus, @MyMarker is applied simply by using its name, like this:

@MyMarker

It is not wrong to supply an empty set of parentheses, but they are not needed.

Single-Member Annotations
A single-member annotation contains only one member. It works like a normal annotation
except that it allows a shorthand form of specifying the value of the member. When only
one member is present, you can simply specify the value for that member when the
annotation is applied—you don’t need to specify the name of the member. However,
in order to use this shorthand, the name of the member must be value.

Here is an example that creates and uses a single-member annotation:

import java.lang.annotation.*;
import java.lang.reflect.*;

// A single-member annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MySingle {
 int value(); // this variable name must be value
}

class Single {

 // Annotate a method using a single-member annotation.
 @MySingle(100)
 public static void myMeth() {
 Single ob = new Single();

 try {
 Method m = ob.getClass().getMethod("myMeth");

 MySingle anno = m.getAnnotation(MySingle.class);

 System.out.println(anno.value()); // displays 100

 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

12-ch12.indd 289 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

290 PART I The Java Language

 public static void main(String args[]) {
 myMeth();
 }
}

As expected, this program displays the value 100. In the program, @MySingle is used to
annotate myMeth(), as shown here:

@MySingle(100)

Notice that value = need not be specified.
You can use the single-value syntax when applying an annotation that has other

members, but those other members must all have default values. For example, here the
value xyz is added, with a default value of zero:

@interface SomeAnno {
 int value();
 int xyz() default 0;
}

In cases in which you want to use the default for xyz, you can apply @SomeAnno, as shown
next, by simply specifying the value of value by using the single-member syntax.

@SomeAnno(88)

In this case, xyz defaults to zero, and value gets the value 88. Of course, to specify a
different value for xyz requires that both members be explicitly named, as shown here:

@SomeAnno(value = 88, xyz = 99)

Remember, whenever you are using a single-member annotation, the name of that
member must be value.

The Built-In Annotations
Java defines many built-in annotations. Most are specialized, but nine are general purpose.
Of these, four are imported from java.lang.annotation: @Retention, @Documented,
@Target, and @Inherited. Five—@Override, @Deprecated, @FunctionalInterface,
@SafeVarargs, and @SuppressWarnings—are included in java.lang. Each is described here.

NOTE To java.lang.annotation, JDK 8 adds the annotations Repeatable and Native. Repeatable
supports repeatable annotations, as described later in this chapter. Native annotates a field that can
be accessed by native code.

@Retention
@Retention is designed to be used only as an annotation to another annotation. It specifies
the retention policy as described earlier in this chapter.

12-ch12.indd 290 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 291

Pa
rt

 I

@Documented
The @Documented annotation is a marker interface that tells a tool that an annotation is
to be documented. It is designed to be used only as an annotation to an annotation
declaration.

@Target
The @Target annotation specifies the types of items to which an annotation can be applied.
It is designed to be used only as an annotation to another annotation. @Target takes one
argument, which is an array of constants of the ElementType enumeration. This argument
specifies the types of declarations to which the annotation can be applied. The constants
are shown here along with the type of declaration to which they correspond:

Target Constant Annotation Can Be Applied To
ANNOTATION_TYPE Another annotation

CONSTRUCTOR Constructor

FIELD Field

LOCAL_VARIABLE Local variable

METHOD Method

PACKAGE Package

PARAMETER Parameter

TYPE Class, interface, or enumeration

TYPE_PARAMETER Type parameter (Added by JDK 8.)

TYPE_USE Type use (Added by JDK 8.)

You can specify one or more of these values in a @Target annotation. To specify multiple
values, you must specify them within a braces-delimited list. For example, to specify that an
annotation applies only to fields and local variables, you can use this @Target annotation:

@Target({ ElementType.FIELD, ElementType.LOCAL_VARIABLE })

If you don't use @Target, then, except for type parameters, the annotation can be used on
any declaration. For this reason, it is often a good idea to explicitly specify the target or
targets so as to clearly indicate the intended uses of an annotation.

@Inherited
@Inherited is a marker annotation that can be used only on another annotation declaration.
Furthermore, it affects only annotations that will be used on class declarations. @Inherited
causes the annotation for a superclass to be inherited by a subclass. Therefore, when a
request for a specific annotation is made to the subclass, if that annotation is not present in
the subclass, then its superclass is checked. If that annotation is present in the superclass,
and if it is annotated with @Inherited, then that annotation will be returned.

12-ch12.indd 291 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

292 PART I The Java Language

@Override
@Override is a marker annotation that can be used only on methods. A method annotated
with @Override must override a method from a superclass. If it doesn’t, a compile-time
error will result. It is used to ensure that a superclass method is actually overridden, and not
simply overloaded.

@Deprecated
@Deprecated is a marker annotation. It indicates that a declaration is obsolete and has
been replaced by a newer form.

@FunctionalInterface
@FunctionalInterface is a marker annotation added by JDK 8 and designed for use on
interfaces. It indicates that the annotated interface is a functional interface. A functional
interface is an interface that contains one and only one abstract method. Functional interfaces
are used by lambda expressions. (See Chapter 15 for details on functional interfaces and
lambda expressions.) If the annotated interface is not a functional interface, a compilation
error will be reported. It is important to understand that @FunctionalInterface is not
needed to create a functional interface. Any interface with exactly one abstract method is,
by definition, a functional interface. Thus, @FunctionalInterface is purely informational.

@SafeVarargs
@SafeVarargs is a marker annotation that can be applied to methods and constructors. It
indicates that no unsafe actions related to a varargs parameter occur. It is used to suppress
unchecked warnings on otherwise safe code as it relates to non-reifiable vararg types and
parameterized array instantiation. (A non-reifiable type is, essentially, a generic type.
Generics are described in Chapter 14.) It must be applied only to vararg methods or
constructors that are static or final.

@SuppressWarnings
@SuppressWarnings specifies that one or more warnings that might be issued by the
compiler are to be suppressed. The warnings to suppress are specified by name, in
string form.

Type Annotations
Beginning with JDK 8, the places in which annotations can be used has been expanded. As
mentioned earlier, annotations were originally allowed only on declarations. However, with
the advent of JDK 8, annotations can also be specified in most cases in which a type is used.
This expanded aspect of annotations is called type annotation. For example, you can
annotate the return type of a method, the type of this within a method, a cast, array levels,
an inherited class, and a throws clause. You can also annotate generic types, including
generic type parameter bounds and generic type arguments. (See Chapter 14 for a
discussion of generics.)

12-ch12.indd 292 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 293

Pa
rt

 I

Type annotations are important because they enable tools to perform additional checks
on code to help prevent errors. Understand that, as a general rule, javac will not perform
these checks, itself. A separate tool is used for this purpose, although such a tool might
operate as a compiler plug-in.

A type annotation must include ElementType.TYPE_USE as a target. (Recall that valid
annotation targets are specified using the @Target annotation, as previously described.) A
type annotation applies to the type that the annotation precedes. For example, assuming
some type annotation called @TypeAnno, the following is legal:

void myMeth() throws @TypeAnno NullPointerException { // ...

Here, @TypeAnno annotates NullPointerException in the throws clause.
You can also annotate the type of this (called the receiver). As you know, this is an

implicit argument to all instance methods and it refers to the invoking object. To annotate
its type requires the use of another new JDK 8 feature. Beginning with JDK 8, you can
explicitly declare this as the first parameter to a method. In this declaration, the type of this
must be the type of its class; for example:

class SomeClass {
 int myMeth(SomeClass this, int i, int j) { // ...

Here, because myMeth() is a method defined by SomeClass, the type of this is SomeClass.
Using this declaration, you can now annotate the type of this. For example, again assuming
that @TypeAnno is a type annotation, the following is legal:

int myMeth(@TypeAnno SomeClass this, int i, int j) { // ...

It is important to understand that it is not necessary to declare this unless you are
annotating it. (If this is not declared, it is still implicitly passed. JDK 8 does not change this
fact.) Also, explicitly declaring this does not change any aspect of the method’s signature
because this is implicitly declared, by default. Again, you will declare this only if you want to
apply a type annotation to it. If you do declare this, it must be the first parameter.

The following program shows a number of the places that a type annotation can be
used. It defines several annotations, of which several are for type annotation. The names
and targets of the annotations are shown here:

Annotation Target
@TypeAnno ElementType.TYPE_USE

@MaxLen ElementType.TYPE_USE

@NotZeroLen ElementType.TYPE_USE

@Unique ElementType.TYPE_USE

@What ElementType.TYPE_PARAMETER

@EmptyOK ElementType.FIELD

@Recommended ElementType.METHOD

12-ch12.indd 293 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

294 PART I The Java Language

Notice that @EmptyOK, @Recommended, and @What are not type annotations. They are
included for comparison purposes. Of special interest is @What, which is used to annotate
a generic type parameter declaration and is another new annotation feature added by JDK 8.
The comments in the program describe each use.

// Demonstrate several type annotations.
import java.lang.annotation.*;
import java.lang.reflect.*;

// A marker annotation that can be applied to a type.
@Target(ElementType.TYPE_USE)
@interface TypeAnno { }

// Another marker annotation that can be applied to a type.
@Target(ElementType.TYPE_USE)
@interface NotZeroLen {
}

// Still another marker annotation that can be applied to a type.
@Target(ElementType.TYPE_USE)
@interface Unique { }

// A parameterized annotation that can be applied to a type.
@Target(ElementType.TYPE_USE)
@interface MaxLen {
 int value();
}

// An annotation that can be applied to a type parameter.
@Target(ElementType.TYPE_PARAMETER)
@interface What {
 String description();
}

// An annotation that can be applied to a field declaration.
@Target(ElementType.FIELD)
@interface EmptyOK { }

// An annotation that can be applied to a method declaration.
@Target(ElementType.METHOD)
@interface Recommended { }

// Use an annotation on a type parameter.
class TypeAnnoDemo<@What(description = "Generic data type") T> {

 // Use a type annotation on a constructor.
 public @Unique TypeAnnoDemo() {}

 // Annotate the type (in this case String), not the field.
 @TypeAnno String str;

12-ch12.indd 294 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 295

Pa
rt

 I

 // This annotates the field test.
 @EmptyOK String test;

 // Use a type annotation to annotate this (the receiver).
 public int f(@TypeAnno TypeAnnoDemo<T> this, int x) {
 return 10;
 }

 // Annotate the return type.
 public @TypeAnno Integer f2(int j, int k) {
 return j+k;
 }

 // Annotate the method declaration.
 public @Recommended Integer f3(String str) {
 return str.length() / 2;
 }

 // Use a type annotation with a throws clause.
 public void f4() throws @TypeAnno NullPointerException {
 // ...
 }

 // Annotate array levels.
 String @MaxLen(10) [] @NotZeroLen [] w;

 // Annotate the array element type.
 @TypeAnno Integer[] vec;

 public static void myMeth(int i) {

 // Use a type annotation on a type argument.
 TypeAnnoDemo<@TypeAnno Integer> ob =
 new TypeAnnoDemo<@TypeAnno Integer>();

 // Use a type annotation with new.
 @Unique TypeAnnoDemo<Integer> ob2 = new @Unique TypeAnnoDemo<Integer>();

 Object x = new Integer(10);
 Integer y;

 // Use a type annotation on a cast.
 y = (@TypeAnno Integer) x;
 }

 public static void main(String args[]) {
 myMeth(10);
 }

 // Use type annotation with inheritance clause.
 class SomeClass extends @TypeAnno TypeAnnoDemo<Boolean> {}
}

12-ch12.indd 295 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

296 PART I The Java Language

Although what most of the annotations in the preceding program refer to is clear, four
uses require a bit of discussion. The first is the annotation of a method return type versus
the annotation of a method declaration. In the program, pay special attention to these two
method declarations:

// Annotate the return type.
public @TypeAnno Integer f2(int j, int k) {
 return j+k;
}

// Annotate the method declaration.
public @Recommended Integer f3(String str) {
 return str.length() / 2;
}

Notice that in both cases, an annotation precedes the method’s return type (which is
Integer). However, the two annotations annotate two different things. In the first case, the
@TypeAnno annotation annotates f2()’s return type. This is because @TypeAnno has its
target specified as ElementType.TYPE_USE, which means that it can be used to annotate
type uses. In the second case, @Recommended annotates the method declaration, itself.
This is because @Recommended has its target specified as ElementType.METHOD. As a
result, @Recommended applies to the declaration, not the return type. Therefore, the
target specification is used to eliminate what, at first glance, appears to be ambiguity
between the annotation of a method declaration and the annotation of the method’s
return type.

One other thing about annotating a method return type: You cannot annotate a return
type of void.

The second point of interest are the field annotations, shown here:

// Annotate the type (in this case String), not the field.
@TypeAnno String str;

// This annotates the field test.
@EmptyOK String test;

Here, @TypeAnno annotates the type String, but @EmptyOK annotates the field test. Even
though both annotations precede the entire declaration, their targets are different, based
on the target element type. If the annotation has the ElementType.TYPE_USE target, then
the type is annotated. If it has ElementType_FIELD as a target, then the field is annotated.
Thus, the situation is similar to that just described for methods, and no ambiguity exists.
The same mechanism also disambiguates annotations on local variables.

Next, notice how this (the receiver) is annotated here:

public int f(@TypeAnno TypeAnnoDemo<T> this, int x) {

Here, this is specified as the first parameter and is of type TypeAnnoDemo (which is the
class of which f() is a member). As explained, beginning with JDK 8, an instance method
declaration can explicitly specify the this parameter for the sake of applying a type
annotation.

12-ch12.indd 296 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 297

Pa
rt

 I

Finally, look at how array levels are annotated by the following statement:

String @MaxLen(10) [] @NotZeroLen [] w;

In this declaration, @MaxLen annotates the type of the first level and @NotZeroLen
annotates the type of the second level. In this declaration

@TypeAnno Integer[] vec;

the element type Integer is annotated.

Repeating Annotations
Another new JDK 8 annotation feature enables an annotation to be repeated on the same
element. This is called repeating annotations. For an annotation to be repeatable, it must be
annotated with the @Repeatable annotation, defined in java.lang.annotation. Its value field
specifies the container type for the repeatable annotation. The container is specified as an
annotation for which the value field is an array of the repeatable annotation type. Thus, to
create a repeatable annotation, you must create a container annotation and then specify
that annotation type as an argument to the @Repeatable annotation.

To access the repeated annotations using a method such as getAnnotation(), you will
use the container annotation, not the repeatable annotation. The following program shows
this approach. It converts the version of MyAnno shown previously into a repeatable
annotation and demonstrates its use.

// Demonstrate a repeated annotation.

import java.lang.annotation.*;
import java.lang.reflect.*;

// Make MyAnno repeatable.
@Retention(RetentionPolicy.RUNTIME)
@Repeatable(MyRepeatedAnnos.class)
@interface MyAnno {
 String str() default "Testing";
 int val() default 9000;
}

// This is the container annotation.
@Retention(RetentionPolicy.RUNTIME)
@interface MyRepeatedAnnos {
 MyAnno[] value();
}

class RepeatAnno {

 // Repeat MyAnno on myMeth().
 @MyAnno(str = "First annotation", val = -1)
 @MyAnno(str = "Second annotation", val = 100)
 public static void myMeth(String str, int i)

12-ch12.indd 297 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

298 PART I The Java Language

 {
 RepeatAnno ob = new RepeatAnno();

 try {
 Class<?> c = ob.getClass();

 // Obtain the annotations for myMeth().
 Method m = c.getMethod("myMeth", String.class, int.class);

 // Display the repeated MyAnno annotations.
 Annotation anno = m.getAnnotation(MyRepeatedAnnos.class);
 System.out.println(anno);

 } catch (NoSuchMethodException exc) {
 System.out.println("Method Not Found.");
 }
 }

 public static void main(String args[]) {
 myMeth("test", 10);
 }
}

The output is shown here:

@MyRepeatedAnnos(value=[@MyAnno(str=First annotation, val=-1),
@MyAnno(str=Second annotation, val=100)])

As explained, in order for MyAnno to be repeatable, it must be annotated with the
@Repeatable annotation, which specifies its container annotation. The container annotation
is called MyRepeatedAnnos. The program accesses the repeated annotations by calling
getAnnotation(), passing in the class of the container annotation, not the repeatable
annotation, itself. As the output shows, the repeated annotations are separated by a comma.
They are not returned individually.

Another way to obtain the repeated annotations is to use one of the new methods
added to AnnotatedElement by JDK 8, which can operate directly on a repeated annotation.
These are getAnnotationsByType() and getDeclaredAnnotationsByType(). Here, we will
use the former. It is shown here:

<T extends Annotation> T[] getAnnotationsByType(Class<T> annoType)

It returns an array of the annotations of annoType associated with the invoking object. If no
annotations are present, the array will be of zero length. Here is an example. Assuming the
preceding program, the following sequence uses getAnnotationsByType() to obtain the
repeated MyAnno annotations:

Annotation[] annos = m.getAnnotationsByType(MyAnno.class);
for(Annotation a : annos)
 System.out.println(a);

12-ch12.indd 298 14/02/14 4:52 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 12 Enumerations, Autoboxing, and Annotations (Metadata) 299

Pa
rt

 I

Here, the repeated annotation type, which is MyAnno, is passed to getAnnotationsByType().
The returned array contains all of the instances of MyAnno associated with myMeth(),
which, in this example, is two. Each repeated annotation can be accessed via its index in the
array. In this case, each MyAnno annotation is displayed via a for-each loop.

Some Restrictions
There are a number of restrictions that apply to annotation declarations. First, no
annotation can inherit another. Second, all methods declared by an annotation must
be without parameters. Furthermore, they must return one of the following:

•	 A primitive type, such as int or double

•	 An object of type String or Class

•	 An enum type

•	 Another annotation type

•	 An array of one of the preceding types

Annotations cannot be generic. In other words, they cannot take type parameters.
(Generics are described in Chapter 14.) Finally, annotation methods cannot specify a
throws clause.

12-ch12.indd 299 14/02/14 4:52 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

13
CHAPTER

 301

I/O, Applets, and
Other Topics

This chapter introduces two of Java’s most important packages: io and applet. The io
package supports Java’s basic I/O (input/output) system, including file I/O. The applet
package supports applets. Support for both I/O and applets comes from Java’s core API
libraries, not from language keywords. For this reason, an in-depth discussion of these
topics is found in Part II of this book, which examines Java’s API classes. This chapter
discusses the foundation of these two subsystems so that you can see how they are integrated
into the Java language and how they fit into the larger context of the Java programming
and execution environment. This chapter also examines the try-with-resources statement
and the last of Java’s keywords: transient, volatile, instanceof, native, strictfp, and assert. It
concludes by discussing static import, describing another use for the this keyword, and
introducing compact profiles (a feature added by JDK 8).

I/O Basics
As you may have noticed while reading the preceding 12 chapters, not much use has been
made of I/O in the example programs. In fact, aside from print() and println(), none of
the I/O methods have been used significantly. The reason is simple: most real applications
of Java are not text-based, console programs. Rather, they are either graphically oriented
programs that rely on one of Java’s graphical user interface (GUI) frameworks, such as
Swing, the AWT, or JavaFX, for user interaction, or they are Web applications. Although
text-based, console programs are excellent as teaching examples, they do not constitute an
important use for Java in the real world. Also, Java’s support for console I/O is limited and
somewhat awkward to use—even in simple example programs. Text-based console I/O is
just not that useful in real-world Java programming.

The preceding paragraph notwithstanding, Java does provide strong, flexible support
for I/O as it relates to files and networks. Java’s I/O system is cohesive and consistent. In
fact, once you understand its fundamentals, the rest of the I/O system is easy to master. A
general overview of I/O is presented here. A detailed description is found in Chapters 20
and 21.

13-ch13.indd 301 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

302 PART I The Java Language

Streams
Java programs perform I/O through streams. A stream is an abstraction that either produces
or consumes information. A stream is linked to a physical device by the Java I/O system. All
streams behave in the same manner, even if the actual physical devices to which they are
linked differ. Thus, the same I/O classes and methods can be applied to different types of
devices. This means that an input stream can abstract many different kinds of input: from a
disk file, a keyboard, or a network socket. Likewise, an output stream may refer to the
console, a disk file, or a network connection. Streams are a clean way to deal with input/
output without having every part of your code understand the difference between a keyboard
and a network, for example. Java implements streams within class hierarchies defined in the
java.io package.

NOTE In addition to the stream-based I/O defined in java.io, Java also provides buffer- and channel-
based I/O, which is defined in java.nio and its subpackages. They are described in Chapter 21.

Byte Streams and Character Streams
Java defines two types of streams: byte and character. Byte streams provide a convenient
means for handling input and output of bytes. Byte streams are used, for example, when
reading or writing binary data. Character streams provide a convenient means for handling
input and output of characters. They use Unicode and, therefore, can be internationalized.
Also, in some cases, character streams are more efficient than byte streams.

The original version of Java (Java 1.0) did not include character streams and, thus, all
I/O was byte-oriented. Character streams were added by Java 1.1, and certain byte-oriented
classes and methods were deprecated. Although old code that doesn’t use character streams
is becoming increasingly rare, it may still be encountered from time to time. As a general
rule, old code should be updated to take advantage of character streams where appropriate.

One other point: at the lowest level, all I/O is still byte-oriented. The character-based
streams simply provide a convenient and efficient means for handling characters.

An overview of both byte-oriented streams and character-oriented streams is presented
in the following sections.

The Byte Stream Classes
Byte streams are defined by using two class hierarchies. At the top are two abstract classes:
InputStream and OutputStream. Each of these abstract classes has several concrete
subclasses that handle the differences among various devices, such as disk files, network
connections, and even memory buffers. The byte stream classes in java.io are shown in
Table 13-1. A few of these classes are discussed later in this section. Others are described in
Part II of this book. Remember, to use the stream classes, you must import java.io.

13-ch13.indd 302 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 303

Pa
rt

 I

The abstract classes InputStream and OutputStream define several key methods that
the other stream classes implement. Two of the most important are read() and write(),
which, respectively, read and write bytes of data. Each has a form that is abstract and must
be overridden by derived stream classes.

The Character Stream Classes
Character streams are defined by using two class hierarchies. At the top are two abstract
classes: Reader and Writer. These abstract classes handle Unicode character streams. Java
has several concrete subclasses of each of these. The character stream classes in java.io are
shown in Table 13-2.

Table 13-1 The Byte Stream Classes in java.io

Stream Class Meaning
BufferedInputStream Buffered input stream

BufferedOutputStream Buffered output stream

ByteArrayInputStream Input stream that reads from a byte array

ByteArrayOutputStream Output stream that writes to a byte array

DataInputStream An input stream that contains methods for reading the Java
standard data types

DataOutputStream An output stream that contains methods for writing the Java
standard data types

FileInputStream Input stream that reads from a file

FileOutputStream Output stream that writes to a file

FilterInputStream Implements InputStream

FilterOutputStream Implements OutputStream

InputStream Abstract class that describes stream input

ObjectInputStream Input stream for objects

ObjectOutputStream Output stream for objects

OutputStream Abstract class that describes stream output

PipedInputStream Input pipe

PipedOutputStream Output pipe

PrintStream Output stream that contains print() and println()

PushbackInputStream Input stream that supports one-byte “unget,” which returns a
byte to the input stream

SequenceInputStream Input stream that is a combination of two or more input
streams that will be read sequentially, one after the other

13-ch13.indd 303 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

304 PART I The Java Language

The abstract classes Reader and Writer define several key methods that the other stream
classes implement. Two of the most important methods are read() and write(), which read
and write characters of data, respectively. Each has a form that is abstract and must be
overridden by derived stream classes.

The Predefined Streams
As you know, all Java programs automatically import the java.lang package. This package
defines a class called System, which encapsulates several aspects of the run-time environment.
For example, using some of its methods, you can obtain the current time and the settings
of various properties associated with the system. System also contains three predefined
stream variables: in, out, and err. These fields are declared as public, static, and final within
System. This means that they can be used by any other part of your program and without
reference to a specific System object.

System.out refers to the standard output stream. By default, this is the console. System.in
refers to standard input, which is the keyboard by default. System.err refers to the standard
error stream, which also is the console by default. However, these streams may be redirected
to any compatible I/O device.

Table 13-2 The Character Stream I/O Classes in java.io

Stream Class Meaning
BufferedReader Buffered input character stream

BufferedWriter Buffered output character stream

CharArrayReader Input stream that reads from a character array

CharArrayWriter Output stream that writes to a character array

FileReader Input stream that reads from a file

FileWriter Output stream that writes to a file

FilterReader Filtered reader

FilterWriter Filtered writer

InputStreamReader Input stream that translates bytes to characters

LineNumberReader Input stream that counts lines

OutputStreamWriter Output stream that translates characters to bytes

PipedReader Input pipe

PipedWriter Output pipe

PrintWriter Output stream that contains print() and println()

PushbackReader Input stream that allows characters to be returned to the input
stream

Reader Abstract class that describes character stream input

StringReader Input stream that reads from a string

StringWriter Output stream that writes to a string

Writer Abstract class that describes character stream output

13-ch13.indd 304 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 305

Pa
rt

 I

System.in is an object of type InputStream; System.out and System.err are objects
of type PrintStream. These are byte streams, even though they are typically used to read
and write characters from and to the console. As you will see, you can wrap these within
character-based streams, if desired.

The preceding chapters have been using System.out in their examples. You can use
System.err in much the same way. As explained in the next section, use of System.in is a
little more complicated.

Reading Console Input
In Java 1.0, the only way to perform console input was to use a byte stream. Today, using a
byte stream to read console input is still acceptable. However, for commercial applications,
the preferred method of reading console input is to use a character-oriented stream. This
makes your program easier to internationalize and maintain.

In Java, console input is accomplished by reading from System.in. To obtain a character-
based stream that is attached to the console, wrap System.in in a BufferedReader object.
BufferedReader supports a buffered input stream. A commonly used constructor is shown
here:

BufferedReader(Reader inputReader)

Here, inputReader is the stream that is linked to the instance of BufferedReader that is being
created. Reader is an abstract class. One of its concrete subclasses is InputStreamReader,
which converts bytes to characters. To obtain an InputStreamReader object that is linked to
System.in, use the following constructor:

InputStreamReader(InputStream inputStream)

Because System.in refers to an object of type InputStream, it can be used for inputStream.
Putting it all together, the following line of code creates a BufferedReader that is connected
to the keyboard:

BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the console
through System.in.

Reading Characters
To read a character from a BufferedReader, use read(). The version of read() that we will
be using is

int read() throws IOException

Each time that read() is called, it reads a character from the input stream and returns it as
an integer value. It returns –1 when the end of the stream is encountered. As you can see, it
can throw an IOException.

The following program demonstrates read() by reading characters from the console
until the user types a "q." Notice that any I/O exceptions that might be generated are
simply thrown out of main(). Such an approach is common when reading from the console

13-ch13.indd 305 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

306 PART I The Java Language

in simple example programs such as those shown in this book, but in more sophisticated
applications, you can handle the exceptions explicitly.

// Use a BufferedReader to read characters from the console.
import java.io.*;

class BRRead {
 public static void main(String args[]) throws IOException
 {
 char c;
 BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in));
 System.out.println("Enter characters, 'q' to quit.");
 // read characters
 do {
 c = (char) br.read();
 System.out.println(c);
 } while(c != 'q');
 }
}

Here is a sample run:

 Enter characters, 'q' to quit.
 123abcq
 1
 2
 3
 a
 b
 c
 q

This output may look a little different from what you expected because System.in is line
buffered, by default. This means that no input is actually passed to the program until you
press enter. As you can guess, this does not make read() particularly valuable for interactive
console input.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of the
BufferedReader class. Its general form is shown here:

String readLine() throws IOException

As you can see, it returns a String object.
The following program demonstrates BufferedReader and the readLine() method; the

program reads and displays lines of text until you enter the word "stop":

// Read a string from console using a BufferedReader.
import java.io.*;

13-ch13.indd 306 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 307

Pa
rt

 I

class BRReadLines {
 public static void main(String args[]) throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));
 String str;
 System.out.println("Enter lines of text.");
 System.out.println("Enter 'stop' to quit.");
 do {
 str = br.readLine();
 System.out.println(str);
 } while(!str.equals("stop"));
 }
}

The next example creates a tiny text editor. It creates an array of String objects and
then reads in lines of text, storing each line in the array. It will read up to 100 lines or until
you enter "stop." It uses a BufferedReader to read from the console.

// A tiny editor.
import java.io.*;

class TinyEdit {
 public static void main(String args[]) throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new BufferedReader(new
 InputStreamReader(System.in));
 String str[] = new String[100];
 System.out.println("Enter lines of text.");
 System.out.println("Enter 'stop' to quit.");
 for(int i=0; i<100; i++) {
 str[i] = br.readLine();
 if(str[i].equals("stop")) break;
 }
 System.out.println("\nHere is your file:");
 // display the lines
 for(int i=0; i<100; i++) {
 if(str[i].equals("stop")) break;
 System.out.println(str[i]);
 }
 }
}

Here is a sample run:

 Enter lines of text.
 Enter 'stop' to quit.
 This is line one.
 This is line two.
 Java makes working with strings easy.
 Just create String objects.

13-ch13.indd 307 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

308 PART I The Java Language

 stop
 Here is your file:
 This is line one.
 This is line two.
 Java makes working with strings easy.
 Just create String objects.

Writing Console Output
Console output is most easily accomplished with print() and println(), described earlier,
which are used in most of the examples in this book. These methods are defined by the
class PrintStream (which is the type of object referenced by System.out). Even though
System.out is a byte stream, using it for simple program output is still acceptable. However,
a character-based alternative is described in the next section.

Because PrintStream is an output stream derived from OutputStream, it also implements
the low-level method write(). Thus, write() can be used to write to the console. The simplest
form of write() defined by PrintStream is shown here:

void write(int byteval)

This method writes the byte specified by byteval. Although byteval is declared as an integer,
only the low-order eight bits are written. Here is a short example that uses write() to output
the character "A" followed by a newline to the screen:

// Demonstrate System.out.write().
class WriteDemo {
 public static void main(String args[]) {
 int b;

 b = 'A';
 System.out.write(b);
 System.out.write('\n');
 }
}

You will not often use write() to perform console output (although doing so might be
useful in some situations) because print() and println() are substantially easier to use.

The PrintWriter Class
Although using System.out to write to the console is acceptable, its use is probably best for
debugging purposes or for sample programs, such as those found in this book. For real-
world programs, the recommended method of writing to the console when using Java is
through a PrintWriter stream. PrintWriter is one of the character-based classes. Using a
character-based class for console output makes internationalizing your program easier.

PrintWriter defines several constructors. The one we will use is shown here:

PrintWriter(OutputStream outputStream, boolean flushingOn)

Here, outputStream is an object of type OutputStream, and flushingOn controls whether Java
flushes the output stream every time a println() method (among others) is called. If
flushingOn is true, flushing automatically takes place. If false, flushing is not automatic.

13-ch13.indd 308 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 309

Pa
rt

 I

PrintWriter supports the print() and println() methods. Thus, you can use these methods
in the same way as you used them with System.out. If an argument is not a simple type, the
PrintWriter methods call the object’s toString() method and then display the result.

To write to the console by using a PrintWriter, specify System.out for the output stream
and automatic flushing. For example, this line of code creates a PrintWriter that is
connected to console output:

PrintWriter pw = new PrintWriter(System.out, true);

The following application illustrates using a PrintWriter to handle console output:

// Demonstrate PrintWriter
import java.io.*;

public class PrintWriterDemo {
 public static void main(String args[]) {
 PrintWriter pw = new PrintWriter(System.out, true);

 pw.println("This is a string");
 int i = -7;
 pw.println(i);
 double d = 4.5e-7;
 pw.println(d);
 }
}

The output from this program is shown here:

 This is a string
 -7
 4.5E-7

Remember, there is nothing wrong with using System.out to write simple text output
to the console when you are learning Java or debugging your programs. However, using
a PrintWriter makes your real-world applications easier to internationalize. Because no
advantage is gained by using a PrintWriter in the sample programs shown in this book,
we will continue to use System.out to write to the console.

Reading and Writing Files
Java provides a number of classes and methods that allow you to read and write files. Before
we begin, it is important to state that the topic of file I/O is quite large and file I/O is
examined in detail in Part II. The purpose of this section is to introduce the basic techniques
that read from and write to a file. Although bytes streams are used, these techniques can be
adapted to the character-based streams.

Two of the most often-used stream classes are FileInputStream and FileOutputStream,
which create byte streams linked to files. To open a file, you simply create an object of one
of these classes, specifying the name of the file as an argument to the constructor. Although
both classes support additional constructors, the following are the forms that we will be using:

FileInputStream(String fileName) throws FileNotFoundException
FileOutputStream(String fileName) throws FileNotFoundException

13-ch13.indd 309 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

310 PART I The Java Language

Here, fileName specifies the name of the file that you want to open. When you create an
input stream, if the file does not exist, then FileNotFoundException is thrown. For output
streams, if the file cannot be opened or created, then FileNotFoundException is thrown.
FileNotFoundException is a subclass of IOException. When an output file is opened, any
preexisting file by the same name is destroyed.

NOTE In situations in which a security manager is present, several of the file classes, including
FileInputStream and FileOutputStream, will throw a SecurityException if a security violation occurs
when attempting to open a file. By default, applications run via java do not use a security manager.
For that reason, the I/O examples in this book do not need to watch for a possible SecurityException.
However, other types of applications (such as applets) will use the security manager, and file I/O
performed by such an application could generate a SecurityException. In that case, you will need
to appropriately handle this exception.

When you are done with a file, you must close it. This is done by calling the close()
method, which is implemented by both FileInputStream and FileOutputStream. It is
shown here:

void close() throws IOException

Closing a file releases the system resources allocated to the file, allowing them to be used by
another file. Failure to close a file can result in “memory leaks” because of unused resources
remaining allocated.

NOTE Beginning with JDK 7, the close() method is specified by the AutoCloseable interface in
java.lang. AutoCloseable is inherited by the Closeable interface in java.io. Both interfaces are
implemented by the stream classes, including FileInputStream and FileOutputStream.

Before moving on, it is important to point out that there are two basic approaches
that you can use to close a file when you are done with it. The first is the traditional
approach, in which close() is called explicitly when the file is no longer needed. This is
the approach used by all versions of Java prior to JDK 7 and is, therefore, found in all
pre-JDK 7 legacy code. The second is to use the try-with-resources statement added by
JDK 7, which automatically closes a file when it is no longer needed. In this approach,
no explicit call to close() is executed. Since there is a large amount of pre-JDK 7 legacy
code that is still being used and maintained, it is important that you know and understand
the traditional approach. Therefore, we will begin with it. The new automated approach
is described in the following section.

To read from a file, you can use a version of read() that is defined within FileInputStream.
The one that we will use is shown here:

int read() throws IOException

Each time that it is called, it reads a single byte from the file and returns the byte as an
integer value. read() returns –1 when the end of the file is encountered. It can throw an
IOException.

13-ch13.indd 310 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 311

Pa
rt

 I

The following program uses read() to input and display the contents of a file that
contains ASCII text. The name of the file is specified as a command-line argument.

/* Display a text file.
 To use this program, specify the name
 of the file that you want to see.
 For example, to see a file called TEST.TXT,
 use the following command line.

 java ShowFile TEST.TXT
*/

import java.io.*;

class ShowFile {
 public static void main(String args[])
 {
 int i;
 FileInputStream fin;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // Attempt to open the file.
 try {
 fin = new FileInputStream(args[0]);
 } catch(FileNotFoundException e) {
 System.out.println("Cannot Open File");
 return;
 }

 // At this point, the file is open and can be read.
 // The following reads characters until EOF is encountered.
 try {
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);
 } catch(IOException e) {
 System.out.println("Error Reading File");
 }

 // Close the file.
 try {
 fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
 }
}

13-ch13.indd 311 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

312 PART I The Java Language

In the program, notice the try/catch blocks that handle the I/O errors that might
occur. Each I/O operation is monitored for exceptions, and if an exception occurs, it is
handled. Be aware that in simple programs or example code, it is common to see I/O
exceptions simply thrown out of main(), as was done in the earlier console I/O examples.
Also, in some real-world code, it can be helpful to let an exception propagate to a calling
routine to let the caller know that an I/O operation failed. However, most of the file
I/O examples in this book handle all I/O exceptions explicitly, as shown, for the sake
of illustration.

Although the preceding example closes the file stream after the file is read, there is a
variation that is often useful. The variation is to call close() within a finally block. In this
approach, all of the methods that access the file are contained within a try block, and the
finally block is used to close the file. This way, no matter how the try block terminates,
the file is closed. Assuming the preceding example, here is how the try block that reads the
file can be recoded:

try {
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);
} catch(IOException e) {
 System.out.println("Error Reading File");
} finally {
 // Close file on the way out of the try block.
 try {
 fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
}

Although not an issue in this case, one advantage to this approach in general is that if the
code that accesses a file terminates because of some non-I/O related exception, the file is
still closed by the finally block.

Sometimes it’s easier to wrap the portions of a program that open the file and access
the file within a single try block (rather than separating the two) and then use a finally
block to close the file. For example, here is another way to write the ShowFile program:

/* Display a text file.
 To use this program, specify the name
 of the file that you want to see.
 For example, to see a file called TEST.TXT,
 use the following command line.

 java ShowFile TEST.TXT

 This variation wraps the code that opens and
 accesses the file within a single try block.
 The file is closed by the finally block.
*/

13-ch13.indd 312 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 313

Pa
rt

 I

import java.io.*;

class ShowFile {
 public static void main(String args[])
 {
 int i;
 FileInputStream fin = null;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // The following code opens a file, reads characters until EOF
 // is encountered, and then closes the file via a finally block.
 try {
 fin = new FileInputStream(args[0]);

 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 } catch(FileNotFoundException e) {
 System.out.println("File Not Found.");
 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 } finally {
 // Close file in all cases.
 try {
 if(fin != null) fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
 }
 }
}

In this approach, notice that fin is initialized to null. Then, in the finally block, the file
is closed only if fin is not null. This works because fin will be non-null only if the file is
successfully opened. Thus, close() is not called if an exception occurs while opening the file.

It is possible to make the try/catch sequence in the preceding example a bit more
compact. Because FileNotFoundException is a subclass of IOException, it need not be
caught separately. For example, here is the sequence recoded to eliminate catching
FileNotFoundException. In this case, the standard exception message, which describes
the error, is displayed.

try {
 fin = new FileInputStream(args[0]);

 do {

13-ch13.indd 313 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

314 PART I The Java Language

 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

} catch(IOException e) {
 System.out.println("I/O Error: " + e);
} finally {
 // Close file in all cases.
 try {
 if(fin != null) fin.close();
 } catch(IOException e) {
 System.out.println("Error Closing File");
 }
}

In this approach, any error, including an error opening the file, is simply handled by
the single catch statement. Because of its compactness, this approach is used by many of
the I/O examples in this book. Be aware, however, that this approach is not appropriate
in cases in which you want to deal separately with a failure to open a file, such as might be
caused if a user mistypes a filename. In such a situation, you might want to prompt for the
correct name, for example, before entering a try block that accesses the file.

To write to a file, you can use the write() method defined by FileOutputStream. Its
simplest form is shown here:

void write(int byteval) throws IOException

This method writes the byte specified by byteval to the file. Although byteval is declared as an
integer, only the low-order eight bits are written to the file. If an error occurs during writing,
an IOException is thrown. The next example uses write() to copy a file:

/* Copy a file.
 To use this program, specify the name
 of the source file and the destination file.
 For example, to copy a file called FIRST.TXT
 to a file called SECOND.TXT, use the following
 command line.

 java CopyFile FIRST.TXT SECOND.TXT
*/

import java.io.*;

class CopyFile {
 public static void main(String args[]) throws IOException
 {
 int i;
 FileInputStream fin = null;
 FileOutputStream fout = null;

 // First, confirm that both files have been specified.
 if(args.length != 2) {
 System.out.println("Usage: CopyFile from to");
 return;

13-ch13.indd 314 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 315

Pa
rt

 I

 }

 // Copy a File.
 try {
 // Attempt to open the files.
 fin = new FileInputStream(args[0]);
 fout = new FileOutputStream(args[1]);

 do {
 i = fin.read();
 if(i != -1) fout.write(i);
 } while(i != -1);

 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 } finally {
 try {
 if(fin != null) fin.close();
 } catch(IOException e2) {
 System.out.println("Error Closing Input File");
 }
 try {
 if(fout != null) fout.close();
 } catch(IOException e2) {
 System.out.println("Error Closing Output File");
 }
 }
 }
}

In the program, notice that two separate try blocks are used when closing the files. This
ensures that both files are closed, even if the call to fin.close() throws an exception.

In general, notice that all potential I/O errors are handled in the preceding two
programs by the use of exceptions. This differs from some computer languages that use
error codes to report file errors. Not only do exceptions make file handling cleaner, but
they also enable Java to easily differentiate the end-of-file condition from file errors when
input is being performed.

Automatically Closing a File
In the preceding section, the example programs have made explicit calls to close() to close
a file once it is no longer needed. As mentioned, this is the way files were closed when using
versions of Java prior to JDK 7. Although this approach is still valid and useful, JDK 7 added
a new feature that offers another way to manage resources, such as file streams, by automating
the closing process. This feature, sometimes referred to as automatic resource management, or
ARM for short, is based on an expanded version of the try statement. The principal advantage
of automatic resource management is that it prevents situations in which a file (or other
resource) is inadvertently not released after it is no longer needed. As explained, forgetting
to close a file can result in memory leaks, and could lead to other problems.

13-ch13.indd 315 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

316 PART I The Java Language

Automatic resource management is based on an expanded form of the try statement.
Here is its general form:

try (resource-specification) {
 // use the resource
}

Here, resource-specification is a statement that declares and initializes a resource, such as a file
stream. It consists of a variable declaration in which the variable is initialized with a reference
to the object being managed. When the try block ends, the resource is automatically released.
In the case of a file, this means that the file is automatically closed. (Thus, there is no need to
call close() explicitly.) Of course, this form of try can also include catch and finally clauses.
This new form of try is called the try-with-resources statement.

The try-with-resources statement can be used only with those resources that implement
the AutoCloseable interface defined by java.lang. This interface defines the close()
method. AutoCloseable is inherited by the Closeable interface in java.io. Both interfaces
are implemented by the stream classes. Thus, try-with-resources can be used when working
with streams, including file streams.

As a first example of automatically closing a file, here is a reworked version of the
ShowFile program that uses it:

/* This version of the ShowFile program uses a try-with-resources
 statement to automatically close a file after it is no longer needed.

 Note: This code requires JDK 7 or later.
*/

import java.io.*;

class ShowFile {
 public static void main(String args[])
 {
 int i;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // The following code uses a try-with-resources statement to open
 // a file and then automatically close it when the try block is left.
 try(FileInputStream fin = new FileInputStream(args[0])) {

 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 } catch(FileNotFoundException e) {
 System.out.println("File Not Found.");
 } catch(IOException e) {

13-ch13.indd 316 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 317

Pa
rt

 I

 System.out.println("An I/O Error Occurred");
 }

 }
}

In the program, pay special attention to how the file is opened within the try statement:

try(FileInputStream fin = new FileInputStream(args[0])) {

Notice how the resource-specification portion of the try declares a FileInputStream called
fin, which is then assigned a reference to the file opened by its constructor. Thus, in this
version of the program, the variable fin is local to the try block, being created when the try
is entered. When the try is left, the stream associated with fin is automatically closed by an
implicit call to close(). You don’t need to call close() explicitly, which means that you can’t
forget to close the file. This is a key advantage of using try-with-resources.

It is important to understand that the resource declared in the try statement is implicitly
final. This means that you can’t assign to the resource after it has been created. Also, the
scope of the resource is limited to the try-with-resources statement.

You can manage more than one resource within a single try statement. To do so, simply
separate each resource specification with a semicolon. The following program shows an
example. It reworks the CopyFile program shown earlier so that it uses a single try-with-
resources statement to manage both fin and fout.

/* A version of CopyFile that uses try-with-resources.
 It demonstrates two resources (in this case files) being
 managed by a single try statement.
*/

import java.io.*;

class CopyFile {
 public static void main(String args[]) throws IOException
 {
 int i;

 // First, confirm that both files have been specified.
 if(args.length != 2) {
 System.out.println("Usage: CopyFile from to");
 return;
 }

 // Open and manage two files via the try statement.
 try (FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]))
 {

 do {
 i = fin.read();
 if(i != -1) fout.write(i);
 } while(i != -1);

13-ch13.indd 317 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

318 PART I The Java Language

 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

In this program, notice how the input and output files are opened within the try block:

try (FileInputStream fin = new FileInputStream(args[0]);
 FileOutputStream fout = new FileOutputStream(args[1]))
{
 // ...

After this try block ends, both fin and fout will have been closed. If you compare this
version of the program to the previous version, you will see that it is much shorter. The
ability to streamline source code is a side-benefit of automatic resource management.

There is one other aspect to try-with-resources that needs to be mentioned. In general,
when a try block executes, it is possible that an exception inside the try block will lead to
another exception that occurs when the resource is closed in a finally clause. In the case
of a “normal” try statement, the original exception is lost, being preempted by the second
exception. However, when using try-with-resources, the second exception is suppressed. It
is not, however, lost. Instead, it is added to the list of suppressed exceptions associated
with the first exception. The list of suppressed exceptions can be obtained by using the
getSuppressed() method defined by Throwable.

Because of the benefits that the try-with-resources statement offers, it will be used
by many, but not all, of the example programs in this edition of this book. Some of the
examples will still use the traditional approach to closing a resource. There are several
reasons for this. First, there is legacy code that still relies on the traditional approach. It is
important that all Java programmers be fully versed in, and comfortable with, the traditional
approach when maintaining this older code. Second, because not all project development
will immediately switch to a new version of the JDK, it is likely that some programmers will
continue to work in a pre-JDK 7 environment for a period of time. In such situations, the
expanded form of try is not available. Finally, there may be cases in which explicitly closing
a resource is more appropriate than the automated approach. For these reasons, some of
the examples in this book will continue to use the traditional approach, explicitly calling
close(). In addition to illustrating the traditional technique, these examples can also be
compiled and run by all readers in all environments.

REMEMBER A few examples in this book use the traditional approach to closing files as a means of
illustrating this technique, which is widely used in legacy code. However, for new code, you will
usually want to use the new automated approach supported by the try-with-resources statement
just described.

Applet Fundamentals
All of the preceding examples in this book have been Java console-based applications.
However, these types of applications constitute only one class of Java programs. Another
type of program is the applet. As mentioned in Chapter 1, applets are small applications that

13-ch13.indd 318 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 319

Pa
rt

 I

are accessed on an Internet server, transported over the Internet, automatically installed,
and run as part of a web document. After an applet arrives on the client, it has limited access
to resources so that it can produce a graphical user interface and run various computations
without introducing the risk of viruses or breaching data integrity.

Many of the issues connected with the creation and use of applets are found in Part II,
when the applet package is examined, and also when Swing is described in Part III. However,
the fundamentals connected to the creation of an applet are presented here, because applets
are not structured in the same way as the programs that have been used thus far. As you will
see, applets differ from console-based applications in several key areas.

Let’s begin with the simple applet shown here:

import java.awt.*;
import java.applet.*;

public class SimpleApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("A Simple Applet", 20, 20);
 }
}

This applet begins with two import statements. The first imports the Abstract Window Toolkit
(AWT) classes. Applets interact with the user through a GUI framework, not through the
console-based I/O classes. One of these frameworks is the AWT, and that is the framework
used here to introduce applet programming. The AWT contains very basic support for a
window-based, graphical user interface. As you might expect, the AWT is quite large, and a
detailed discussion of it is found in Part II of this book. Fortunately, this simple applet makes
very limited use of the AWT. (Another commonly used GUI for applets is Swing, but this
approach is described later in this book.) The second import statement imports the applet
package, which contains the class Applet. Every AWT-based applet that you create must be a
subclass (either directly or indirectly) of Applet.

The next line in the program declares the class SimpleApplet. This class must be
declared as public, because it will be accessed by code that is outside the program.

Inside SimpleApplet, paint() is declared. This method is defined by the AWT and must
be overridden by the applet. paint() is called each time that the applet must redisplay its
output. This situation can occur for several reasons. For example, the window in which the
applet is running can be overwritten by another window and then uncovered. Or, the
applet window can be minimized and then restored. paint() is also called when the applet
begins execution. Whatever the cause, whenever the applet must redraw its output, paint()
is called. The paint() method has one parameter of type Graphics. This parameter contains
the graphics context, which describes the graphics environment in which the applet is
running. This context is used whenever output to the applet is required.

Inside paint() is a call to drawString(), which is a member of the Graphics class. This
method outputs a string beginning at the specified X,Y location. It has the following
general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left
corner is location 0,0. The call to drawString() in the applet causes the message "A Simple
Applet" to be displayed beginning at location 20,20.

13-ch13.indd 319 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

320 PART I The Java Language

Notice that the applet does not have a main() method. Unlike Java programs, applets
do not begin execution at main(). In fact, most applets don’t even have a main() method.
Instead, an applet begins execution when the name of its class is passed to an applet viewer
or to a network browser.

After you enter the source code for SimpleApplet, compile in the same way that you
have been compiling programs. However, running SimpleApplet involves a different
process. In fact, there are two ways in which you can run an applet:

•	 Executing the applet within a Java-compatible web browser.

•	 Using an applet viewer, such as the standard tool, appletviewer. An applet viewer
executes your applet in a window. This is generally the fastest and easiest way to test
your applet.

Each of these methods is described next.
One way to execute an applet in a web browser is to write a short HTML text file that

contains a tag that loads the applet. At the time of this writing, Oracle recommends using
the APPLET tag for this purpose. (The OBJECT tag can also be used. See Chapter 23 for
further information regarding applet deployment strategies.) Using APPLET, here is the
HTML file that executes SimpleApplet:

<applet code="SimpleApplet" width=200 height=60>
</applet>

The width and height statements specify the dimensions of the display area used by the
applet. (The APPLET tag contains several other options that are examined more closely in
Part II.) After you create this file, you can use it to execute the applet.

NOTE Beginning with the release of Java 7, update 21, Java applets must be signed to prevent security
warnings when run in a browser. In fact, in some cases, the applet may be prevented from running.
Applets stored in the local file system, such as you would create when compiling the examples in this
book, are especially sensitive to this change. You may need to adjust the security settings in the Java
Control Panel to run a local applet in a browser. At the time of this writing, Oracle recommends
against the use of local applets, recommending instead that applets be executed through a web
server. Furthermore, it is expected that unsigned local applets will be blocked from execution in the
future. In general, for applets that will be distributed via the Internet, such as commercial applications,
signing is a virtual necessity. The concepts and techniques required to sign applets (and other types
of Java programs) are beyond the scope of this book. However, extensive information is found on
Oracle’s website. Finally, as mentioned, the easiest way to try the applet examples is to use
appletviewer.

To execute SimpleApplet with an applet viewer, you may also execute the HTML file
shown earlier. For example, if the preceding HTML file is called RunApp.html, then the
following command line will run SimpleApplet:

C:\>appletviewer RunApp.html

However, a more convenient method exists that you can use to speed up testing.
Simply include a comment at the head of your Java source code file that contains the

13-ch13.indd 320 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 321

Pa
rt

 I

APPLET tag. By doing so, your code is documented with a prototype of the necessary
HTML statements, and you can test your compiled applet merely by starting the applet
viewer with your Java source code file. If you use this method, the SimpleApplet source
file looks like this:

import java.awt.*;
import java.applet.*;
/*
<applet code="SimpleApplet" width=200 height=60>
</applet>
*/

public class SimpleApplet extends Applet {
 public void paint(Graphics g) {
 g.drawString("A Simple Applet", 20, 20);
 }
}

With this approach, you can quickly iterate through applet development by using these
three steps:

 1. Edit a Java source file.

 2. Compile your program.

 3. Execute the applet viewer, specifying the name of your applet’s source file. The
applet viewer will encounter the APPLET tag within the comment and execute
your applet.

The window produced by SimpleApplet, as displayed by the applet viewer, is shown in
the following illustration. Of course, the precise appearance of the applet viewer frame may
differ based on your environment. For this reason, the screen captures in this book reflect a
number of different environments.

While the subject of applets is more fully discussed later in this book, here are the key
points that you should remember now:

•	 Applets do not need a main() method.

•	 Applets must be run under an applet viewer or a Java-compatible browser.

•	 User I/O is not accomplished with Java’s stream I/O classes. Instead, applets use
the interface provided by a GUI framework.

13-ch13.indd 321 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

322 PART I The Java Language

The transient and volatile Modifiers
Java defines two interesting type modifiers: transient and volatile. These modifiers are used
to handle somewhat specialized situations.

When an instance variable is declared as transient, then its value need not persist when
an object is stored. For example:

class T {
 transient int a; // will not persist
 int b; // will persist
}

Here, if an object of type T is written to a persistent storage area, the contents of a would
not be saved, but the contents of b would.

The volatile modifier tells the compiler that the variable modified by volatile can be
changed unexpectedly by other parts of your program. One of these situations involves
multithreaded programs. In a multithreaded program, sometimes two or more threads
share the same variable. For efficiency considerations, each thread can keep its own, private
copy of such a shared variable. The real (or master) copy of the variable is updated at
various times, such as when a synchronized method is entered. While this approach works
fine, it may be inefficient at times. In some cases, all that really matters is that the master
copy of a variable always reflects its current state. To ensure this, simply specify the variable
as volatile, which tells the compiler that it must always use the master copy of a volatile
variable (or, at least, always keep any private copies up-to-date with the master copy, and
vice versa). Also, accesses to the master variable must be executed in the precise order in
which they are executed on any private copy.

Using instanceof
Sometimes, knowing the type of an object during run time is useful. For example, you
might have one thread of execution that generates various types of objects, and another
thread that processes these objects. In this situation, it might be useful for the processing
thread to know the type of each object when it receives it. Another situation in which
knowledge of an object’s type at run time is important involves casting. In Java, an invalid
cast causes a run-time error. Many invalid casts can be caught at compile time. However,
casts involving class hierarchies can produce invalid casts that can be detected only at run
time. For example, a superclass called A can produce two subclasses, called B and C. Thus,
casting a B object into type A or casting a C object into type A is legal, but casting a B object
into type C (or vice versa) isn’t legal. Because an object of type A can refer to objects of
either B or C, how can you know, at run time, what type of object is actually being referred
to before attempting the cast to type C? It could be an object of type A, B, or C. If it is an
object of type B, a run-time exception will be thrown. Java provides the run-time operator
instanceof to answer this question.

The instanceof operator has this general form:

objref instanceof type

Here, objref is a reference to an instance of a class, and type is a class type. If objref is of
the specified type or can be cast into the specified type, then the instanceof operator
evaluates to true. Otherwise, its result is false. Thus, instanceof is the means by which your
program can obtain run-time type information about an object.

13-ch13.indd 322 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 323

Pa
rt

 I

The following program demonstrates instanceof:
// Demonstrate instanceof operator.
class A {
 int i, j;
}

class B {
 int i, j;
}

class C extends A {
 int k;
}

class D extends A {
 int k;
}

class InstanceOf {
 public static void main(String args[]) {
 A a = new A();
 B b = new B();
 C c = new C();
 D d = new D();
 if(a instanceof A)
 System.out.println("a is instance of A");
 if(b instanceof B)
 System.out.println("b is instance of B");
 if(c instanceof C)
 System.out.println("c is instance of C");
 if(c instanceof A)
 System.out.println("c can be cast to A");

 if(a instanceof C)
 System.out.println("a can be cast to C");

 System.out.println();

 // compare types of derived types
 A ob;

 ob = d; // A reference to d
 System.out.println("ob now refers to d");
 if(ob instanceof D)
 System.out.println("ob is instance of D");

 System.out.println();

 ob = c; // A reference to c
 System.out.println("ob now refers to c");

 if(ob instanceof D)
 System.out.println("ob can be cast to D");
 else
 System.out.println("ob cannot be cast to D");

 if(ob instanceof A)
 System.out.println("ob can be cast to A");

 System.out.println();

13-ch13.indd 323 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

324 PART I The Java Language

 // all objects can be cast to Object
 if(a instanceof Object)
 System.out.println("a may be cast to Object");
 if(b instanceof Object)
 System.out.println("b may be cast to Object");
 if(c instanceof Object)
 System.out.println("c may be cast to Object");
 if(d instanceof Object)
 System.out.println("d may be cast to Object");
 }
}

The output from this program is shown here:

 a is instance of A
 b is instance of B
 c is instance of C
 c can be cast to A

 ob now refers to d
 ob is instance of D

 ob now refers to c
 ob cannot be cast to D
 ob can be cast to A

 a may be cast to Object
 b may be cast to Object
 c may be cast to Object
 d may be cast to Object

The instanceof operator isn’t needed by most programs, because, generally, you know
the type of object with which you are working. However, it can be very useful when you’re
writing generalized routines that operate on objects of a complex class hierarchy.

strictfp
With the creation of Java 2, the floating-point computation model was relaxed slightly.
Specifically, the new model does not require the truncation of certain intermediate values
that occur during a computation. This prevents overflow or underflow in some cases. By
modifying a class, a method, or interface with strictfp, you ensure that floating-point
calculations (and thus all truncations) take place precisely as they did in earlier versions of
Java. When a class is modified by strictfp, all the methods in the class are also modified by
strictfp automatically.

For example, the following fragment tells Java to use the original floating-point model
for calculations in all methods defined within MyClass:

strictfp class MyClass { //...

Frankly, most programmers never need to use strictfp, because it affects only a very small
class of problems.

13-ch13.indd 324 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 325

Pa
rt

 I

Native Methods
Although it is rare, occasionally you may want to call a subroutine that is written in a
language other than Java. Typically, such a subroutine exists as executable code for the
CPU and environment in which you are working—that is, native code. For example, you
may want to call a native code subroutine to achieve faster execution time. Or, you may
want to use a specialized, third-party library, such as a statistical package. However, because
Java programs are compiled to bytecode, which is then interpreted (or compiled on-the-fly)
by the Java run-time system, it would seem impossible to call a native code subroutine from
within your Java program. Fortunately, this conclusion is false. Java provides the native
keyword, which is used to declare native code methods. Once declared, these methods
can be called from inside your Java program just as you call any other Java method.

To declare a native method, precede the method with the native modifier, but do not
define any body for the method. For example:

public native int meth() ;

After you declare a native method, you must write the native method and follow a rather
complex series of steps to link it with your Java code.

Most native methods are written in C. The mechanism used to integrate C code with
a Java program is called the Java Native Interface (JNI). A detailed description of the JNI is
beyond the scope of this book, but the approach described here provides sufficient
information for simple applications.

NOTE The precise steps that you need to follow will vary between different Java environments. They also
depend on the language that you are using to implement the native method. The following discussion
assumes a Windows environment. The language used to implement the native method is C. Also, the
approach shown here uses a dynamically linked library, but beginning with JDK 8, it is possible to
create a statically linked library.

The easiest way to understand the process is to work through an example. To begin,
enter the following short program, which uses a native method called test():

// A simple example that uses a native method.
public class NativeDemo {
 int i;
 public static void main(String args[]) {
 NativeDemo ob = new NativeDemo();

 ob.i = 10;
 System.out.println("This is ob.i before the native method:" +
 ob.i);
 ob.test(); // call a native method
 System.out.println("This is ob.i after the native method:" +
 ob.i);
 }

 // declare native method
 public native void test() ;

 // load DLL that contains static method

13-ch13.indd 325 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

326 PART I The Java Language

 static {
 System.loadLibrary("NativeDemo");
 }
}

Notice that the test() method is declared as native and has no body. This is the method
that we will implement in C shortly. Also notice the static block. As explained earlier in this
book, a static block is executed only once, when your program begins execution (or, more
precisely, when its class is first loaded). In this case, it is used to load the dynamic link
library that contains the native implementation of test(). (You will see how to create
this library soon.)

The library is loaded by the loadLibrary() method, which is part of the System class.
This is its general form:

static void loadLibrary(String filename)

Here, filename is a string that specifies the name of the file that holds the library. For the
Windows environment, this file is assumed to have the .DLL extension.

After you enter the program, compile it to produce NativeDemo.class. Next, you must
use javah.exe to produce one file: NativeDemo.h. (javah.exe is included in the JDK.) You
will include NativeDemo.h in your implementation of test(). To produce NativeDemo.h,
use the following command:

javah -jni NativeDemo

This command produces a header file called NativeDemo.h. This file must be included in
the C file that implements test(). The output produced by this command is shown here:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class NativeDemo */

#ifndef _Included_NativeDemo
#define _Included_NativeDemo
#ifdef _ _cplusplus
extern "C" {
#endif
/*
 * Class: NativeDemo
 * Method: test
 * Signature: ()V
 */
JNIEXPORT void JNICALL Java_NativeDemo_test
 (JNIEnv *, jobject);

#ifdef _ _cplusplus
}
#endif
#endif

Pay special attention to the following line, which defines the prototype for the test()
function that you will create:

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *, jobject);

13-ch13.indd 326 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 327

Pa
rt

 I

Notice that the name of the function is Java_NativeDemo_test(). You must use this as the
name of the native function that you implement. That is, instead of creating a C function
called test(), you will create one called Java_NativeDemo_test(). The NativeDemo
component of the prefix is added because it identifies the test() method as being part of
the NativeDemo class. Remember, another class may define its own native test() method
that is completely different from the one declared by NativeDemo. Including the class
name in the prefix provides a way to differentiate between differing versions. As a general
rule, native functions will be given a name whose prefix includes the name of the class in
which they are declared.

After producing the necessary header file, you can write your implementation of test()
and store it in a file named NativeDemo.c:

/* This file contains the C version of the
 test() method.
*/

#include <jni.h>
#include "NativeDemo.h"
#include <stdio.h>

JNIEXPORT void JNICALL Java_NativeDemo_test(JNIEnv *env, jobject obj)
{
 jclass cls;
 jfieldID fid;
 jint i;

 printf("Starting the native method.\n");
 cls = (*env)->GetObjectClass(env, obj);
 fid = (*env)->GetFieldID(env, cls, "i", "I");

 if(fid == 0) {
 printf("Could not get field id.\n");
 return;
 }
 i = (*env)->GetIntField(env, obj, fid);
 printf("i = %d\n", i);
 (*env)->SetIntField(env, obj, fid, 2*i);
 printf("Ending the native method.\n");
}

Notice that this file includes jni.h, which contains interfacing information. This file is
provided by your Java compiler. The header file NativeDemo.h was created by javah earlier.

In this function, the GetObjectClass() method is used to obtain a C structure that has
information about the class NativeDemo. The GetFieldID() method returns a C structure
with information about the field named "i" for the class. GetIntField() retrieves the original
value of that field. SetIntField() stores an updated value in that field. (See the file jni.h for
additional methods that handle other types of data.)

13-ch13.indd 327 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

328 PART I The Java Language

After creating NativeDemo.c, you must compile it and create a DLL. To do this by using
the Microsoft C/C++ compiler, use the following command line. (You might need to specify
the path to jni.h and its subordinate file jni_md.h.)

Cl /LD NativeDemo.c

This produces a file called NativeDemo.dll. Once this is done, you can execute the Java
program, which will produce the following output:

 This is ob.i before the native method: 10
 Starting the native method.
 i = 10
 Ending the native method.
 This is ob.i after the native method: 20

Problems with Native Methods
Native methods seem to offer great promise, because they enable you to gain access to an
existing base of library routines, and they offer the possibility of faster run-time execution.
But native methods also introduce two significant problems:

•	 Potential security risk Because a native method executes actual machine code, it
can gain access to any part of the host system. That is, native code is not confined to
the Java execution environment. This could allow a virus infection, for example.
For this reason, unsigned applets cannot use native methods. Also, the loading of
DLLs can be restricted, and their loading is subject to the approval of the security
manager.

•	 Loss of portability Because the native code is contained in a DLL, it must be
present on the machine that is executing the Java program. Further, because each
native method is CPU- and operating system–dependent, each DLL is inherently
nonportable. Thus, a Java application that uses native methods will be able to run
only on a machine for which a compatible DLL has been installed.

The use of native methods should be restricted, because they render your Java
programs nonportable and pose significant security risks.

Using assert
Another relatively new addition to Java is the keyword assert. It is used during program
development to create an assertion, which is a condition that should be true during the
execution of the program. For example, you might have a method that should always
return a positive integer value. You might test this by asserting that the return value is
greater than zero using an assert statement. At run time, if the condition is true, no other
action takes place. However, if the condition is false, then an AssertionError is thrown.
Assertions are often used during testing to verify that some expected condition is actually
met. They are not usually used for released code.

The assert keyword has two forms. The first is shown here:

assert condition;

13-ch13.indd 328 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 329

Pa
rt

 I

Here, condition is an expression that must evaluate to a Boolean result. If the result is true,
then the assertion is true and no other action takes place. If the condition is false, then the
assertion fails and a default AssertionError object is thrown.

The second form of assert is shown here:

assert condition: expr ;

In this version, expr is a value that is passed to the AssertionError constructor. This value is
converted to its string format and displayed if an assertion fails. Typically, you will specify a
string for expr, but any non-void expression is allowed as long as it defines a reasonable
string conversion.

Here is an example that uses assert. It verifies that the return value of getnum() is
positive.

// Demonstrate assert.
class AssertDemo {
 static int val = 3;

 // Return an integer.
 static int getnum() {
 return val--;
 }

 public static void main(String args[])
 {
 int n;

 for(int i=0; i < 10; i++) {
 n = getnum();

 assert n > 0; // will fail when n is 0

 System.out.println("n is " + n);
 }
 }
}

To enable assertion checking at run time, you must specify the -ea option. For example, to
enable assertions for AssertDemo, execute it using this line:

java -ea AssertDemo

After compiling and running as just described, the program creates the following
output:

 n is 3
 n is 2
 n is 1
 Exception in thread "main" java.lang.AssertionError
 at AssertDemo.main(AssertDemo.java:17)

13-ch13.indd 329 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

330 PART I The Java Language

In main(), repeated calls are made to the method getnum(), which returns an integer
value. The return value of getnum() is assigned to n and then tested using this assert
statement:

assert n > 0; // will fail when n is 0

This statement will fail when n equals 0, which it will after the fourth call. When this
happens, an exception is thrown.

As explained, you can specify the message displayed when an assertion fails. For
example, if you substitute

assert n > 0 : "n is negative!";

for the assertion in the preceding program, then the following output will be generated:

 n is 3
 n is 2
 n is 1
 Exception in thread "main" java.lang.AssertionError: n is
 negative!
 at AssertDemo.main(AssertDemo.java:17)

One important point to understand about assertions is that you must not rely on them
to perform any action actually required by the program. The reason is that normally,
released code will be run with assertions disabled. For example, consider this variation of
the preceding program:

// A poor way to use assert!!!
class AssertDemo {
 // get a random number generator
 static int val = 3;

 // Return an integer.
 static int getnum() {
 return val--;
 }

 public static void main(String args[])
 {
 int n = 0;

 for(int i=0; i < 10; i++) {

 assert (n = getnum()) > 0; // This is not a good idea!

 System.out.println("n is " + n);
 }
 }
}

In this version of the program, the call to getnum() is moved inside the assert statement.
Although this works fine if assertions are enabled, it will cause a malfunction when assertions
are disabled, because the call to getnum() will never be executed! In fact, n must now be

13-ch13.indd 330 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 331

Pa
rt

 I

initialized, because the compiler will recognize that it might not be assigned a value by the
assert statement.

Assertions are a good addition to Java because they streamline the type of error
checking that is common during development. For example, prior to assert, if you wanted
to verify that n was positive in the preceding program, you had to use a sequence of code
similar to this:

if(n < 0) {
 System.out.println("n is negative!");
 return; // or throw an exception
}

With assert, you need only one line of code. Furthermore, you don’t have to remove the
assert statements from your released code.

Assertion Enabling and Disabling Options
When executing code, you can disable all assertions by using the -da option. You can enable
or disable a specific package (and all of its subpackages) by specifying its name followed by
three periods after the -ea or -da option. For example, to enable assertions in a package
called MyPack, use

-ea:MyPack...

To disable assertions in MyPack, use

-da:MyPack...

You can also specify a class with the -ea or -da option. For example, this enables
AssertDemo individually:

-ea:AssertDemo

Static Import
Java includes a feature called static import that expands the capabilities of the import
keyword. By following import with the keyword static, an import statement can be used to
import the static members of a class or interface. When using static import, it is possible
to refer to static members directly by their names, without having to qualify them with the
name of their class. This simplifies and shortens the syntax required to use a static member.

To understand the usefulness of static import, let’s begin with an example that does not
use it. The following program computes the hypotenuse of a right triangle. It uses two
static methods from Java’s built-in math class Math, which is part of java.lang. The first is
Math.pow(), which returns a value raised to a specified power. The second is Math.sqrt(),
which returns the square root of its argument.

// Compute the hypotenuse of a right triangle.
class Hypot {
 public static void main(String args[]) {
 double side1, side2;

13-ch13.indd 331 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

332 PART I The Java Language

 double hypot;
 side1 = 3.0;
 side2 = 4.0;

 // Notice how sqrt() and pow() must be qualified by
 // their class name, which is Math.
 hypot = Math.sqrt(Math.pow(side1, 2) +
 Math.pow(side2, 2));

 System.out.println("Given sides of lengths " +
 side1 + " and " + side2 +
 " the hypotenuse is " +
 hypot);
 }
}

Because pow() and sqrt() are static methods, they must be called through the use
of their class’ name, Math. This results in a somewhat unwieldy hypotenuse calculation:

hypot = Math.sqrt(Math.pow(side1, 2) +
 Math.pow(side2, 2));

As this simple example illustrates, having to specify the class name each time pow() or sqrt()
(or any of Java’s other math methods, such as sin(), cos(), and tan()) is used can grow
tedious.

You can eliminate the tedium of specifying the class name through the use of static
import, as shown in the following version of the preceding program:

// Use static import to bring sqrt() and pow() into view.
import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

// Compute the hypotenuse of a right triangle.
class Hypot {
 public static void main(String args[]) {
 double side1, side2;
 double hypot;

 side1 = 3.0;
 side2 = 4.0;

 // Here, sqrt() and pow() can be called by themselves,
 // without their class name.
 hypot = sqrt(pow(side1, 2) + pow(side2, 2));

 System.out.println("Given sides of lengths " +
 side1 + " and " + side2 +
 " the hypotenuse is " +
 hypot);
 }
}

13-ch13.indd 332 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 333

Pa
rt

 I

In this version, the names sqrt and pow are brought into view by these static import
statements:

import static java.lang.Math.sqrt;
import static java.lang.Math.pow;

After these statements, it is no longer necessary to qualify sqrt() or pow() with their class
name. Therefore, the hypotenuse calculation can more conveniently be specified, as
shown here:

hypot = sqrt(pow(side1, 2) + pow(side2, 2));

As you can see, this form is considerably more readable.
There are two general forms of the import static statement. The first, which is used by

the preceding example, brings into view a single name. Its general form is shown here:

import static pkg.type-name.static-member-name ;

Here, type-name is the name of a class or interface that contains the desired static member.
Its full package name is specified by pkg. The name of the member is specified by static-
member-name.

The second form of static import imports all static members of a given class or interface.
Its general form is shown here:

import static pkg.type-name.*;

If you will be using many static methods or fields defined by a class, then this form lets you
bring them into view without having to specify each individually. Therefore, the preceding
program could have used this single import statement to bring both pow() and sqrt() (and
all other static members of Math) into view:

import static java.lang.Math.*;

Of course, static import is not limited just to the Math class or just to methods. For
example, this brings the static field System.out into view:

import static java.lang.System.out;

After this statement, you can output to the console without having to qualify out with
System, as shown here:

out.println("After importing System.out, you can use out directly.");

Whether importing System.out as just shown is a good idea is subject to debate. Although
it does shorten the statement, it is no longer instantly clear to anyone reading the program
that the out being referred to is System.out.

One other point: in addition to importing the static members of classes and interfaces
defined by the Java API, you can also use static import to import the static members of
classes and interfaces that you create.

13-ch13.indd 333 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

334 PART I The Java Language

As convenient as static import can be, it is important not to abuse it. Remember, the
reason that Java organizes its libraries into packages is to avoid namespace collisions. When
you import static members, you are bringing those members into the global namespace.
Thus, you are increasing the potential for namespace conflicts and for the inadvertent
hiding of other names. If you are using a static member once or twice in the program,
it’s best not to import it. Also, some static names, such as System.out, are so recognizable
that you might not want to import them. Static import is designed for those situations in
which you are using a static member repeatedly, such as when performing a series of
mathematical computations. In essence, you should use, but not abuse, this feature.

Invoking Overloaded Constructors Through this()
When working with overloaded constructors, it is sometimes useful for one constructor
to invoke another. In Java, this is accomplished by using another form of the this keyword.
The general form is shown here:

this(arg-list)

When this() is executed, the overloaded constructor that matches the parameter list
specified by arg-list is executed first. Then, if there are any statements inside the original
constructor, they are executed. The call to this() must be the first statement within
the constructor.

To understand how this() can be used, let’s work through a short example. First,
consider the following class that does not use this():

class MyClass {
 int a;
 int b;

 // initialize a and b individually
 MyClass(int i, int j) {
 a = i;
 b = j;
 }

 // initialize a and b to the same value
 MyClass(int i) {
 a = i;
 b = i;
 }

 // give a and b default values of 0
 MyClass() {
 a = 0;
 b = 0;
 }
}

This class contains three constructors, each of which initializes the values of a and b. The
first is passed individual values for a and b. The second is passed just one value, which is
assigned to both a and b. The third gives a and b default values of zero.

13-ch13.indd 334 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 13 I/O, Applets, and Other Topics 335

Pa
rt

 I

By using this(), it is possible to rewrite MyClass as shown here:

class MyClass {
 int a;
 int b;

 // initialize a and b individually
 MyClass(int i, int j) {
 a = i;
 b = j;
 }

 // initialize a and b to the same value
 MyClass(int i) {
 this(i, i); // invokes MyClass(i, i)
 }

 // give a and b default values of 0
 MyClass() {
 this(0); // invokes MyClass(0)
 }
}

In this version of MyClass, the only constructor that actually assigns values to the a and
b fields is MyClass(int, int). The other two constructors simply invoke that constructor
(either directly or indirectly) through this(). For example, consider what happens when
this statement executes:

MyClass mc = new MyClass(8);

The call to MyClass(8) causes this(8, 8) to be executed, which translates into a call to
MyClass(8, 8), because this is the version of the MyClass constructor whose parameter list
matches the arguments passed via this(). Now, consider the following statement, which uses
the default constructor:

MyClass mc2 = new MyClass();

In this case, this(0) is called. This causes MyClass(0) to be invoked because it is the
constructor with the matching parameter list. Of course, MyClass(0) then calls MyClass(0,0)
as just described.

One reason why invoking overloaded constructors through this() can be useful is that
it can prevent the unnecessary duplication of code. In many cases, reducing duplicate code
decreases the time it takes to load your class because often the object code is smaller. This
is especially important for programs delivered via the Internet in which load times are an
issue. Using this() can also help structure your code when constructors contain a large
amount of duplicate code.

However, you need to be careful. Constructors that call this() will execute a bit slower
than those that contain all of their initialization code inline. This is because the call and
return mechanism used when the second constructor is invoked adds overhead. If your
class will be used to create only a handful of objects, or if the constructors in the class that
call this() will be seldom used, then this decrease in run-time performance is probably

13-ch13.indd 335 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

336 PART I The Java Language

insignificant. However, if your class will be used to create a large number of objects (on the
order of thousands) during program execution, then the negative impact of the increased
overhead could be meaningful. Because object creation affects all users of your class, there
will be cases in which you must carefully weigh the benefits of faster load time against the
increased time it takes to create an object.

Here is another consideration: for very short constructors, such as those used by MyClass,
there is often little difference in the size of the object code whether this() is used or not.
(Actually, there are cases in which no reduction in the size of the object code is achieved.)
This is because the bytecode that sets up and returns from the call to this() adds instructions
to the object file. Therefore, in these types of situations, even though duplicate code is
eliminated, using this() will not obtain significant savings in terms of load time. However, the
added cost in terms of overhead to each object’s construction will still be incurred. Therefore,
this() is most applicable to constructors that contain large amounts of initialization code, not
those that simply set the value of a handful of fields.

There are two restrictions you need to keep in mind when using this(). First, you cannot
use any instance variable of the constructor’s class in a call to this(). Second, you cannot use
super() and this() in the same constructor because each must be the first statement in the
constructor.

Compact API Profiles
JDK 8 adds a feature that organizes subsets of the API library into what are called compact
profiles. These are called compact1, compact2, and compact3. Each profile contains a subset
of the library. Furthermore, compact2 includes all of compact1, and compact3 includes all
of compact2. Thus, each profile builds on the previous one. The advantage of the compact
profiles is that an application that does not require the full library need not download it.
Using a compact profile reduces the size of the library, thus enabling some types of Java
applications to run on devices that could not otherwise support the entire Java API. The use
of a compact profile can also reduce the time it takes to load a program. The Java API
documentation indicates to which (if any) profile each API element belongs.

When compiling a program, you can determine if a program uses only APIs defined by
a compact profile by using the -profile option. Here is its general form:

javac -profile profileName programName

Here, profileName specifies the profile, which must be compact1, compact2, or compact3.
For example:

javac -profile compact2 Test.java

Here, the compact2 profile is specified. If Test.java contains an API that is not part of
compact2, then a compilation error will result.

13-ch13.indd 336 14/02/14 4:53 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

14
CHAPTER

 337

Generics

Since the original 1.0 release in 1995, many new features have been added to Java. One that
has had a profound impact is generics. Introduced by JDK 5, generics changed Java in two
important ways. First, it added a new syntactical element to the language. Second, it caused
changes to many of the classes and methods in the core API. Today, generics are an integral
part of Java programming, and a solid understanding of this important feature is required.
It is examined here in detail.

Through the use of generics, it is possible to create classes, interfaces, and methods that
will work in a type-safe manner with various kinds of data. Many algorithms are logically the
same no matter what type of data they are being applied to. For example, the mechanism
that supports a stack is the same whether that stack is storing items of type Integer, String,
Object, or Thread. With generics, you can define an algorithm once, independently of any
specific type of data, and then apply that algorithm to a wide variety of data types without
any additional effort. The expressive power generics added to the language fundamentally
changed the way that Java code is written.

Perhaps the one feature of Java that has been most significantly affected by generics is
the Collections Framework. The Collections Framework is part of the Java API and is described
in detail in Chapter 18, but a brief mention is useful now. A collection is a group of objects.
The Collections Framework defines several classes, such as lists and maps, that manage
collections. The collection classes have always been able to work with any type of object.
The benefit that generics added is that the collection classes can now be used with complete
type safety. Thus, in addition to being a powerful language element on its own, generics
also enabled an existing feature to be substantially improved. This is another reason why
generics were such an important addition to Java.

This chapter describes the syntax, theory, and use of generics. It also shows how
generics provide type safety for some previously difficult cases. Once you have completed
this chapter, you will want to examine Chapter 18, which covers the Collections Framework.
There you will find many examples of generics at work.

14-ch14.indd 337 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

338 PART I The Java Language

What Are Generics?
At its core, the term generics means parameterized types. Parameterized types are important
because they enable you to create classes, interfaces, and methods in which the type of data
upon which they operate is specified as a parameter. Using generics, it is possible to create
a single class, for example, that automatically works with different types of data. A class,
interface, or method that operates on a parameterized type is called generic, as in generic
class or generic method.

It is important to understand that Java has always given you the ability to create
generalized classes, interfaces, and methods by operating through references of type
Object. Because Object is the superclass of all other classes, an Object reference can refer
to any type object. Thus, in pre-generics code, generalized classes, interfaces, and methods
used Object references to operate on various types of objects. The problem was that they
could not do so with type safety.

Generics added the type safety that was lacking. They also streamlined the process,
because it is no longer necessary to explicitly employ casts to translate between Object and
the type of data that is actually being operated upon. With generics, all casts are automatic
and implicit. Thus, generics expanded your ability to reuse code and let you do so safely
and easily.

NOTE A Warning to C++ Programmers: Although generics are similar to templates in C++, they are not
the same. There are some fundamental differences between the two approaches to generic types.
If you have a background in C++, it is important not to jump to conclusions about how generics work
in Java.

A Simple Generics Example
Let’s begin with a simple example of a generic class. The following program defines two
classes. The first is the generic class Gen, and the second is GenDemo, which uses Gen.

// A simple generic class.
// Here, T is a type parameter that
// will be replaced by a real type
// when an object of type Gen is created.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }

 // Show type of T.

14-ch14.indd 338 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 339

Pa
rt

 I

 void showType() {
 System.out.println("Type of T is " +
 ob.getClass().getName());
 }
}

// Demonstrate the generic class.
class GenDemo {
 public static void main(String args[]) {
 // Create a Gen reference for Integers.
 Gen<Integer> iOb;

 // Create a Gen<Integer> object and assign its
 // reference to iOb. Notice the use of autoboxing
 // to encapsulate the value 88 within an Integer object.
 iOb = new Gen<Integer>(88);

 // Show the type of data used by iOb.
 iOb.showType();

 // Get the value in iOb. Notice that
 // no cast is needed.
 int v = iOb.getob();
 System.out.println("value: " + v);

 System.out.println();

 // Create a Gen object for Strings.
 Gen<String> strOb = new Gen<String> ("Generics Test");

 // Show the type of data used by strOb.
 strOb.showType();

 // Get the value of strOb. Again, notice
 // that no cast is needed.
 String str = strOb.getob();
 System.out.println("value: " + str);
 }
}

The output produced by the program is shown here:

 Type of T is java.lang.Integer
 value: 88

 Type of T is java.lang.String
 value: Generics Test

Let’s examine this program carefully.
First, notice how Gen is declared by the following line:

class Gen<T> {

14-ch14.indd 339 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

340 PART I The Java Language

Here, T is the name of a type parameter. This name is used as a placeholder for the actual
type that will be passed to Gen when an object is created. Thus, T is used within Gen
whenever the type parameter is needed. Notice that T is contained within < >. This syntax
can be generalized. Whenever a type parameter is being declared, it is specified within
angle brackets. Because Gen uses a type parameter, Gen is a generic class, which is also
called a parameterized type.

Next, T is used to declare an object called ob, as shown here:

T ob; // declare an object of type T

As explained, T is a placeholder for the actual type that will be specified when a Gen object
is created. Thus, ob will be an object of the type passed to T. For example, if type String is
passed to T, then in that instance, ob will be of type String.

Now consider Gen’s constructor:

Gen(T o) {
 ob = o;
}

Notice that its parameter, o, is of type T. This means that the actual type of o is determined
by the type passed to T when a Gen object is created. Also, because both the parameter o
and the member variable ob are of type T, they will both be of the same actual type when a
Gen object is created.

The type parameter T can also be used to specify the return type of a method, as is the
case with the getob() method, shown here:

T getob() {
 return ob;
}

Because ob is also of type T, its type is compatible with the return type specified by getob().
The showType() method displays the type of T by calling getName() on the Class object

returned by the call to getClass() on ob. The getClass() method is defined by Object and is
thus a member of all class types. It returns a Class object that corresponds to the type of the
class of the object on which it is called. Class defines the getName() method, which returns
a string representation of the class name.

The GenDemo class demonstrates the generic Gen class. It first creates a version of Gen
for integers, as shown here:

Gen<Integer> iOb;

Look closely at this declaration. First, notice that the type Integer is specified within the
angle brackets after Gen. In this case, Integer is a type argument that is passed to Gen’s type
parameter, T. This effectively creates a version of Gen in which all references to T are
translated into references to Integer. Thus, for this declaration, ob is of type Integer, and
the return type of getob() is of type Integer.

14-ch14.indd 340 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 341

Pa
rt

 I

Before moving on, it’s necessary to state that the Java compiler does not actually create
different versions of Gen, or of any other generic class. Although it’s helpful to think in
these terms, it is not what actually happens. Instead, the compiler removes all generic type
information, substituting the necessary casts, to make your code behave as if a specific
version of Gen were created. Thus, there is really only one version of Gen that actually
exists in your program. The process of removing generic type information is called erasure,
and we will return to this topic later in this chapter.

The next line assigns to iOb a reference to an instance of an Integer version of the
Gen class:

iOb = new Gen<Integer>(88);

Notice that when the Gen constructor is called, the type argument Integer is also specified.
This is because the type of the object (in this case iOb) to which the reference is being
assigned is of type Gen<Integer>. Thus, the reference returned by new must also be of type
Gen<Integer>. If it isn’t, a compile-time error will result. For example, the following
assignment will cause a compile-time error:

iOb = new Gen<Double>(88.0); // Error!

Because iOb is of type Gen<Integer>, it can’t be used to refer to an object of Gen<Double>.
This type checking is one of the main benefits of generics because it ensures type safety.

NOTE As you will see later in this chapter, beginning with JDK 7, it is possible to shorten the syntax used
to create an instance of a generic class. In the interest of clarity, we will use the full syntax at this time.

As the comments in the program state, the assignment

iOb = new Gen<Integer>(88);

makes use of autoboxing to encapsulate the value 88, which is an int, into an Integer. This
works because Gen<Integer> creates a constructor that takes an Integer argument. Because
an Integer is expected, Java will automatically box 88 inside one. Of course, the assignment
could also have been written explicitly, like this:

iOb = new Gen<Integer>(new Integer(88));

However, there would be no benefit to using this version.
The program then displays the type of ob within iOb, which is Integer. Next, the

program obtains the value of ob by use of the following line:

int v = iOb.getob();

Because the return type of getob() is T, which was replaced by Integer when iOb was
declared, the return type of getob() is also Integer, which unboxes into int when assigned
to v (which is an int). Thus, there is no need to cast the return type of getob() to Integer.

14-ch14.indd 341 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

342 PART I The Java Language

Of course, it’s not necessary to use the auto-unboxing feature. The preceding line could
have been written like this, too:

int v = iOb.getob().intValue();

However, the auto-unboxing feature makes the code more compact.
Next, GenDemo declares an object of type Gen<String>:

Gen<String> strOb = new Gen<String>("Generics Test");

Because the type argument is String, String is substituted for T inside Gen. This creates
(conceptually) a String version of Gen, as the remaining lines in the program demonstrate.

Generics Work Only with Reference Types
When declaring an instance of a generic type, the type argument passed to the type
parameter must be a reference type. You cannot use a primitive type, such as int or char.
For example, with Gen, it is possible to pass any class type to T, but you cannot pass a
primitive type to a type parameter. Therefore, the following declaration is illegal:

Gen<int> intOb = new Gen<int>(53); // Error, can't use primitive type

Of course, not being able to specify a primitive type is not a serious restriction because you
can use the type wrappers (as the preceding example did) to encapsulate a primitive type.
Further, Java’s autoboxing and auto-unboxing mechanism makes the use of the type
wrapper transparent.

Generic Types Differ Based on Their Type Arguments
A key point to understand about generic types is that a reference of one specific version of
a generic type is not type compatible with another version of the same generic type. For
example, assuming the program just shown, the following line of code is in error and will
not compile:

iOb = strOb; // Wrong!

Even though both iOb and strOb are of type Gen<T>, they are references to different types
because their type parameters differ. This is part of the way that generics add type safety
and prevent errors.

How Generics Improve Type Safety
At this point, you might be asking yourself the following question: Given that the same
functionality found in the generic Gen class can be achieved without generics, by simply
specifying Object as the data type and employing the proper casts, what is the benefit of
making Gen generic? The answer is that generics automatically ensure the type safety of all
operations involving Gen. In the process, they eliminate the need for you to enter casts and
to type-check code by hand.

14-ch14.indd 342 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 343

Pa
rt

 I

To understand the benefits of generics, first consider the following program that
creates a non-generic equivalent of Gen:

// NonGen is functionally equivalent to Gen
// but does not use generics.
class NonGen {
 Object ob; // ob is now of type Object

 // Pass the constructor a reference to
 // an object of type Object
 NonGen(Object o) {
 ob = o;
 }

 // Return type Object.
 Object getob() {
 return ob;
 }

 // Show type of ob.
 void showType() {
 System.out.println("Type of ob is " +
 ob.getClass().getName());
 }
}

// Demonstrate the non-generic class.
class NonGenDemo {
 public static void main(String args[]) {
 NonGen iOb;

 // Create NonGen Object and store
 // an Integer in it. Autoboxing still occurs.
 iOb = new NonGen(88);

 // Show the type of data used by iOb.
 iOb.showType();

 // Get the value of iOb.
 // This time, a cast is necessary.
 int v = (Integer) iOb.getob();
 System.out.println("value: " + v);

 System.out.println();

 // Create another NonGen object and
 // store a String in it.
 NonGen strOb = new NonGen("Non-Generics Test");

 // Show the type of data used by strOb.
 strOb.showType();

 // Get the value of strOb.
 // Again, notice that a cast is necessary.

14-ch14.indd 343 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

344 PART I The Java Language

 String str = (String) strOb.getob();
 System.out.println("value: " + str);

 // This compiles, but is conceptually wrong!
 iOb = strOb;
 v = (Integer) iOb.getob(); // run-time error!
 }
}

There are several things of interest in this version. First, notice that NonGen replaces all
uses of T with Object. This makes NonGen able to store any type of object, as can the generic
version. However, it also prevents the Java compiler from having any real knowledge about
the type of data actually stored in NonGen, which is bad for two reasons. First, explicit casts
must be employed to retrieve the stored data. Second, many kinds of type mismatch errors
cannot be found until run time. Let’s look closely at each problem.

Notice this line:

int v = (Integer) iOb.getob();

Because the return type of getob() is Object, the cast to Integer is necessary to enable
that value to be auto-unboxed and stored in v. If you remove the cast, the program will
not compile. With the generic version, this cast was implicit. In the non-generic version,
the cast must be explicit. This is not only an inconvenience, but also a potential source
of error.

Now, consider the following sequence from near the end of the program:

// This compiles, but is conceptually wrong!
iOb = strOb;
v = (Integer) iOb.getob(); // run-time error!

Here, strOb is assigned to iOb. However, strOb refers to an object that contains a string,
not an integer. This assignment is syntactically valid because all NonGen references are
the same, and any NonGen reference can refer to any other NonGen object. However, the
statement is semantically wrong, as the next line shows. Here, the return type of getob() is
cast to Integer, and then an attempt is made to assign this value to v. The trouble is that
iOb now refers to an object that stores a String, not an Integer. Unfortunately, without the
use of generics, the Java compiler has no way to know this. Instead, a run-time exception
occurs when the cast to Integer is attempted. As you know, it is extremely bad to have
run-time exceptions occur in your code!

The preceding sequence can’t occur when generics are used. If this sequence were
attempted in the generic version of the program, the compiler would catch it and report
an error, thus preventing a serious bug that results in a run-time exception. The ability to
create type-safe code in which type-mismatch errors are caught at compile time is a key
advantage of generics. Although using Object references to create “generic” code has
always been possible, that code was not type safe, and its misuse could result in run-time
exceptions. Generics prevent this from occurring. In essence, through generics, run-time
errors are converted into compile-time errors. This is a major advantage.

14-ch14.indd 344 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 345

Pa
rt

 I

A Generic Class with Two Type Parameters
You can declare more than one type parameter in a generic type. To specify two or more
type parameters, simply use a comma-separated list. For example, the following TwoGen
class is a variation of the Gen class that has two type parameters:

// A simple generic class with two type
// parameters: T and V.
class TwoGen<T, V> {
 T ob1;
 V ob2;

 // Pass the constructor a reference to
 // an object of type T and an object of type V.
 TwoGen(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }

 // Show types of T and V.
 void showTypes() {
 System.out.println("Type of T is " +
 ob1.getClass().getName());

 System.out.println("Type of V is " +
 ob2.getClass().getName());
 }

 T getob1() {
 return ob1;
 }

 V getob2() {
 return ob2;
 }
}

// Demonstrate TwoGen.
class SimpGen {
 public static void main(String args[]) {

 TwoGen<Integer, String> tgObj =
 new TwoGen<Integer, String>(88, "Generics");

 // Show the types.
 tgObj.showTypes();

 // Obtain and show values.
 int v = tgObj.getob1();
 System.out.println("value: " + v);

 String str = tgObj.getob2();
 System.out.println("value: " + str);
 }
}

14-ch14.indd 345 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

346 PART I The Java Language

The output from this program is shown here:

 Type of T is java.lang.Integer
 Type of V is java.lang.String
 value: 88
 value: Generics

Notice how TwoGen is declared:

class TwoGen<T, V> {

It specifies two type parameters: T and V, separated by a comma. Because it has two type
parameters, two type arguments must be passed to TwoGen when an object is created, as
shown next:

TwoGen<Integer, String> tgObj =
 new TwoGen<Integer, String>(88, "Generics");

In this case, Integer is substituted for T, and String is substituted for V.
Although the two type arguments differ in this example, it is possible for both types to

be the same. For example, the following line of code is valid:

TwoGen<String, String> x = new TwoGen<String, String> ("A", "B");

In this case, both T and V would be of type String. Of course, if the type arguments were
always the same, then two type parameters would be unnecessary.

The General Form of a Generic Class
The generics syntax shown in the preceding examples can be generalized. Here is the
syntax for declaring a generic class:

class class-name<type-param-list > { // …

Here is the full syntax for declaring a reference to a generic class and instance creation:

class-name<type-arg-list > var-name =
 new class-name<type-arg-list >(cons-arg-list);

Bounded Types
In the preceding examples, the type parameters could be replaced by any class type. This is
fine for many purposes, but sometimes it is useful to limit the types that can be passed to a
type parameter. For example, assume that you want to create a generic class that contains a
method that returns the average of an array of numbers. Furthermore, you want to use the
class to obtain the average of an array of any type of number, including integers, floats, and
doubles. Thus, you want to specify the type of the numbers generically, using a type parameter.
To create such a class, you might try something like this:

// Stats attempts (unsuccessfully) to
// create a generic class that can compute

14-ch14.indd 346 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 347

Pa
rt

 I

// the average of an array of numbers of
// any given type.
//
// The class contains an error!
class Stats<T> {
 T[] nums; // nums is an array of type T

 // Pass the constructor a reference to
 // an array of type T.
 Stats(T[] o) {
 nums = o;
 }

 // Return type double in all cases.
 double average() {
 double sum = 0.0;
 for(int i=0; i < nums.length; i++)
 sum += nums[i].doubleValue(); // Error!!!

 return sum / nums.length;
 }
}

In Stats, the average() method attempts to obtain the double version of each number in
the nums array by calling doubleValue(). Because all numeric classes, such as Integer and
Double, are subclasses of Number, and Number defines the doubleValue() method, this
method is available to all numeric wrapper classes. The trouble is that the compiler has no
way to know that you are intending to create Stats objects using only numeric types. Thus,
when you try to compile Stats, an error is reported that indicates that the doubleValue()
method is unknown. To solve this problem, you need some way to tell the compiler that you
intend to pass only numeric types to T. Furthermore, you need some way to ensure that only
numeric types are actually passed.

To handle such situations, Java provides bounded types. When specifying a type parameter,
you can create an upper bound that declares the superclass from which all type arguments
must be derived. This is accomplished through the use of an extends clause when specifying
the type parameter, as shown here:

<T extends superclass>

This specifies that T can only be replaced by superclass, or subclasses of superclass. Thus,
superclass defines an inclusive, upper limit.

You can use an upper bound to fix the Stats class shown earlier by specifying Number as
an upper bound, as shown here:

// In this version of Stats, the type argument for
// T must be either Number, or a class derived
// from Number.
class Stats<T extends Number> {
 T[] nums; // array of Number or subclass

14-ch14.indd 347 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

348 PART I The Java Language

 // Pass the constructor a reference to
 // an array of type Number or subclass.
 Stats(T[] o) {
 nums = o;
 }

 // Return type double in all cases.
 double average() {
 double sum = 0.0;

 for(int i=0; i < nums.length; i++)
 sum += nums[i].doubleValue();

 return sum / nums.length;
 }
}

// Demonstrate Stats.
class BoundsDemo {
 public static void main(String args[]) {

 Integer inums[] = { 1, 2, 3, 4, 5 };
 Stats<Integer> iob = new Stats<Integer>(inums);
 double v = iob.average();
 System.out.println("iob average is " + v);

 Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
 Stats<Double> dob = new Stats<Double>(dnums);
 double w = dob.average();
 System.out.println("dob average is " + w);

 // This won't compile because String is not a
 // subclass of Number.
// String strs[] = { "1", "2", "3", "4", "5" };
// Stats<String> strob = new Stats<String>(strs);

// double x = strob.average();
// System.out.println("strob average is " + v);

 }
}

The output is shown here:

 Average is 3.0
 Average is 3.3

Notice how Stats is now declared by this line:

class Stats<T extends Number> {

14-ch14.indd 348 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 349

Pa
rt

 I

Because the type T is now bounded by Number, the Java compiler knows that all objects
of type T can call doubleValue() because it is a method declared by Number. This is, by
itself, a major advantage. However, as an added bonus, the bounding of T also prevents
nonnumeric Stats objects from being created. For example, if you try removing the
comments from the lines at the end of the program, and then try recompiling, you will
receive compile-time errors because String is not a subclass of Number.

In addition to using a class type as a bound, you can also use an interface type. In fact,
you can specify multiple interfaces as bounds. Furthermore, a bound can include both a
class type and one or more interfaces. In this case, the class type must be specified first.
When a bound includes an interface type, only type arguments that implement that
interface are legal. When specifying a bound that has a class and an interface, or multiple
interfaces, use the & operator to connect them. For example,

class Gen<T extends MyClass & MyInterface> { // ...

Here, T is bounded by a class called MyClass and an interface called MyInterface. Thus,
any type argument passed to T must be a subclass of MyClass and implement MyInterface.

Using Wildcard Arguments
As useful as type safety is, sometimes it can get in the way of perfectly acceptable constructs.
For example, given the Stats class shown at the end of the preceding section, assume that
you want to add a method called sameAvg() that determines if two Stats objects contain
arrays that yield the same average, no matter what type of numeric data each object holds.
For example, if one object contains the double values 1.0, 2.0, and 3.0, and the other object
contains the integer values 2, 1, and 3, then the averages will be the same. One way to
implement sameAvg() is to pass it a Stats argument, and then compare the average of that
argument against the invoking object, returning true only if the averages are the same. For
example, you want to be able to call sameAvg(), as shown here:

Integer inums[] = { 1, 2, 3, 4, 5 };
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };

Stats<Integer> iob = new Stats<Integer>(inums);
Stats<Double> dob = new Stats<Double>(dnums);

if(iob.sameAvg(dob))
 System.out.println("Averages are the same.");
else
 System.out.println("Averages differ.");

At first, creating sameAvg() seems like an easy problem. Because Stats is generic and its
average() method can work on any type of Stats object, it seems that creating sameAvg()
would be straightforward. Unfortunately, trouble starts as soon as you try to declare a
parameter of type Stats. Because Stats is a parameterized type, what do you specify for
Stats’ type parameter when you declare a parameter of that type?

14-ch14.indd 349 14/02/14 5:05 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

350 PART I The Java Language

At first, you might think of a solution like this, in which T is used as the type parameter:

// This won't work!
// Determine if two averages are the same.
boolean sameAvg(Stats<T> ob) {
 if(average() == ob.average())
 return true;

 return false;
}

The trouble with this attempt is that it will work only with other Stats objects whose type is the
same as the invoking object. For example, if the invoking object is of type Stats<Integer>,
then the parameter ob must also be of type Stats<Integer>. It can’t be used to compare the
average of an object of type Stats<Double> with the average of an object of type Stats<Short>,
for example. Therefore, this approach won’t work except in a very narrow context and does
not yield a general (that is, generic) solution.

To create a generic sameAvg() method, you must use another feature of Java generics:
the wildcard argument. The wildcard argument is specified by the ?, and it represents an
unknown type. Using a wildcard, here is one way to write the sameAvg() method:

// Determine if two averages are the same.
// Notice the use of the wildcard.
boolean sameAvg(Stats<?> ob) {
 if(average() == ob.average())
 return true;

 return false;
}

Here, Stats<?> matches any Stats object, allowing any two Stats objects to have their
averages compared. The following program demonstrates this:

// Use a wildcard.
class Stats<T extends Number> {
 T[] nums; // array of Number or subclass

 // Pass the constructor a reference to
 // an array of type Number or subclass.
 Stats(T[] o) {
 nums = o;
 }

 // Return type double in all cases.
 double average() {
 double sum = 0.0;

 for(int i=0; i < nums.length; i++)
 sum += nums[i].doubleValue();

14-ch14.indd 350 14/02/14 5:05 PM

Pitrick
Highlight

Pitrick
Underline

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 351

Pa
rt

 I

 return sum / nums.length;
 }

 // Determine if two averages are the same.
 // Notice the use of the wildcard.
 boolean sameAvg(Stats<?> ob) {
 if(average() == ob.average())
 return true;

 return false;
 }
}

// Demonstrate wildcard.
class WildcardDemo {
 public static void main(String args[]) {
 Integer inums[] = { 1, 2, 3, 4, 5 };
 Stats<Integer> iob = new Stats<Integer>(inums);
 double v = iob.average();
 System.out.println("iob average is " + v);

 Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
 Stats<Double> dob = new Stats<Double>(dnums);
 double w = dob.average();
 System.out.println("dob average is " + w);

 Float fnums[] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F };
 Stats<Float> fob = new Stats<Float>(fnums);
 double x = fob.average();
 System.out.println("fob average is " + x);

 // See which arrays have same average.
 System.out.print("Averages of iob and dob ");
 if(iob.sameAvg(dob))
 System.out.println("are the same.");
 else
 System.out.println("differ.");

 System.out.print("Averages of iob and fob ");
 if(iob.sameAvg(fob))
 System.out.println("are the same.");
 else
 System.out.println("differ.");
 }
}

The output is shown here:

 iob average is 3.0
 dob average is 3.3
 fob average is 3.0
 Averages of iob and dob differ.
 Averages of iob and fob are the same.

14-ch14.indd 351 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

352 PART I The Java Language

One last point: It is important to understand that the wildcard does not affect what type
of Stats objects can be created. This is governed by the extends clause in the Stats declaration.
The wildcard simply matches any valid Stats object.

Bounded Wildcards
Wildcard arguments can be bounded in much the same way that a type parameter can be
bounded. A bounded wildcard is especially important when you are creating a generic type
that will operate on a class hierarchy. To understand why, let’s work through an example.
Consider the following hierarchy of classes that encapsulate coordinates:

// Two-dimensional coordinates.
class TwoD {
 int x, y;

 TwoD(int a, int b) {
 x = a;
 y = b;
 }
}

// Three-dimensional coordinates.
class ThreeD extends TwoD {
 int z;

 ThreeD(int a, int b, int c) {
 super(a, b);
 z = c;
 }
}

// Four-dimensional coordinates.
class FourD extends ThreeD {
 int t;

 FourD(int a, int b, int c, int d) {
 super(a, b, c);
 t = d;
 }
}

At the top of the hierarchy is TwoD, which encapsulates a two-dimensional, XY
coordinate. TwoD is inherited by ThreeD, which adds a third dimension, creating an XYZ
coordinate. ThreeD is inherited by FourD, which adds a fourth dimension (time), yielding
a four-dimensional coordinate.

Shown next is a generic class called Coords, which stores an array of coordinates:

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
 T[] coords;

 Coords(T[] o) { coords = o; }
}

14-ch14.indd 352 14/02/14 5:05 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 353

Pa
rt

 I

Notice that Coords specifies a type parameter bounded by TwoD. This means that any array
stored in a Coords object will contain objects of type TwoD or one of its subclasses.

Now, assume that you want to write a method that displays the X and Y coordinates for
each element in the coords array of a Coords object. Because all types of Coords objects
have at least two coordinates (X and Y), this is easy to do using a wildcard, as shown here:

static void showXY(Coords<?> c) {
 System.out.println("X Y Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y);
 System.out.println();
}

Because Coords is a bounded generic type that specifies TwoD as an upper bound, all
objects that can be used to create a Coords object will be arrays of type TwoD, or of classes
derived from TwoD. Thus, showXY() can display the contents of any Coords object.

However, what if you want to create a method that displays the X, Y, and Z coordinates
of a ThreeD or FourD object? The trouble is that not all Coords objects will have three
coordinates, because a Coords<TwoD> object will only have X and Y. Therefore, how do
you write a method that displays the X, Y, and Z coordinates for Coords<ThreeD> and
Coords<FourD> objects, while preventing that method from being used with Coords<TwoD>
objects? The answer is the bounded wildcard argument.

A bounded wildcard specifies either an upper bound or a lower bound for the type
argument. This enables you to restrict the types of objects upon which a method will
operate. The most common bounded wildcard is the upper bound, which is created using
an extends clause in much the same way it is used to create a bounded type.

Using a bounded wildcard, it is easy to create a method that displays the X, Y, and Z
coordinates of a Coords object, if that object actually has those three coordinates. For
example, the following showXYZ() method shows the X, Y, and Z coordinates of the
elements stored in a Coords object, if those elements are actually of type ThreeD (or
are derived from ThreeD):

static void showXYZ(Coords<? extends ThreeD> c) {
 System.out.println("X Y Z Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y + " " +
 c.coords[i].z);
 System.out.println();
}

Notice that an extends clause has been added to the wildcard in the declaration of
parameter c. It states that the ? can match any type as long as it is ThreeD, or a class derived
from ThreeD. Thus, the extends clause establishes an upper bound that the ? can match.
Because of this bound, showXYZ() can be called with references to objects of type
Coords<ThreeD> or Coords<FourD>, but not with a reference of type Coords<TwoD>.
Attempting to call showXZY() with a Coords<TwoD> reference results in a compile-time
error, thus ensuring type safety.

14-ch14.indd 353 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

354 PART I The Java Language

Here is an entire program that demonstrates the actions of a bounded wildcard argument:

// Bounded Wildcard arguments.

// Two-dimensional coordinates.
class TwoD {
 int x, y;

 TwoD(int a, int b) {
 x = a;
 y = b;
 }
}

// Three-dimensional coordinates.
class ThreeD extends TwoD {
 int z;

 ThreeD(int a, int b, int c) {
 super(a, b);
 z = c;
 }
}

// Four-dimensional coordinates.
class FourD extends ThreeD {
 int t;

 FourD(int a, int b, int c, int d) {
 super(a, b, c);
 t = d;
 }
}

// This class holds an array of coordinate objects.
class Coords<T extends TwoD> {
 T[] coords;

 Coords(T[] o) { coords = o; }
}

// Demonstrate a bounded wildcard.
class BoundedWildcard {
 static void showXY(Coords<?> c) {
 System.out.println("X Y Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y);
 System.out.println();
 }

 static void showXYZ(Coords<? extends ThreeD> c) {
 System.out.println("X Y Z Coordinates:");
 for(int i=0; i < c.coords.length; i++)

14-ch14.indd 354 14/02/14 5:05 PM

Pitrick
Underline

Pitrick
Underline

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 355

Pa
rt

 I

 System.out.println(c.coords[i].x + " " +
 c.coords[i].y + " " +
 c.coords[i].z);
 System.out.println();
 }

 static void showAll(Coords<? extends FourD> c) {
 System.out.println("X Y Z T Coordinates:");
 for(int i=0; i < c.coords.length; i++)
 System.out.println(c.coords[i].x + " " +
 c.coords[i].y + " " +
 c.coords[i].z + " " +
 c.coords[i].t);
 System.out.println();
 }

 public static void main(String args[]) {
 TwoD td[] = {
 new TwoD(0, 0),
 new TwoD(7, 9),
 new TwoD(18, 4),
 new TwoD(-1, -23)
 };

 Coords<TwoD> tdlocs = new Coords<TwoD>(td);

 System.out.println("Contents of tdlocs.");
 showXY(tdlocs); // OK, is a TwoD
// showXYZ(tdlocs); // Error, not a ThreeD
// showAll(tdlocs); // Error, not a FourD

 // Now, create some FourD objects.
 FourD fd[] = {
 new FourD(1, 2, 3, 4),
 new FourD(6, 8, 14, 8),
 new FourD(22, 9, 4, 9),
 new FourD(3, -2, -23, 17)
 };

 Coords<FourD> fdlocs = new Coords<FourD>(fd);

 System.out.println("Contents of fdlocs.");
 // These are all OK.
 showXY(fdlocs);
 showXYZ(fdlocs);
 showAll(fdlocs);
 }
}

The output from the program is shown here:

 Contents of tdlocs.
 X Y Coordinates:
 0 0

14-ch14.indd 355 14/02/14 5:05 PM

Pitrick
Underline

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

356 PART I The Java Language

 7 9
 18 4
 -1 -23

 Contents of fdlocs.
 X Y Coordinates:
 1 2
 6 8
 22 9
 3 -2

 X Y Z Coordinates:
 1 2 3
 6 8 14
 22 9 4
 3 -2 -23

 X Y Z T Coordinates:
 1 2 3 4
 6 8 14 8
 22 9 4 9
 3 -2 -23 17

Notice these commented-out lines:

// showXYZ(tdlocs); // Error, not a ThreeD
// showAll(tdlocs); // Error, not a FourD

Because tdlocs is a Coords(TwoD) object, it cannot be used to call showXYZ() or showAll()
because bounded wildcard arguments in their declarations prevent it. To prove this to
yourself, try removing the comment symbols, and then attempt to compile the program.
You will receive compilation errors because of the type mismatches.

In general, to establish an upper bound for a wildcard, use the following type of
wildcard expression:

<? extends superclass>

where superclass is the name of the class that serves as the upper bound. Remember, this is
an inclusive clause because the class forming the upper bound (that is, specified by superclass)
is also within bounds.

You can also specify a lower bound for a wildcard by adding a super clause to a wildcard
declaration. Here is its general form:

<? super subclass>

In this case, only classes that are superclasses of subclass are acceptable arguments. This is
an inclusive clause.

Creating a Generic Method
As the preceding examples have shown, methods inside a generic class can make use of a
class’ type parameter and are, therefore, automatically generic relative to the type parameter.
However, it is possible to declare a generic method that uses one or more type parameters of

14-ch14.indd 356 14/02/14 5:05 PM

Pitrick
Highlight

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 357

Pa
rt

 I

its own. Furthermore, it is possible to create a generic method that is enclosed within a
non-generic class.

Let’s begin with an example. The following program declares a non-generic class called
GenMethDemo and a static generic method within that class called isIn(). The isIn()
method determines if an object is a member of an array. It can be used with any type of
object and array as long as the array contains objects that are compatible with the type of
the object being sought.

// Demonstrate a simple generic method.
class GenMethDemo {

 // Determine if an object is in an array.
 static <T extends Comparable<T>, V extends T> boolean isIn(T x, V[] y) {
 for(int i=0; i < y.length; i++)
 if(x.equals(y[i])) return true;

 return false;
 }

 public static void main(String args[]) {

 // Use isIn() on Integers.
 Integer nums[] = { 1, 2, 3, 4, 5 };

 if(isIn(2, nums))
 System.out.println("2 is in nums");

 if(!isIn(7, nums))
 System.out.println("7 is not in nums");

 System.out.println();

 // Use isIn() on Strings.
 String strs[] = { "one", "two", "three",
 "four", "five" };

 if(isIn("two", strs))
 System.out.println("two is in strs");

 if(!isIn("seven", strs))
 System.out.println("seven is not in strs");

 // Oops! Won't compile! Types must be compatible.
// if(isIn("two", nums))
// System.out.println("two is in strs");
 }
}

The output from the program is shown here:

 2 is in nums
 7 is not in nums

14-ch14.indd 357 14/02/14 5:05 PM

Pitrick
Highlight

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

358 PART I The Java Language

 two is in strs
 seven is not in strs

Let’s examine isIn() closely. First, notice how it is declared by this line:

static <T extends Comparable<T>, V extends T> boolean isIn(T x, V[] y) {

The type parameters are declared before the return type of the method. Also note that
T extends Comparable<T>. Comparable is an interface declared in java.lang. A class that
implements Comparable defines objects that can be ordered. Thus, requiring an upper
bound of Comparable ensures that isIn() can be used only with objects that are capable of
being compared. Comparable is generic, and its type parameter specifies the type of objects
that it compares. (Shortly, you will see how to create a generic interface.) Next, notice that
the type V is upper-bounded by T. Thus, V must either be the same as type T, or a subclass
of T. This relationship enforces that isIn() can be called only with arguments that are
compatible with each other. Also notice that isIn() is static, enabling it to be called
independently of any object. Understand, though, that generic methods can be either
static or non-static. There is no restriction in this regard.

Now, notice how isIn() is called within main() by use of the normal call syntax, without
the need to specify type arguments. This is because the types of the arguments are
automatically discerned, and the types of T and V are adjusted accordingly. For example,
in the first call:

if(isIn(2, nums))

the type of the first argument is Integer (due to autoboxing), which causes Integer to be
substituted for T. The base type of the second argument is also Integer, which makes
Integer a substitute for V, too. In the second call, String types are used, and the types of T
and V are replaced by String.

Although type inference will be sufficient for most generic method calls, you can
explicitly specify the type argument if needed. For example, here is how the first call to
isIn() looks when the type arguments are specified:

GenMethDemo.<Integer, Integer>isIn(2, nums)

Of course, in this case, there is nothing gained by specifying the type arguments. Furthermore,
JDK 8 has improved type inference as it relates to methods. As a result, there are fewer cases
in which explicit type arguments are needed.

Now, notice the commented-out code, shown here:

// if(isIn("two", nums))
// System.out.println("two is in strs");

If you remove the comments and then try to compile the program, you will receive an error.
The reason is that the type parameter V is bounded by T in the extends clause in V’s
declaration. This means that V must be either type T, or a subclass of T. In this case, the
first argument is of type String, making T into String, but the second argument is of type

14-ch14.indd 358 14/02/14 5:05 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 359

Pa
rt

 I

Integer, which is not a subclass of String. This causes a compile-time type-mismatch error.
This ability to enforce type safety is one of the most important advantages of generic
methods.

The syntax used to create isIn() can be generalized. Here is the syntax for a generic
method:

<type-param-list > ret-type meth-name (param-list) { // …

In all cases, type-param-list is a comma-separated list of type parameters. Notice that for a
generic method, the type parameter list precedes the return type.

Generic Constructors
It is possible for constructors to be generic, even if their class is not. For example, consider
the following short program:

// Use a generic constructor.
class GenCons {
 private double val;

 <T extends Number> GenCons(T arg) {
 val = arg.doubleValue();
 }

 void showval() {
 System.out.println("val: " + val);
 }
}

class GenConsDemo {
 public static void main(String args[]) {

 GenCons test = new GenCons(100);
 GenCons test2 = new GenCons(123.5F);

 test.showval();
 test2.showval();
 }
}

The output is shown here:

 val: 100.0
 val: 123.5

Because GenCons() specifies a parameter of a generic type, which must be a subclass
of Number, GenCons() can be called with any numeric type, including Integer, Float, or
Double. Therefore, even though GenCons is not a generic class, its constructor is generic.

14-ch14.indd 359 14/02/14 5:05 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

360 PART I The Java Language

Generic Interfaces
In addition to generic classes and methods, you can also have generic interfaces. Generic
interfaces are specified just like generic classes. Here is an example. It creates an interface
called MinMax that declares the methods min() and max(), which are expected to return
the minimum and maximum value of some set of objects.

// A generic interface example.

// A Min/Max interface.
interface MinMax<T extends Comparable<T>> {
 T min();
 T max();
}

// Now, implement MinMax
class MyClass<T extends Comparable<T>> implements MinMax<T> {
 T[] vals;

 MyClass(T[] o) { vals = o; }

 // Return the minimum value in vals.
 public T min() {
 T v = vals[0];

 for(int i=1; i < vals.length; i++)
 if(vals[i].compareTo(v) < 0) v = vals[i];

 return v;
 }

 // Return the maximum value in vals.
 public T max() {
 T v = vals[0];

 for(int i=1; i < vals.length; i++)
 if(vals[i].compareTo(v) > 0) v = vals[i];

 return v;
 }
}

class GenIFDemo {
 public static void main(String args[]) {
 Integer inums[] = {3, 6, 2, 8, 6 };
 Character chs[] = {'b', 'r', 'p', 'w' };

 MyClass<Integer> iob = new MyClass<Integer>(inums);
 MyClass<Character> cob = new MyClass<Character>(chs);

 System.out.println("Max value in inums: " + iob.max());
 System.out.println("Min value in inums: " + iob.min());

14-ch14.indd 360 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 361

Pa
rt

 I

 System.out.println("Max value in chs: " + cob.max());
 System.out.println("Min value in chs: " + cob.min());
 }
}

The output is shown here:

 Max value in inums: 8
 Min value in inums: 2
 Max value in chs: w
 Min value in chs: b

Although most aspects of this program should be easy to understand, a couple of key
points need to be made. First, notice that MinMax is declared like this:

interface MinMax<T extends Comparable<T>> {

In general, a generic interface is declared in the same way as is a generic class. In this case,
the type parameter is T, and its upper bound is Comparable. As explained earlier, Comparable
is an interface defined by java.lang that specifies how objects are compared. Its type parameter
specifies the type of the objects being compared.

Next, MinMax is implemented by MyClass. Notice the declaration of MyClass,
shown here:

class MyClass<T extends Comparable<T>> implements MinMax<T> {

Pay special attention to the way that the type parameter T is declared by MyClass and then
passed to MinMax. Because MinMax requires a type that implements Comparable, the
implementing class (MyClass in this case) must specify the same bound. Furthermore, once
this bound has been established, there is no need to specify it again in the implements clause.
In fact, it would be wrong to do so. For example, this line is incorrect and won’t compile:

// This is wrong!
class MyClass<T extends Comparable<T>>
 implements MinMax<T extends Comparable<T>> {

Once the type parameter has been established, it is simply passed to the interface without
further modification.

In general, if a class implements a generic interface, then that class must also be
generic, at least to the extent that it takes a type parameter that is passed to the interface.
For example, the following attempt to declare MyClass is in error:

class MyClass implements MinMax<T> { // Wrong!

Because MyClass does not declare a type parameter, there is no way to pass one to MinMax.
In this case, the identifier T is simply unknown, and the compiler reports an error. Of
course, if a class implements a specific type of generic interface, such as shown here:

class MyClass implements MinMax<Integer> { // OK

then the implementing class does not need to be generic.

14-ch14.indd 361 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

362 PART I The Java Language

The generic interface offers two benefits. First, it can be implemented for different
types of data. Second, it allows you to put constraints (that is, bounds) on the types of data
for which the interface can be implemented. In the MinMax example, only types that
implement the Comparable interface can be passed to T.

Here is the generalized syntax for a generic interface:

interface interface-name<type-param-list> { // …

Here, type-param-list is a comma-separated list of type parameters. When a generic interface
is implemented, you must specify the type arguments, as shown here:

class class-name<type-param-list>
 implements interface-name<type-arg-list> {

Raw Types and Legacy Code
Because support for generics did not exist prior to JDK 5, it was necessary to provide some
transition path from old, pre-generics code. At the time of this writing, there is still
pre-generics legacy code that must remain both functional and compatible with generics.
Pre-generics code must be able to work with generics, and generic code must be able to
work with pre-generics code.

To handle the transition to generics, Java allows a generic class to be used without any
type arguments. This creates a raw type for the class. This raw type is compatible with legacy
code, which has no knowledge of generics. The main drawback to using the raw type is that
the type safety of generics is lost.

Here is an example that shows a raw type in action:

// Demonstrate a raw type.
class Gen<T> {

 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// Demonstrate raw type.
class RawDemo {
 public static void main(String args[]) {

 // Create a Gen object for Integers.
 Gen<Integer> iOb = new Gen<Integer>(88);

14-ch14.indd 362 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 363

Pa
rt

 I

 // Create a Gen object for Strings.
 Gen<String> strOb = new Gen<String>("Generics Test");

 // Create a raw-type Gen object and give it
 // a Double value.
 Gen raw = new Gen(new Double(98.6));

 // Cast here is necessary because type is unknown.
 double d = (Double) raw.getob();
 System.out.println("value: " + d);

 // The use of a raw type can lead to run-time
 // exceptions. Here are some examples.

 // The following cast causes a run-time error!
// int i = (Integer) raw.getob(); // run-time error

 // This assignment overrides type safety.
 strOb = raw; // OK, but potentially wrong
// String str = strOb.getob(); // run-time error

 // This assignment also overrides type safety.
 raw = iOb; // OK, but potentially wrong
// d = (Double) raw.getob(); // run-time error
 }
}

This program contains several interesting things. First, a raw type of the generic Gen
class is created by the following declaration:

Gen raw = new Gen(new Double(98.6));

Notice that no type arguments are specified. In essence, this creates a Gen object whose
type T is replaced by Object.

A raw type is not type safe. Thus, a variable of a raw type can be assigned a reference to
any type of Gen object. The reverse is also allowed; a variable of a specific Gen type can be
assigned a reference to a raw Gen object. However, both operations are potentially unsafe
because the type checking mechanism of generics is circumvented.

This lack of type safety is illustrated by the commented-out lines at the end of the
program. Let’s examine each case. First, consider the following situation:

// int i = (Integer) raw.getob(); // run-time error

In this statement, the value of ob inside raw is obtained, and this value is cast to Integer.
The trouble is that raw contains a Double value, not an integer value. However, this cannot
be detected at compile time because the type of raw is unknown. Thus, this statement fails
at run time.

The next sequence assigns to a strOb (a reference of type Gen<String>) a reference to
a raw Gen object:

 strOb = raw; // OK, but potentially wrong
// String str = strOb.getob(); // run-time error

14-ch14.indd 363 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

364 PART I The Java Language

The assignment, itself, is syntactically correct, but questionable. Because strOb is of type
Gen<String>, it is assumed to contain a String. However, after the assignment, the object
referred to by strOb contains a Double. Thus, at run time, when an attempt is made to
assign the contents of strOb to str, a run-time error results because strOb now contains a
Double. Thus, the assignment of a raw reference to a generic reference bypasses the type-
safety mechanism.

The following sequence inverts the preceding case:

 raw = iOb; // OK, but potentially wrong
// d = (Double) raw.getob(); // run-time error

Here, a generic reference is assigned to a raw reference variable. Although this is
syntactically correct, it can lead to problems, as illustrated by the second line. In this case,
raw now refers to an object that contains an Integer object, but the cast assumes that it
contains a Double. This error cannot be prevented at compile time. Rather, it causes a
run-time error.

Because of the potential for danger inherent in raw types, javac displays unchecked
warnings when a raw type is used in a way that might jeopardize type safety. In the preceding
program, these lines generate unchecked warnings:

Gen raw = new Gen(new Double(98.6));

strOb = raw; // OK, but potentially wrong

In the first line, it is the call to the Gen constructor without a type argument that causes the
warning. In the second line, it is the assignment of a raw reference to a generic variable that
generates the warning.

At first, you might think that this line should also generate an unchecked warning, but
it does not:

raw = iOb; // OK, but potentially wrong

No compiler warning is issued because the assignment does not cause any further loss of
type safety than had already occurred when raw was created.

One final point: You should limit the use of raw types to those cases in which you must
mix legacy code with newer, generic code. Raw types are simply a transitional feature and
not something that should be used for new code.

Generic Class Hierarchies
Generic classes can be part of a class hierarchy in just the same way as a non-generic class.
Thus, a generic class can act as a superclass or be a subclass. The key difference between
generic and non-generic hierarchies is that in a generic hierarchy, any type arguments
needed by a generic superclass must be passed up the hierarchy by all subclasses. This is
similar to the way that constructor arguments must be passed up a hierarchy.

14-ch14.indd 364 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 365

Pa
rt

 I

Using a Generic Superclass
Here is a simple example of a hierarchy that uses a generic superclass:

// A simple generic class hierarchy.
class Gen<T> {
 T ob;

 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen.
class Gen2<T> extends Gen<T> {
 Gen2(T o) {
 super(o);
 }
}

In this hierarchy, Gen2 extends the generic class Gen. Notice how Gen2 is declared by
the following line:

class Gen2<T> extends Gen<T> {

The type parameter T is specified by Gen2 and is also passed to Gen in the extends clause.
This means that whatever type is passed to Gen2 will also be passed to Gen. For example, this
declaration,

Gen2<Integer> num = new Gen2<Integer>(100);

passes Integer as the type parameter to Gen. Thus, the ob inside the Gen portion of Gen2
will be of type Integer.

Notice also that Gen2 does not use the type parameter T except to support the Gen
superclass. Thus, even if a subclass of a generic superclass would otherwise not need to be
generic, it still must specify the type parameter(s) required by its generic superclass.

Of course, a subclass is free to add its own type parameters, if needed. For example,
here is a variation on the preceding hierarchy in which Gen2 adds a type parameter of
its own:

// A subclass can add its own type parameters.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.

14-ch14.indd 365 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

366 PART I The Java Language

 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen that defines a second
// type parameter, called V.
class Gen2<T, V> extends Gen<T> {
 V ob2;

 Gen2(T o, V o2) {
 super(o);
 ob2 = o2;
 }

 V getob2() {
 return ob2;
 }
}

// Create an object of type Gen2.
class HierDemo {
 public static void main(String args[]) {

 // Create a Gen2 object for String and Integer.
 Gen2<String, Integer> x =
 new Gen2<String, Integer>("Value is: ", 99);

 System.out.print(x.getob());
 System.out.println(x.getob2());
 }
}

Notice the declaration of this version of Gen2, which is shown here:

class Gen2<T, V> extends Gen<T> {

Here, T is the type passed to Gen, and V is the type that is specific to Gen2. V is used to
declare an object called ob2, and as a return type for the method getob2(). In main(), a
Gen2 object is created in which type parameter T is String, and type parameter V is Integer.
The program displays the following, expected, result:

 Value is: 99

14-ch14.indd 366 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 367

Pa
rt

 I

A Generic Subclass
It is perfectly acceptable for a non-generic class to be the superclass of a generic subclass.
For example, consider this program:

// A non-generic class can be the superclass
// of a generic subclass.

// A non-generic class.
class NonGen {
 int num;

 NonGen(int i) {
 num = i;
 }

 int getnum() {
 return num;
 }
}

// A generic subclass.
class Gen<T> extends NonGen {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o, int i) {
 super(i);
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// Create a Gen object.
class HierDemo2 {
 public static void main(String args[]) {

 // Create a Gen object for String.
 Gen<String> w = new Gen<String>("Hello", 47);

 System.out.print(w.getob() + " ");
 System.out.println(w.getnum());
 }
}

14-ch14.indd 367 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

368 PART I The Java Language

The output from the program is shown here:

 Hello 47

In the program, notice how Gen inherits NonGen in the following declaration:

class Gen<T> extends NonGen {

Because NonGen is not generic, no type argument is specified. Thus, even though Gen
declares the type parameter T, it is not needed by (nor can it be used by) NonGen. Thus,
NonGen is inherited by Gen in the normal way. No special conditions apply.

Run-Time Type Comparisons Within a Generic Hierarchy
Recall the run-time type information operator instanceof that was described in Chapter 13.
As explained, instanceof determines if an object is an instance of a class. It returns true if
an object is of the specified type or can be cast to the specified type. The instanceof
operator can be applied to objects of generic classes. The following class demonstrates
some of the type compatibility implications of a generic hierarchy:

// Use the instanceof operator with a generic class hierarchy.
class Gen<T> {
 T ob;

 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen.
class Gen2<T> extends Gen<T> {
 Gen2(T o) {
 super(o);
 }
}

// Demonstrate run-time type ID implications of generic
// class hierarchy.
class HierDemo3 {
 public static void main(String args[]) {

 // Create a Gen object for Integers.
 Gen<Integer> iOb = new Gen<Integer>(88);

 // Create a Gen2 object for Integers.
 Gen2<Integer> iOb2 = new Gen2<Integer>(99);

14-ch14.indd 368 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 369

Pa
rt

 I

 // Create a Gen2 object for Strings.
 Gen2<String> strOb2 = new Gen2<String>("Generics Test");

 // See if iOb2 is some form of Gen2.
 if(iOb2 instanceof Gen2<?>)
 System.out.println("iOb2 is instance of Gen2");

 // See if iOb2 is some form of Gen.
 if(iOb2 instanceof Gen<?>)
 System.out.println("iOb2 is instance of Gen");

 System.out.println();

 // See if strOb2 is a Gen2.
 if(strOb2 instanceof Gen2<?>)
 System.out.println("strOb2 is instance of Gen2");

 // See if strOb2 is a Gen.
 if(strOb2 instanceof Gen<?>)
 System.out.println("strOb2 is instance of Gen");

 System.out.println();

 // See if iOb is an instance of Gen2, which it is not.
 if(iOb instanceof Gen2<?>)
 System.out.println("iOb is instance of Gen2");

 // See if iOb is an instance of Gen, which it is.
 if(iOb instanceof Gen<?>)
 System.out.println("iOb is instance of Gen");

 // The following can't be compiled because
 // generic type info does not exist at run time.
// if(iOb2 instanceof Gen2<Integer>)
// System.out.println("iOb2 is instance of Gen2<Integer>");
 }
}

The output from the program is shown here:

 iOb2 is instance of Gen2
 iOb2 is instance of Gen

 strOb2 is instance of Gen2
 strOb2 is instance of Gen

 iOb is instance of Gen

In this program, Gen2 is a subclass of Gen, which is generic on type parameter T. In
main(), three objects are created. The first is iOb, which is an object of type Gen<Integer>.
The second is iOb2, which is an instance of Gen2<Integer>. Finally, strOb2 is an object of
type Gen2<String>.

14-ch14.indd 369 14/02/14 5:05 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

370 PART I The Java Language

Then, the program performs these instanceof tests on the type of iOb2:

// See if iOb2 is some form of Gen2.
if(iOb2 instanceof Gen2<?>)
 System.out.println("iOb2 is instance of Gen2");

// See if iOb2 is some form of Gen.
if(iOb2 instanceof Gen<?>)
 System.out.println("iOb2 is instance of Gen");

As the output shows, both succeed. In the first test, iOb2 is checked against Gen2<?>. This
test succeeds because it simply confirms that iOb2 is an object of some type of Gen2 object.
The use of the wildcard enables instanceof to determine if iOb2 is an object of any type of
Gen2. Next, iOb2 is tested against Gen<?>, the superclass type. This is also true because
iOb2 is some form of Gen, the superclass. The next few lines in main() show the same
sequence (and same results) for strOb2.

Next, iOb, which is an instance of Gen<Integer> (the superclass), is tested by these lines:

// See if iOb is an instance of Gen2, which it is not.
if(iOb instanceof Gen2<?>)
 System.out.println("iOb is instance of Gen2");

// See if iOb is an instance of Gen, which it is.
if(iOb instanceof Gen<?>)
 System.out.println("iOb is instance of Gen");

The first if fails because iOb is not some type of Gen2 object. The second test succeeds
because iOb is some type of Gen object.

Now, look closely at these commented-out lines:

 // The following can't be compiled because
 // generic type info does not exist at run time.
// if(iOb2 instanceof Gen2<Integer>)
// System.out.println("iOb2 is instance of Gen2<Integer>");

As the comments indicate, these lines can’t be compiled because they attempt to compare
iOb2 with a specific type of Gen2, in this case, Gen2<Integer>. Remember, there is no
generic type information available at run time. Therefore, there is no way for instanceof
to know if iOb2 is an instance of Gen2<Integer> or not.

Casting
You can cast one instance of a generic class into another only if the two are otherwise
compatible and their type arguments are the same. For example, assuming the foregoing
program, this cast is legal:

(Gen<Integer>) iOb2 // legal

because iOb2 includes an instance of Gen<Integer>. But, this cast:

(Gen<Long>) iOb2 // illegal

is not legal because iOb2 is not an instance of Gen<Long>.

14-ch14.indd 370 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 371

Pa
rt

 I

Overriding Methods in a Generic Class
A method in a generic class can be overridden just like any other method. For example,
consider this program in which the method getob() is overridden:

// Overriding a generic method in a generic class.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 System.out.print("Gen's getob(): ");
 return ob;
 }
}

// A subclass of Gen that overrides getob().
class Gen2<T> extends Gen<T> {

 Gen2(T o) {
 super(o);
 }

 // Override getob().
 T getob() {
 System.out.print("Gen2's getob(): ");
 return ob;
 }
}

// Demonstrate generic method override.
class OverrideDemo {
 public static void main(String args[]) {

 // Create a Gen object for Integers.
 Gen<Integer> iOb = new Gen<Integer>(88);

 // Create a Gen2 object for Integers.
 Gen2<Integer> iOb2 = new Gen2<Integer>(99);

 // Create a Gen2 object for Strings.
 Gen2<String> strOb2 = new Gen2<String> ("Generics Test");

 System.out.println(iOb.getob());
 System.out.println(iOb2.getob());
 System.out.println(strOb2.getob());
 }
}

14-ch14.indd 371 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

372 PART I The Java Language

The output is shown here:

 Gen's getob(): 88
 Gen2's getob(): 99
 Gen2's getob(): Generics Test

As the output confirms, the overridden version of getob() is called for objects of type Gen2,
but the superclass version is called for objects of type Gen.

Type Inference with Generics
Beginning with JDK 7, it is possible to shorten the syntax used to create an instance of a
generic type. To begin, consider the following generic class:

class MyClass<T, V> {
 T ob1;
 V ob2;

 MyClass(T o1, V o2) {
 ob1 = o1;
 ob2 = o2;
 }
 // ...
}

Prior to JDK 7, to create an instance of MyClass, you would have needed to use a
statement similar to the following:

MyClass<Integer, String> mcOb =
 new MyClass<Integer, String>(98, "A String");

Here, the type arguments (which are Integer and String) are specified twice: first, when
mcOb is declared, and second, when a MyClass instance is created via new. Since generics
were introduced by JDK 5, this is the form required by all versions of Java prior to JDK 7.
Although there is nothing wrong, per se, with this form, it is a bit more verbose than it
needs to be. In the new clause, the type of the type arguments can be readily inferred from
the type of mcOb; therefore, there is really no reason that they need to be specified a
second time. To address this situation, JDK 7 added a syntactic element that lets you avoid
the second specification.

Today the preceding declaration can be rewritten as shown here:

MyClass<Integer, String> mcOb = new MyClass<>(98, "A String");

Notice that the instance creation portion simply uses <>, which is an empty type argument
list. This is referred to as the diamond operator. It tells the compiler to infer the type
arguments needed by the constructor in the new expression. The principal advantage of
this type-inference syntax is that it shortens what are sometimes quite long declaration
statements.

14-ch14.indd 372 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 373

Pa
rt

 I

The preceding can be generalized. When type inference is used, the declaration syntax
for a generic reference and instance creation has this general form:

class-name<type-arg-list > var-name = new class-name <>(cons-arg-list);

Here, the type argument list of the constructor in the new clause is empty.
Type inference can also be applied to parameter passing. For example, if the following

method is added to MyClass,

boolean isSame(MyClass<T, V> o) {
 if(ob1 == o.ob1 && ob2 == o.ob2) return true;
 else return false;
}

then the following call is legal:

if(mcOb.isSame(new MyClass<>(1, "test"))) System.out.println("Same");

In this case, the type arguments for the argument passed to isSame() can be inferred from
the parameter’s type.

Because the type-inference syntax was added by JDK 7 and won’t work with older
compilers, most of the examples in this book will continue to use the full syntax when
declaring instances of generic classes. This way, the examples will work with any Java
compiler that supports generics. Using the full-length syntax also makes it very clear
precisely what is being created, which is important in example code shown in a book.
However, in your own code, the use of the type-inference syntax will streamline your
declarations.

Erasure
Usually, it is not necessary to know the details about how the Java compiler transforms your
source code into object code. However, in the case of generics, some general understanding
of the process is important because it explains why the generic features work as they do—
and why their behavior is sometimes a bit surprising. For this reason, a brief discussion of
how generics are implemented in Java is in order.

An important constraint that governed the way that generics were added to Java was the
need for compatibility with previous versions of Java. Simply put, generic code had to be
compatible with preexisting, non-generic code. Thus, any changes to the syntax of the Java
language, or to the JVM, had to avoid breaking older code. The way Java implements
generics while satisfying this constraint is through the use of erasure.

In general, here is how erasure works. When your Java code is compiled, all generic
type information is removed (erased). This means replacing type parameters with their
bound type, which is Object if no explicit bound is specified, and then applying the
appropriate casts (as determined by the type arguments) to maintain type compatibility
with the types specified by the type arguments. The compiler also enforces this type
compatibility. This approach to generics means that no type parameters exist at run time.
They are simply a source-code mechanism.

14-ch14.indd 373 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

374 PART I The Java Language

Bridge Methods
Occasionally, the compiler will need to add a bridge method to a class to handle situations in
which the type erasure of an overriding method in a subclass does not produce the same
erasure as the method in the superclass. In this case, a method is generated that uses
the type erasure of the superclass, and this method calls the method that has the type
erasure specified by the subclass. Of course, bridge methods only occur at the bytecode
level, are not seen by you, and are not available for your use.

Although bridge methods are not something that you will normally need to be
concerned with, it is still instructive to see a situation in which one is generated. Consider
the following program:

// A situation that creates a bridge method.
class Gen<T> {
 T ob; // declare an object of type T

 // Pass the constructor a reference to
 // an object of type T.
 Gen(T o) {
 ob = o;
 }

 // Return ob.
 T getob() {
 return ob;
 }
}

// A subclass of Gen.
class Gen2 extends Gen<String> {

 Gen2(String o) {
 super(o);
 }

 // A String-specific override of getob().
 String getob() {
 System.out.print("You called String getob(): ");
 return ob;
 }
}

// Demonstrate a situation that requires a bridge method.
class BridgeDemo {
 public static void main(String args[]) {

 // Create a Gen2 object for Strings.
 Gen2 strOb2 = new Gen2("Generics Test");

 System.out.println(strOb2.getob());
 }
}

14-ch14.indd 374 14/02/14 5:05 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 375

Pa
rt

 I

In the program, the subclass Gen2 extends Gen, but does so using a String-specific
version of Gen, as its declaration shows:

class Gen2 extends Gen<String> {

Furthermore, inside Gen2, getob() is overridden with String specified as the return type:

// A String-specific override of getob().
String getob() {
 System.out.print("You called String getob(): ");
 return ob;
}

All of this is perfectly acceptable. The only trouble is that because of type erasure, the
expected form of getob() will be

Object getob() { // ...

To handle this problem, the compiler generates a bridge method with the preceding
signature that calls the String version. Thus, if you examine the class file for Gen2 by
using javap, you will see the following methods:

class Gen2 extends Gen<java.lang.String> {
 Gen2(java.lang.String);
 java.lang.String getob();
 java.lang.Object getob(); // bridge method
}

As you can see, the bridge method has been included. (The comment was added by the
author and not by javap, and the precise output you see may vary based on the version of
Java that you are using.)

There is one last point to make about this example. Notice that the only difference
between the two getob() methods is their return type. Normally, this would cause an error,
but because this does not occur in your source code, it does not cause a problem and is
handled correctly by the JVM.

Ambiguity Errors
The inclusion of generics gives rise to a new type of error that you must guard against:
ambiguity. Ambiguity errors occur when erasure causes two seemingly distinct generic
declarations to resolve to the same erased type, causing a conflict. Here is an example that
involves method overloading:

// Ambiguity caused by erasure on
// overloaded methods.
class MyGenClass<T, V> {
 T ob1;
 V ob2;

 // ...

14-ch14.indd 375 14/02/14 5:05 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

376 PART I The Java Language

 // These two overloaded methods are ambiguous
 // and will not compile.
 void set(T o) {
 ob1 = o;
 }

 void set(V o) {
 ob2 = o;
 }
}

Notice that MyGenClass declares two generic types: T and V. Inside MyGenClass,
an attempt is made to overload set() based on parameters of type T and V. This looks
reasonable because T and V appear to be different types. However, there are two ambiguity
problems here.

First, as MyGenClass is written, there is no requirement that T and V actually be
different types. For example, it is perfectly correct (in principle) to construct a MyGenClass
object as shown here:

MyGenClass<String, String> obj = new MyGenClass<String, String>()

In this case, both T and V will be replaced by String. This makes both versions of set()
identical, which is, of course, an error.

The second and more fundamental problem is that the type erasure of set() reduces
both versions to the following:

void set(Object o) { // ...

Thus, the overloading of set() as attempted in MyGenClass is inherently ambiguous.
Ambiguity errors can be tricky to fix. For example, if you know that V will always be

some type of Number, you might try to fix MyGenClass by rewriting its declaration as shown
here:

class MyGenClass<T, V extends Number> { // almost OK!

This change causes MyGenClass to compile, and you can even instantiate objects like the
one shown here:

MyGenClass<String, Number> x = new MyGenClass<String, Number>();

This works because Java can accurately determine which method to call. However,
ambiguity returns when you try this line:

MyGenClass<Number, Number> x = new MyGenClass<Number, Number>();

In this case, since both T and V are Number, which version of set() is to be called? The call
to set() is now ambiguous.

Frankly, in the preceding example, it would be much better to use two separate method
names, rather than trying to overload set(). Often, the solution to ambiguity involves the
restructuring of the code, because ambiguity frequently means that you have a conceptual
error in your design.

14-ch14.indd 376 14/02/14 5:05 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 377

Pa
rt

 I

Some Generic Restrictions
There are a few restrictions that you need to keep in mind when using generics. They
involve creating objects of a type parameter, static members, exceptions, and arrays. Each
is examined here.

Type Parameters Can’t Be Instantiated
It is not possible to create an instance of a type parameter. For example, consider this class:

// Can't create an instance of T.
class Gen<T> {
 T ob;

 Gen() {
 ob = new T(); // Illegal!!!
 }
}

Here, it is illegal to attempt to create an instance of T. The reason should be easy to
understand: the compiler does not know what type of object to create. T is simply a
placeholder.

Restrictions on Static Members
No static member can use a type parameter declared by the enclosing class. For example,
both of the static members of this class are illegal:

class Wrong<T> {
 // Wrong, no static variables of type T.
 static T ob;

 // Wrong, no static method can use T.
 static T getob() {
 return ob;
 }
}

Although you can’t declare static members that use a type parameter declared by the
enclosing class, you can declare static generic methods, which define their own type
parameters, as was done earlier in this chapter.

Generic Array Restrictions
There are two important generics restrictions that apply to arrays. First, you cannot
instantiate an array whose element type is a type parameter. Second, you cannot create
an array of type-specific generic references. The following short program shows both
situations:

// Generics and arrays.
class Gen<T extends Number> {
 T ob;

14-ch14.indd 377 14/02/14 5:05 PM

Pitrick
Highlight

Pitrick
Highlight

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

378 PART I The Java Language

 T vals[]; // OK

 Gen(T o, T[] nums) {
 ob = o;

 // This statement is illegal.
 // vals = new T[10]; // can't create an array of T

 // But, this statement is OK.
 vals = nums; // OK to assign reference to existent array
 }
}

class GenArrays {
 public static void main(String args[]) {
 Integer n[] = { 1, 2, 3, 4, 5 };

 Gen<Integer> iOb = new Gen<Integer>(50, n);

 // Can't create an array of type-specific generic references.
 // Gen<Integer> gens[] = new Gen<Integer>[10]; // Wrong!

 // This is OK.
 Gen<?> gens[] = new Gen<?>[10]; // OK
 }
}

As the program shows, it’s valid to declare a reference to an array of type T, as this line
does:

T vals[]; // OK

But, you cannot instantiate an array of T, as this commented-out line attempts:

// vals = new T[10]; // can't create an array of T

The reason you can’t create an array of T is that there is no way for the compiler to know
what type of array to actually create.

However, you can pass a reference to a type-compatible array to Gen() when an object
is created and assign that reference to vals, as the program does in this line:

vals = nums; // OK to assign reference to existent array

This works because the array passed to Gen has a known type, which will be the same type
as T at the time of object creation.

Inside main(), notice that you can’t declare an array of references to a specific generic
type. That is, this line

// Gen<Integer> gens[] = new Gen<Integer>[10]; // Wrong!

won’t compile.

14-ch14.indd 378 14/02/14 5:05 PM

Pitrick
Highlight

Pitrick
Strikeout

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 14 Generics 379

Pa
rt

 I

You can create an array of references to a generic type if you use a wildcard, however, as
shown here:

Gen<?> gens[] = new Gen<?>[10]; // OK

This approach is better than using an array of raw types, because at least some type
checking will still be enforced.

Generic Exception Restriction
A generic class cannot extend Throwable. This means that you cannot create generic
exception classes.

14-ch14.indd 379 14/02/14 5:05 PM

Pitrick
Highlight

Pitrick
Highlight

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

15
CHAPTER

 381

Lambda Expressions

During Java’s ongoing development and evolution, many features have been added since its
original 1.0 release. However, two stand out because they have profoundly reshaped the
language, fundamentally changing the way that code is written. The first was the addition of
generics, added by JDK 5. (See Chapter 14.) The second is the lambda expression, which is
the subject of this chapter.

Added by JDK 8, lambda expressions (and their related features) significantly enhance
Java because of two primary reasons. First, they add new syntax elements that increase the
expressive power of the language. In the process, they streamline the way that certain common
constructs are implemented. Second, the addition of lambda expressions resulted in new
capabilities being incorporated into the API library. Among these new capabilities are the
ability to more easily take advantage of the parallel processing capabilities of multi-core
environments, especially as it relates to the handling of for-each style operations, and the
new stream API, which supports pipeline operations on data. The addition of lambda
expressions also provided the catalyst for other new Java features, including the default
method (described in Chapter 9), which lets you define default behavior for an interface
method, and the method reference (described here), which lets you refer to a method
without executing it.

Beyond the benefits that lambda expressions bring to the language, there is another
reason why they constitute an important addition to Java. Over the past few years, lambda
expressions have become a major focus of computer language design. For example, they
have been added to languages such as C# and C++. Their inclusion in JDK 8 helps Java
remain the vibrant, innovative language that programmers have come to expect.

In the final analysis, in much the same way that generics reshaped Java several years
ago, lambda expressions are reshaping Java today. Simply put, lambda expressions will
impact virtually all Java programmers. They truly are that important.

15-ch15.indd 381 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

382 PART I The Java Language

Introducing Lambda Expressions
Key to understanding Java’s implementation of lambda expressions are two constructs. The
first is the lambda expression, itself. The second is the functional interface. Let’s begin with
a simple definition of each.

A lambda expression is, essentially, an anonymous (that is, unnamed) method. However,
this method is not executed on its own. Instead, it is used to implement a method defined
by a functional interface. Thus, a lambda expression results in a form of anonymous class.
Lambda expressions are also commonly referred to as closures.

A functional interface is an interface that contains one and only one abstract method.
Normally, this method specifies the intended purpose of the interface. Thus, a functional
interface typically represents a single action. For example, the standard interface Runnable is
a functional interface because it defines only one method: run(). Therefore, run() defines
the action of Runnable. Furthermore, a functional interface defines the target type of a lambda
expression. Here is a key point: a lambda expression can be used only in a context in which
its target type is specified. One other thing: a functional interface is sometimes referred to as
a SAM type, where SAM stands for Single Abstract Method.

NOTE A functional interface may specify any public method defined by Object, such as equals(),
without affecting its “functional interface” status. The public Object methods are considered implicit
members of a functional interface because they are automatically implemented by an instance of a
functional interface.

Let’s now look more closely at both lambda expressions and functional interfaces.

Lambda Expression Fundamentals
The lambda expression introduces a new syntax element and operator into the Java language.
The new operator, sometimes referred to as the lambda operator or the arrow operator, is −>.
It divides a lambda expression into two parts. The left side specifies any parameters required
by the lambda expression. (If no parameters are needed, an empty parameter list is used.)
On the right side is the lambda body, which specifies the actions of the lambda expression.
The −> can be verbalized as “becomes” or “goes to.”

Java defines two types of lambda bodies. One consists of a single expression, and the
other type consists of a block of code. We will begin with lambdas that define a single
expression. Lambdas with block bodies are discussed later in this chapter.

At this point, it will be helpful to look a few examples of lambda expressions before
continuing. Let’s begin with what is probably the simplest type of lambda expression you
can write. It evaluates to a constant value and is shown here:

() -> 123.45

This lambda expression takes no parameters, thus the parameter list is empty. It returns the
constant value 123.45. Therefore, it is similar to the following method:

double myMeth() { return 123.45; }

15-ch15.indd 382 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 383

Pa
rt

 I

Of course, the method defined by a lambda expression does not have a name.
A slightly more interesting lambda expression is shown here:

() -> Math.random() * 100

This lambda expression obtains a pseudo-random value from Math.random(), multiplies it
by 100, and returns the result. It, too, does not require a parameter.

When a lambda expression requires a parameter, it is specified in the parameter list on
the left side of the lambda operator. Here is a simple example:

(n) -> (n % 2)==0

This lambda expression returns true if the value of parameter n is even. Although it is
possible to explicitly specify the type of a parameter, such as n in this case, often you won’t
need to do so because in many cases its type can be inferred. Like a named method, a
lambda expression can specify as many parameters as needed.

Functional Interfaces
As stated, a functional interface is an interface that specifies only one abstract method. If
you have been programming in Java for some time, you might at first think that all interface
methods are implicitly abstract. Although this was true prior to JDK 8, the situation has
changed. As explained in Chapter 9, beginning with JDK 8, it is possible to specify default
behavior for a method declared in an interface. This is called a default method. Today, an
interface method is abstract only if it does not specify a default implementation. Because
nondefault interface methods are implicitly abstract, there is no need to use the abstract
modifier (although you can specify it, if you like).

Here is an example of a functional interface:

interface MyNumber {
 double getValue();
}

In this case, the method getValue() is implicitly abstract, and it is the only method defined
by MyNumber. Thus, MyNumber is a functional interface, and its function is defined by
getValue().

As mentioned earlier, a lambda expression is not executed on its own. Rather, it forms
the implementation of the abstract method defined by the functional interface that specifies
its target type. As a result, a lambda expression can be specified only in a context in which a
target type is defined. One of these contexts is created when a lambda expression is assigned
to a functional interface reference. Other target type contexts include variable initialization,
return statements, and method arguments, to name a few.

Let’s work through an example that shows how a lambda expression can be used in an
assignment context. First, a reference to the functional interface MyNumber is declared:

// Create a reference to a MyNumber instance.
MyNumber myNum;

15-ch15.indd 383 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

384 PART I The Java Language

Next, a lambda expression is assigned to that interface reference:

// Use a lambda in an assignment context.
myNum = () -> 123.45;

When a lambda expression occurs in a target type context, an instance of a class is
automatically created that implements the functional interface, with the lambda expression
defining the behavior of the abstract method declared by the functional interface. When
that method is called through the target, the lambda expression is executed. Thus, a lambda
expression gives us a way to transform a code segment into an object.

In the preceding example, the lambda expression becomes the implementation for the
getValue() method. As a result, the following displays the value 123.45:

// Call getValue(), which is implemented by the previously assigned
// lambda expression.
System.out.println("myNum.getValue());

Because the lambda expression assigned to myNum returns the value 123.45, that is the
value obtained when getValue() is called.

In order for a lambda expression to be used in a target type context, the type of the
abstract method and the type of the lambda expression must be compatible. For example,
if the abstract method specifies two int parameters, then the lambda must specify two
parameters whose type either is explicitly int or can be implicitly inferred as int by the
context. In general, the type and number of the lambda expression’s parameters must be
compatible with the method’s parameters; the return types must be compatible; and any
exceptions thrown by the lambda expression must be acceptable to the method.

Some Lambda Expression Examples
With the preceding discussion in mind, let’s look at some simple examples that illustrate
the basic lambda expression concepts. The first example puts together the pieces shown in
the foregoing section.

// Demonstrate a simple lambda expression.

// A functional interface.
interface MyNumber {
 double getValue();
}

class LambdaDemo {
 public static void main(String args[])
 {
 MyNumber myNum; // declare an interface reference

 // Here, the lambda expression is simply a constant expression.
 // When it is assigned to myNum, a class instance is
 // constructed in which the lambda expression implements
 // the getValue() method in MyNumber.
 myNum = () -> 123.45;

15-ch15.indd 384 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 385

Pa
rt

 I

 // Call getValue(), which is provided by the previously assigned
 // lambda expression.
 System.out.println("A fixed value: " + myNum.getValue());

 // Here, a more complex expression is used.
 myNum = () -> Math.random() * 100;

 // These call the lambda expression in the previous line.
 System.out.println("A random value: " + myNum.getValue());
 System.out.println("Another random value: " + myNum.getValue());

 // A lambda expression must be compatible with the method
 // defined by the functional interface. Therefore, this won't work:
// myNum = () -> "123.03"; // Error!
 }
}

Sample output from the program is shown here:

A fixed value: 123.45
A random value: 88.90663650412304
Another random value: 53.00582701784129

As mentioned, the lambda expression must be compatible with the abstract method
that it is intended to implement. For this reason, the commented-out line at the end of the
preceding program is illegal because a value of type String is not compatible with double,
which is the return type required by getValue().

The next example shows the use of a parameter with a lambda expression:

// Demonstrate a lambda expression that takes a parameter.

// Another functional interface.
interface NumericTest {
 boolean test(int n);
}

class LambdaDemo2 {
 public static void main(String args[])
 {
 // A lambda expression that tests if a number is even.
 NumericTest isEven = (n) -> (n % 2)==0;

 if(isEven.test(10)) System.out.println("10 is even");
 if(!isEven.test(9)) System.out.println("9 is not even");

 // Now, use a lambda expression that tests if a number
 // is non-negative.
 NumericTest isNonNeg = (n) -> n >= 0;

 if(isNonNeg.test(1)) System.out.println("1 is non-negative");
 if(!isNonNeg.test(-1)) System.out.println("-1 is negative");
 }
}

15-ch15.indd 385 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

386 PART I The Java Language

The output from this program is shown here:

10 is even
9 is not even
1 is non-negative
-1 is negative

This program demonstrates a key fact about lambda expressions that warrants close
examination. Pay special attention to the lambda expression that performs the test for
evenness. It is shown again here:

(n) -> (n % 2)==0

Notice that the type of n is not specified. Rather, its type is inferred from the context. In this
case, its type is inferred from the parameter type of test() as defined by the NumericTest
interface, which is int. It is also possible to explicitly specify the type of a parameter in a
lambda expression. For example, this is also a valid way to write the preceding:

(int n) -> (n % 2)==0

Here, n is explicitly specified as int. Usually it is not necessary to explicitly specify the type,
but you can in those situations that require it.

This program demonstrates another important point about lambda expressions: A
functional interface reference can be used to execute any lambda expression that is
compatible with it. Notice that the program defines two different lambda expressions that
are compatible with the test() method of the functional interface NumericTest. The first,
called isEven, determines if a value is even. The second, called isNonNeg, checks if a value
is non-negative. In each case, the value of the parameter n is tested. Because each lambda
expression is compatible with test(), each can be executed through a NumericTest reference.

One other point before moving on. When a lambda expression has only one parameter,
it is not necessary to surround the parameter name with parentheses when it is specified on
the left side of the lambda operator. For example, this is also a valid way to write the lambda
expression used in the program:

n -> (n % 2)==0

For consistency, this book will surround all lambda expression parameter lists with
parentheses, even those containing only one parameter. Of course, you are free to adopt
a different style.

The next program demonstrates a lambda expression that takes two parameters. In this
case, the lambda expression tests if one number is a factor of another.

// Demonstrate a lambda expression that takes two parameters.

interface NumericTest2 {
 boolean test(int n, int d);
}

class LambdaDemo3 {

15-ch15.indd 386 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 387

Pa
rt

 I

 public static void main(String args[])
 {
 // This lambda expression determines if one number is
 // a factor of another.
 NumericTest2 isFactor = (n, d) -> (n % d) == 0;

 if(isFactor.test(10, 2))
 System.out.println("2 is a factor of 10");

 if(!isFactor.test(10, 3))
 System.out.println("3 is not a factor of 10");
 }
}

The output is shown here:

2 is a factor of 10
3 is not a factor of 10

In this program, the functional interface NumericTest2 defines the test() method:

boolean test(int n, int d);

In this version, test() specifies two parameters. Thus, for a lambda expression to be
compatible with test(), the lambda expression must also specify two parameters. Notice
how they are specified:

(n, d) -> (n % d) == 0

The two parameters, n and d, are specified in the parameter list, separated by commas. This
example can be generalized. Whenever more than one parameter is required, the parameters
are specified, separated by commas, in a parenthesized list on the left side of the lambda
operator.

Here is an important point about multiple parameters in a lambda expression: If you
need to explicitly declare the type of a parameter, then all of the parameters must have
declared types. For example, this is legal:

(int n, int d) -> (n % d) == 0

But this is not:

(int n, d) -> (n % d) == 0

Block Lambda Expressions
The body of the lambdas shown in the preceding examples consist of a single expression.
These types of lambda bodies are referred to as expression bodies, and lambdas that have
expression bodies are sometimes called expression lambdas. In an expression body, the code
on the right side of the lambda operator must consist of a single expression. While

15-ch15.indd 387 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

388 PART I The Java Language

expression lambdas are quite useful, sometimes the situation will require more than a
single expression. To handle such cases, Java supports a second type of lambda expression
in which the code on the right side of the lambda operator consists of a block of code that
can contain more than one statement. This type of lambda body is called a block body.
Lambdas that have block bodies are sometimes referred to as block lambdas.

A block lambda expands the types of operations that can be handled within a lambda
expression because it allows the body of the lambda to contain multiple statements. For
example, in a block lambda you can declare variables, use loops, specify if and switch
statements, create nested blocks, and so on. A block lambda is easy to create. Simply
enclose the body within braces as you would any other block of statements.

Aside from allowing multiple statements, block lambdas are used much like the
expression lambdas just discussed. One key difference, however, is that you must explicitly
use a return statement to return a value. This is necessary because a block lambda body
does not represent a single expression.

Here is an example that uses a block lambda to compute and return the factorial of an
int value:

// A block lambda that computes the factorial of an int value.

interface NumericFunc {
 int func(int n);
}

class BlockLambdaDemo {
 public static void main(String args[])
 {

 // This block lambda computes the factorial of an int value.
 NumericFunc factorial = (n) -> {
 int result = 1;

 for(int i=1; i <= n; i++)
 result = i * result;

 return result;
 };

 System.out.println("The factoral of 3 is " + factorial.func(3));
 System.out.println("The factoral of 5 is " + factorial.func(5));
 }
}

The output is shown here:

The factorial of 3 is 6
The factorial of 5 is 120

In the program, notice that the block lambda declares a variable called result, uses a for
loop, and has a return statement. These are legal inside a block lambda body. In essence,
the block body of a lambda is similar to a method body. One other point. When a return

15-ch15.indd 388 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 389

Pa
rt

 I

statement occurs within a lambda expression, it simply causes a return from the lambda. It
does not cause an enclosing method to return.

Another example of a block lambda is shown in the following program. It reverses the
characters in a string.

// A block lambda that reverses the characters in a string.

interface StringFunc {
 String func(String n);
}

class BlockLambdaDemo2 {
 public static void main(String args[])
 {

 // This block lambda reverses the characters in a string.
 StringFunc reverse = (str) -> {
 String result = "";
 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 };

 System.out.println("Lambda reversed is " +
 reverse.func("Lambda"));
 System.out.println("Expression reversed is " +
 reverse.func("Expression"));
 }
}

The output is shown here:

Lambda reversed is adbmaL
Expression reversed is noisserpxE

In this example, the functional interface StringFunc declares the func() method. This
method takes a parameter of type String and has a return type of String. Thus, in the
reverse lambda expression, the type of str is inferred to be String. Notice that the charAt()
method is called on str. This is legal because of the inference that str is of type String.

Generic Functional Interfaces
A lambda expression, itself, cannot specify type parameters. Thus, a lambda expression
cannot be generic. (Of course, because of type inference, all lambda expressions exhibit
some “generic-like” qualities.) However, the functional interface associated with a lambda
expression can be generic. In this case, the target type of the lambda expression is

15-ch15.indd 389 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

390 PART I The Java Language

determined, in part, by the type argument or arguments specified when a functional
interface reference is declared.

To understand the value of generic functional interfaces, consider this. The two
examples in the previous section used two different functional interfaces, one called
NumericFunc and the other called StringFunc. However, both defined a method called
func() that took one parameter and returned a result. In the first case, the type of the
parameter and return type was int. In the second case, the parameter and return type was
String. Thus, the only difference between the two methods was the type of data they
required. Instead of having two functional interfaces whose methods differ only in their
data types, it is possible to declare one generic interface that can be used to handle both
circumstances. The following program shows this approach:

// Use a generic functional interface with lambda expressions.

// A generic functional interface.
interface SomeFunc<T> {
 T func(T t);
}

class GenericFunctionalInterfaceDemo {
 public static void main(String args[])
 {

 // Use a String-based version of SomeFunc.
 SomeFunc<String> reverse = (str) -> {
 String result = "";
 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 };

 System.out.println("Lambda reversed is " +
 reverse.func("Lambda"));
 System.out.println("Expression reversed is " +
 reverse.func("Expression"));

 // Now, use an Integer-based version of SomeFunc.
 SomeFunc<Integer> factorial = (n) -> {
 int result = 1;

 for(int i=1; i <= n; i++)
 result = i * result;

 return result;
 };

 System.out.println("The factoral of 3 is " + factorial.func(3));
 System.out.println("The factoral of 5 is " + factorial.func(5));
 }
}

15-ch15.indd 390 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 391

Pa
rt

 I

The output is shown here:

Lambda reversed is adbmaL
Expression reversed is noisserpxE
The factoral of 3 is 6
The factoral of 5 is 120

In the program, the generic functional interface SomeFunc is declared as shown here:

interface SomeFunc<T> {
 T func(T t);
}

Here, T specifies both the return type and the parameter type of func(). This means that it
is compatible with any lambda expression that takes one parameter and returns a value of
the same type.

The SomeFunc interface is used to provide a reference to two different types of lambdas.
The first uses type String. The second uses type Integer. Thus, the same functional interface
can be used to refer to the reverse lambda and the factorial lambda. Only the type argument
passed to SomeFunc differs.

Passing Lambda Expressions as Arguments
As explained earlier, a lambda expression can be used in any context that provides a target
type. One of these is when a lambda expression is passed as an argument. In fact, passing a
lambda expression as an argument is a common use of lambdas. Moreover, it is a very
powerful use because it gives you a way to pass executable code as an argument to a method.
This greatly enhances the expressive power of Java.

To pass a lambda expression as an argument, the type of the parameter receiving the
lambda expression argument must be of a functional interface type compatible with the
lambda. Although using a lambda expression as an argument is straightforward, it is still
helpful to see it in action. The following program demonstrates the process:

// Use lambda expressions as an argument to a method.

interface StringFunc {
 String func(String n);
}

class LambdasAsArgumentsDemo {

 // This method has a functional interface as the type of
 // its first parameter. Thus, it can be passed a reference to
 // any instance of that interface, including the instance created
 // by a lambda expression.
 // The second parameter specifies the string to operate on.
 static String stringOp(StringFunc sf, String s) {
 return sf.func(s);
 }

 public static void main(String args[])

15-ch15.indd 391 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

392 PART I The Java Language

 {
 String inStr = "Lambdas add power to Java";
 String outStr;

 System.out.println("Here is input string: " + inStr);

 // Here, a simple expression lambda that uppercases a string
 // is passed to stringOp().
 outStr = stringOp((str) -> str.toUpperCase(), inStr);
 System.out.println("The string in uppercase: " + outStr);

 // This passes a block lambda that removes spaces.
 outStr = stringOp((str) -> {
 String result = "";
 int i;

 for(i = 0; i < str.length(); i++)
 if(str.charAt(i) != ' ')
 result += str.charAt(i);

 return result;
 }, inStr);

 System.out.println("The string with spaces removed: " + outStr);

 // Of course, it is also possible to pass a StringFunc instance
 // created by an earlier lambda expression. For example,
 // after this declaration executes, reverse refers to an
 // instance of StringFunc.
 StringFunc reverse = (str) -> {
 String result = "";
 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 };

 // Now, reverse can be passed as the first parameter to stringOp()
 // since it refers to a StringFunc object.
 System.out.println("The string reversed: " +
 stringOp(reverse, inStr));
 }
}

The output is shown here:

Here is input string: Lambdas add power to Java
The string in uppercase: LAMBDAS ADD POWER TO JAVA
The string with spaces removed: LambdasaddpowertoJava
The string reversed: avaJ ot rewop dda sadbmaL

15-ch15.indd 392 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 393

Pa
rt

 I

In the program, first notice the stringOp() method. It has two parameters. The first is
of type StringFunc, which is a functional interface. Thus, this parameter can receive a
reference to any instance of StringFunc, including one created by a lambda expression. The
second argument of stringOp() is of type String, and this is the string operated on.

Next, notice the first call to stringOp(), shown again here:

outStr = stringOp((str) -> str.toUpperCase(), inStr);

Here, a simple expression lambda is passed as an argument. When this occurs, an instance of
the functional interface StringFunc is created and a reference to that object is passed to the
first parameter of stringOp(). Thus, the lambda code, embedded in a class instance, is passed
to the method. The target type context is determined by the type of parameter. Because the
lambda expression is compatible with that type, the call is valid. Embedding simple lambdas,
such as the one just shown, inside a method call is often a convenient technique—especially
when the lambda expression is intended for a single use.

Next, the program passes a block lambda to stringOp(). This lambda removes spaces
from a string. It is shown again here:

outStr = stringOp((str) -> {
 String result = "";
 int i;

 for(i = 0; i < str.length(); i++)
 if(str.charAt(i) != ' ')
 result += str.charAt(i);

 return result;
 }, inStr);

Although this uses a block lambda, the process of passing the lambda expression is the
same as just described for the simple expression lambda. In this case, however, some
programmers will find the syntax a bit awkward.

When a block lambda seems overly long to embed in a method call, it is an easy matter
to assign that lambda to a functional interface variable, as the previous examples have
done. Then, you can simply pass that reference to the method. This technique is shown at
the end of the program. There, a block lambda is defined that reverses a string. This
lambda is assigned to reverse, which is a reference to a StringFunc instance. Thus, reverse
can be used as an argument to the first parameter of stringOp(). The program then calls
stringOp(), passing in reverse and the string on which to operate. Because the instance
obtained by the evaluation of each lambda expression is an implementation of StringFunc,
each can be used as the first parameter to stringOp().

One last point: In addition to variable initialization, assignment, and argument passing,
the following also constitute target type contexts: casts, the ? operator, array initializers,
return statements, and lambda expressions, themselves.

15-ch15.indd 393 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

394 PART I The Java Language

Lambda Expressions and Exceptions
A lambda expression can throw an exception. However, it if throws a checked exception,
then that exception must be compatible with the exception(s) listed in the throws clause of
the abstract method in the functional interface. Here is an example that illustrates this fact.
It computes the average of an array of double values. If a zero-length array is passed, however,
it throws the custom exception EmptyArrayException. As the example shows, this exception
is listed in the throws clause of func() declared inside the DoubleNumericArrayFunc
functional interface.

// Throw an exception from a lambda expression.

interface DoubleNumericArrayFunc {
 double func(double[] n) throws EmptyArrayException;
}

class EmptyArrayException extends Exception {
 EmptyArrayException() {
 super("Array Empty");
 }
}

class LambdaExceptionDemo {

 public static void main(String args[]) throws EmptyArrayException
 {
 double[] values = { 1.0, 2.0, 3.0, 4.0 };

 // This block lambda computes the average of an array of doubles.
 DoubleNumericArrayFunc average = (n) -> {
 double sum = 0;

 if(n.length == 0)
 throw new EmptyArrayException();

 for(int i=0; i < n.length; i++)
 sum += n[i];

 return sum / n.length;
 };

 System.out.println("The average is " + average.func(values));

 // This causes an exception to be thrown.
 System.out.println("The average is " + average.func(new double[0]));
 }
}

The first call to average.func() returns the value 2.5. The second call, which passes a
zero-length array, causes an EmptyArrayException to be thrown. Remember, the inclusion
of the throws clause in func() is necessary. Without it, the program will not compile because
the lambda expression will no longer be compatible with func().

15-ch15.indd 394 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 395

Pa
rt

 I

This example demonstrates another important point about lambda expressions. Notice
that the parameter specified by func() in the functional interface DoubleNumericArrayFunc
is an array. However, the parameter to the lambda expression is simply n, rather than n[].
Remember, the type of a lambda expression parameter will be inferred from the target
context. In this case, the target context is double[], thus the type of n will be double[]. It is
not necessary (or legal) to specify it as n[]. It would be legal to explicitly declare it as
double[] n, but doing so gains nothing in this case.

Lambda Expressions and Variable Capture
Variables defined by the enclosing scope of a lambda expression are accessible within the
lambda expression. For example, a lambda expression can use an instance or static variable
defined by its enclosing class. A lambda expression also has access to this (both explicitly
and implicitly), which refers to the invoking instance of the lambda expression’s enclosing
class. Thus, a lambda expression can obtain or set the value of an instance or static variable
and call a method defined by its enclosing class.

However, when a lambda expression uses a local variable from its enclosing scope, a
special situation is created that is referred to as a variable capture. In this case, a lambda
expression may only use local variables that are effectively final. An effectively final variable is
one whose value does not change after it is first assigned. There is no need to explicitly
declare such a variable as final, although doing so would not be an error. (The this
parameter of an enclosing scope is automatically effectively final, and lambda expressions
do not have a this of their own.)

It is important to understand that a local variable of the enclosing scope cannot be
modified by the lambda expression. Doing so would remove its effectively final status, thus
rendering it illegal for capture.

The following program illustrates the difference between effectively final and mutable
local variables:

// An example of capturing a local variable from the enclosing scope.

interface MyFunc {
 int func(int n);
}

class VarCapture {
 public static void main(String args[])
 {
 // A local variable that can be captured.
 int num = 10;

 MyFunc myLambda = (n) -> {
 // This use of num is OK. It does not modify num.
 int v = num + n;

 // However, the following is illegal because it attempts
 // to modify the value of num.
// num++;

15-ch15.indd 395 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

396 PART I The Java Language

 return v;
 };

 // The following line would also cause an error, because
 // it would remove the effectively final status from num.
// num = 9;
 }
}

As the comments indicate, num is effectively final and can, therefore, be used inside
myLambda. However, if num were to be modified, either inside the lambda or outside of it,
num would lose its effectively final status. This would cause an error, and the program would
not compile.

It is important to emphasize that a lambda expression can use and modify an instance
variable from its invoking class. It just can’t use a local variable of its enclosing scope unless
that variable is effectively final.

Method References
There is an important feature related to lambda expressions called the method reference. A
method reference provides a way to refer to a method without executing it. It relates to
lambda expressions because it, too, requires a target type context that consists of a compatible
functional interface. When evaluated, a method reference also creates an instance of the
functional interface.

There are different types of method references. We will begin with method references
to static methods.

Method References to static Methods
To create a static method reference, use this general syntax:

ClassName::methodName

Notice that the class name is separated from the method name by a double colon. The :: is
a new separator that has been added to Java by JDK 8 expressly for this purpose. This method
reference can be used anywhere in which it is compatible with its target type.

The following program demonstrates a static method reference:

// Demonstrate a method reference for a static method.

// A functional interface for string operations.
interface StringFunc {
 String func(String n);
}

// This class defines a static method called strReverse().
class MyStringOps {
 // A static method that reverses a string.
 static String strReverse(String str) {
 String result = "";

15-ch15.indd 396 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 397

Pa
rt

 I

 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 }
}

class MethodRefDemo {

 // This method has a functional interface as the type of
 // its first parameter. Thus, it can be passed any instance
 // of that interface, including a method reference.
 static String stringOp(StringFunc sf, String s) {
 return sf.func(s);
 }

 public static void main(String args[])
 {
 String inStr = "Lambdas add power to Java";
 String outStr;

 // Here, a method reference to strReverse is passed to stringOp().
 outStr = stringOp(MyStringOps::strReverse, inStr);

 System.out.println("Original string: " + inStr);
 System.out.println("String reversed: " + outStr);
 }
}

The output is shown here:

Original string: Lambdas add power to Java
String reversed: avaJ ot rewop dda sadbmaL

In the program, pay special attention to this line:

outStr = stringOp(MyStringOps::strReverse, inStr);

Here, a reference to the static method strReverse(), declared inside MyStringOps, is passed
as the first argument to stringOp(). This works because strReverse is compatible with the
StringFunc functional interface. Thus, the expression MyStringOps::strReverse evaluates to
a reference to an object in which strReverse provides the implementation of func() in
StringFunc.

Method References to Instance Methods
To pass a reference to an instance method on a specific object, use this basic syntax:

objRef::methodName

15-ch15.indd 397 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

398 PART I The Java Language

As you can see, the syntax is similar to that used for a static method, except that an object
reference is used instead of a class name. Here is the previous program rewritten to use an
instance method reference:

// Demonstrate a method reference to an instance method

// A functional interface for string operations.
interface StringFunc {
 String func(String n);
}

// Now, this class defines an instance method called strReverse().
class MyStringOps {
 String strReverse(String str) {
 String result = "";
 int i;

 for(i = str.length()-1; i >= 0; i--)
 result += str.charAt(i);

 return result;
 }
}

class MethodRefDemo2 {

 // This method has a functional interface as the type of
 // its first parameter. Thus, it can be passed any instance
 // of that interface, including method references.
 static String stringOp(StringFunc sf, String s) {
 return sf.func(s);
 }

 public static void main(String args[])
 {
 String inStr = "Lambdas add power to Java";
 String outStr;

 // Create a MyStringOps object.
 MyStringOps strOps = new MyStringOps();

 // Now, a method reference to the instance method strReverse
 // is passed to stringOp().
 outStr = stringOp(strOps::strReverse, inStr);

 System.out.println("Original string: " + inStr);
 System.out.println("String reversed: " + outStr);
 }
}

This program produces the same output as the previous version.

15-ch15.indd 398 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 399

Pa
rt

 I

In the program, notice that strReverse() is now an instance method of MyStringOps.
Inside main(), an instance of MyStringOps called strOps is created. This instance is used to
create the method reference to strReverse in the call to stringOp, as shown again, here:

outStr = stringOp(strOps::strReverse, inStr);

In this example, strReverse() is called on the strOps object.
It is also possible to handle a situation in which you want to specify an instance method

that can be used with any object of a given class—not just a specified object. In this case,
you will create a method reference as shown here:

ClassName::instanceMethodName

Here, the name of the class is used instead of a specific object, even though an instance
method is specified. With this form, the first parameter of the functional interface matches
the invoking object and the second parameter matches the parameter specified by the
method. Here is an example. It defines a method called counter() that counts the number
of objects in an array that satisfy the condition defined by the func() method of the MyFunc
functional interface. In this case, it counts instances of the HighTemp class.

// Use an instance method reference with different objects.

// A functional interface that takes two reference arguments
// and returns a boolean result.
interface MyFunc<T> {
 boolean func(T v1, T v2);
}

// A class that stores the temperature high for a day.
class HighTemp {
 private int hTemp;

 HighTemp(int ht) { hTemp = ht; }

 // Return true if the invoking HighTemp object has the same
 // temperature as ht2.
 boolean sameTemp(HighTemp ht2) {
 return hTemp == ht2.hTemp;
 }

 // Return true if the invoking HighTemp object has a temperature
 // that is less than ht2.
 boolean lessThanTemp(HighTemp ht2) {
 return hTemp < ht2.hTemp;
 }
}

class InstanceMethWithObjectRefDemo {

 // A method that returns the number of occurrences
 // of an object for which some criteria, as specified by
 // the MyFunc parameter, is true.
 static <T> int counter(T[] vals, MyFunc<T> f, T v) {

15-ch15.indd 399 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

400 PART I The Java Language

 int count = 0;

 for(int i=0; i < vals.length; i++)
 if(f.func(vals[i], v)) count++;

 return count;
 }

 public static void main(String args[])
 {
 int count;

 // Create an array of HighTemp objects.
 HighTemp[] weekDayHighs = { new HighTemp(89), new HighTemp(82),
 new HighTemp(90), new HighTemp(89),
 new HighTemp(89), new HighTemp(91),
 new HighTemp(84), new HighTemp(83) };

 // Use counter() with arrays of the class HighTemp.
 // Notice that a reference to the instance method
 // sameTemp() is passed as the second argument.
 count = counter(weekDayHighs, HighTemp::sameTemp,
 new HighTemp(89));
 System.out.println(count + " days had a high of 89");

 // Now, create and use another array of HighTemp objects.
 HighTemp[] weekDayHighs2 = { new HighTemp(32), new HighTemp(12),
 new HighTemp(24), new HighTemp(19),
 new HighTemp(18), new HighTemp(12),
 new HighTemp(-1), new HighTemp(13) };

 count = counter(weekDayHighs2, HighTemp::sameTemp,
 new HighTemp(12));
 System.out.println(count + " days had a high of 12");

 // Now, use lessThanTemp() to find days when temperature was less
 // than a specified value.
 count = counter(weekDayHighs, HighTemp::lessThanTemp,
 new HighTemp(89));
 System.out.println(count + " days had a high less than 89");

 count = counter(weekDayHighs2, HighTemp::lessThanTemp,
 new HighTemp(19));
 System.out.println(count + " days had a high of less than 19");
 }
}

The output is shown here:

3 days had a high of 89
2 days had a high of 12
3 days had a high less than 89
5 days had a high of less than 19

15-ch15.indd 400 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 401

Pa
rt

 I

In the program, notice that HighTemp has two instance methods: sameTemp() and
lessThanTemp(). The first returns true if two HighTemp objects contain the same
temperature. The second returns true if the temperature of the invoking object is less than
that of the passed object. Each method has a parameter of type HighTemp and each method
returns a boolean result. Thus, each is compatible with the MyFunc functional interface
because the invoking object type can be mapped to the first parameter of func() and the
argument mapped to func()’s second parameter. Thus, when the expression

HighTemp::sameTemp

is passed to the counter() method, an instance of the functional interface MyFunc is created
in which the parameter type of the first parameter is that of the invoking object of the instance
method, which is HighTemp. The type of the second parameter is also HighTemp because
that is the type of the parameter to sameTemp(). The same is true for the lessThanTemp()
method.

One other point: you can refer to the superclass version of a method by use of super, as
shown here:

super::name

The name of the method is specified by name.

Method References with Generics
You can use method references with generic classes and/or generic methods. For example,
consider the following program:

// Demonstrate a method reference to a generic method
// declared inside a non-generic class.

// A functional interface that operates on an array
// and a value, and returns an int result.
interface MyFunc<T> {
 int func(T[] vals, T v);
}

// This class defines a method called countMatching() that
// returns the number of items in an array that are equal
// to a specified value. Notice that countMatching()
// is generic, but MyArrayOps is not.
class MyArrayOps {
 static <T> int countMatching(T[] vals, T v) {
 int count = 0;

 for(int i=0; i < vals.length; i++)
 if(vals[i] == v) count++;

 return count;
 }
}

15-ch15.indd 401 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

402 PART I The Java Language

class GenericMethodRefDemo {

 // This method has the MyFunc functional interface as the
 // type of its first parameter. The other two parameters
 // receive an array and a value, both of type T.
 static <T> int myOp(MyFunc<T> f, T[] vals, T v) {
 return f.func(vals, v);
 }

 public static void main(String args[])
 {
 Integer[] vals = { 1, 2, 3, 4, 2, 3, 4, 4, 5 };
 String[] strs = { "One", "Two", "Three", "Two" };
 int count;

 count = myOp(MyArrayOps::<Integer>countMatching, vals, 4);
 System.out.println("vals contains " + count + " 4s");

 count = myOp(MyArrayOps::<String>countMatching, strs, "Two");
 System.out.println("strs contains " + count + " Twos");
 }
}

The output is shown here:

vals contains 3 4s
strs contains 2 Twos

In the program, MyArrayOps is a non-generic class that contains a generic method
called countMatching(). The method returns a count of the elements in an array that
match a specified value. Notice how the generic type argument is specified. For example, its
first call in main(), shown here:

count = myOp(MyArrayOps::<Integer>countMatching, vals, 4);

passes the type argument Integer. Notice that it occurs after the ::. This syntax can be
generalized: When a generic method is specified as a method reference, its type argument
comes after the :: and before the method name. It is important to point out, however, that
explicitly specifying the type argument is not required in this situation (and many others)
because the type argument would have been automatically inferred. In cases in which a
generic class is specified, the type argument follows the class name and precedes the ::.

Although the preceding examples show the mechanics of using method references,
they don’t show their real benefits. One place method references can be quite useful is in
conjunction with the Collections Framework, which is described later in Chapter 18.
However, for completeness, a short, but effective, example that uses a method reference to
help determine the largest element in a collection is included here. (If you are unfamiliar
with the Collections Framework, return to this example after you have worked through
Chapter 18.)

15-ch15.indd 402 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 403

Pa
rt

 I

One way to find the largest element in a collection is to use the max() method defined
by the Collections class. For the version of max() used here, you must pass a reference to
the collection and an instance of an object that implements the Comparator<T> interface.
This interface specifies how two objects are compared. It defines only one abstract method,
called compare(), that takes two arguments, each the type of the objects being compared.
It must return greater than zero if the first argument is greater than the second, zero if the
two arguments are equal, and less than zero if the first object is less than the second.

In the past, to use max() with user-defined objects, an instance of Comparator<T> had
to be obtained by first explicitly implementing it by a class, and then creating an instance of
that class. This instance was then passed as the comparator to max(). With JDK 8, it is now
possible to simply pass a reference to a comparison method to max() because doing so
automatically implements the comparator. The following simple example shows the process
by creating an ArrayList of MyClass objects and then finding the one in the list that has the
highest value (as defined by the comparison method).

// Use a method reference to help find the maximum value in a collection.
import java.util.*;

class MyClass {
 private int val;

 MyClass(int v) { val = v; }

 int getVal() { return val; }
}

class UseMethodRef {
 // A compare() method compatible with the one defined by Comparator<T>.
 static int compareMC(MyClass a, MyClass b) {
 return a.getVal() - b.getVal();
 }

 public static void main(String args[])
 {
 ArrayList<MyClass> al = new ArrayList<MyClass>();

 al.add(new MyClass(1));
 al.add(new MyClass(4));
 al.add(new MyClass(2));
 al.add(new MyClass(9));
 al.add(new MyClass(3));
 al.add(new MyClass(7));

 // Find the maximum value in al using the compareMC() method.
 MyClass maxValObj = Collections.max(al, UseMethodRef::compareMC);

 System.out.println("Maximum value is: " + maxValObj.getVal());
 }
}

15-ch15.indd 403 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

404 PART I The Java Language

The output is shown here:

Maximum value is: 9

In the program, notice that MyClass neither defines any comparison method of its own,
nor does it implement Comparator. However, the maximum value of a list of MyClass items
can still be obtained by calling max() because UseMethodRef defines the static method
compareMC(), which is compatible with the compare() method defined by Comparator.
Therefore, there is no need to explicitly implement and create an instance of Comparator.

Constructor References
Similar to the way that you can create references to methods, you can create references to
constructors. Here is the general form of the syntax that you will use:

classname::new

This reference can be assigned to any functional interface reference that defines a method
compatible with the constructor. Here is a simple example:

// Demonstrate a Constructor reference.

// MyFunc is a functional interface whose method returns
// a MyClass reference.
interface MyFunc {
 MyClass func(int n);
}

class MyClass {
 private int val;

 // This constructor takes an argument.
 MyClass(int v) { val = v; }

 // This is the default constructor.
 MyClass() { val = 0; }

 // ...

 int getVal() { return val; };
}

class ConstructorRefDemo {
 public static void main(String args[])
 {
 // Create a reference to the MyClass constructor.
 // Because func() in MyFunc takes an argument, new
 // refers to the parameterized constructor in MyClass,
 // not the default constructor.
 MyFunc myClassCons = MyClass::new;

 // Create an instance of MyClass via that constructor reference.

15-ch15.indd 404 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 405

Pa
rt

 I

 MyClass mc = myClassCons.func(100);

 // Use the instance of MyClass just created.
 System.out.println("val in mc is " + mc.getVal());
 }
}

The output is shown here:

val in mc is 100

In the program, notice that the func() method of MyFunc returns a reference of type
MyClass and has an int parameter. Next, notice that MyClass defines two constructors. The
first specifies a parameter of type int. The second is the default, parameterless constructor.
Now, examine the following line:

MyFunc myClassCons = MyClass::new;

Here, the expression MyClass::new creates a constructor reference to a MyClass constructor.
In this case, because MyFunc’s func() method takes an int parameter, the constructor being
referred to is MyClass(int v) because it is the one that matches. Also notice that the reference
to this constructor is assigned to a MyFunc reference called myClassCons. After this statement
executes, myClassCons can be used to create an instance of MyClass, as this line shows:

MyClass mc = myClassCons.func(100);

In essence, myClassCons has become another way to call MyClass(int v).
Constructor references to generic classes are created in the same fashion. The only

difference is that the type argument can be specified. This works the same as it does for
using a generic class to create a method reference: simply specify the type argument after
the class name. The following illustrates this by modifying the previous example so that
MyFunc and MyClass are generic.

// Demonstrate a constructor reference with a generic class.

// MyFunc is now a generic functional interface.
interface MyFunc<T> {
 MyClass<T> func(T n);
}

class MyClass<T> {
 private T val;

 // A constructor that takes an argument.
 MyClass(T v) { val = v; }

 // This is the default constructor.
 MyClass() { val = null; }

 // ...

15-ch15.indd 405 14/02/14 5:06 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

406 PART I The Java Language

 T getVal() { return val; };
}

class ConstructorRefDemo2 {

 public static void main(String args[])
 {
 // Create a reference to the MyClass<T> constructor.
 MyFunc<Integer> myClassCons = MyClass<Integer>::new;

 // Create an instance of MyClass<T> via that constructor reference.
 MyClass<Integer> mc = myClassCons.func(100);

 // Use the instance of MyClass<T> just created.
 System.out.println("val in mc is " + mc.getVal());
 }
}

This program produces the same output as the previous version. The difference is that
now both MyFunc and MyClass are generic. Thus, the sequence that creates a constructor
reference can include a type argument (although one is not always needed), as shown here:

MyFunc<Integer> myClassCons = MyClass<Integer>::new;

Because the type argument Integer has already been specified when myClassCons is
created, it can be used to create a MyClass<Integer> object, as the next line shows:

MyClass<Integer> mc = myClassCons.func(100);

Although the preceding examples demonstrate the mechanics of using a constructor
reference, no one would use a constructor reference as just shown because nothing is gained.
Furthermore, having what amounts to two names for the same constructor creates a
confusing situation (to say the least). However, to give you the flavor of a more practical
usage, the following program uses a static method, called myClassFactory(), that is a factory
for objects of any type of MyFunc objects. It can be used to create any type of object that
has a constructor compatible with its first parameter.

// Implement a simple class factory using a constructor reference.

interface MyFunc<R, T> {
 R func(T n);
}

// A simple generic class.
class MyClass<T> {
 private T val;

 // A constructor that takes an argument.
 MyClass(T v) { val = v; }

15-ch15.indd 406 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 407

Pa
rt

 I

 // The default constructor. This constructor
 // is NOT used by this program.
 MyClass() { val = null; }
 // ...

 T getVal() { return val; };
}

// A simple, non-generic class.
class MyClass2 {
 String str;

 // A constructor that takes an argument.
 MyClass2(String s) { str = s; }

 // The default constructor. This
 // constructor is NOT used by this program.
 MyClass2() { str = ""; }

 // ...

 String getVal() { return str; };
}

class ConstructorRefDemo3 {

 // A factory method for class objects. The class must
 // have a constructor that takes one parameter of type T.
 // R specifies the type of object being created.
 static <R,T> R myClassFactory(MyFunc<R, T> cons, T v) {
 return cons.func(v);
 }

 public static void main(String args[])
 {
 // Create a reference to a MyClass constructor.
 // In this case, new refers to the constructor that
 // takes an argument.
 MyFunc<MyClass<Double>, Double> myClassCons = MyClass<Double>::new;

 // Create an instance of MyClass by use of the factory method.
 MyClass<Double> mc = myClassFactory(myClassCons, 100.1);

 // Use the instance of MyClass just created.
 System.out.println("val in mc is " + mc.getVal());

 // Now, create a different class by use of myClassFactory().
 MyFunc<MyClass2, String> myClassCons2 = MyClass2::new;

 // Create an instance of MyClass2 by use of the factory method.
 MyClass2 mc2 = myClassFactory(myClassCons2, "Lambda");

15-ch15.indd 407 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

408 PART I The Java Language

 // Use the instance of MyClass just created.
 System.out.println("str in mc2 is " + mc2.getVal());
 }
}

The output is shown here:

val in mc is 100.1
str in mc2 is Lambda

As you can see, myClassFactory() is used to create objects of type MyClass<Double>
and MyClass2. Although both classes differ, for example MyClass is generic and MyClass2 is
not, both can be created by myClassFactory() because they both have constructors that are
compatible with func() in MyFunc. This works because myClassFactory() is passed the
constructor for the object that it builds. You might want to experiment with this program a
bit, trying different classes that you create. Also try creating instances of different types of
MyClass objects. As you will see, myClassFactory() can create any type of object whose class
has a constructor that is compatible with func() in MyFunc. Although this example is quite
simple, it hints at the power that constructor references bring to Java.

Before moving on, it is important to mention a second form of the constructor reference
syntax that is used for arrays. To create a constructor reference for an array, use this construct:

type[]::new

Here, type specifies the type of object being created. For example, assuming the form of
MyClass as shown in the first constructor reference example (ConstructorRefDemo) and
given the MyArrayCreator interface shown here:

interface MyArrayCreator<T> {
 T func(int n);
}

the following creates a two-element array of MyClass objects and gives each element an
initial value:

MyArrayCreator<MyClass[]> mcArrayCons = MyClass[]::new;
MyClass[] a = mcArrayCons.func(2);
a[0] = new MyClass(1);
a[1] = new MyClass(2);

Here, the call to func(2) causes a two-element array to be created. In general, a functional
interface must contain a method that takes a single int parameter if it is to be used to refer
to an array constructor.

Predefined Functional Interfaces
Up to this point, the examples in this chapter have defined their own functional interfaces
so that the fundamental concepts behind lambda expressions and functional interfaces
could be clearly illustrated. However, in many cases, you won’t need to define your own
functional interface because JDK 8 adds a new package called java.util.function that

15-ch15.indd 408 14/02/14 5:06 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 15 Lambda Expressions 409

Pa
rt

 I

provides several predefined ones. Although we will look at them more closely in Part II,
here is a sampling:

Interface Purpose

UnaryOperator<T> Apply a unary operation to an object of type T and return the result,
which is also of type T. Its method is called apply().

BinaryOperator<T> Apply an operation to two objects of type T and return the result, which
is also of type T. Its method is called apply().

Consumer<T> Apply an operation on an object of type T. Its method is called
accept().

Supplier<T> Return an object of type T. Its method is called get().

Function<T, R> Apply an operation to an object of type T and return the result as an
object of type R. Its method is called apply().

Predicate<T> Determine if an object of type T fulfills some constraint. Return a
boolean value that indicates the outcome. Its method is called test().

The following program shows the Function interface in action by using it to rework
the earlier example called BlockLambdaDemo that demonstrated block lambdas by
implementing a factorial example. That example created its own functional interface
called NumericFunc, but the built-in Function interface could have been used, as this
version of the program illustrates:

// Use the Function built-in functional interface.

// Import the Function interface.
import java.util.function.Function;

class UseFunctionInterfaceDemo {
 public static void main(String args[])
 {

 // This block lambda computes the factorial of an int value.
 // This time, Function is the functional interface.
 Function<Integer, Integer> factorial = (n) -> {
 int result = 1;
 for(int i=1; i <= n; i++)
 result = i * result;
 return result;
 };

 System.out.println("The factoral of 3 is " + factorial.apply(3));
 System.out.println("The factoral of 5 is " + factorial.apply(5));
 }
}

It produces the same output as previous versions of the program.

15-ch15.indd 409 14/02/14 5:06 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

The Java Library

PART

II
CHAPTER 16
String Handling

CHAPTER 17
Exploring java.lang

CHAPTER 18
java.util Part 1: The
Collections Framework

CHAPTER 19
java.util Part 2: More Utility
Classes

CHAPTER 20
Input/Output: Exploring
java.io

CHAPTER 21
Exploring NIO

CHAPTER 22
Networking

CHAPTER 23
The Applet Class

CHAPTER 24
Event Handling

CHAPTER 25
Introducing the AWT:
Working with Windows,
Graphics, and Text

CHAPTER 26
Using AWT Controls, Layout
Managers, and Menus

16-ch16.indd 411 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

CHAPTER 27
Images

CHAPTER 28
The Concurrency Utilities

CHAPTER 29
The Stream API

CHAPTER 30
Regular Expressions and
Other Packages

16-ch16.indd 412 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

16
CHAPTER

 413

String Handling

A brief overview of Java’s string handling was presented in Chapter 7. In this chapter, it is
described in detail. As is the case in most other programming languages, in Java a string is a
sequence of characters. But, unlike some other languages that implement strings as character
arrays, Java implements strings as objects of type String.

Implementing strings as built-in objects allows Java to provide a full complement of
features that make string handling convenient. For example, Java has methods to compare
two strings, search for a substring, concatenate two strings, and change the case of letters
within a string. Also, String objects can be constructed a number of ways, making it easy to
obtain a string when needed.

Somewhat unexpectedly, when you create a String object, you are creating a string that
cannot be changed. That is, once a String object has been created, you cannot change the
characters that comprise that string. At first, this may seem to be a serious restriction.
However, such is not the case. You can still perform all types of string operations. The
difference is that each time you need an altered version of an existing string, a new String
object is created that contains the modifications. The original string is left unchanged. This
approach is used because fixed, immutable strings can be implemented more efficiently
than changeable ones. For those cases in which a modifiable string is desired, Java provides
two options: StringBuffer and StringBuilder. Both hold strings that can be modified after
they are created.

The String, StringBuffer, and StringBuilder classes are defined in java.lang. Thus, they are
available to all programs automatically. All are declared final, which means that none of these
classes may be subclassed. This allows certain optimizations that increase performance to take
place on common string operations. All three implement the CharSequence interface.

One last point: To say that the strings within objects of type String are unchangeable
means that the contents of the String instance cannot be changed after it has been created.

16-ch16.indd 413 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

414 PART II The Java Library

However, a variable declared as a String reference can be changed to point at some other
String object at any time.

The String Constructors
The String class supports several constructors. To create an empty String, call the default
constructor. For example,

String s = new String();

will create an instance of String with no characters in it.
Frequently, you will want to create strings that have initial values. The String class

provides a variety of constructors to handle this. To create a String initialized by an array
of characters, use the constructor shown here:

String(char chars[])

Here is an example:

char chars[] = { 'a', 'b', 'c' };
String s = new String(chars);

This constructor initializes s with the string "abc".
You can specify a subrange of a character array as an initializer using the following

constructor:

String(char chars[], int startIndex, int numChars)

Here, startIndex specifies the index at which the subrange begins, and numChars specifies
the number of characters to use. Here is an example:

char chars[] = { 'a', 'b', 'c', 'd', 'e', 'f' };
String s = new String(chars, 2, 3);

This initializes s with the characters cde.
You can construct a String object that contains the same character sequence as another

String object using this constructor:

String(String strObj)

Here, strObj is a String object. Consider this example:

// Construct one String from another.
class MakeString {
 public static void main(String args[]) {
 char c[] = {'J', 'a', 'v', 'a'};
 String s1 = new String(c);
 String s2 = new String(s1);

 System.out.println(s1);
 System.out.println(s2);
 }
}

16-ch16.indd 414 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 415

Pa
rt

 II

The output from this program is as follows:

 Java
 Java

As you can see, s1 and s2 contain the same string.
Even though Java’s char type uses 16 bits to represent the basic Unicode character set,

the typical format for strings on the Internet uses arrays of 8-bit bytes constructed from the
ASCII character set. Because 8-bit ASCII strings are common, the String class provides
constructors that initialize a string when given a byte array. Two forms are shown here:

String(byte chrs[])
String(byte chrs[], int startIndex, int numChars)

Here, chrs specifies the array of bytes. The second form allows you to specify a subrange.
In each of these constructors, the byte-to-character conversion is done by using the default
character encoding of the platform. The following program illustrates these constructors:

// Construct string from subset of char array.
class SubStringCons {
 public static void main(String args[]) {
 byte ascii[] = {65, 66, 67, 68, 69, 70 };

 String s1 = new String(ascii);
 System.out.println(s1);

 String s2 = new String(ascii, 2, 3);
 System.out.println(s2);
 }
}

This program generates the following output:

 ABCDEF
 CDE

Extended versions of the byte-to-string constructors are also defined in which you can
specify the character encoding that determines how bytes are converted to characters.
However, you will often want to use the default encoding provided by the platform.

NOTE The contents of the array are copied whenever you create a String object from an array. If you
modify the contents of the array after you have created the string, the String will be unchanged.

You can construct a String from a StringBuffer by using the constructor shown here:

String(StringBuffer strBufObj)

You can construct a String from a StringBuilder by using this constructor:

String(StringBuilder strBuildObj)

16-ch16.indd 415 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

416 PART II The Java Library

The following constructor supports the extended Unicode character set:

String(int codePoints[], int startIndex, int numChars)

Here, codePoints is an array that contains Unicode code points. The resulting string is
constructed from the range that begins at startIndex and runs for numChars.

There are also constructors that let you specify a Charset.

NOTE A discussion of Unicode code points and how they are handled by Java is found in Chapter 17.

String Length
The length of a string is the number of characters that it contains. To obtain this value, call
the length() method, shown here:

int length()

The following fragment prints "3", since there are three characters in the string s:

 char chars[] = { 'a', 'b', 'c' };
 String s = new String(chars);
 System.out.println(s.length());

Special String Operations
Because strings are a common and important part of programming, Java has added special
support for several string operations within the syntax of the language. These operations
include the automatic creation of new String instances from string literals, concatenation of
multiple String objects by use of the + operator, and the conversion of other data types to a
string representation. There are explicit methods available to perform all of these functions,
but Java does them automatically as a convenience for the programmer and to add clarity.

String Literals
The earlier examples showed how to explicitly create a String instance from an array of
characters by using the new operator. However, there is an easier way to do this using a
string literal. For each string literal in your program, Java automatically constructs a String
object. Thus, you can use a string literal to initialize a String object. For example, the
following code fragment creates two equivalent strings:

char chars[] = { 'a', 'b', 'c' };
String s1 = new String(chars);

String s2 = "abc"; // use string literal

Because a String object is created for every string literal, you can use a string literal any
place you can use a String object. For example, you can call methods directly on a quoted
string as if it were an object reference, as the following statement shows. It calls the length()
method on the string "abc". As expected, it prints "3".

System.out.println("abc".length());

16-ch16.indd 416 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 417

Pa
rt

 II

String Concatenation
In general, Java does not allow operators to be applied to String objects. The one exception
to this rule is the + operator, which concatenates two strings, producing a String object as
the result. This allows you to chain together a series of + operations. For example, the
following fragment concatenates three strings:

String age = "9";
String s = "He is " + age + " years old.";
System.out.println(s);

This displays the string "He is 9 years old."
One practical use of string concatenation is found when you are creating very long

strings. Instead of letting long strings wrap around within your source code, you can break
them into smaller pieces, using the + to concatenate them. Here is an example:

// Using concatenation to prevent long lines.
class ConCat {
 public static void main(String args[]) {
 String longStr = "This could have been " +
 "a very long line that would have " +
 "wrapped around. But string concatenation " +
 "prevents this.";

 System.out.println(longStr);
 }
}

String Concatenation with Other Data Types
You can concatenate strings with other types of data. For example, consider this slightly
different version of the earlier example:

int age = 9;
String s = "He is " + age + " years old.";
System.out.println(s);

In this case, age is an int rather than another String, but the output produced is the
same as before. This is because the int value in age is automatically converted into its string
representation within a String object. This string is then concatenated as before. The
compiler will convert an operand to its string equivalent whenever the other operand of
the + is an instance of String.

Be careful when you mix other types of operations with string concatenation
expressions, however. You might get surprising results. Consider the following:

String s = "four: " + 2 + 2;
System.out.println(s);

This fragment displays

four: 22

16-ch16.indd 417 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

418 PART II The Java Library

rather than the

four: 4

that you probably expected. Here’s why. Operator precedence causes the concatenation of
"four" with the string equivalent of 2 to take place first. This result is then concatenated
with the string equivalent of 2 a second time. To complete the integer addition first, you
must use parentheses, like this:

String s = "four: " + (2 + 2);

Now s contains the string "four: 4".

String Conversion and toString()
When Java converts data into its string representation during concatenation, it does so by
calling one of the overloaded versions of the string conversion method valueOf() defined
by String. valueOf() is overloaded for all the primitive types and for type Object. For the
primitive types, valueOf() returns a string that contains the human-readable equivalent
of the value with which it is called. For objects, valueOf() calls the toString() method on the
object. We will look more closely at valueOf() later in this chapter. Here, let’s examine
the toString() method, because it is the means by which you can determine the string
representation for objects of classes that you create.

Every class implements toString() because it is defined by Object. However, the default
implementation of toString() is seldom sufficient. For most important classes that you
create, you will want to override toString() and provide your own string representations.
Fortunately, this is easy to do. The toString() method has this general form:

String toString()

To implement toString(), simply return a String object that contains the human-readable
string that appropriately describes an object of your class.

By overriding toString() for classes that you create, you allow them to be fully integrated
into Java’s programming environment. For example, they can be used in print() and
println() statements and in concatenation expressions. The following program
demonstrates this by overriding toString() for the Box class:

// Override toString() for Box class.
class Box {
 double width;
 double height;
 double depth;

 Box(double w, double h, double d) {
 width = w;
 height = h;
 depth = d;
 }

 public String toString() {
 return "Dimensions are " + width + " by " +

16-ch16.indd 418 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 419

Pa
rt

 II

 depth + " by " + height + ".";
 }
}

class toStringDemo {
 public static void main(String args[]) {
 Box b = new Box(10, 12, 14);
 String s = "Box b: " + b; // concatenate Box object

 System.out.println(b); // convert Box to string
 System.out.println(s);
 }
}

The output of this program is shown here:

 Dimensions are 10.0 by 14.0 by 12.0
 Box b: Dimensions are 10.0 by 14.0 by 12.0

As you can see, Box’s toString() method is automatically invoked when a Box object is
used in a concatenation expression or in a call to println().

Character Extraction
The String class provides a number of ways in which characters can be extracted from a
String object. Several are examined here. Although the characters that comprise a string
within a String object cannot be indexed as if they were a character array, many of the
String methods employ an index (or offset) into the string for their operation. Like arrays,
the string indexes begin at zero.

charAt()
To extract a single character from a String, you can refer directly to an individual character
via the charAt() method. It has this general form:

char charAt(int where)

Here, where is the index of the character that you want to obtain. The value of where must be
nonnegative and specify a location within the string. charAt() returns the character at the
specified location. For example,

char ch;
ch = "abc".charAt(1);

assigns the value b to ch.

getChars()
If you need to extract more than one character at a time, you can use the getChars()
method. It has this general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

16-ch16.indd 419 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

420 PART II The Java Library

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. Thus, the substring
contains the characters from sourceStart through sourceEnd–1. The array that will receive the
characters is specified by target. The index within target at which the substring will be copied
is passed in targetStart. Care must be taken to assure that the target array is large enough to
hold the number of characters in the specified substring.

The following program demonstrates getChars():

class getCharsDemo {
 public static void main(String args[]) {
 String s = "This is a demo of the getChars method.";
 int start = 10;
 int end = 14;
 char buf[] = new char[end - start];

 s.getChars(start, end, buf, 0);
 System.out.println(buf);
 }
}

Here is the output of this program:

 demo

getBytes()
There is an alternative to getChars() that stores the characters in an array of bytes. This
method is called getBytes(), and it uses the default character-to-byte conversions provided
by the platform. Here is its simplest form:

byte[] getBytes()

Other forms of getBytes() are also available. getBytes() is most useful when you are
exporting a String value into an environment that does not support 16-bit Unicode characters.
For example, most Internet protocols and text file formats use 8-bit ASCII for all text
interchange.

toCharArray()
If you want to convert all the characters in a String object into a character array, the easiest
way is to call toCharArray(). It returns an array of characters for the entire string. It has this
general form:

char[] toCharArray()

This function is provided as a convenience, since it is possible to use getChars() to
achieve the same result.

String Comparison
The String class includes a number of methods that compare strings or substrings within
strings. Several are examined here.

16-ch16.indd 420 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 421

Pa
rt

 II

equals() and equalsIgnoreCase()
To compare two strings for equality, use equals(). It has this general form:

boolean equals(Object str)

Here, str is the String object being compared with the invoking String object. It returns
true if the strings contain the same characters in the same order, and false otherwise. The
comparison is case-sensitive.

To perform a comparison that ignores case differences, call equalsIgnoreCase(). When
it compares two strings, it considers A-Z to be the same as a-z. It has this general form:

boolean equalsIgnoreCase(String str)

Here, str is the String object being compared with the invoking String object. It, too, returns
true if the strings contain the same characters in the same order, and false otherwise.

Here is an example that demonstrates equals() and equalsIgnoreCase():

// Demonstrate equals() and equalsIgnoreCase().
class equalsDemo {
 public static void main(String args[]) {
 String s1 = "Hello";
 String s2 = "Hello";
 String s3 = "Good-bye";
 String s4 = "HELLO";
 System.out.println(s1 + " equals " + s2 + " -> " +
 s1.equals(s2));
 System.out.println(s1 + " equals " + s3 + " -> " +
 s1.equals(s3));
 System.out.println(s1 + " equals " + s4 + " -> " +
 s1.equals(s4));
 System.out.println(s1 + " equalsIgnoreCase " + s4 + " -> " +
 s1.equalsIgnoreCase(s4));
 }
}

The output from the program is shown here:

 Hello equals Hello -> true
 Hello equals Good-bye -> false
 Hello equals HELLO -> false
 Hello equalsIgnoreCase HELLO -> true

regionMatches()
The regionMatches() method compares a specific region inside a string with another
specific region in another string. There is an overloaded form that allows you to ignore
case in such comparisons. Here are the general forms for these two methods:

boolean regionMatches(int startIndex, String str2,
 int str2StartIndex, int numChars)

16-ch16.indd 421 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

422 PART II The Java Library

boolean regionMatches(boolean ignoreCase,
 int startIndex, String str2,
 int str2StartIndex, int numChars)

For both versions, startIndex specifies the index at which the region begins within the
invoking String object. The String being compared is specified by str2. The index at which
the comparison will start within str2 is specified by str2StartIndex. The length of the substring
being compared is passed in numChars. In the second version, if ignoreCase is true, the case
of the characters is ignored. Otherwise, case is significant.

startsWith() and endsWith()
String defines two methods that are, more or less, specialized forms of regionMatches().
The startsWith() method determines whether a given String begins with a specified string.
Conversely, endsWith() determines whether the String in question ends with a specified
string. They have the following general forms:

boolean startsWith(String str)
boolean endsWith(String str)

Here, str is the String being tested. If the string matches, true is returned. Otherwise, false
is returned. For example,

"Foobar".endsWith("bar")

and

"Foobar".startsWith("Foo")

are both true.
A second form of startsWith(), shown here, lets you specify a starting point:

boolean startsWith(String str, int startIndex)

Here, startIndex specifies the index into the invoking string at which point the search will
begin. For example,

"Foobar".startsWith("bar", 3)

returns true.

equals() Versus ==
It is important to understand that the equals() method and the == operator perform two
different operations. As just explained, the equals() method compares the characters
inside a String object. The == operator compares two object references to see whether they
refer to the same instance. The following program shows how two different String objects
can contain the same characters, but references to these objects will not compare as equal:

// equals() vs ==
class EqualsNotEqualTo {
 public static void main(String args[]) {

16-ch16.indd 422 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 423

Pa
rt

 II

 String s1 = "Hello";
 String s2 = new String(s1);

 System.out.println(s1 + " equals " + s2 + " -> " +
 s1.equals(s2));
 System.out.println(s1 + " == " + s2 + " -> " + (s1 == s2));
 }
}

The variable s1 refers to the String instance created by "Hello". The object referred
to by s2 is created with s1 as an initializer. Thus, the contents of the two String objects are
identical, but they are distinct objects. This means that s1 and s2 do not refer to the same
objects and are, therefore, not ==, as is shown here by the output of the preceding example:

 Hello equals Hello -> true
 Hello == Hello -> false

compareTo()
Often, it is not enough to simply know whether two strings are identical. For sorting
applications, you need to know which is less than, equal to, or greater than the next. A string
is less than another if it comes before the other in dictionary order. A string is greater than
another if it comes after the other in dictionary order. The method compareTo() serves
this purpose. It is specified by the Comparable<T> interface, which String implements. It
has this general form:

int compareTo(String str)

Here, str is the String being compared with the invoking String. The result of the
comparison is returned and is interpreted as shown here:

Value Meaning
Less than zero The invoking string is less than str.

Greater than zero The invoking string is greater than str.

Zero The two strings are equal.

Here is a sample program that sorts an array of strings. The program uses compareTo()
to determine sort ordering for a bubble sort:

// A bubble sort for Strings.
class SortString {
 static String arr[] = {
 "Now", "is", "the", "time", "for", "all", "good", "men",
 "to", "come", "to", "the", "aid", "of", "their", "country"
 };
 public static void main(String args[]) {
 for(int j = 0; j < arr.length; j++) {
 for(int i = j + 1; i < arr.length; i++) {
 if(arr[i].compareTo(arr[j]) < 0) {
 String t = arr[j];

16-ch16.indd 423 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

424 PART II The Java Library

 arr[j] = arr[i];
 arr[i] = t;
 }
 }
 System.out.println(arr[j]);
 }
 }
}

The output of this program is the list of words:

 Now
 aid
 all
 come
 country
 for
 good
 is
 men
 of
 the
 the
 their
 time
 to
 to

As you can see from the output of this example, compareTo() takes into account
uppercase and lowercase letters. The word "Now" came out before all the others because it
begins with an uppercase letter, which means it has a lower value in the ASCII character set.

If you want to ignore case differences when comparing two strings, use
compareToIgnoreCase(), as shown here:

int compareToIgnoreCase(String str)

This method returns the same results as compareTo(), except that case differences are
ignored. You might want to try substituting it into the previous program. After doing so,
"Now" will no longer be first.

Searching Strings
The String class provides two methods that allow you to search a string for a specified
character or substring:

•	 indexOf() Searches for the first occurrence of a character or substring.

•	 lastIndexOf() Searches for the last occurrence of a character or substring.

These two methods are overloaded in several different ways. In all cases, the methods
return the index at which the character or substring was found, or –1 on failure.

To search for the first occurrence of a character, use

int indexOf(int ch)

16-ch16.indd 424 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 425

Pa
rt

 II

To search for the last occurrence of a character, use

int lastIndexOf(int ch)

Here, ch is the character being sought.
To search for the first or last occurrence of a substring, use

int indexOf(String str)
int lastIndexOf(String str)

Here, str specifies the substring.
You can specify a starting point for the search using these forms:

int indexOf(int ch, int startIndex)
int lastIndexOf(int ch, int startIndex)

int indexOf(String str, int startIndex)
int lastIndexOf(String str, int startIndex)

Here, startIndex specifies the index at which point the search begins. For indexOf(), the
search runs from startIndex to the end of the string. For lastIndexOf(), the search runs
from startIndex to zero.

The following example shows how to use the various index methods to search inside of
a String:

// Demonstrate indexOf() and lastIndexOf().
class indexOfDemo {
 public static void main(String args[]) {
 String s = "Now is the time for all good men " +
 "to come to the aid of their country.";

 System.out.println(s);
 System.out.println("indexOf(t) = " +
 s.indexOf('t'));
 System.out.println("lastIndexOf(t) = " +
 s.lastIndexOf('t'));
 System.out.println("indexOf(the) = " +
 s.indexOf("the"));
 System.out.println("lastIndexOf(the) = " +
 s.lastIndexOf("the"));
 System.out.println("indexOf(t, 10) = " +
 s.indexOf('t', 10));
 System.out.println("lastIndexOf(t, 60) = " +
 s.lastIndexOf('t', 60));
 System.out.println("indexOf(the, 10) = " +
 s.indexOf("the", 10));
 System.out.println("lastIndexOf(the, 60) = " +
 s.lastIndexOf("the", 60));
 }
}

16-ch16.indd 425 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

426 PART II The Java Library

Here is the output of this program:

 Now is the time for all good men to come to the aid of their country.
 indexOf(t) = 7
 lastIndexOf(t) = 65
 indexOf(the) = 7
 lastIndexOf(the) = 55
 indexOf(t, 10) = 11
 lastIndexOf(t, 60) = 55
 indexOf(the, 10) = 44
 lastIndexOf(the, 60) = 55

Modifying a String
Because String objects are immutable, whenever you want to modify a String, you must
either copy it into a StringBuffer or StringBuilder, or use a String method that constructs a
new copy of the string with your modifications complete. A sampling of these methods are
described here.

substring()
You can extract a substring using substring(). It has two forms. The first is

String substring(int startIndex)

Here, startIndex specifies the index at which the substring will begin. This form returns a
copy of the substring that begins at startIndex and runs to the end of the invoking string.

The second form of substring() allows you to specify both the beginning and ending
index of the substring:

String substring(int startIndex, int endIndex)

Here, startIndex specifies the beginning index, and endIndex specifies the stopping point.
The string returned contains all the characters from the beginning index, up to, but not
including, the ending index.

The following program uses substring() to replace all instances of one substring with
another within a string:

// Substring replacement.
class StringReplace {
 public static void main(String args[]) {
 String org = "This is a test. This is, too.";
 String search = "is";
 String sub = "was";
 String result = "";
 int i;

 do { // replace all matching substrings
 System.out.println(org);
 i = org.indexOf(search);
 if(i != -1) {
 result = org.substring(0, i);
 result = result + sub;

16-ch16.indd 426 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 427

Pa
rt

 II

 result = result + org.substring(i + search.length());
 org = result;
 }
 } while(i != -1);
 }
}

The output from this program is shown here:

 This is a test. This is, too.
 Thwas is a test. This is, too.
 Thwas was a test. This is, too.
 Thwas was a test. Thwas is, too.
 Thwas was a test. Thwas was, too.

concat()
You can concatenate two strings using concat(), shown here:

String concat(String str)

This method creates a new object that contains the invoking string with the contents of
str appended to the end. concat() performs the same function as +. For example,

String s1 = "one";
String s2 = s1.concat("two");

puts the string "onetwo" into s2. It generates the same result as the following sequence:

String s1 = "one";
String s2 = s1 + "two";

replace()
The replace() method has two forms. The first replaces all occurrences of one character in
the invoking string with another character. It has the following general form:

String replace(char original, char replacement)

Here, original specifies the character to be replaced by the character specified by replacement.
The resulting string is returned. For example,

String s = "Hello".replace('l', 'w');

puts the string "Hewwo" into s.
The second form of replace() replaces one character sequence with another. It has this

general form:

String replace(CharSequence original, CharSequence replacement)

16-ch16.indd 427 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

428 PART II The Java Library

trim()
The trim() method returns a copy of the invoking string from which any leading and
trailing whitespace has been removed. It has this general form:

String trim()

Here is an example:

String s = " Hello World ".trim();

This puts the string "Hello World" into s.
The trim() method is quite useful when you process user commands. For example,

the following program prompts the user for the name of a state and then displays that
state’s capital. It uses trim() to remove any leading or trailing whitespace that may have
inadvertently been entered by the user.

// Using trim() to process commands.
import java.io.*;

class UseTrim {
 public static void main(String args[])
 throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in));
 String str;

 System.out.println("Enter 'stop' to quit.");
 System.out.println("Enter State: ");
 do {
 str = br.readLine();
 str = str.trim(); // remove whitespace

 if(str.equals("Illinois"))
 System.out.println("Capital is Springfield.");
 else if(str.equals("Missouri"))
 System.out.println("Capital is Jefferson City.");
 else if(str.equals("California"))
 System.out.println("Capital is Sacramento.");
 else if(str.equals("Washington"))
 System.out.println("Capital is Olympia.");
 // ...
 } while(!str.equals("stop"));
 }
}

Data Conversion Using valueOf()
The valueOf() method converts data from its internal format into a human-readable form.
It is a static method that is overloaded within String for all of Java’s built-in types so that
each type can be converted properly into a string. valueOf() is also overloaded for type

16-ch16.indd 428 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 429

Pa
rt

 II

Object, so an object of any class type you create can also be used as an argument. (Recall
that Object is a superclass for all classes.) Here are a few of its forms:

static String valueOf(double num)
static String valueOf(long num)
static String valueOf(Object ob)
static String valueOf(char chars[])

As discussed earlier, valueOf() is called when a string representation of some other
type of data is needed—for example, during concatenation operations. You can call this
method directly with any data type and get a reasonable String representation. All of the
simple types are converted to their common String representation. Any object that you pass
to valueOf() will return the result of a call to the object’s toString() method. In fact, you
could just call toString() directly and get the same result.

For most arrays, valueOf() returns a rather cryptic string, which indicates that it is an
array of some type. For arrays of char, however, a String object is created that contains the
characters in the char array. There is a special version of valueOf() that allows you to specify
a subset of a char array. It has this general form:

static String valueOf(char chars[], int startIndex, int numChars)

Here, chars is the array that holds the characters, startIndex is the index into the array of
characters at which the desired substring begins, and numChars specifies the length of the
substring.

Changing the Case of Characters Within a String
The method toLowerCase() converts all the characters in a string from uppercase to
lowercase. The toUpperCase() method converts all the characters in a string from lowercase
to uppercase. Nonalphabetical characters, such as digits, are unaffected. Here are the
simplest forms of these methods:

String toLowerCase()
String toUpperCase()

Both methods return a String object that contains the uppercase or lowercase equivalent of
the invoking String. The default locale governs the conversion in both cases.

Here is an example that uses toLowerCase() and toUpperCase():

// Demonstrate toUpperCase() and toLowerCase().

class ChangeCase {
 public static void main(String args[])
 {
 String s = "This is a test.";

 System.out.println("Original: " + s);

 String upper = s.toUpperCase();
 String lower = s.toLowerCase();

16-ch16.indd 429 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

430 PART II The Java Library

 System.out.println("Uppercase: " + upper);
 System.out.println("Lowercase: " + lower);
 }
}

The output produced by the program is shown here:

 Original: This is a test.
 Uppercase: THIS IS A TEST.
 Lowercase: this is a test.

One other point: Overloaded versions of toLowerCase() and toUpperCase() that let
you specify a Locale object to govern the conversion are also supplied. Specifying the locale
can be quite important in some cases and can help internationalize your application.

Joining Strings
JDK 8 adds a new method to String called join(). It is used to concatenate two or more
strings, separating each string with a delimiter, such as a space or a comma. It has two
forms. Its first is shown here:

static String join(CharSequence delim, CharSequence . . . strs)

Here, delim specifies the delimiter used to separate the character sequences specified by strs.
Because String implements the CharSequence interface, strs can be a list of strings. (See
Chapter 17 for information on CharSequence.) The following program demonstrates this
version of join():

// Demonstrate the join() method defined by String.
class StringJoinDemo {
 public static void main(String args[]) {

 String result = String.join(" ", "Alpha", "Beta", "Gamma");
 System.out.println(result);

 result = String.join(", ", "John", "ID#: 569",
 "E-mail: John@HerbSchildt.com");
 System.out.println(result);
 }
}

The output is shown here:

Alpha Beta Gamma
John, ID#: 569, E-mail: John@HerbSchildt.com

In the first call to join(), a space is inserted between each string. In the second call, the
delimiter is a comma followed by a space. This illustrates that the delimiter need not be just
a single character.

16-ch16.indd 430 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 431

Pa
rt

 II

The second form of join() lets you join a list of strings obtained from an object that
implements the Iterable interface. Iterable is implemented by the Collections Framework
classes described in Chapter 18, among others. See Chapter 17 for information on Iterable.

Additional String Methods
In addition to those methods discussed earlier, String has many other methods, including
those summarized in the following table:

Method Description
int codePointAt(int i) Returns the Unicode code point at the location

specified by i.

int codePointBefore(int i) Returns the Unicode code point at the location that
precedes that specified by i.

int codePointCount(int start, int end) Returns the number of code points in the portion of
the invoking String that are between start and end–1.

boolean contains(CharSequence str) Returns true if the invoking object contains the
string specified by str. Returns false otherwise.

boolean contentEquals(CharSequence str) Returns true if the invoking string contains the same
string as str. Otherwise, returns false.

boolean contentEquals(StringBuffer str) Returns true if the invoking string contains the same
string as str. Otherwise, returns false.

static String format(String fmtstr,
 Object ... args)

Returns a string formatted as specified by fmtstr. (See
Chapter 19 for details on formatting.)

static String format(Locale loc,
 String fmtstr,
 Object ... args)

Returns a string formatted as specified by fmtstr.
Formatting is governed by the locale specified by loc.
(See Chapter 19 for details on formatting.)

boolean isEmpty() Returns true if the invoking string contains no
characters and has a length of zero.

boolean matches(string regExp) Returns true if the invoking string matches the regular
expression passed in regExp. Otherwise, returns false.

int offsetByCodePoints(int start, int num) Returns the index within the invoking string that is
num code points beyond the starting index specified
by start.

String
 replaceFirst(String regExp,
 String newStr)

Returns a string in which the first substring that
matches the regular expression specified by regExp is
replaced by newStr.

String
 replaceAll(String regExp,
 String newStr)

Returns a string in which all substrings that match
the regular expression specified by regExp are
replaced by newStr.

String[] split(String regExp) Decomposes the invoking string into parts and
returns an array that contains the result. Each part is
delimited by the regular expression passed in regExp.

16-ch16.indd 431 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

432 PART II The Java Library

Method Description
String[] split(String regExp, int max) Decomposes the invoking string into parts and returns

an array that contains the result. Each part is delimited
by the regular expression passed in regExp. The number
of pieces is specified by max. If max is negative, then the
invoking string is fully decomposed. Otherwise, if max
contains a nonzero value, the last entry in the returned
array contains the remainder of the invoking string. If
max is zero, the invoking string is fully decomposed, but
no trailing empty strings will be included.

CharSequence
 subSequence(int startIndex,
 int stopIndex)

Returns a substring of the invoking string, beginning
at startIndex and stopping at stopIndex. This method
is required by the CharSequence interface, which is
implemented by String.

Notice that several of these methods work with regular expressions. Regular expressions are
described in Chapter 30.

StringBuffer
StringBuffer supports a modifiable string. As you know, String represents fixed-length,
immutable character sequences. In contrast, StringBuffer represents growable and writable
character sequences. StringBuffer may have characters and substrings inserted in the
middle or appended to the end. StringBuffer will automatically grow to make room for
such additions and often has more characters preallocated than are actually needed, to
allow room for growth.

StringBuffer Constructors
StringBuffer defines these four constructors:

StringBuffer()
StringBuffer(int size)
StringBuffer(String str)
StringBuffer(CharSequence chars)

The default constructor (the one with no parameters) reserves room for 16 characters
without reallocation. The second version accepts an integer argument that explicitly sets
the size of the buffer. The third version accepts a String argument that sets the initial
contents of the StringBuffer object and reserves room for 16 more characters without
reallocation. StringBuffer allocates room for 16 additional characters when no specific
buffer length is requested, because reallocation is a costly process in terms of time. Also,
frequent reallocations can fragment memory. By allocating room for a few extra characters,
StringBuffer reduces the number of reallocations that take place. The fourth constructor
creates an object that contains the character sequence contained in chars and reserves room
for 16 more characters.

16-ch16.indd 432 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 433

Pa
rt

 II

length() and capacity()
The current length of a StringBuffer can be found via the length() method, while the total
allocated capacity can be found through the capacity() method. They have the following
general forms:

int length()
int capacity()

Here is an example:

// StringBuffer length vs. capacity.
class StringBufferDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("Hello");

 System.out.println("buffer = " + sb);
 System.out.println("length = " + sb.length());
 System.out.println("capacity = " + sb.capacity());
 }
}

Here is the output of this program, which shows how StringBuffer reserves extra space
for additional manipulations:

 buffer = Hello
 length = 5
 capacity = 21

Since sb is initialized with the string "Hello" when it is created, its length is 5. Its capacity is
21 because room for 16 additional characters is automatically added.

ensureCapacity()
If you want to preallocate room for a certain number of characters after a StringBuffer has
been constructed, you can use ensureCapacity() to set the size of the buffer. This is useful
if you know in advance that you will be appending a large number of small strings to a
StringBuffer. ensureCapacity() has this general form:

void ensureCapacity(int minCapacity)

Here, minCapacity specifies the minimum size of the buffer. (A buffer larger than minCapacity
may be allocated for reasons of efficiency.)

setLength()
To set the length of the string within a StringBuffer object, use setLength(). Its general
form is shown here:

void setLength(int len)

Here, len specifies the length of the string. This value must be nonnegative.
When you increase the size of the string, null characters are added to the end. If you

call setLength() with a value less than the current value returned by length(), then the

16-ch16.indd 433 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

434 PART II The Java Library

characters stored beyond the new length will be lost. The setCharAtDemo sample program
in the following section uses setLength() to shorten a StringBuffer.

charAt() and setCharAt()
The value of a single character can be obtained from a StringBuffer via the charAt() method.
You can set the value of a character within a StringBuffer using setCharAt(). Their general
forms are shown here:

char charAt(int where)
void setCharAt(int where, char ch)

For charAt(), where specifies the index of the character being obtained. For setCharAt(),
where specifies the index of the character being set, and ch specifies the new value of that
character. For both methods, where must be nonnegative and must not specify a location
beyond the end of the string.

The following example demonstrates charAt() and setCharAt():

// Demonstrate charAt() and setCharAt().
class setCharAtDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("Hello");
 System.out.println("buffer before = " + sb);
 System.out.println("charAt(1) before = " + sb.charAt(1));

 sb.setCharAt(1, 'i');
 sb.setLength(2);
 System.out.println("buffer after = " + sb);
 System.out.println("charAt(1) after = " + sb.charAt(1));
 }
}

Here is the output generated by this program:

 buffer before = Hello
 charAt(1) before = e
 buffer after = Hi
 charAt(1) after = i

getChars()
To copy a substring of a StringBuffer into an array, use the getChars() method. It has this
general form:

void getChars(int sourceStart, int sourceEnd, char target[], int targetStart)

Here, sourceStart specifies the index of the beginning of the substring, and sourceEnd
specifies an index that is one past the end of the desired substring. This means that the
substring contains the characters from sourceStart through sourceEnd–1. The array that will
receive the characters is specified by target. The index within target at which the substring
will be copied is passed in targetStart. Care must be taken to assure that the target array is
large enough to hold the number of characters in the specified substring.

16-ch16.indd 434 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 435

Pa
rt

 II

append()
The append() method concatenates the string representation of any other type of data to
the end of the invoking StringBuffer object. It has several overloaded versions. Here are a
few of its forms:

StringBuffer append(String str)
StringBuffer append(int num)
StringBuffer append(Object obj)

The string representation of each parameter is obtained, often by calling String.valueOf().
The result is appended to the current StringBuffer object. The buffer itself is returned by
each version of append(). This allows subsequent calls to be chained together, as shown in
the following example:

// Demonstrate append().
class appendDemo {
 public static void main(String args[]) {
 String s;
 int a = 42;
 StringBuffer sb = new StringBuffer(40);

 s = sb.append("a = ").append(a).append("!").toString();
 System.out.println(s);
 }
}

The output of this example is shown here:

 a = 42!

insert()
The insert() method inserts one string into another. It is overloaded to accept values of all
the primitive types, plus Strings, Objects, and CharSequences. Like append(), it obtains the
string representation of the value it is called with. This string is then inserted into the invoking
StringBuffer object. These are a few of its forms:

StringBuffer insert(int index, String str)
StringBuffer insert(int index, char ch)
StringBuffer insert(int index, Object obj)

Here, index specifies the index at which point the string will be inserted into the invoking
StringBuffer object.

The following sample program inserts "like" between "I" and "Java":

// Demonstrate insert().
class insertDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("I Java!");

16-ch16.indd 435 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

436 PART II The Java Library

 sb.insert(2, "like ");
 System.out.println(sb);
 }
}

The output of this example is shown here:

 I like Java!

reverse()
You can reverse the characters within a StringBuffer object using reverse(), shown here:

StringBuffer reverse()

This method returns the reverse of the object on which it was called. The following
program demonstrates reverse():

// Using reverse() to reverse a StringBuffer.
class ReverseDemo {
 public static void main(String args[]) {
 StringBuffer s = new StringBuffer("abcdef");

 System.out.println(s);
 s.reverse();
 System.out.println(s);
 }
}

Here is the output produced by the program:

 abcdef
 fedcba

delete() and deleteCharAt()
You can delete characters within a StringBuffer by using the methods delete() and
deleteCharAt(). These methods are shown here:

StringBuffer delete(int startIndex, int endIndex)
StringBuffer deleteCharAt(int loc)

The delete() method deletes a sequence of characters from the invoking object. Here,
startIndex specifies the index of the first character to remove, and endIndex specifies an
index one past the last character to remove. Thus, the substring deleted runs from
startIndex to endIndex–1. The resulting StringBuffer object is returned.

The deleteCharAt() method deletes the character at the index specified by loc. It
returns the resulting StringBuffer object.

Here is a program that demonstrates the delete() and deleteCharAt() methods:

// Demonstrate delete() and deleteCharAt()
class deleteDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("This is a test.");

16-ch16.indd 436 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 437

Pa
rt

 II

 sb.delete(4, 7);
 System.out.println("After delete: " + sb);

 sb.deleteCharAt(0);
 System.out.println("After deleteCharAt: " + sb);
 }
}

The following output is produced:

 After delete: This a test.
 After deleteCharAt: his a test.

replace()
You can replace one set of characters with another set inside a StringBuffer object by
calling replace(). Its signature is shown here:

StringBuffer replace(int startIndex, int endIndex, String str)

The substring being replaced is specified by the indexes startIndex and endIndex. Thus, the
substring at startIndex through endIndex–1 is replaced. The replacement string is passed in
str. The resulting StringBuffer object is returned.

The following program demonstrates replace():

// Demonstrate replace()
class replaceDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("This is a test.");

 sb.replace(5, 7, "was");
 System.out.println("After replace: " + sb);
 }
}

Here is the output:

 After replace: This was a test.

substring()
You can obtain a portion of a StringBuffer by calling substring(). It has the following two
forms:

String substring(int startIndex)
String substring(int startIndex, int endIndex)

The first form returns the substring that starts at startIndex and runs to the end of the
invoking StringBuffer object. The second form returns the substring that starts at startIndex
and runs through endIndex–1. These methods work just like those defined for String that
were described earlier.

16-ch16.indd 437 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

438 PART II The Java Library

Additional StringBuffer Methods
In addition to those methods just described, StringBuffer supplies several others, including
those summarized in the following table:

Method Description
StringBuffer appendCodePoint(int ch) Appends a Unicode code point to the end of the invoking

object. A reference to the object is returned.

int codePointAt(int i) Returns the Unicode code point at the location specified
by i.

int codePointBefore(int i) Returns the Unicode code point at the location that
precedes that specified by i.

int codePointCount(int start, int end) Returns the number of code points in the portion of the
invoking String that are between start and end–1.

int indexOf(String str) Searches the invoking StringBuffer for the first
occurrence of str. Returns the index of the match, or –1 if
no match is found.

int indexOf(String str, int startIndex) Searches the invoking StringBuffer for the first
occurrence of str, beginning at startIndex. Returns the
index of the match, or –1 if no match is found.

int lastIndexOf(String str) Searches the invoking StringBuffer for the last
occurrence of str. Returns the index of the match,
or –1 if no match is found.

int lastIndexOf(String str, int startIndex) Searches the invoking StringBuffer for the last
occurrence of str, beginning at startIndex. Returns the
index of the match, or –1 if no match is found.

int offsetByCodePoints(int start, int num) Returns the index within the invoking string that is num
code points beyond the starting index specified by start.

CharSequence
 subSequence(int startIndex,
 int stopIndex)

Returns a substring of the invoking string, beginning
at startIndex and stopping at stopIndex. This method
is required by the CharSequence interface, which is
implemented by StringBuffer.

void trimToSize() Requests that the size of the character buffer for the
invoking object be reduced to better fit the current
contents.

The following program demonstrates indexOf() and lastIndexOf():

class IndexOfDemo {
 public static void main(String args[]) {
 StringBuffer sb = new StringBuffer("one two one");
 int i;

 i = sb.indexOf("one");
 System.out.println("First index: " + i);

 i = sb.lastIndexOf("one");
 System.out.println("Last index: " + i);
 }
}

16-ch16.indd 438 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 16 String Handling 439

Pa
rt

 II

The output is shown here:

 First index: 0
 Last index: 8

StringBuilder
Introduced by JDK 5, StringBuilder is a relatively recent addition to Java’s string handling
capabilities. StringBuilder is similar to StringBuffer except for one important difference: it
is not synchronized, which means that it is not thread-safe. The advantage of StringBuilder
is faster performance. However, in cases in which a mutable string will be accessed by multiple
threads, and no external synchronization is employed, you must use StringBuffer rather
than StringBuilder.

16-ch16.indd 439 14/02/14 5:07 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

17
CHAPTER

 441

Exploring java.lang

This chapter discusses those classes and interfaces defined by java.lang. As you know,
java.lang is automatically imported into all programs. It contains classes and interfaces that
are fundamental to virtually all of Java programming. It is Java’s most widely used package.

java.lang includes the following classes:

Boolean Enum Process String

Byte Float ProcessBuilder StringBuffer

Character InheritableThreadLocal ProcessBuilder.Redirect StringBuilder

Character.Subset Integer Runtime System

Character.UnicodeBlock Long RuntimePermission Thread

Class Math SecurityManager ThreadGroup

ClassLoader Number Short ThreadLocal

ClassValue Object StackTraceElement Throwable

Compiler Package StrictMath Void

Double

java.lang defines the following interfaces:

Appendable Cloneable Readable

AutoCloseable Comparable Runnable

CharSequence Iterable Thread.UncaughtExceptionHandler

Several of the classes contained in java.lang contain deprecated methods, most dating back
to Java 1.0. These deprecated methods are still provided by Java to support an ever-shrinking
pool of legacy code and are not recommended for new code. Because of this, the deprecated
methods are not discussed here.

17-ch17.indd 441 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

442 PART II The Java Library

Primitive Type Wrappers
As mentioned in Part I of this book, Java uses primitive types, such as int and char, for
performance reasons. These data types are not part of the object hierarchy. They are passed
by value to methods and cannot be directly passed by reference. Also, there is no way for two
methods to refer to the same instance of an int. At times, you will need to create an object
representation for one of these primitive types. For example, there are collection classes
discussed in Chapter 18 that deal only with objects; to store a primitive type in one of these
classes, you need to wrap the primitive type in a class. To address this need, Java provides
classes that correspond to each of the primitive types. In essence, these classes encapsulate, or
wrap, the primitive types within a class. Thus, they are commonly referred to as type wrappers.
The type wrappers were introduced in Chapter 12. They are examined in detail here.

Number
The abstract class Number defines a superclass that is implemented by the classes that wrap
the numeric types byte, short, int, long, float, and double. Number has abstract methods that
return the value of the object in each of the different number formats. For example,
doubleValue() returns the value as a double, floatValue() returns the value as a float, and
so on. These methods are shown here:

byte byteValue()
double doubleValue()
float floatValue()
int intValue()
long longValue()
short shortValue()

The values returned by these methods might be rounded, truncated, or result in a “garbage”
value due to the effects of a narrowing conversion.

Number has concrete subclasses that hold explicit values of each primitive numeric
type: Double, Float, Byte, Short, Integer, and Long.

Double and Float
Double and Float are wrappers for floating-point values of type double and float,
respectively. The constructors for Float are shown here:

Float(double num)
Float(float num)
Float(String str) throws NumberFormatException

As you can see, Float objects can be constructed with values of type float or double. They
can also be constructed from the string representation of a floating-point number.

The constructors for Double are shown here:

Double(double num)
Double(String str) throws NumberFormatException

Double objects can be constructed with a double value or a string containing a floating-
point value.

17-ch17.indd 442 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 443

Pa
rt

 II

The methods defined by Float include those shown in Table 17-1. The methods defined
by Double include those shown in Table 17-2. Both Float and Double define the following
constants:

BYTES The width of a float or double in bytes (Added by JDK 8.)

MAX_EXPONENT Maximum exponent

MAX_VALUE Maximum positive value

MIN_EXPONENT Minimum exponent

MIN_NORMAL Minimum positive normal value

MIN_VALUE Minimum positive value

NaN Not a number

POSITIVE_INFINITY Positive infinity

NEGATIVE_INFINITY Negative infinity

SIZE The bit width of the wrapped value

TYPE The Class object for float or double

Table 17-1 The Methods Defined by Float

Method Description
byte byteValue() Returns the value of the invoking object as a byte.

static int compare(float num1,
 float num2)

Compares the values of num1 and num2. Returns 0
if the values are equal. Returns a negative value if
num1 is less than num2. Returns a positive value if
num1 is greater than num2.

int compareTo(Float f) Compares the numerical value of the invoking
object with that of f. Returns 0 if the values are
equal. Returns a negative value if the invoking
object has a lower value. Returns a positive value if
the invoking object has a greater value.

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object FloatObj) Returns true if the invoking Float object is
equivalent to FloatObj. Otherwise, it returns false.

static int floatToIntBits(float num) Returns the IEEE-compatible, single-precision bit
pattern that corresponds to num.

static int floatToRawIntBits(float num) Returns the IEEE-compatible single-precision bit
pattern that corresponds to num. A NaN value is
preserved.

float floatValue() Returns the value of the invoking object as a float.

int hashCode() Returns the hash code for the invoking object.

static int hashCode(float num) Returns the hash code for num. (Added by JDK 8.)

static float intBitsToFloat(int num) Returns float equivalent of the IEEE-compatible,
single-precision bit pattern specified by num.

17-ch17.indd 443 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

444 PART II The Java Library

Method Description
int intValue() Returns the value of the invoking object as an int.

static boolean isFinite(float num) Returns true if num is not NaN and is not infinite.
(Added by JDK 8.)

boolean isInfinite() Returns true if the invoking object contains an
infinite value. Otherwise, it returns false.

static boolean isInfinite(float num) Returns true if num specifies an infinite value.
Otherwise, it returns false.

boolean isNaN() Returns true if the invoking object contains a value
that is not a number. Otherwise, it returns false.

static boolean isNaN(float num) Returns true if num specifies a value that is not a
number. Otherwise, it returns false.

long longValue() Returns the value of the invoking object as a long.

static float max(float val, float val2) Returns the maximum of val and val2. (Added by
JDK 8.)

static float min(float val, float val2) Returns the minimum of val and val2. (Added by
JDK 8.)

static float parseFloat(String str)
 throws NumberFormatException

Returns the float equivalent of the number contained
in the string specified by str using radix 10.

short shortValue() Returns the value of the invoking object as a short.

static float sum(float val, float val2) Returns the result of val + val2. (Added by JDK 8.)

static String toHexString(float num) Returns a string containing the value of num in
hexadecimal format.

String toString() Returns the string equivalent of the invoking object.

static String toString(float num) Returns the string equivalent of the value specified
by num.

static Float valueOf(float num) Returns a Float object containing the value passed
in num.

static Float valueOf(String str)
 throws NumberFormatException

Returns the Float object that contains the value
specified by the string in str.

Table 17-1 The Methods Defined by Float (continued)

Method Description

byte byteValue() Returns the value of the invoking object as a
byte.

static int compare(double num1,
 double num2)

Compares the values of num1 and num2. Returns
0 if the values are equal. Returns a negative value
if num1 is less than num2. Returns a positive value
if num1 is greater than num2.

Table 17-2 The Methods Defined by Double

17-ch17.indd 444 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 445

Pa
rt

 II

Method Description

int compareTo(Double d) Compares the numerical value of the invoking
object with that of d. Returns 0 if the values are
equal. Returns a negative value if the invoking
object has a lower value. Returns a positive value if
the invoking object has a greater value.

static long doubleToLongBits(double num) Returns the IEEE-compatible, double-precision
bit pattern that corresponds to num.

static long doubleToRawLongBits(double num) Returns the IEEE-compatible double-precision
bit pattern that corresponds to num. A NaN value
is preserved.

double doubleValue() Returns the value of the invoking object as a
double.

boolean equals(Object DoubleObj) Returns true if the invoking Double object is
equivalent to DoubleObj. Otherwise, it returns
false.

float floatValue() Returns the value of the invoking object as a
float.

int hashcode() Returns the hash code for the invoking object.

static int hashCode(double num) Returns the hash code for num. (Added by JDK 8.)

int intValue() Returns the value of the invoking object as an int.

static boolean isFinite(double num) Returns true if num is not NaN and is not
infinite. (Added by JDK 8.)

boolean isInfinite() Returns true if the invoking object contains an
infinite value. Otherwise, it returns false.

static boolean isInfinite(double num) Returns true if num specifies an infinite value.
Otherwise, it returns false.

boolean isNaN() Returns true if the invoking object contains a
value that is not a number. Otherwise, it returns
false.

static boolean isNaN(double num) Returns true if num specifies a value that is not a
number. Otherwise, it returns false.

static double longBitsToDouble(long num) Returns double equivalent of the IEEE-
compatible, double-precision bit pattern
specified by num.

long longValue() Returns the value of the invoking object as a
long.

static double max(double val, double val2) Returns the maximum of val and val2. (Added
by JDK 8.)

static double min(double val, double val2) Returns the minimum of val and val2. (Added
by JDK 8.)

static double parseDouble(String str)
 throws NumberFormatException

Returns the double equivalent of the number
contained in the string specified by str using
radix 10.

Table 17-2 The Methods Defined by Double (continued)

17-ch17.indd 445 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

446 PART II The Java Library

The following example creates two Double objects—one by using a double value and
the other by passing a string that can be parsed as a double:

class DoubleDemo {
 public static void main(String args[]) {
 Double d1 = new Double(3.14159);
 Double d2 = new Double("314159E-5");

 System.out.println(d1 + " = " + d2 + " -> " + d1.equals(d2));
 }
}

As you can see from the following output, both constructors created identical Double
instances, as shown by the equals() method returning true:

 3.14159 = 3.14159 –> true

Understanding isInfinite() and isNaN()
Float and Double provide the methods isInfinite() and isNaN(), which help when
manipulating two special double and float values. These methods test for two unique
values defined by the IEEE floating-point specification: infinity and NaN (not a number).
isInfinite() returns true if the value being tested is infinitely large or small in magnitude.
isNaN() returns true if the value being tested is not a number.

The following example creates two Double objects; one is infinite, and the other is not a
number:

// Demonstrate isInfinite() and isNaN()
class InfNaN {

Method Description

short shortValue() Returns the value of the invoking object as a
short.

static double sum(double val, double val2) Returns the result of val + val2. (Added by JDK
8.)

static String toHexString(double num) Returns a string containing the value of num in
hexadecimal format.

String toString() Returns the string equivalent of the invoking
object.

static String toString(double num) Returns the string equivalent of the value
specified by num.

static Double valueOf(double num) Returns a Double object containing the value
passed in num.

static Double valueOf(String str)
 throws NumberFormatException

Returns a Double object that contains the value
specified by the string in str.

Table 17-2 The Methods Defined by Double (continued)

17-ch17.indd 446 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 447

Pa
rt

 II

 public static void main(String args[]) {
 Double d1 = new Double(1/0.);
 Double d2 = new Double(0/0.);

 System.out.println(d1 + ": " + d1.isInfinite() + ", " + d1.isNaN());
 System.out.println(d2 + ": " + d2.isInfinite() + ", " + d2.isNaN());
 }
}

This program generates the following output:

 Infinity: true, false
 NaN: false, true

Byte, Short, Integer, and Long
The Byte, Short, Integer, and Long classes are wrappers for byte, short, int, and long integer
types, respectively. Their constructors are shown here:

Byte(byte num)
Byte(String str) throws NumberFormatException

Short(short num)
Short(String str) throws NumberFormatException

Integer(int num)
Integer(String str) throws NumberFormatException

Long(long num)
Long(String str) throws NumberFormatException

As you can see, these objects can be constructed from numeric values or from strings that
contain valid whole number values.

The methods defined by these classes are shown in Tables 17-3 through 17-6. As you can
see, they define methods for parsing integers from strings and converting strings back into
integers. Variants of these methods allow you to specify the radix, or numeric base, for
conversion. Common radixes are 2 for binary, 8 for octal, 10 for decimal, and 16 for
hexadecimal.

The following constants are defined:

BYTES The width of the integer type in bytes (Added by JDK 8.)

MIN_VALUE Minimum value

MAX_VALUE Maximum value

SIZE The bit width of the wrapped value

TYPE The Class object for byte, short, int, or long

17-ch17.indd 447 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

448 PART II The Java Library

Method Description
byte byteValue() Returns the value of the invoking object as a byte.

static int compare(byte num1, byte num2) Compares the values of num1 and num2. Returns 0 if
the values are equal. Returns a negative value if num1
is less than num2. Returns a positive value if num1 is
greater than num2.

int compareTo(Byte b) Compares the numerical value of the invoking object
with that of b. Returns 0 if the values are equal. Returns
a negative value if the invoking object has a lower
value. Returns a positive value if the invoking object
has a greater value.

static Byte decode(String str)
 throws NumberFormatException

Returns a Byte object that contains the value specified
by the string in str.

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object ByteObj) Returns true if the invoking Byte object is equivalent
to ByteObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

int hashCode() Returns the hash code for the invoking object.

static int hashCode(byte num) Returns the hash code for num. (Added by JDK 8.)

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static byte parseByte(String str)
 throws NumberFormatException

Returns the byte equivalent of the number contained
in the string specified by str using radix 10.

static byte parseByte(String str, int radix)
 throws NumberFormatException

Returns the byte equivalent of the number contained
in the string specified by str using the specified radix.

short shortValue() Returns the value of the invoking object as a short.

String toString() Returns a string that contains the decimal equivalent
of the invoking object.

static String toString(byte num) Returns a string that contains the decimal equivalent
of num.

static int toUnsignedInt(byte val) Returns the value of val as an unsigned integer.
(Added by JDK 8.)

static long toUnsignedLong(byte val) Returns the value of val as an unsigned long integer.
(Added by JDK 8.)

static Byte valueOf(byte num) Returns a Byte object containing the value passed
in num.

static Byte valueOf(String str)
 throws NumberFormatException

Returns a Byte object that contains the value specified
by the string in str.

static Byte valueOf(String str, int radix)
 throws NumberFormatException

Returns a Byte object that contains the value specified
by the string in str using the specified radix.

Table 17-3 The Methods Defined by Byte

17-ch17.indd 448 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 449

Pa
rt

 II

Method Description

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(short num1, short num2 Compares the values of num1 and num2. Returns 0 if the
values are equal. Returns a negative value if num1 is less
than num2. Returns a positive value if num1 is greater
than num2.

int compareTo(Short s) Compares the numerical value of the invoking object
with that of s. Returns 0 if the values are equal. Returns
a negative value if the invoking object has a lower value.
Returns a positive value if the invoking object has a
greater value.

static Short decode(String str)
 throws NumberFormatException

Returns a Short object that contains the value specified
by the string in str.

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object ShortObj) Returns true if the invoking Short object is equivalent to
ShortObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

int hashCode() Returns the hash code for the invoking object.

static int hashCode(short num) Returns the hash code for num. (Added by JDK 8.)

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static short parseShort(String str)
 throws NumberFormatException

Returns the short equivalent of the number contained in
the string specified by str using radix 10.

static short parseShort(String str, int radix)
 throws NumberFormatException

Returns the short equivalent of the number contained in
the string specified by str using the specified radix.

static short reverseBytes(short num) Exchanges the high- and low-order bytes of num and
returns the result.

short shortValue() Returns the value of the invoking object as a short.

String toString() Returns a string that contains the decimal equivalent of
the invoking object.

static String toString(short num) Returns a string that contains the decimal equivalent
of num.

static int toUnsignedInt(short val) Returns the value of val as an unsigned integer. (Added
by JDK 8.)

static long toUnsignedLong(short val) Returns the value of val as an unsigned long integer.
(Added by JDK 8.)

static Short valueOf(short num) Returns a Short object containing the value passed
in num.

static Short valueOf(String str)
 throws NumberFormatException

Returns a Short object that contains the value specified
by the string in str using radix 10.

static Short valueOf(String str, int radix)
 throws NumberFormatException

Returns a Short object that contains the value specified by
the string in str using the specified radix.

Table 17-4 The Methods Defined by Short

17-ch17.indd 449 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

450 PART II The Java Library

Method Description

static int bitCount(int num) Returns the number of set bits in num.

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(int num1, int num2) Compares the values of num1 and num2. Returns 0 if the
values are equal. Returns a negative value if num1 is less than
num2. Returns a positive value if num1 is greater than num2.

int compareTo(Integer i) Compares the numerical value of the invoking object with
that of i. Returns 0 if the values are equal. Returns a negative
value if the invoking object has a lower value. Returns a
positive value if the invoking object has a greater value.

static int compareUnsigned(int num1,
 int num2)

Performs an unsigned comparison of num1 and num2.
Returns 0 if the values are equal. Returns a negative value
if num1 is less than num2. Returns a positive value if num1 is
greater than num2. (Added by JDK 8.)

static Integer decode(String str)
 throws NumberFormatException

Returns an Integer object that contains the value specified
by the string in str.

static int divideUnsigned(int dividend,
 int divisor)

Returns the result, as an unsigned value, of the unsigned
division of dividend by divisor. (Added by JDK 8.)

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object IntegerObj) Returns true if the invoking Integer object is equivalent to
IntegerObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

static Integer
 getInteger(String propertyName)

Returns the value associated with the environmental property
specified by propertyName. A null is returned on failure.

static Integer
 getInteger(String propertyName,
 int default)

Returns the value associated with the environmental
property specified by propertyName. The value of default is
returned on failure.

static Integer
 getInteger(String propertyName,
 Integer default)

Returns the value associated with the environmental
property specified by propertyName. The value of default is
returned on failure.

int hashCode() Returns the hash code for the invoking object.

static int hashCode(int num) Returns the hash code for num. (Added by JDK 8.)

static int highestOneBit(int num) Determines the position of the highest order set bit in num.
It returns a value in which only this bit is set. If no bit is set
to one, then zero is returned.

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static int lowestOneBit(int num) Determines the position of the lowest order set bit in num.
It returns a value in which only this bit is set. If no bit is set
to one, then zero is returned.

static int max(int val, int val2) Returns the maximum of val and val2. (Added by JDK 8.)

static int min(int val, int val2) Returns the minimum of val and val2. (Added by JDK 8.)

static int numberOfLeadingZeros(int num) Returns the number of high-order zero bits that precede the
first high-order set bit in num. If num is zero, 32 is returned.

Table 17-5 The Methods Defined by Integer

17-ch17.indd 450 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 451

Pa
rt

 II

Method Description

static int numberOfTrailingZeros(int num) Returns the number of low-order zero bits that precede the
first low-order set bit in num. If num is zero, 32 is returned.

static int parseInt(String str)
 throws NumberFormatException

Returns the integer equivalent of the number contained in
the string specified by str using radix 10.

static int parseInt(String str, int radix)
 throws NumberFormatException

Returns the integer equivalent of the number contained in
the string specified by str using the specified radix.

static int parseUnsignedInt(String str)
 throws NumberFormatException

Returns the unsigned integer equivalent of the number
contained in the string specified by str using the radix 10.
(Added by JDK 8.)

static int parseUnsignedInt(String str,
 int radix)
 throws NumberFormatException

Returns the unsigned integer equivalent of the number
contained in the string specified by str using the radix
specified by radix. (Added by JDK 8.)

static int remainderUnsigned(int dividend,
 int divisor)

Returns the remainder, as an unsigned value, of the
unsigned division of dividend by divisor. (Added by JDK 8.)

static int reverse(int num) Reverses the order of the bits in num and returns the result.

static int reverseBytes(int num) Reverses the order of the bytes in num and returns the
result.

static int rotateLeft(int num, int n) Returns the result of rotating num left n positions.

static int rotateRight(int num, int n) Returns the result of rotating num right n positions.

short shortValue() Returns the value of the invoking object as a short.

static int signum(int num) Returns –1 if num is negative, 0 if it is zero, and 1 if it is
positive.

static int sum(int val, int val2) Returns the result of val + val2. (Added by JDK 8.)

static String toBinaryString(int num) Returns a string that contains the binary equivalent of num.

static String toHexString(int num) Returns a string that contains the hexadecimal equivalent
of num.

static String toOctalString(int num) Returns a string that contains the octal equivalent of num.

String toString() Returns a string that contains the decimal equivalent of the
invoking object.

static String toString(int num) Returns a string that contains the decimal equivalent of num.

static String toString(int num, int radix) Returns a string that contains the decimal equivalent of
num using the specified radix.

static long toUnsignedLong(int val) Returns the value of val as an unsigned long integer.
(Added by JDK 8.)

static String toUnsignedString(int val) Returns a string that contains the decimal value of val as an
unsigned integer. (Added by JDK 8.)

static String toUnsignedString(int val,
 int radix)

Returns a string that contains the value of val as an unsigned
integer in the radix specified by radix. (Added by JDK 8.)

static Integer valueOf(int num) Returns an Integer object containing the value passed in num.

static Integer valueOf(String str)
 throws NumberFormatException

Returns an Integer object that contains the value specified
by the string in str.

static Integer valueOf(String str, int radix)
 throws NumberFormatException

Returns an Integer object that contains the value specified
by the string in str using the specified radix.

Table 17-5 The Methods Defined by Integer (continued)

17-ch17.indd 451 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

452 PART II The Java Library

Method Description

static int bitCount(long num) Returns the number of set bits in num.

byte byteValue() Returns the value of the invoking object as a byte.

static int compare(long num1, long num2) Compares the values of num1 and num2. Returns 0 if the
values are equal. Returns a negative value if num1 is less
than num2. Returns a positive value if num1 is greater than
num2.

int compareTo(Long l) Compares the numerical value of the invoking object with
that of l. Returns 0 if the values are equal. Returns a negative
value if the invoking object has a lower value. Returns a
positive value if the invoking object has a greater value.

static int compareUnsigned(long num1,
 long num2)

Performs an unsigned comparison of num1 and num2.
Returns 0 if the values are equal. Returns a negative value if
num1 is less than num2. Returns a positive value if num1 is
greater than num2. (Added by JDK 8.)

static Long decode(String str)
 throws NumberFormatException

Returns a Long object that contains the value specified by
the string in str.

static long divideUnsigned(long dividend,
 long divisor)

Returns the result, as an unsigned value, of the unsigned
division of dividend by divisor. (Added by JDK 8.)

double doubleValue() Returns the value of the invoking object as a double.

boolean equals(Object LongObj) Returns true if the invoking Long object is equivalent to
LongObj. Otherwise, it returns false.

float floatValue() Returns the value of the invoking object as a float.

static Long getLong(String propertyName) Returns the value associated with the environmental property
specified by propertyName. A null is returned on failure.

static Long getLong(String propertyName,
 long default)

Returns the value associated with the environmental
property specified by propertyName. The value of default is
returned on failure.

static Long getLong(String propertyName,
 Long default)

Returns the value associated with the environmental
property specified by propertyName. The value of default is
returned on failure.

int hashCode() Returns the hash code for the invoking object.

static int hashCode(long num) Returns the hash code for num. (Added by JDK 8.)

static long highestOneBit(long num) Determines the position of the highest-order set bit in num.
It returns a value in which only this bit is set. If no bit is set
to one, then zero is returned.

int intValue() Returns the value of the invoking object as an int.

long longValue() Returns the value of the invoking object as a long.

static long lowestOneBit(long num) Determines the position of the lowest-order set bit in num.
It returns a value in which only this bit is set. If no bit is set
to one, then zero is returned.

static long max(long val, long val2) Returns the maximum of val and val2. (Added by JDK 8.)

static long min(long val, long val2) Returns the minimum of val and val2. (Added by JDK 8.)

static int numberOfLeadingZeros(long num) Returns the number of high-order zero bits that precede the
first high-order set bit in num. If num is zero, 64 is returned.

Table 17-6 The Methods Defined by Long

17-ch17.indd 452 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 453

Pa
rt

 II

Method Description

static int numberOfTrailingZeros(long num) Returns the number of low-order zero bits that precede the
first low-order set bit in num. If num is zero, 64 is returned.

static long parseLong(String str)
 throws NumberFormatException

Returns the long equivalent of the number contained in the
string specified by str using radix 10.

static long parseLong(String str, int radix)
 throws NumberFormatException

Returns the long equivalent of the number contained in
the string specified by str using the specified radix.

static long parseUnsignedLong(String str)
 throws NumberFormatException

Returns the unsigned integer equivalent of the number
contained in the string specified by str using the radix 10.
(Added by JDK 8.)

static long parseUnsignedLong(String str,
 int radix)
 throws NumberFormatException

Returns the unsigned integer equivalent of the number
contained in the string specified by str using the radix
specified by radix. (Added by JDK 8.)

static long remainderUnsigned(
 long dividend, long divisor)

Returns the remainder, as an unsigned value, of the
unsigned division of dividend by divisor. (Added by JDK 8.)

static long reverse(long num) Reverses the order of the bits in num and returns the result.

static long reverseBytes(long num) Reverses the order of the bytes in num and returns the
result.

static long rotateLeft(long num, int n) Returns the result of rotating num left n positions.

static long rotateRight(long num, int n) Returns the result of rotating num right n positions.

short shortValue() Returns the value of the invoking object as a short.

static int signum(long num) Returns –1 if num is negative, 0 if it is zero, and 1 if it is
positive.

static long sum(long val, long val2) Returns the result of val + val2. (Added by JDK 8.)

static String toBinaryString(long num) Returns a string that contains the binary equivalent of num.

static String toHexString(long num) Returns a string that contains the hexadecimal equivalent
of num.

static String toOctalString(long num) Returns a string that contains the octal equivalent of num.

String toString() Returns a string that contains the decimal equivalent of the
invoking object.

static String toString(long num) Returns a string that contains the decimal equivalent of
num.

static String toString(long num, int radix) Returns a string that contains the decimal equivalent of
num using the specified radix.

static String toUnsignedString(long val) Returns a string that contains the decimal value of val as an
unsigned integer. (Added by JDK 8.)

static String toUnsignedString(long val,
 int radix)

Returns a string that contains the value of val as an
unsigned integer in the radix specified by radix. (Added by
JDK 8.)

static Long valueOf(long num) Returns a Long object containing the value passed in num.

static Long valueOf(String str)
 throws NumberFormatException

Returns a Long object that contains the value specified by
the string in str.

static Long valueOf(String str, int radix)
 throws NumberFormatException

Returns a Long object that contains the value specified by
the string in str using the specified radix.

Table 17-6 The Methods Defined by Long (continued)

17-ch17.indd 453 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

454 PART II The Java Library

Converting Numbers to and from Strings
One of the most common programming chores is converting the string representation of a
number into its internal, binary format. Fortunately, Java provides an easy way to accomplish
this. The Byte, Short, Integer, and Long classes provide the parseByte(), parseShort(),
parseInt(), and parseLong() methods, respectively. These methods return the byte, short,
int, or long equivalent of the numeric string with which they are called. (Similar methods
also exist for the Float and Double classes.)

The following program demonstrates parseInt(). It sums a list of integers entered by
the user. It reads the integers using readLine() and uses parseInt() to convert these strings
into their int equivalents.

/* This program sums a list of numbers entered
 by the user. It converts the string representation
 of each number into an int using parseInt().
*/

import java.io.*;

class ParseDemo {
 public static void main(String args[])
 throws IOException
 {
 // create a BufferedReader using System.in
 BufferedReader br = new
 BufferedReader(new InputStreamReader(System.in));
 String str;
 int i;
 int sum=0;

 System.out.println("Enter numbers, 0 to quit.");
 do {
 str = br.readLine();
 try {
 i = Integer.parseInt(str);
 } catch(NumberFormatException e) {
 System.out.println("Invalid format");
 i = 0;
 }
 sum += i;
 System.out.println("Current sum is: " + sum);
 } while(i != 0);
 }
}

To convert a whole number into a decimal string, use the versions of toString() defined
in the Byte, Short, Integer, or Long classes. The Integer and Long classes also provide the

17-ch17.indd 454 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 455

Pa
rt

 II

methods toBinaryString(), toHexString(), and toOctalString(), which convert a value into
a binary, hexadecimal, or octal string, respectively.

The following program demonstrates binary, hexadecimal, and octal conversion:

/* Convert an integer into binary, hexadecimal,
 and octal.
*/

class StringConversions {
 public static void main(String args[]) {
 int num = 19648;
 System.out.println(num + " in binary: " +
 Integer.toBinaryString(num));

 System.out.println(num + " in octal: " +
 Integer.toOctalString(num));

 System.out.println(num + " in hexadecimal: " +
 Integer.toHexString(num));
 }
}

The output of this program is shown here:

 19648 in binary: 100110011000000
 19648 in octal: 46300
 19648 in hexadecimal: 4cc0

Character
Character is a simple wrapper around a char. The constructor for Character is

Character(char ch)

Here, ch specifies the character that will be wrapped by the Character object being created.
To obtain the char value contained in a Character object, call charValue(), shown here:

char charValue()

It returns the character.
The Character class defines several constants, including the following:

BYTES The width of a char in bytes (Added by JDK 8.)

MAX_RADIX The largest radix

MIN_RADIX The smallest radix

MAX_VALUE The largest character value

MIN_VALUE The smallest character value

TYPE The Class object for char

17-ch17.indd 455 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

456 PART II The Java Library

Character includes several static methods that categorize characters and alter their case.
A sampling is shown in Table 17-7. The following example demonstrates several of these
methods:

// Demonstrate several Is... methods.

class IsDemo {
 public static void main(String args[]) {
 char a[] = {'a', 'b', '5', '?', 'A', ' '};

 for(int i=0; i<a.length; i++) {
 if(Character.isDigit(a[i]))
 System.out.println(a[i] + " is a digit.");
 if(Character.isLetter(a[i]))
 System.out.println(a[i] + " is a letter.");
 if(Character.isWhitespace(a[i]))
 System.out.println(a[i] + " is whitespace.");
 if(Character.isUpperCase(a[i]))
 System.out.println(a[i] + " is uppercase.");
 if(Character.isLowerCase(a[i]))
 System.out.println(a[i] + " is lowercase.");
 }
 }
}

The output from this program is shown here:

 a is a letter.
 a is lowercase.
 b is a letter.
 b is lowercase.
 5 is a digit.
 A is a letter.
 A is uppercase.
 is whitespace.

Character defines two methods, forDigit() and digit(), that enable you to convert
between integer values and the digits they represent. They are shown here:

static char forDigit(int num, int radix)
static int digit(char digit, int radix)

forDigit() returns the digit character associated with the value of num. The radix of the
conversion is specified by radix. digit() returns the integer value associated with the
specified character (which is presumably a digit) according to the specified radix. (There is
a second form of digit() that takes a code point. See the following section for a discussion
of code points.)

Another method defined by Character is compareTo(), which has the following form:

int compareTo(Character c)

It returns zero if the invoking object and c have the same value. It returns a negative value if
the invoking object has a lower value. Otherwise, it returns a positive value.

17-ch17.indd 456 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 457

Pa
rt

 II

Method Description
static boolean isDefined(char ch) Returns true if ch is defined by Unicode. Otherwise,

it returns false.

static boolean isDigit(char ch) Returns true if ch is a digit. Otherwise, it returns false.

static boolean isldentifierlgnorable(char ch) Returns true if ch should be ignored in an identifier.
Otherwise, it returns false.

static boolean islSOControl(char ch) Returns true if ch is an ISO control character.
Otherwise, it returns false.

static boolean isJavaldentifierPart(char ch) Returns true if ch is allowed as part of a Java
identifier (other than the first character).
Otherwise, it returns false.

static boolean isJavaldentifierStart(char ch) Returns true if ch is allowed as the first character of
a Java identifier. Otherwise, it returns false.

static boolean isLetter(char ch) Returns true if ch is a letter. Otherwise, it returns false.

static boolean isLetterOrDigit(char ch) Returns true if ch is a letter or a digit. Otherwise, it
returns false.

static boolean isLowerCase(char ch) Returns true if ch is a lowercase letter. Otherwise, it
returns false.

static boolean isMirrored(char ch) Returns true if ch is a mirrored Unicode character.
A mirrored character is one that is reversed for text
that is displayed right-to-left.

static boolean isSpaceChar(char ch) Returns true if ch is a Unicode space character.
Otherwise, it returns false.

static boolean isTitleCase(char ch) Returns true if ch is a Unicode titlecase character.
Otherwise, it returns false.

static boolean
 isUnicodeIdentifierPart(char ch)

Returns true if ch is allowed as part of a Unicode
identifier (other than the first character).
Otherwise, it returns false.

static Boolean
 isUnicodeIdentifierStart(char ch)

Returns true if ch is allowed as the first character of
a Unicode identifier. Otherwise, it returns false.

static boolean isUpperCase(char ch) Returns true if ch is an uppercase letter. Otherwise,
it returns false.

static boolean isWhitespace(char ch) Returns true if ch is whitespace. Otherwise, it
returns false.

static char toLowerCase(char ch) Returns lowercase equivalent of ch.

static char toTitleCase(char ch) Returns titlecase equivalent of ch.

static char toUpperCase(char ch) Returns uppercase equivalent of ch.

Table 17-7 Various Character Methods

17-ch17.indd 457 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

458 PART II The Java Library

Character includes a method called getDirectionality() which can be used to determine
the direction of a character. Several constants are defined that describe directionality. Most
programs will not need to use character directionality.

Character also overrides the equals() and hashCode() methods.
Two other character-related classes are Character.Subset, used to describe a subset of

Unicode, and Character.UnicodeBlock, which contains Unicode character blocks.

Additions to Character for Unicode Code Point Support
Relatively recently, major additions were made to Character. Beginning with JDK 5, the
Character class has included support for 32-bit Unicode characters. In the past, all Unicode
characters could be held by 16 bits, which is the size of a char (and the size of the value
encapsulated within a Character), because those values ranged from 0 to FFFF. However, the
Unicode character set has been expanded, and more than 16 bits are required. Characters
can now range from 0 to 10FFFF.

Here are three important terms. A code point is a character in the range 0 to 10FFFF.
Characters that have values greater than FFFF are called supplemental characters. The basic
multilingual plane (BMP) are those characters between 0 and FFFF.

The expansion of the Unicode character set caused a fundamental problem for Java.
Because a supplemental character has a value greater than a char can hold, some means of
handling the supplemental characters was needed. Java addressed this problem in two ways.
First, Java uses two chars to represent a supplemental character. The first char is called the
high surrogate, and the second is called the low surrogate. New methods, such as codePointAt(),
were provided to translate between code points and supplemental characters.

Secondly, Java overloaded several preexisting methods in the Character class. The
overloaded forms use int rather than char data. Because an int is large enough to hold any
character as a single value, it can be used to store any character. For example, all of the
methods in Table 17-7 have overloaded forms that operate on int. Here is a sampling:

static boolean isDigit(int cp)
static boolean isLetter(int cp)
static int toLowerCase(int cp)

In addition to the methods overloaded to accept code points, Character adds methods
that provide additional support for code points. A sampling is shown in Table 17-8.

Boolean
Boolean is a very thin wrapper around boolean values, which is useful mostly when you want
to pass a boolean variable by reference. It contains the constants TRUE and FALSE, which
define true and false Boolean objects. Boolean also defines the TYPE field, which is the
Class object for boolean. Boolean defines these constructors:

Boolean(boolean boolValue)
Boolean(String boolString)

17-ch17.indd 458 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 459

Pa
rt

 II
In the first version, boolValue must be either true or false. In the second version, if boolString
contains the string "true" (in uppercase or lowercase), then the new Boolean object will be
true. Otherwise, it will be false.

Boolean defines the methods shown in Table 17-9.

Method Description
static int charCount(int cp) Returns 1 if cp can be represented by a single

char. It returns 2 if two chars are needed.

static int
 codePointAt(CharSequence chars, int loc)

Returns the code point at the location specified
by loc.

static int codePointAt(char chars[], int loc) Returns the code point at the location specified
by loc.

static int
 codePointBefore(CharSequence chars, int loc)

Returns the code point at the location that
precedes that specified by loc.

static int
 codePointBefore(char chars[], int loc)

Returns the code point at the location that
precedes that specified by loc.

static boolean isBmpCodePoint(int cp) Returns true if cp is part of the basic multilingual
plane and false otherwise.

static boolean isHighSurrogate(char ch) Returns true if ch contains a valid high
surrogate character.

static boolean isLowSurrogate(char ch) Returns true if ch contains a valid low surrogate
character.

static boolean
 isSupplementaryCodePoint(int cp)

Returns true if cp contains a supplemental
character.

static boolean
 isSurrogatePair(char highCh, char lowCh)

Returns true if highCh and lowCh form a valid
surrogate pair.

static boolean isValidCodePoint(int cp) Returns true if cp contains a valid code point.

static char[] toChars(int cp) Converts the code point in cp into its char
equivalent, which might require two chars.
An array holding the result is returned.

static int
 toChars(int cp, char target[], int loc)

Converts the code point in cp into its char
equivalent, storing the result in target, beginning
at loc. Returns 1 if cp can be represented by a
single char. It returns 2 otherwise.

static int
 toCodePoint(char highCh, char lowCh)

Converts highCh and lowCh into their equivalent
code point.

Table 17-8 A Sampling of Methods That Provide Support for 32-Bit Unicode Code Points

17-ch17.indd 459 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

460 PART II The Java Library

Void
The Void class has one field, TYPE, which holds a reference to the Class object for type
void. You do not create instances of this class.

Process
The abstract Process class encapsulates a process—that is, an executing program. It is used
primarily as a superclass for the type of objects created by exec() in the Runtime class, or
by start() in the ProcessBuilder class. Process contains the methods shown in Table 17-10.

Method Description
boolean booleanValue() Returns boolean equivalent.

static int compare(boolean b1, boolean b2) Returns zero if b1 and b2 contain the same value.
Returns a positive value if b1 is true and b2 is false.
Otherwise, returns a negative value.

int compareTo(Boolean b) Returns zero if the invoking object and b contain the
same value. Returns a positive value if the invoking
object is true and b is false. Otherwise, returns a
negative value.

boolean equals(Object boolObj) Returns true if the invoking object is equivalent to
boolObj. Otherwise, it returns false.

static Boolean
 getBoolean(String propertyName)

Returns true if the system property specified by
propertyName is true. Otherwise, it returns false.

int hashCode() Returns the hash code for the invoking object.

static int hashCode(boolean boolVal) Returns the hash code for boolVal. (Added by JDK 8.)

static boolean logicalAnd(boolean op1,
 boolean op2)

Performs a logical AND of op1 and op2 and returns
the result. (Added by JDK 8.)

static boolean logicalOr(boolean op1,
 boolean op2)

Performs a logical OR of op1 and op2 and returns the
result. (Added by JDK 8.)

static boolean logicalXor(boolean op1,
 boolean op2)

Performs a logical XOR of op1 and op2 and returns
the result. (Added by JDK 8.)

static boolean parseBoolean(String str) Returns true if str contains the string "true". Case is
not significant. Otherwise, returns false.

String toString() Returns the string equivalent of the invoking object.

static String toString(boolean boolVal) Returns the string equivalent of boolVal.

static Boolean valueOf(boolean boolVal) Returns the Boolean equivalent of boolVal.

static Boolean valueOf(String boolString) Returns true if boolString contains the string "true" (in
uppercase or lowercase). Otherwise, it returns false.

Table 17-9 The Methods Defined by Boolean

17-ch17.indd 460 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 461

Pa
rt

 II

Runtime
The Runtime class encapsulates the run-time environment. You cannot instantiate a Runtime
object. However, you can get a reference to the current Runtime object by calling the static
method Runtime.getRuntime(). Once you obtain a reference to the current Runtime object,
you can call several methods that control the state and behavior of the Java Virtual Machine.
Applets and other untrusted code typically cannot call any of the Runtime methods without
raising a SecurityException. Several commonly used methods defined by Runtime are shown
in Table 17-11.

Method Description

void destroy() Terminates the process.

Process destroyForcibly() Forces termination of the invoking process. Returns a
reference to the process. (Added by JDK 8.)

int exitValue() Returns an exit code obtained from a subprocess.

InputStream getErrorStream() Returns an input stream that reads input from the process’
err output stream.

InputStream getInputStream() Returns an input stream that reads input from the process’
out output stream.

OutputStream getOutputStream() Returns an output stream that writes output to the process’
in input stream.

boolean isAlive() Returns true if the invoking process is still active.
Otherwise, returns false. (Added by JDK 8.)

int waitFor() throws InterruptedException Returns the exit code returned by the process. This
method does not return until the process on which it is
called terminates.

boolean waitFor(long waitTime,
 TimeUnit timeUnit)
 throws InterruptedException

Waits for the invoking process to end. The amount of time
to wait is specified by waitTime in the units specified by
timeUnit. Returns true if the process has ended and false if
the wait time runs out. (Added by JDK 8.)

Table 17-10 The Methods Defined by Process

Method Description
void addShutdownHook(Thread thrd) Registers thrd as a thread to be run when the Java

Virtual Machine terminates.

Process exec(String progName)
 throws IOException

Executes the program specified by progName as
a separate process. An object of type Process is
returned that describes the new process.

Process exec(String progName,
 String environment[])
 throws IOException

Executes the program specified by progName as a
separate process with the environment specified by
environment. An object of type Process is returned
that describes the new process.

Process exec(String comLineArray[])
 throws IOException

Executes the command line specified by the strings in
comLineArray as a separate process. An object of type
Process is returned that describes the new process.

Table 17-11 A Sampling of Methods Defined by Runtime

17-ch17.indd 461 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

462 PART II The Java Library

Let’s look at two of the most common uses of the Runtime class: memory management
and executing additional processes.

Memory Management
Although Java provides automatic garbage collection, sometimes you will want to know how
large the object heap is and how much of it is left. You can use this information, for example,
to check your code for efficiency or to approximate how many more objects of a certain
type can be instantiated. To obtain these values, use the totalMemory() and freeMemory()
methods.

Method Description
Process exec(String comLineArray[],
 String environment[])
 throws IOException

Executes the command line specified by the strings
in comLineArray as a separate process with the
environment specified by environment. An object
of type Process is returned that describes the new
process.

void exit(int exitCode) Halts execution and returns the value of exitCode
to the parent process. By convention, 0 indicates
normal termination. All other values indicate some
form of error.

long freeMemory() Returns the approximate number of bytes of free
memory available to the Java run-time system.

void gc() Initiates garbage collection.

static Runtime getRuntime() Returns the current Runtime object.

void halt(int code) Immediately terminates the Java Virtual Machine. No
termination threads or finalizers are run. The value
of code is returned to the invoking process.

void load(String libraryFileName) Loads the dynamic library whose file is specified by
libraryFileName, which must specify its complete path.

void loadLibrary(String libraryName) Loads the dynamic library whose name is associated
with libraryName.

Boolean
 removeShutdownHook(Thread thrd)

Removes thrd from the list of threads to run when
the Java Virtual Machine terminates. It returns true
if successful—that is, if the thread was removed.

void runFinalization() Initiates calls to the finalize() methods of unused
but not yet recycled objects.

long totalMemory() Returns the total number of bytes of memory
available to the program.

void traceInstructions(boolean traceOn) Turns on or off instruction tracing, depending upon
the value of traceOn. If traceOn is true, the trace is
displayed. If it is false, tracing is turned off.

void traceMethodCalls(boolean traceOn) Turns on or off method call tracing, depending
upon the value of traceOn. If traceOn is true, the trace
is displayed. If it is false, tracing is turned off.

Table 17-11 A Sampling of Methods Defined by Runtime (continued)

17-ch17.indd 462 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 463

Pa
rt

 II

As mentioned in Part I, Java’s garbage collector runs periodically to recycle unused
objects. However, sometimes you will want to collect discarded objects prior to the
collector’s next appointed rounds. You can run the garbage collector on demand by calling
the gc() method. A good thing to try is to call gc() and then call freeMemory() to get a
baseline memory usage. Next, execute your code and call freeMemory() again to see how
much memory it is allocating. The following program illustrates this idea:

// Demonstrate totalMemory(), freeMemory() and gc().

class MemoryDemo {
 public static void main(String args[]) {
 Runtime r = Runtime.getRuntime();
 long mem1, mem2;
 Integer someints[] = new Integer[1000];

 System.out.println("Total memory is: " +
 r.totalMemory());
 mem1 = r.freeMemory();
 System.out.println("Initial free memory: " + mem1);
 r.gc();
 mem1 = r.freeMemory();
 System.out.println("Free memory after garbage collection: "
 + mem1);

 for(int i=0; i<1000; i++)
 someints[i] = new Integer(i); // allocate integers

 mem2 = r.freeMemory();
 System.out.println("Free memory after allocation: "
 + mem2);
 System.out.println("Memory used by allocation: "
 + (mem1-mem2));

 // discard Integers
 for(int i=0; i<1000; i++) someints[i] = null;

 r.gc(); // request garbage collection

 mem2 = r.freeMemory();
 System.out.println("Free memory after collecting" +
 " discarded Integers: " + mem2);

 }
}

Sample output from this program is shown here (of course, your actual results may vary):

 Total memory is: 1048568
 Initial free memory: 751392
 Free memory after garbage collection: 841424
 Free memory after allocation: 824000
 Memory used by allocation: 17424
 Free memory after collecting discarded Integers: 842640

17-ch17.indd 463 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

464 PART II The Java Library

Executing Other Programs
In safe environments, you can use Java to execute other heavyweight processes (that is,
programs) on your multitasking operating system. Several forms of the exec() method
allow you to name the program you want to run as well as its input parameters. The exec()
method returns a Process object, which can then be used to control how your Java program
interacts with this new running process. Because Java can run on a variety of platforms and
under a variety of operating systems, exec() is inherently environment-dependent.

The following example uses exec() to launch notepad, Windows’ simple text editor.
Obviously, this example must be run under the Windows operating system.

// Demonstrate exec().
class ExecDemo {
 public static void main(String args[]) {
 Runtime r = Runtime.getRuntime();
 Process p = null;

 try {
 p = r.exec("notepad");
 } catch (Exception e) {
 System.out.println("Error executing notepad.");
 }
 }
}

There are several alternative forms of exec(), but the one shown in the example is the
most common. The Process object returned by exec() can be manipulated by Process’
methods after the new program starts running. You can kill the subprocess with the
destroy() method. The waitFor() method causes your program to wait until the subprocess
finishes. The exitValue() method returns the value returned by the subprocess when it is
finished. This is typically 0 if no problems occur. Here is the preceding exec() example
modified to wait for the running process to exit:

// Wait until notepad is terminated.
class ExecDemoFini {
 public static void main(String args[]) {
 Runtime r = Runtime.getRuntime();
 Process p = null;

 try {
 p = r.exec("notepad");
 p.waitFor();
 } catch (Exception e) {
 System.out.println("Error executing notepad.");
 }
 System.out.println("Notepad returned " + p.exitValue());
 }
}

While a subprocess is running, you can write to and read from its standard input and
output. The getOutputStream() and getInputStream() methods return the handles to
standard in and out of the subprocess. (I/O is examined in detail in Chapter 20.)

17-ch17.indd 464 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 465

Pa
rt

 II

ProcessBuilder
ProcessBuilder provides another way to start and manage processes (that is, programs). As
explained earlier, all processes are represented by the Process class, and a process can be
started by Runtime.exec(). ProcessBuilder offers more control over the processes. For
example, you can set the current working directory.

ProcessBuilder defines these constructors:

ProcessBuilder(List<String> args)
ProccessBuilder(String ... args)

Here, args is a list of arguments that specify the name of the program to be executed along
with any required command-line arguments. In the first constructor, the arguments are
passed in a List. In the second, they are specified through a varargs parameter. Table 17-12
describes the methods defined by ProcessBuilder.

In Table 17-12, notice the methods that use the ProcessBuilder.Redirect class. This
abstract class encapsulates an I/O source or target linked to a subprocess. Among other
things, these methods enable you to redirect the source or target of I/O operations. For
example, you can redirect to a file by calling to(), redirect from a file by calling from(),
and append to a file by calling appendTo(). A File object linked to the file can be obtained
by calling file(). These methods are shown here:

static ProcessBuilder.Redirect to(File f)
static ProcessBuilder.Redirect from(File f)
static ProcessBuilder.Redirect appendTo(File f)
File file()

Another method supported by ProcessBuilder.Redirect is type(), which returns a value of
the enumeration type ProcessBuilder.Redirect.Type. This enumeration describes the type
of the redirection. It defines these values: APPEND, INHERIT, PIPE, READ, or WRITE.
ProcessBuilder.Redirect also defines the constants INHERIT and PIPE.

Method Description
List<String> command() Returns a reference to a List that contains the

name of the program and its arguments. Changes
to this list affect the invoking object.

ProcessBuilder command(List<String> args) Sets the name of the program and its arguments
to those specified by args. Changes to this list
affect the invoking object. Returns a reference to
the invoking object.

ProcessBuilder command(String ... args) Sets the name of the program and its arguments
to those specified by args. Returns a reference to
the invoking object.

File directory() Returns the current working directory of the
invoking object. This value will be null if the
directory is the same as that of the Java program
that started the process.

Table 17-12 The Methods Defined by ProcessBuilder

17-ch17.indd 465 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

466 PART II The Java Library

Method Description

ProcessBuilder directory(File dir) Sets the current working directory of the invoking
object. Returns a reference to the invoking object.

Map<String, String> environment() Returns the environmental variables associated
with the invoking object as key/value pairs.

ProcessBuilder inheritIO() Causes the invoked process to use the same source
and target for the standard I/O streams as the
invoking process.

ProcessBuilder.Redirect redirectError() Returns the target for standard error as a
ProcessBuilder.Redirect object.

ProcessBuilder redirectError(File f) Sets the target for standard error to the specified
file. Returns a reference to the invoking object.

ProcessBuilder redirectError(
 ProcessBuilder.Redirect target)

Sets the target for standard error as specified by
target. Returns a reference to the invoking object.

boolean redirectErrorStream() Returns true if the standard error stream has been
redirected to the standard output stream. Returns
false if the streams are separate.

ProcessBuilder
 redirectErrorStream(boolean merge)

If merge is true, then the standard error stream is
redirected to standard output. If merge is false, the
streams are separated, which is the default state.
Returns a reference to the invoking object.

ProcessBuilder.Redirect redirectInput() Returns the source for standard input as a
ProcessBuilder.Redirect object.

ProcessBuilder redirectInput(File f) Sets the source for standard input to the specified
file. Returns a reference to the invoking object.

ProcessBuilder redirectInput(
 ProcessBuilder.Redirect source)

Sets the source for standard input as specified by
source. Returns a reference to the invoking object.

ProcessBuilder.Redirect redirectOutput() Returns the target for standard output as a
ProcessBuilder.Redirect object.

ProcessBuilder redirectOutput(File f) Sets the target for standard output to the specified
file. Returns a reference to the invoking object.

ProcessBuilder redirectOutput(
 ProcessBuilder.Redirect target)

Sets the target for standard output as specified by
target. Returns a reference to the invoking object.

Process start() throws IOException Begins the process specified by the invoking
object. In other words, it runs the specified
program.

Table 17-12 The Methods Defined by ProcessBuilder (continued)

17-ch17.indd 466 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 467

Pa
rt

 II

To create a process using ProcessBuilder, simply create an instance of ProcessBuilder,
specifying the name of the program and any needed arguments. To begin execution of the
program, call start() on that instance. Here is an example that executes the Windows text
editor notepad. Notice that it specifies the name of the file to edit as an argument.

class PBDemo {
 public static void main(String args[]) {

 try {
 ProcessBuilder proc =
 new ProcessBuilder("notepad.exe", "testfile");
 proc.start();
 } catch (Exception e) {
 System.out.println("Error executing notepad.");
 }
 }
}

System
The System class holds a collection of static methods and variables. The standard input,
output, and error output of the Java run time are stored in the in, out, and err variables.
The methods defined by System are shown in Table 17-13. Many of the methods throw a
SecurityException if the operation is not permitted by the security manager.

Let’s look at some common uses of System.

Method Description
static void arraycopy(Object source,
 int sourceStart,
 Object target,
 int targetStart,
 int size)

Copies an array. The array to be copied is passed in
source, and the index at which point the copy will
begin within source is passed in sourceStart. The array
that will receive the copy is passed in target, and the
index at which point the copy will begin within target
is passed in targetStart. size is the number of elements
that are copied.

static String clearProperty(String which) Deletes the environmental variable specified by
which. The previous value associated with which is
returned.

static Console console() Returns the console associated with the JVM. null is
returned if the JVM currently has no console.

static long currentTimeMillis() Returns the current time in terms of milliseconds
since midnight, January 1, 1970.

static void exit(int exitCode) Halts execution and returns the value of exitCode to
the parent process (usually the operating system).
By convention, 0 indicates normal termination. All
other values indicate some form of error.

static void gc() Initiates garbage collection.

Table 17-13 The Methods Defined by System

17-ch17.indd 467 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

468 PART II The Java Library

Method Description
static Map<String, String> getenv() Returns a Map that contains the current

environmental variables and their values.

static String getenv(String which) Returns the value associated with the environmental
variable passed in which.

static Properties getProperties() Returns the properties associated with the Java run-
time system. (The Properties class is described in
Chapter 18.)

static String getProperty(String which) Returns the property associated with which. A null
object is returned if the desired property is not found.

static String getProperty(String which,
 String default)

Returns the property associated with which. If the
desired property is not found, default is returned.

static SecurityManager
 getSecurityManager()

Returns the current security manager or a null
object if no security manager is installed.

static int identityHashCode(Object obj) Returns the identity hash code for obj.

static Channel inheritedChannel()
 throws IOException

Returns the channel inherited by the Java Virtual
Machine. Returns null if no channel is inherited.

static String lineSeparator() Returns a string that contains the line-separator
characters.

static void load(String libraryFileName) Loads the dynamic library whose file is specified by
libraryFileName, which must specify its complete path.

static void loadLibrary(String libraryName) Loads the dynamic library whose name is associated
with libraryName.

static String mapLibraryName(String lib) Returns a platform-specific name for the library
named lib.

static long nanoTime() Obtains the most precise timer in the system and
returns its value in terms of nanoseconds since some
arbitrary starting point. The accuracy of the timer is
unknowable.

static void runFinalization() Initiates calls to the finalize() methods of unused
but not yet recycled objects.

static void setErr(PrintStream eStream) Sets the standard err stream to eStream.

static void setIn(InputStream iStream) Sets the standard in stream to iStream.

static void setOut(PrintStream oStream) Sets the standard out stream to oStream.

static void
 setProperties(Properties sysProperties)

Sets the current system properties as specified by
sysProperties.

static String setProperty(String which,
 String v)

Assigns the value v to the property named which.

static void setSecurityManager(
 SecurityManager secMan)

Sets the security manager to that specified by secMan.

Table 17-13 The Methods Defined by System (continued)

17-ch17.indd 468 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 469

Pa
rt

 II

Using currentTimeMillis() to Time Program Execution
One use of the System class that you might find particularly interesting is to use the
currentTimeMillis() method to time how long various parts of your program take to execute.
The currentTimeMillis() method returns the current time in terms of milliseconds since
midnight, January 1, 1970. To time a section of your program, store this value just before
beginning the section in question. Immediately upon completion, call currentTimeMillis()
again. The elapsed time will be the ending time minus the starting time. The following
program demonstrates this:

// Timing program execution.

class Elapsed {
 public static void main(String args[]) {
 long start, end;

 System.out.println("Timing a for loop from 0 to 100,000,000");

 // time a for loop from 0 to 100,000,000

 start = System.currentTimeMillis(); // get starting time
 for(long i=0; i < 100000000L; i++) ;
 end = System.currentTimeMillis(); // get ending time

 System.out.println("Elapsed time: " + (end-start));
 }
}

Here is a sample run (remember that your results probably will differ):

 Timing a for loop from 0 to 100,000,000
 Elapsed time: 10

If your system has a timer that offers nanosecond precision, then you could rewrite the
preceding program to use nanoTime() rather than currentTimeMillis(). For example,
here is the key portion of the program rewritten to use nanoTime():

start = System.nanoTime(); // get starting time
for(long i=0; i < 100000000L; i++) ;
end = System.nanoTime(); // get ending time

Using arraycopy()
The arraycopy() method can be used to copy quickly an array of any type from one place
to another. This is much faster than the equivalent loop written out longhand in Java. Here
is an example of two arrays being copied by the arraycopy() method. First, a is copied to b.
Next, all of a’s elements are shifted down by one. Then, b is shifted up by one.

// Using arraycopy().

class ACDemo {
 static byte a[] = { 65, 66, 67, 68, 69, 70, 71, 72, 73, 74 };
 static byte b[] = { 77, 77, 77, 77, 77, 77, 77, 77, 77, 77 };

17-ch17.indd 469 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

470 PART II The Java Library

 public static void main(String args[]) {
 System.out.println("a = " + new String(a));
 System.out.println("b = " + new String(b));
 System.arraycopy(a, 0, b, 0, a.length);
 System.out.println("a = " + new String(a));
 System.out.println("b = " + new String(b));
 System.arraycopy(a, 0, a, 1, a.length - 1);
 System.arraycopy(b, 1, b, 0, b.length - 1);
 System.out.println("a = " + new String(a));
 System.out.println("b = " + new String(b));
 }
}

As you can see from the following output, you can copy using the same source and
destination in either direction:

 a = ABCDEFGHIJ
 b = MMMMMMMMMM
 a = ABCDEFGHIJ
 b = ABCDEFGHIJ
 a = AABCDEFGHI
 b = BCDEFGHIJJ

Environment Properties
The following properties are available in all cases:

file.separator java.specification.version java.vm.version

java.class.path java.vendor line.separator

java.class.version java.vendor.url os.arch

java.compiler java.version os.name

java.ext.dirs java.vm.name os.version

java.home java.vm.specification.name path.separator

java.io.tmpdir java.vm.specification.vendor user.dir

java.library.path java.vm.specification.version user.home

java.specification.name java.vm.vendor user.name

java.specification.vendor

You can obtain the values of various environment variables by calling the
System.getProperty() method. For example, the following program displays
the path to the current user directory:

class ShowUserDir {
 public static void main(String args[]) {
 System.out.println(System.getProperty("user.dir"));
 }
}

17-ch17.indd 470 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 471

Pa
rt

 II

Object
As mentioned in Part I, Object is a superclass of all other classes. Object defines the
methods shown in Table 17-14, which are available to every object.

Using clone() and the Cloneable Interface
Most of the methods defined by Object are discussed elsewhere in this book. However, one
deserves special attention: clone(). The clone() method generates a duplicate copy of
the object on which it is called. Only classes that implement the Cloneable interface can be
cloned.

The Cloneable interface defines no members. It is used to indicate that a class allows a
bitwise copy of an object (that is, a clone) to be made. If you try to call clone() on a class
that does not implement Cloneable, a CloneNotSupportedException is thrown. When a
clone is made, the constructor for the object being cloned is not called. As implemented by
Object, a clone is simply an exact copy of the original.

Cloning is a potentially dangerous action, because it can cause unintended side effects.
For example, if the object being cloned contains a reference variable called obRef, then
when the clone is made, obRef in the clone will refer to the same object as does obRef in the

Method Description
Object clone()
 throws
 CloneNotSupportedException

Creates a new object that is the same as the invoking object.

boolean equals(Object object) Returns true if the invoking object is equivalent to object.

void finalize() throws Throwable Default finalize() method. It is called before an unused
object is recycled.

final Class<?> getClass() Obtains a Class object that describes the invoking object.

int hashCode() Returns the hash code associated with the invoking object.

final void notify() Resumes execution of a thread waiting on the invoking
object.

final void notifyAll() Resumes execution of all threads waiting on the invoking
object.

String toString() Returns a string that describes the object.

final void wait()
 throws InterruptedException

Waits on another thread of execution.

final void wait(long milliseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds on another
thread of execution.

final void wait(long milliseconds,
 int nanoseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds plus
nanoseconds on another thread of execution.

Table 17-14 The Methods Defined by Object

17-ch17.indd 471 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

472 PART II The Java Library

original. If the clone makes a change to the contents of the object referred to by obRef, then
it will be changed for the original object, too. Here is another example: If an object opens
an I/O stream and is then cloned, two objects will be capable of operating on the same
stream. Further, if one of these objects closes the stream, the other object might still
attempt to write to it, causing an error. In some cases, you will need to override the clone()
method defined by Object to handle these types of problems.

Because cloning can cause problems, clone() is declared as protected inside Object.
This means that it must either be called from within a method defined by the class that
implements Cloneable, or it must be explicitly overridden by that class so that it is public.
Let’s look at an example of each approach.

The following program implements Cloneable and defines the method cloneTest(),
which calls clone() in Object:

// Demonstrate the clone() method

class TestClone implements Cloneable {
 int a;
 double b;

 // This method calls Object's clone().
 TestClone cloneTest() {
 try {
 // call clone in Object.
 return (TestClone) super.clone();
 } catch(CloneNotSupportedException e) {
 System.out.println("Cloning not allowed.");
 return this;
 }
 }
}

class CloneDemo {
 public static void main(String args[]) {
 TestClone x1 = new TestClone();
 TestClone x2;

 x1.a = 10;
 x1.b = 20.98;

 x2 = x1.cloneTest(); // clone x1

 System.out.println("x1: " + x1.a + " " + x1.b);
 System.out.println("x2: " + x2.a + " " + x2.b);
 }
}

Here, the method cloneTest() calls clone() in Object and returns the result. Notice that
the object returned by clone() must be cast into its appropriate type (TestClone).

17-ch17.indd 472 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 473

Pa
rt

 II

The following example overrides clone() so that it can be called from code outside of
its class. To do this, its access specifier must be public, as shown here:

// Override the clone() method.

class TestClone implements Cloneable {
 int a;
 double b;

 // clone() is now overridden and is public.
 public Object clone() {
 try {
 // call clone in Object.
 return super.clone();
 } catch(CloneNotSupportedException e) {
 System.out.println("Cloning not allowed.");
 return this;
 }
 }
}

class CloneDemo2 {
 public static void main(String args[]) {
 TestClone x1 = new TestClone();
 TestClone x2;

 x1.a = 10;
 x1.b = 20.98;

 // here, clone() is called directly.
 x2 = (TestClone) x1.clone();

 System.out.println("x1: " + x1.a + " " + x1.b);
 System.out.println("x2: " + x2.a + " " + x2.b);
 }
}

The side effects caused by cloning are sometimes difficult to see at first. It is easy to
think that a class is safe for cloning when it actually is not. In general, you should not
implement Cloneable for any class without good reason.

Class
Class encapsulates the run-time state of a class or interface. Objects of type Class are
created automatically, when classes are loaded. You cannot explicitly declare a Class object.
Generally, you obtain a Class object by calling the getClass() method defined by Object.
Class is a generic type that is declared as shown here:

class Class<T>

Here, T is the type of the class or interface represented. A sampling of methods defined by
Class is shown in Table 17-15.

17-ch17.indd 473 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

474 PART II The Java Library

Method Description
static Class<?> forName(String name)
 throws ClassNotFoundException

Returns a Class object given its complete name.

static Class<?> forName(String name,
 boolean how,
 ClassLoader ldr)
 throws ClassNotFoundException

Returns a Class object given its complete name. The
object is loaded using the loader specified by ldr.
If how is true, the object is initialized; otherwise, it
is not.

<A extends Annotation> A
 getAnnotation(Class<A> annoType)

Returns an Annotation object that contains the
annotation associated with annoType for the invoking
object.

Annotation[] getAnnotations() Obtains all annotations associated with the invoking
object and stores them in an array of Annotation
objects. Returns a reference to this array.

<A extends Annotation> A[]
 getAnnotationsByType(
 Class<A> annoType)

Returns an array of the annotations (including
repeated annotations) of annoType associated with the
invoking object. (Added by JDK 8.)

Class<?>[] getClasses() Returns a Class object for each public class and
interface that is a member of the class represented
by the invoking object.

ClassLoader getClassLoader() Returns the ClassLoader object that loaded the class
or interface.

Constructor<T>
 getConstructor(Class<?> ... paramTypes)
 throws NoSuchMethodException,
 SecurityException

Returns a Constructor object that represents the
constructor for the class represented by the invoking
object that has the parameter types specified by
paramTypes.

Constructor<?>[] getConstructors()
 throws SecurityException

Obtains a Constructor object for each public
constructor of the class represented by the invoking
object and stores them in an array. Returns a
reference to this array.

Annotation[] getDeclaredAnnotations() Obtains an Annotation object for all the annotations
that are declared by the invoking object and stores
them in an array. Returns a reference to this array.
(Inherited annotations are ignored.)

<A extends Annotation> A[]
 getDeclaredAnnotationsByType(
 Class<A> annoType)

Returns an array of the non-inherited annotations
(including repeated annotations) of annoType
associated with the invoking object.
(Added by JDK 8.)

Constructor<?>[] getDeclaredConstructors()
 throws SecurityException

Obtains a Constructor object for each constructor
declared by the class represented by the invoking
object and stores them in an array. Returns a
reference to this array. (Superclass constructors are
ignored.)

Field[] getDeclaredFields()
 throws SecurityException

Obtains a Field object for each field declared by the
class or interface represented by the invoking object
and stores them in an array. Returns a reference to this
array. (Inherited fields are ignored.)

Table 17-15 A Sampling of Methods Defined by Class

17-ch17.indd 474 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 475

Pa
rt

 II

Method Description
Method[] getDeclaredMethods()
 throws SecurityException

Obtains a Method object for each method declared
by the class or interface represented by the invoking
object and stores them in an array. Returns a
reference to this array. (Inherited methods are
ignored.)

Field getField(String fieldName)
 throws NoSuchMethodException,
 SecurityException

Returns a Field object that represents the public
field specified by fieldName for the class or interface
represented by the invoking object.

Field[] getFields()
 throws SecurityException

Obtains a Field object for each public field of the
class or interface represented by the invoking object
and stores them in an array. Returns a reference to
this array.

Class<?>[] getInterfaces() When invoked on an object that represents a class,
this method returns an array of the interfaces
implemented by that class. When invoked on an
object that represents an interface, this method
returns an array of interfaces extended by that
interface.

Method getMethod(String methName,
 Class<?> ... paramTypes)
 throws NoSuchMethodException,
 SecurityException

Returns a Method object that represents the public
method specified by methName and having the
parameter types specified by paramTypes in the class
or interface represented by the invoking object.

Method[] getMethods()
 throws SecurityException

Obtains a Method object for each public method of
the class or interface represented by the invoking
object and stores them in an array. Returns a
reference to this array.

String getName() Returns the complete name of the class or interface
of the type represented by the invoking object.

ProtectionDomain getProtectionDomain() Returns the protection domain associated with the
invoking object.

Class<? super T> getSuperclass() Returns the superclass of the type represented by
the invoking object. The return value is null if the
represented type is Object or not a class.

boolean isInterface() Returns true if the type represented by the invoking
object is an interface. Otherwise, it returns false.

T newInstance()
 throws IllegalAccessException,
 InstantiationException

Creates a new instance (i.e., a new object) that is
of the same type as that represented by invoking
object. This is equivalent to using new with the class’
default constructor. The new object is returned. This
method will fail if the represented type is abstract,
not a class, or does not have a default constructor.

String toString() Returns the string representation of the type
represented by the invoking object or interface.

Table 17-15 A Sampling of Methods Defined by Class (continued)

17-ch17.indd 475 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

476 PART II The Java Library

The methods defined by Class are often useful in situations where run-time type
information about an object is required. As Table 17-15 shows, methods are provided that
allow you to determine additional information about a particular class, such as its public
constructors, fields, and methods. Among other things, this is important for the Java Beans
functionality, which is discussed later in this book.

The following program demonstrates getClass() (inherited from Object) and
getSuperclass() (from Class):

// Demonstrate Run-Time Type Information.

class X {
 int a;
 float b;
}

class Y extends X {
 double c;
}

class RTTI {
 public static void main(String args[]) {
 X x = new X();
 Y y = new Y();
 Class<?> clObj;

 clObj = x.getClass(); // get Class reference
 System.out.println("x is object of type: " +
 clObj.getName());

 clObj = y.getClass(); // get Class reference
 System.out.println("y is object of type: " +
 clObj.getName());
 clObj = clObj.getSuperclass();
 System.out.println("y's superclass is " +
 clObj.getName());
 }
}

The output from this program is shown here:

 x is object of type: X
 y is object of type: Y
 y’s superclass is X

17-ch17.indd 476 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 477

Pa
rt

 II

ClassLoader
The abstract class ClassLoader defines how classes are loaded. Your application can create
subclasses that extend ClassLoader, implementing its methods. Doing so allows you to load
classes in some way other than the way they are normally loaded by the Java run-time system.
However, this is not something that you will normally need to do.

Math
The Math class contains all the floating-point functions that are used for geometry and
trigonometry, as well as several general-purpose methods. Math defines two double
constants: E (approximately 2.72) and PI (approximately 3.14).

Trigonometric Functions
The following methods accept a double parameter for an angle in radians and return the
result of their respective trigonometric function:

Method Description
static double sin(double arg) Returns the sine of the angle specified by arg in radians.

static double cos(double arg) Returns the cosine of the angle specified by arg in radians.

static double tan(double arg) Returns the tangent of the angle specified by arg in radians.

The next methods take as a parameter the result of a trigonometric function and
return, in radians, the angle that would produce that result. They are the inverse of their
non-arc companions.

Method Description
static double asin(double arg) Returns the angle whose sine is specified by arg.

static double acos(double arg) Returns the angle whose cosine is specified by arg.

static double atan(double arg) Returns the angle whose tangent is specified by arg.

static double atan2(double x, double y) Returns the angle whose tangent is x/y.

The next methods compute the hyperbolic sine, cosine, and tangent of an angle:

Method Description
static double sinh(double arg) Returns the hyperbolic sine of the angle specified by arg.

static double cosh(double arg) Returns the hyperbolic cosine of the angle specified by arg.

static double tanh(double arg) Returns the hyperbolic tangent of the angle specified by arg.

17-ch17.indd 477 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

478 PART II The Java Library

Exponential Functions
Math defines the following exponential methods:

Method Description
static double cbrt(double arg) Returns the cube root of arg.

static double exp(double arg) Returns e to the arg.

static double expm1(double arg) Returns e to the arg–1.

static double log(double arg) Returns the natural logarithm of arg.

static double log10(double arg) Returns the base 10 logarithm for arg.

static double log1p(double arg) Returns the natural logarithm for arg + 1.

static double pow(double y, double x) Returns y raised to the x; for example, pow(2.0,
3.0) returns 8.0.

static double scalb(double arg, int factor) Returns arg × 2factor.

static float scalb(float arg, int factor) Returns arg × 2factor.

static double sqrt(double arg) Returns the square root of arg.

Rounding Functions
The Math class defines several methods that provide various types of rounding operations.
They are shown in Table 17-16. Notice the two ulp() methods at the end of the table. In
this context, ulp stands for units in the last place. It indicates the distance between a value
and the next higher value. It can be used to help assess the accuracy of a result.

Method Description

static int abs(int arg) Returns the absolute value of arg.

static long abs(long arg) Returns the absolute value of arg.

static float abs(float arg) Returns the absolute value of arg.

static double abs(double arg) Returns the absolute value of arg.

static double ceil(double arg) Returns the smallest whole number greater than
or equal to arg.

static double floor(double arg) Returns the largest whole number less than or
equal to arg.

static int floorDiv(int dividend, int divisor) Returns the floor of the result of dividend/divisor.
(Added by JDK 8.)

static long floorDiv(long dividend,
 long divisor)

Returns the floor of the result of dividend/divisor.
(Added by JDK 8.)

static int floorMod(int dividend, int divisor) Returns the floor of the remainder of dividend/
divisor. (Added by JDK 8.)

static long floorMod(long dividend,
 long divisor)

Returns the floor of the remainder of dividend/
divisor. (Added by JDK 8.)

Table 17-16 The Rounding Methods Defined by Math

17-ch17.indd 478 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 479

Pa
rt

 II

Miscellaneous Math Methods
In addition to the methods just shown, Math defines several other methods, which are
shown in Table 17-17. Notice that several of the methods use the suffix Exact. These were
added by JDK 8. They throw an ArithmeticException if overflow occurs. Thus, these
methods give you an easy way to watch various operations for overflow.

Method Description

static int max(int x, int y) Returns the maximum of x and y.

static long max(long x, long y) Returns the maximum of x and y.

static float max(float x, float y) Returns the maximum of x and y.

static double max(double x, double y) Returns the maximum of x and y.

static int min(int x, int y) Returns the minimum of x and y.

static long min(long x, long y) Returns the minimum of x and y.

static float min(float x, float y) Returns the minimum of x and y.

static double min(double x, double y) Returns the minimum of x and y.

static double nextAfter(double arg,
 double toward)

Beginning with the value of arg, returns
the next value in the direction of toward.
If arg == toward, then toward is returned.

static float nextAfter(float arg,
 double toward)

Beginning with the value of arg, returns
the next value in the direction of toward.
If arg == toward, then toward is returned.

static double nextDown(double val) Returns the next value lower than val. (Added
by JDK 8.)

static float nextDown(float val) Returns the next value lower than val. (Added
by JDK 8.)

static double nextUp(double arg) Returns the next value in the positive direction
from arg.

static float nextUp(float arg) Returns the next value in the positive direction
from arg.

static double rint(double arg) Returns the integer nearest in value to arg.

static int round(float arg) Returns arg rounded up to the nearest int.

static long round(double arg) Returns arg rounded up to the nearest long.

static float ulp(float arg) Returns the ulp for arg.

static double ulp(double arg) Returns the ulp for arg.

Table 17-16 The Rounding Methods Defined by Math (continued)

17-ch17.indd 479 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

480 PART II The Java Library

Method Description

static int addExact(int arg1, int arg2) Returns arg1 + arg2. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static long addExact(long arg1, long arg2 Returns arg1 + arg2. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static double copySign(double arg,
 double signarg)

Returns arg with same sign as that of signarg.

static float copySign(float arg,
 float signarg)

Returns arg with same sign as that of signarg.

static int decrementExact(int arg) Returns arg – 1. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static long decrementExact(long arg) Returns arg – 1. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static int getExponent(double arg) Returns the base-2 exponent used by the binary representation of arg.

static int getExponent(float arg) Returns the base-2 exponent used by the binary representation of arg.

static hypot(double side1,
 double side2)

Returns the length of the hypotenuse of a right triangle given the
length of the two opposing sides.

static double
 IEEEremainder(double dividend,
 double divisor)

Returns the remainder of dividend / divisor.

static int incrementExact(int arg) Returns arg + 1. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static long incrementExact(long arg) Returns arg + 1. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static int multiplyExact(int arg1, int arg2) Returns arg1 * arg2. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static long multiplyExact(long arg1,
 long arg2)

Returns arg1 * arg2. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static int negateExact(int arg) Returns –arg. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static long negateExact(long arg) Returns –arg. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static double random() Returns a pseudorandom number between 0 and 1.

static float signum(double arg) Determines the sign of a value. It returns 0 if arg is 0, 1 if arg is greater
than 0, and –1 if arg is less than 0.

static float signum(float arg) Determines the sign of a value. It returns 0 if arg is 0, 1 if arg is greater
than 0, and –1 if arg is less than 0.

static int subtractExact(int arg1, int arg2) Returns arg1 – arg2. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static long subtractExact(long arg1,
 long arg2)

Returns arg1 – arg2. Throws an ArithmeticException if overflow occurs.
(Added by JDK 8.)

static double toDegrees(double angle) Converts radians to degrees. The angle passed to angle must be
specified in radians. The result in degrees is returned.

static int toIntExact(long arg) Returns arg as an int. Throws an ArithmeticException if overflow
occurs. (Added by JDK 8.)

static double toRadians(double angle) Converts degrees to radians. The angle passed to angle must be
specified in degrees. The result in radians is returned.

Table 17-17 Other Methods Defined by Math

17-ch17.indd 480 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 481

Pa
rt

 II

The following program demonstrates toRadians() and toDegrees():

// Demonstrate toDegrees() and toRadians().
class Angles {
 public static void main(String args[]) {
 double theta = 120.0;

 System.out.println(theta + " degrees is " +
 Math.toRadians(theta) + " radians.");

 theta = 1.312;
 System.out.println(theta + " radians is " +
 Math.toDegrees(theta) + " degrees.");
 }
}

The output is shown here:

 120.0 degrees is 2.0943951023931953 radians.
 1.312 radians is 75.17206272116401 degrees.

StrictMath
The StrictMath class defines a complete set of mathematical methods that parallel those
in Math. The difference is that the StrictMath version is guaranteed to generate precisely
identical results across all Java implementations, whereas the methods in Math are given
more latitude in order to improve performance.

Compiler
The Compiler class supports the creation of Java environments in which Java bytecode is
compiled into executable code rather than interpreted. It is not for normal programming use.

Thread, ThreadGroup, and Runnable
The Runnable interface and the Thread and ThreadGroup classes support multithreaded
programming. Each is examined next.

NOTE An overview of the techniques used to manage threads, implement the Runnable interface, and
create multithreaded programs is presented in Chapter 11.

The Runnable Interface
The Runnable interface must be implemented by any class that will initiate a separate
thread of execution. Runnable only defines one abstract method, called run(), which
is the entry point to the thread. It is defined like this:

void run()

Threads that you create must implement this method.

17-ch17.indd 481 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

482 PART II The Java Library

Method Description
static int activeCount() Returns the approximate number of active threads

in the group to which the thread belongs.

final void checkAccess() Causes the security manager to verify that the
current thread can access and/or change the
thread on which checkAccess() is called.

static Thread currentThread() Returns a Thread object that encapsulates the
thread that calls this method.

static void dumpStack() Displays the call stack for the thread.

static int enumerate(Thread threads[]) Puts copies of all Thread objects in the current
thread’s group into threads. The number of threads
is returned.

static Map<Thread, StackTraceElement[]>
 getAllStackTraces()

Returns a Map that contains the stack traces for all
active threads. In the map, each entry consists of a
key, which is the Thread object, and its value, which
is an array of StackTraceElement.

Table 17-18 The Methods Defined by Thread

Thread
Thread creates a new thread of execution. It implements Runnable and defines the
following commonly used constructors:

Thread()
Thread(Runnable threadOb)
Thread(Runnable threadOb, String threadName)
Thread(String threadName)
Thread(ThreadGroup groupOb, Runnable threadOb)
Thread(ThreadGroup groupOb, Runnable threadOb, String threadName)
Thread(ThreadGroup groupOb, String threadName)

threadOb is an instance of a class that implements the Runnable interface and defines where
execution of the thread will begin. The name of the thread is specified by threadName.
When a name is not specified, one is created by the Java Virtual Machine. groupOb specifies
the thread group to which the new thread will belong. When no thread group is specified,
the new thread belongs to the same group as the parent thread.

The following constants are defined by Thread:

MAX_PRIORITY
MIN_PRIORITY
NORM_PRIORITY

As expected, these constants specify the maximum, minimum, and default thread priorities.
The methods defined by Thread are shown in Table 17-18. In early versions of Java,

Thread also included the methods stop(), suspend(), and resume(). However, as
explained in Chapter 11, these were deprecated because they were inherently unstable.
Also deprecated are countStackFrames(), because it calls suspend(), and destroy(),
because it can cause deadlock.

17-ch17.indd 482 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 483

Pa
rt

 II

Method Description
ClassLoader getContextClassLoader() Returns the context class loader that is used to load

classes and resources for this thread.

static Thread.UncaughtExceptionHandler
 getDefaultUncaughtExceptionHandler()

Returns the default uncaught exception handler.

long getID() Returns the ID of the invoking thread.

final String getName() Returns the thread’s name.

final int getPriority() Returns the thread’s priority setting.

StackTraceElement[] getStackTrace() Returns an array containing the stack trace for the
invoking thread.

Thread.State getState() Returns the invoking thread’s state.

final ThreadGroup getThreadGroup() Returns the ThreadGroup object of which the
invoking thread is a member.

Thread.UncaughtExceptionHandler
 getUncaughtExceptionHandler()

Returns the invoking thread’s uncaught exception
handler.

static boolean holdsLock(Object ob) Returns true if the invoking thread owns the lock
on ob. Returns false otherwise.

void interrupt() Interrupts the thread.

static boolean interrupted() Returns true if the currently executing thread has
been interrupted. Otherwise, it returns false.

final boolean isAlive() Returns true if the thread is still active. Otherwise,
it returns false.

final boolean isDaemon() Returns true if the thread is a daemon thread.
Otherwise, it returns false.

boolean isInterrupted() Returns true if the invoking thread has been
interrupted. Otherwise, it returns false.

final void join()
 throws InterruptedException

Waits until the thread terminates.

final void join(long milliseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds
for the thread on which it is called to terminate.

final void join(long milliseconds,
 int nanoseconds)
 throws InterruptedException

Waits up to the specified number of milliseconds
plus nanoseconds for the thread on which it is
called to terminate.

void run() Begins execution of a thread.

void setContextClassLoader(ClassLoader cl) Sets the context class loader that will be used by the
invoking thread to cl.

final void setDaemon(boolean state) Flags the thread as a daemon thread.

static void
 setDefaultUncaughtExceptionHandler(
 Thread.UncaughtExceptionHandler e)

Sets the default uncaught exception handler to e.

Table 17-18 The Methods Defined by Thread (continued)

17-ch17.indd 483 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

484 PART II The Java Library

ThreadGroup
ThreadGroup creates a group of threads. It defines these two constructors:

ThreadGroup(String groupName)
ThreadGroup(ThreadGroup parentOb, String groupName)

For both forms, groupName specifies the name of the thread group. The first version creates
a new group that has the current thread as its parent. In the second form, the parent is
specified by parentOb. The non-deprecated methods defined by ThreadGroup are shown in
Table 17-19.

Method Description
int activeCount() Returns the approximate number of active threads in

the invoking group (including those in subgroups).

int activeGroupCount() Returns the approximate number of active groups
(including subgroups) for which the invoking thread
is a parent.

final void checkAccess() Causes the security manager to verify that the invoking
thread may access and/or change the group on which
checkAccess() is called.

final void destroy() Destroys the thread group (and any child groups) on
which it is called.

Table 17-19 The Methods Defined by ThreadGroup

Method Description
final void setName(String threadName) Sets the name of the thread to that specified by

threadName.

final void setPriority(int priority) Sets the priority of the thread to that specified by
priority.

void
 setUncaughtExceptionHandler(
 Thread.UncaughtExceptionHandler e)

Sets the invoking thread’s default uncaught
exception handler to e.

static void sleep(long milliseconds)
 throws InterruptedException

Suspends execution of the thread for the specified
number of milliseconds.

static void sleep(long milliseconds,
 int nanoseconds)
 throws InterruptedException

Suspends execution of the thread for the specified
number of milliseconds plus nanoseconds.

void start() Starts execution of the thread.

String toString() Returns the string equivalent of a thread.

static void yield() The calling thread offers to yield the CPU to
another thread.

Table 17-18 The Methods Defined by Thread (continued)

17-ch17.indd 484 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 485

Pa
rt

 II

Method Description
int enumerate(Thread group[]) Puts the active threads that comprise the invoking

thread group (including those in subgroups) into the
group array.

int enumerate(Thread group[],
 boolean all)

Puts the active threads that comprise the invoking thread
group into the group array. If all is true, then threads in
all subgroups of the thread are also put into group.

int enumerate(ThreadGroup group[]) Puts the active subgroups (including subgroups of
subgroups and so on) of the invoking thread group
into the group array.

int enumerate(ThreadGroup group[],
 boolean all)

Puts the active subgroups of the invoking thread
group into the group array. If all is true, then all active
subgroups of the subgroups (and so on) are also put
into group.

final int getMaxPriority() Returns the maximum priority setting for the group.

final String getName() Returns the name of the group.

final ThreadGroup getParent() Returns null if the invoking ThreadGroup object has
no parent. Otherwise, it returns the parent of the
invoking object.

final void interrupt() Invokes the interrupt() method of all threads in the
group and any subgroups.

final boolean isDaemon() Returns true if the group is a daemon group.
Otherwise, it returns false.

boolean isDestroyed() Returns true if the group has been destroyed.
Otherwise, it returns false.

void list() Displays information about the group.

final boolean
 parentOf(ThreadGroup group)

Returns true if the invoking thread is the parent of
group (or group, itself). Otherwise, it returns false.

final void
 setDaemon(boolean isDaemon)

If isDaemon is true, then the invoking group is flagged
as a daemon group.

final void setMaxPriority(int priority) Sets the maximum priority of the invoking group to
priority.

String toString() Returns the string equivalent of the group.

void uncaughtException(Thread thread,
 Throwable e)

This method is called when an exception goes
uncaught.

Table 17-19 The Methods Defined by ThreadGroup (continued)

17-ch17.indd 485 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

486 PART II The Java Library

Thread groups offer a convenient way to manage groups of threads as a unit. This is
particularly valuable in situations in which you want to suspend and resume a number of
related threads. For example, imagine a program in which one set of threads is used for
printing a document, another set is used to display the document on the screen, and
another set saves the document to a disk file. If printing is aborted, you will want an easy way
to stop all threads related to printing. Thread groups offer this convenience. The following
program, which creates two thread groups of two threads each, illustrates this usage:

// Demonstrate thread groups.
class NewThread extends Thread {
 boolean suspendFlag;

 NewThread(String threadname, ThreadGroup tgOb) {
 super(tgOb, threadname);
 System.out.println("New thread: " + this);
 suspendFlag = false;
 start(); // Start the thread
 }

 // This is the entry point for thread.
 public void run() {
 try {
 for(int i = 5; i > 0; i--) {
 System.out.println(getName() + ": " + i);
 Thread.sleep(1000);
 synchronized(this) {
 while(suspendFlag) {
 wait();
 }
 }
 }
 } catch (Exception e) {
 System.out.println("Exception in " + getName());
 }
 System.out.println(getName() + " exiting.");
 }

 synchronized void mysuspend() {
 suspendFlag = true;
 }

 synchronized void myresume() {
 suspendFlag = false;
 notify();
 }
 }

class ThreadGroupDemo {
 public static void main(String args[]) {
 ThreadGroup groupA = new ThreadGroup("Group A");
 ThreadGroup groupB = new ThreadGroup("Group B");

17-ch17.indd 486 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 487

Pa
rt

 II

 NewThread ob1 = new NewThread("One", groupA);
 NewThread ob2 = new NewThread("Two", groupA);
 NewThread ob3 = new NewThread("Three", groupB);
 NewThread ob4 = new NewThread("Four", groupB);

 System.out.println("\nHere is output from list():");
 groupA.list();
 groupB.list();
 System.out.println();

 System.out.println("Suspending Group A");
 Thread tga[] = new Thread[groupA.activeCount()];
 groupA.enumerate(tga); // get threads in group
 for(int i = 0; i < tga.length; i++) {
 ((NewThread)tga[i]).mysuspend(); // suspend each thread
 }

 try {
 Thread.sleep(4000);
 } catch (InterruptedException e) {
 System.out.println("Main thread interrupted.");
 }

 System.out.println("Resuming Group A");
 for(int i = 0; i < tga.length; i++) {
 ((NewThread)tga[i]).myresume(); // resume threads in group
 }

 // wait for threads to finish
 try {
 System.out.println("Waiting for threads to finish.");
 ob1.join();
 ob2.join();
 ob3.join();
 ob4.join();
 } catch (Exception e) {
 System.out.println("Exception in Main thread");
 }

 System.out.println("Main thread exiting.");
 }
}

Sample output from this program is shown here (the precise output you see may differ):

 New thread: Thread[One,5,Group A]
 New thread: Thread[Two,5,Group A]
 New thread: Thread[Three,5,Group B]
 New thread: Thread[Four,5,Group B]
 Here is output from list():
 java.lang.ThreadGroup[name=Group A,maxpri=10]
 Thread[One,5,Group A]
 Thread[Two,5,Group A]

17-ch17.indd 487 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

488 PART II The Java Library

 java.lang.ThreadGroup[name=Group B,maxpri=10]
 Thread[Three,5,Group B]
 Thread[Four,5,Group B]
 Suspending Group A
 Three: 5
 Four: 5
 Three: 4
 Four: 4
 Three: 3
 Four: 3
 Three: 2
 Four: 2
 Resuming Group A
 Waiting for threads to finish.
 One: 5
 Two: 5
 Three: 1
 Four: 1
 One: 4
 Two: 4
 Three exiting.
 Four exiting.
 One: 3
 Two: 3
 One: 2
 Two: 2
 One: 1
 Two: 1
 One exiting.
 Two exiting.
 Main thread exiting.

Inside the program, notice that thread group A is suspended for four seconds. As the
output confirms, this causes threads One and Two to pause, but threads Three and Four
continue running. After the four seconds, threads One and Two are resumed. Notice how
thread group A is suspended and resumed. First, the threads in group A are obtained by
calling enumerate() on group A. Then, each thread is suspended by iterating through the
resulting array. To resume the threads in A, the list is again traversed and each thread is
resumed. One last point: This example uses the recommended approach to suspending and
resuming threads. It does not rely upon the deprecated methods suspend() and resume().

ThreadLocal and InheritableThreadLocal
Java defines two additional thread-related classes in java.lang:

•	 ThreadLocal Used to create thread local variables. Each thread will have its own
copy of a thread local variable.

•	 InheritableThreadLocal Creates thread local variables that may be inherited.

17-ch17.indd 488 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 489

Pa
rt

 II

Package
Package encapsulates version data associated with a package. Package version information
is becoming more important because of the proliferation of packages and because a Java
program may need to know what version of a package is available. The methods defined by
Package are shown in Table 17-20. The following program demonstrates Package, displaying
the packages about which the program currently is aware:

// Demonstrate Package
class PkgTest {
 public static void main(String args[]) {
 Package pkgs[];

 pkgs = Package.getPackages();

 for(int i=0; i < pkgs.length; i++)
 System.out.println(
 pkgs[i].getName() + " " +
 pkgs[i].getImplementationTitle() + " " +
 pkgs[i].getImplementationVendor() + " " +
 pkgs[i].getImplementationVersion()
);
 }
}

Method Description
<A extends Annotation> A
 getAnnotation(Class<A> annoType)

Returns an Annotation object that contains the
annotation associated with annoType for the
invoking object.

Annotation[] getAnnotations() Returns all annotations associated with the invoking
object in an array of Annotation objects. Returns a
reference to this array.

<A extends Annotation> A[]
 getAnnotationsByType(
 Class<A> annoType)

Returns an array of the annotations (including
repeated annotations) of annoType associated with
the invoking object. (Added by JDK 8.)

<A extends Annotation> A
 getDeclaredAnnotation(
 Class<A> annoType)

Returns an Annotation object that contains the
non-inherited annotation associated with annoType.
(Added by JDK 8.)

Annotation[] getDeclaredAnnotations() Returns an Annotation object for all the
annotations that are declared by the invoking
object. (Inherited annotations are ignored.)

<A extends Annotation> A[]
 getDeclaredAnnotationsByType(
 Class<A> annoType)

Returns an array of the non-inherited annotations
(including repeated annotations) of annoType
associated with the invoking object.
(Added by JDK 8.)

String getImplementationTitle() Returns the title of the invoking package.

Table 17-20 The Methods Defined by Package

17-ch17.indd 489 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

490 PART II The Java Library

Table 17-20 The Methods Defined by Package (continued)

Method Description
String getImplementationVendor() Returns the name of the implementor of the

invoking package.

String getImplementationVersion() Returns the version number of the invoking package.

String getName() Returns the name of the invoking package.

static Package getPackage(String pkgName) Returns a Package object with the name specified
by pkgName.

static Package[] getPackages() Returns all packages about which the invoking
program is currently aware.

String getSpecificationTitle() Returns the title of the invoking package’s
specification.

String getSpecificationVendor() Returns the name of the owner of the specification
for the invoking package.

String getSpecificationVersion() Returns the invoking package’s specification
version number.

int hashCode() Returns the hash code for the invoking package.

boolean isAnnotationPresent(
 Class<? extends Annotation> anno)

Returns true if the annotation described by anno is
associated with the invoking object. Returns false
otherwise.

boolean isCompatibleWith(String verNum)
 throws NumberFormatException

Returns true if verNum is less than or equal to the
invoking package’s version number.

boolean isSealed() Returns true if the invoking package is sealed.
Returns false otherwise.

boolean isSealed(URL url) Returns true if the invoking package is sealed
relative to url. Returns false otherwise.

String toString() Returns the string equivalent of the invoking
package.

RuntimePermission
RuntimePermission relates to Java’s security mechanism and is not examined further here.

Throwable
The Throwable class supports Java’s exception-handling system and is the class from which
all exception classes are derived. It is discussed in Chapter 10.

SecurityManager
SecurityManager supports Java’s security system. A reference to the current security
manager can be obtained by calling getSecurityManager() defined by the System class.

17-ch17.indd 490 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 491

Pa
rt

 II

StackTraceElement
The StackTraceElement class describes a single stack frame, which is an individual element
of a stack trace when an exception occurs. Each stack frame represents an execution point,
which includes such things as the name of the class, the name of the method, the name of
the file, and the source-code line number. An array of StackTraceElements is returned by
the getStackTrace() method of the Throwable class.

StackTraceElement has one constructor:

StackTraceElement(String className, String methName, string fileName, int line)

Here, the name of the class is specified by className, the name of the method is specified in
methName, the name of the file is specified by fileName, and the line number is passed in line.
If there is no valid line number, use a negative value for line. Furthermore, a value of –2 for
line indicates that this frame refers to a native method.

The methods supported by StackTraceElement are shown in Table 17-21. These
methods give you programmatic access to a stack trace.

Method Description
boolean equals(Object ob) Returns true if the invoking StackTraceElement is the same as

the one passed in ob. Otherwise, it returns false.

String getClassName() Returns the name of the class in which the execution point
described by the invoking StackTraceElement occurred.

String getFileName() Returns the name of the file in which the source code of the
execution point described by the invoking StackTraceElement
is stored.

int getLineNumber() Returns the source-code line number at which the execution
point described by the invoking StackTraceElement occurred. In
some situations, the line number will not be available, in which
case a negative value is returned.

String getMethodName() Returns the name of the method in which the execution point
described by the invoking StackTraceElement occurred.

int hashCode() Returns the hash code for the invoking StackTraceElement.

boolean isNativeMethod() Returns true if the execution point described by the invoking
StackTraceElement occurred in a native method. Otherwise, it
returns false.

String toString() Returns the String equivalent of the invoking sequence.

Table 17-21 The Methods Defined by StackTraceElement

17-ch17.indd 491 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

492 PART II The Java Library

Enum
As described in Chapter 12, an enumeration is a list of named constants. (Recall that an
enumeration is created by using the keyword enum.) All enumerations automatically
inherit Enum. Enum is a generic class that is declared as shown here:

class Enum<E extends Enum<E>>

Here, E stands for the enumeration type. Enum has no public constructors.
Enum defines several methods that are available for use by all enumerations, which are

shown in Table 17-22.

Method Description
protected final Object clone()
 throws CloneNotSupportedException

Invoking this method causes a
CloneNotSupportedException to be thrown.
This prevents enumerations from being cloned.

final int compareTo(E e) Compares the ordinal value of two constants of the
same enumeration. Returns a negative value if the
invoking constant has an ordinal value less than e’s,
zero if the two ordinal values are the same, and a
positive value if the invoking constant has an ordinal
value greater than e’s.

final boolean equals(Object obj) Returns true if obj and the invoking object refer to
the same constant.

final Class<E> getDeclaringClass() Returns the type of enumeration of which the
invoking constant is a member.

final int hashCode() Returns the hash code for the invoking object.

final String name() Returns the unaltered name of the invoking constant.

final int ordinal() Returns a value that indicates an enumeration
constant’s position in the list of constants.

String toString() Returns the name of the invoking constant.
This name may differ from the one used in the
enumeration’s declaration.

static <T extends Enum<T>> T
 valueOf(Class<T> e-type, String name)

Returns the constant associated with name in the
enumeration type specified by e-type.

Table 17-22 The Methods Defined by Enum

17-ch17.indd 492 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 493

Pa
rt

 II

ClassValue
ClassValue can be used to associate a value with a type. It is a generic type defined like this:

Class ClassValue<T>

It is designed for highly specialized uses, not for normal programming.

The CharSequence Interface
The CharSequence interface defines methods that grant read-only access to a sequence
of characters. These methods are shown in Table 17-23. This interface is implemented by
String, StringBuffer, and StringBuilder, among others.

The Comparable Interface
Objects of classes that implement Comparable can be ordered. In other words, classes that
implement Comparable contain objects that can be compared in some meaningful manner.
Comparable is generic and is declared like this:

interface Comparable<T>

Here, T represents the type of objects being compared.

Table 17-23 The Methods Defined by CharSequence

Method Description
char charAt(int idx) Returns the character at the index specified by idx.

default IntStream chars() Returns a stream (in the form of an IntStream) to the
characters in the invoking object. (Added by JDK 8.)

default IntStream codePoints() Returns a stream (in the form of an IntStream) to the
code points in the invoking object. (Added by JDK 8.)

int length() Returns the number of characters in the invoking
sequence.

CharSequence
 subSequence(int startIdx, int stopIdx)

Returns a subset of the invoking sequence beginning
at startIdx and ending at stopIdx–1.

String toString() Returns the String equivalent of the invoking
sequence.

17-ch17.indd 493 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

494 PART II The Java Library

The Comparable interface declares one method that is used to determine what Java
calls the natural ordering of instances of a class. The signature of the method is shown here:

int compareTo(T obj)

This method compares the invoking object with obj. It returns 0 if the values are equal. A
negative value is returned if the invoking object has a lower value. Otherwise, a positive
value is returned.

This interface is implemented by several of the classes already reviewed in this book.
Specifically, the Byte, Character, Double, Float, Long, Short, String, and Integer classes
define a compareTo() method. So does Enum.

The Appendable Interface
Objects of a class that implements Appendable can have a character or character sequences
appended to it. Appendable defines these three methods:

Appendable append(char ch) throws IOException
Appendable append(CharSequence chars) throws IOException
Appendable append(CharSequence chars, int begin, int end) throws IOException

In the first form, the character ch is appended to the invoking object. In the second form,
the character sequence chars is appended to the invoking object. The third form allows you
to indicate a portion (the characters running from begin through end–1) of the sequence
specified by chars. In all cases, a reference to the invoking object is returned.

The Iterable Interface
Iterable must be implemented by any class whose objects will be used by the for-each
version of the for loop. In other words, in order for an object to be used within a for-each
style for loop, its class must implement Iterable. Iterable is a generic interface that has this
declaration:

interface Iterable<T>

Here, T is the type of the object being iterated. It defines one abstract method, iterator(),
which is shown here:

Iterator<T> iterator()

It returns an iterator to the elements contained in the invoking object.
Beginning with JDK 8, Iterable also defines two default methods. The first is called

forEach():

default void forEach(Consumer<? super T> action)

For each element being iterated, forEach() executes the code specified by action. (Consumer
is a functional interface added by JDK 8 and defined in java.util.function. See Chapter 19.)

The second default method is spliterator(), shown next:

default Spliterator<T> spliterator()

17-ch17.indd 494 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 17 Exploring java.lang 495

Pa
rt

 II

It returns a Spliterator to the sequence being iterated. (See Chapters 18 and 29 for details
on spliterators.)

NOTE Iterators are described in detail in Chapter 18.

The Readable Interface
The Readable interface indicates that an object can be used as a source for characters. It
defines one method called read(), which is shown here:

int read(CharBuffer buf) throws IOException

This method reads characters into buf. It returns the number of characters read, or –1 if an
EOF is encountered.

The AutoCloseable Interface
AutoCloseable provides support for the try-with-resources statement, which implements
what is sometimes referred to as automatic resource management (ARM). The try-with-resources
statement automates the process of releasing a resource (such as a stream) when it is no
longer needed. (See Chapter 13 for details.) Only objects of classes that implement
AutoCloseable can be used with try-with-resources. The AutoCloseable interface defines
only the close() method, which is shown here:

void close() throws Exception

This method closes the invoking object, releasing any resources that it may hold. It is
automatically called at the end of a try-with-resources statement, thus eliminating the need
to explicitly invoke close(). AutoCloseable is implemented by several classes, including all
of the I/O classes that open a stream that can be closed.

The Thread.UncaughtExceptionHandler Interface
The static Thread.UncaughtExceptionHandler interface is implemented by classes that
want to handle uncaught exceptions. It is implemented by ThreadGroup. It declares only
one method, which is shown here:

void uncaughtException(Thread thrd, Throwable exc)

Here, thrd is a reference to the thread that generated the exception and exc is a reference to
the exception.

The java.lang Subpackages
Java defines several subpackages of java.lang:

•	 java.lang.annotation

•	 java.lang.instrument

•	 java.lang.invoke

17-ch17.indd 495 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

496 PART II The Java Library

•	 java.lang.management

•	 java.lang.ref

•	 java.lang.reflect

Each is briefly described here.

java.lang.annotation
Java’s annotation facility is supported by java.lang.annotation. It defines the Annotation
interface, the ElementType and RetentionPolicy enumerations, and several predefined
annotations. Annotations are described in Chapter 12.

java.lang.instrument
java.lang.instrument defines features that can be used to add instrumentation to various
aspects of program execution. It defines the Instrumentation and ClassFileTransformer
interfaces, and the ClassDefinition class.

java.lang.invoke
java.lang.invoke supports dynamic languages. It includes classes such as CallSite,
MethodHandle, and MethodType.

java.lang.management
The java.lang.management package provides management support for the JVM and the
execution environment. Using the features in java.lang.management, you can observe and
manage various aspects of program execution.

java.lang.ref
You learned earlier that the garbage collection facilities in Java automatically determine
when no references exist to an object. The object is then assumed to be no longer needed
and its memory is reclaimed. The classes in the java.lang.ref package provide more flexible
control over the garbage collection process.

java.lang.reflect
Reflection is the ability of a program to analyze code at run time. The java.lang.reflect
package provides the ability to obtain information about the fields, constructors, methods,
and modifiers of a class. Among other reasons, you need this information to build software
tools that enable you to work with Java Beans components. The tools use reflection to
determine dynamically the characteristics of a component. Reflection was introduced in
Chapter 12 and is also examined in Chapter 30.

java.lang.reflect defines several classes, including Method, Field, and Constructor.
It also defines several interfaces, including AnnotatedElement, Member, and Type. In
addition, the java.lang.reflect package includes the Array class that enables you to create
and access arrays dynamically.

17-ch17.indd 496 14/02/14 5:07 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

18
CHAPTER

 497

java.util Part 1: The
Collections Framework

This chapter begins our examination of java.util. This important package contains a large
assortment of classes and interfaces that support a broad range of functionality. For example,
java.util has classes that generate pseudorandom numbers, manage date and time, observe
events, manipulate sets of bits, tokenize strings, and handle formatted data. The java.util
package also contains one of Java’s most powerful subsystems: the Collections Framework. The
Collections Framework is a sophisticated hierarchy of interfaces and classes that provide
state-of-the-art technology for managing groups of objects. It merits close attention by all
programmers.

Because java.util contains a wide array of functionality, it is quite large. Here is a list of
its top-level classes:

AbstractCollection FormattableFlags Properties

AbstractList Formatter PropertyPermission

AbstractMap GregorianCalendar PropertyResourceBundle

AbstractQueue HashMap Random

AbstractSequentialList HashSet ResourceBundle

AbstractSet Hashtable Scanner

ArrayDeque IdentityHashMap ServiceLoader

ArrayList IntSummaryStatistics
(Added by JDK 8.)

SimpleTimeZone

Arrays LinkedHashMap Spliterators (Added by JDK 8.)

Base64 (Added by JDK 8.) LinkedHashSet SplitableRandom
(Added by JDK 8.)

BitSet LinkedList Stack

Calendar ListResourceBundle StringJoiner (Added by
JDK 8.)

18-ch18.indd 497 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Collections Locale StringTokenizer

Currency LongSummaryStatistics
(Added by JDK 8.)

Timer

Date Objects TimerTask

Dictionary Observable TimeZone

DoubleSummaryStatistics
(Added by JDK 8.)

Optional (Added by
JDK 8.)

TreeMap

EnumMap OptionalDouble (Added by
JDK 8.)

TreeSet

EnumSet OptionalInt (Added by
JDK 8.)

UUID

EventListenerProxy OptionalLong (Added by
JDK 8.)

Vector

EventObject PriorityQueue WeakHashMap

The interfaces defined by java.util are shown next:

Collection Map.Entry Set

Comparator NavigableMap SortedMap

Deque NavigableSet SortedSet

Enumeration Observer Spliterator (Added by
JDK 8.)

EventListener PrimitiveIterator (Added by
JDK 8.)

Spliterator.OfDouble
(Added by JDK 8.)

Formattable PrimitiveIterator.OfDouble
(Added by JDK 8.)

Spliterator.OfInt (Added
by JDK 8.)

Iterator PrimitiveIterator.OfInt
(Added by JDK 8.)

Spliterator.OfLong (Added
by JDK 8.)

List PrimitiveIterator.OfLong
(Added by JDK 8.)

Spliterator.OfPrimitive
(Added by JDK 8.)

ListIterator Queue

Map RandomAccess

Because of its size, the description of java.util is broken into two chapters. This chapter
examines those members of java.util that are part of the Collections Framework. Chapter 18
discusses its other classes and interfaces.

Collections Overview
The Java Collections Framework standardizes the way in which groups of objects are handled
by your programs. Collections were not part of the original Java release, but were added by
J2SE 1.2. Prior to the Collections Framework, Java provided ad hoc classes such as Dictionary,
Vector, Stack, and Properties to store and manipulate groups of objects. Although these

498 PART II The Java Library

18-ch18.indd 498 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Pa
rt

 II

classes were quite useful, they lacked a central, unifying theme. The way that you used Vector
was different from the way that you used Properties, for example. Also, this early, ad hoc
approach was not designed to be easily extended or adapted. Collections are an answer to
these (and other) problems.

The Collections Framework was designed to meet several goals. First, the framework
had to be high-performance. The implementations for the fundamental collections
(dynamic arrays, linked lists, trees, and hash tables) are highly efficient. You seldom, if
ever, need to code one of these “data engines” manually. Second, the framework had to
allow different types of collections to work in a similar manner and with a high degree of
interoperability. Third, extending and/or adapting a collection had to be easy. Toward this
end, the entire Collections Framework is built upon a set of standard interfaces. Several
standard implementations (such as LinkedList, HashSet, and TreeSet) of these interfaces
are provided that you may use as-is. You may also implement your own collection, if you
choose. Various special-purpose implementations are created for your convenience, and
some partial implementations are provided that make creating your own collection class
easier. Finally, mechanisms were added that allow the integration of standard arrays into
the Collections Framework.

Algorithms are another important part of the collection mechanism. Algorithms operate
on collections and are defined as static methods within the Collections class. Thus, they are
available for all collections. Each collection class need not implement its own versions. The
algorithms provide a standard means of manipulating collections.

Another item closely associated with the Collections Framework is the Iterator interface.
An iterator offers a general-purpose, standardized way of accessing the elements within a
collection, one at a time. Thus, an iterator provides a means of enumerating the contents of a
collection. Because each collection provides an iterator, the elements of any collection class
can be accessed through the methods defined by Iterator. Thus, with only small changes,
the code that cycles through a set can also be used to cycle through a list, for example.

JDK 8 adds another type of iterator called a spliterator. In brief, spliterators are
iterators that provide support for parallel iteration. The interfaces that support spliterators
are Spliterator and several nested interfaces that support primitive types. JDK 8 also adds
iterator interfaces designed for use with primitive types, such as PrimitiveIterator and
PrimitiveIterator.OfDouble.

In addition to collections, the framework defines several map interfaces and classes.
Maps store key/value pairs. Although maps are part of the Collections Framework, they are
not “collections” in the strict use of the term. You can, however, obtain a collection-view of a
map. Such a view contains the elements from the map stored in a collection. Thus, you can
process the contents of a map as a collection, if you choose.

The collection mechanism was retrofitted to some of the original classes defined
by java.util so that they too could be integrated into the new system. It is important to
understand that although the addition of collections altered the architecture of many
of the original utility classes, it did not cause the deprecation of any. Collections simply
provide a better way of doing several things.

NOTE If you are familiar with C++, then you will find it helpful to know that the Java collections
technology is similar in spirit to the Standard Template Library (STL) defined by C++. What C++
calls a container, Java calls a collection. However, there are significant differences between the
Collections Framework and the STL. It is important to not jump to conclusions.

 Chapter 18 java.util Part 1: The Collections Framework 499

18-ch18.indd 499 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

500 PART II The Java Library

JDK 5 Changed the Collections Framework
When JDK 5 was released, some fundamental changes were made to the Collections
Framework that significantly increased its power and streamlined its use. These changes
include the addition of generics, autoboxing/unboxing, and the for-each style for loop.
Although JDK 8 is three major Java releases after JDK 5, the effects of the JDK 5 features
were so profound that they still warrant special attention. The main reason is that you may
encounter pre-JDK 5 code. Understanding the effects and reasons for the changes is
important if you will be maintaining or updating older code.

Generics Fundamentally Changed the Collections Framework
The addition of generics caused a significant change to the Collections Framework because
the entire Collections Framework was reengineered for it. All collections are now generic,
and many of the methods that operate on collections take generic type parameters. Simply
put, the addition of generics affected every part of the Collections Framework.

Generics added the one feature that collections had been missing: type safety. Prior to
generics, all collections stored Object references, which meant that any collection could
store any type of object. Thus, it was possible to accidentally store incompatible types in a
collection. Doing so could result in run-time type mismatch errors. With generics, it is
possible to explicitly state the type of data being stored, and run-time type mismatch
errors can be avoided.

Although the addition of generics changed the declarations of most of its classes and
interfaces, and several of their methods, overall, the Collections Framework still works the
same as it did prior to generics. Of course, to gain the advantages that generics bring
collections, older code will need to be rewritten. This is also important because pre-generics
code will generate warning messages when compiled by a modern Java compiler. To eliminate
these warnings, you will need to add type information to all your collections code.

Autoboxing Facilitates the Use of Primitive Types
Autoboxing/unboxing facilitates the storing of primitive types in collections. As you will
see, a collection can store only references, not primitive values. In the past, if you wanted
to store a primitive value, such as an int, in a collection, you had to manually box it into its
type wrapper. When the value was retrieved, it needed to be manually unboxed (by using
an explicit cast) into its proper primitive type. Because of autoboxing/unboxing, Java can
automatically perform the proper boxing and unboxing needed when storing or retrieving
primitive types. There is no need to manually perform these operations.

The For-Each Style for Loop
All collection classes in the Collections Framework were retrofitted to implement the
Iterable interface, which means that a collection can be cycled through by use of the for-
each style for loop. In the past, cycling through a collection required the use of an iterator
(described later in this chapter), with the programmer manually constructing the loop.
Although iterators are still needed for some uses, in many cases, iterator-based loops can
be replaced by for loops.

18-ch18.indd 500 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 501

Pa
rt

 II

The Collection Interfaces
The Collections Framework defines several core interfaces. This section provides an overview
of each interface. Beginning with the collection interfaces is necessary because they determine
the fundamental nature of the collection classes. Put differently, the concrete classes simply
provide different implementations of the standard interfaces. The interfaces that underpin
collections are summarized in the following table:

Interface Description
Collection Enables you to work with groups of objects; it is at the top of the collections

hierarchy.

Deque Extends Queue to handle a double-ended queue.

List Extends Collection to handle sequences (lists of objects).

NavigableSet Extends SortedSet to handle retrieval of elements based on closest-match
searches.

Queue Extends Collection to handle special types of lists in which elements are
removed only from the head.

Set Extends Collection to handle sets, which must contain unique elements.

SortedSet Extends Set to handle sorted sets.

In addition to the collection interfaces, collections also use the Comparator,
RandomAccess, Iterator, and ListIterator interfaces, which are described in depth later
in this chapter. Beginning with JDK 8, Spliterator can also be used. Briefly, Comparator
defines how two objects are compared; Iterator, ListIterator, and Spliterator enumerate the
objects within a collection. By implementing RandomAccess, a list indicates that it supports
efficient, random access to its elements.

To provide the greatest flexibility in their use, the collection interfaces allow some
methods to be optional. The optional methods enable you to modify the contents of a
collection. Collections that support these methods are called modifiable. Collections that do
not allow their contents to be changed are called unmodifiable. If an attempt is made to use
one of these methods on an unmodifiable collection, an UnsupportedOperationException
is thrown. All the built-in collections are modifiable.

The following sections examine the collection interfaces.

The Collection Interface
The Collection interface is the foundation upon which the Collections Framework is built
because it must be implemented by any class that defines a collection. Collection is a generic
interface that has this declaration:

interface Collection<E>

Here, E specifies the type of objects that the collection will hold. Collection extends the
Iterable interface. This means that all collections can be cycled through by use of the for-
each style for loop. (Recall that only classes that implement Iterable can be cycled through
by the for.)

18-ch18.indd 501 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

502 PART II The Java Library

Collection declares the core methods that all collections will have. These methods are
summarized in Table 18-1. Because all collections implement Collection, familiarity with its
methods is necessary for a clear understanding of the framework. Several of these methods
can throw an UnsupportedOperationException. As explained, this occurs if a collection
cannot be modified. A ClassCastException is generated when one object is incompatible
with another, such as when an attempt is made to add an incompatible object to a
collection. A NullPointerException is thrown if an attempt is made to store a null object
and null elements are not allowed in the collection. An IllegalArgumentException is thrown
if an invalid argument is used. An IllegalStateException is thrown if an attempt is made to
add an element to a fixed-length collection that is full.

Table 18-1 The Methods Declared by Collection

Method Description
boolean add(E obj) Adds obj to the invoking collection. Returns true if

obj was added to the collection. Returns false if obj is
already a member of the collection and the collection
does not allow duplicates.

boolean addAll(Collection<? extends E> c) Adds all the elements of c to the invoking collection.
Returns true if the collection changed (i.e., the
elements were added). Otherwise, returns false.

void clear() Removes all elements from the invoking collection.

boolean contains(Object obj) Returns true if obj is an element of the invoking
collection. Otherwise, returns false.

boolean containsAll(Collection<?> c) Returns true if the invoking collection contains all
elements of c. Otherwise, returns false.

boolean equals(Object obj) Returns true if the invoking collection and obj are
equal. Otherwise, returns false.

int hashCode() Returns the hash code for the invoking collection.

boolean isEmpty() Returns true if the invoking collection is empty.
Otherwise, returns false.

Iterator<E> iterator() Returns an iterator for the invoking collection.

default Stream<E> parallelStream() Returns a stream that uses the invoking collection
as its source for elements. If possible, the stream
supports parallel operations. (Added by JDK 8.)

boolean remove(Object obj) Removes one instance of obj from the invoking
collection. Returns true if the element was removed.
Otherwise, returns false.

boolean removeAll(Collection<?> c) Removes all elements of c from the invoking collection.
Returns true if the collection changed (i.e., elements
were removed). Otherwise, returns false.

default boolean removeIf(
 Predicate<? super E> predicate)

Removes from the invoking collection those elements
that satisfy the condition specified by predicate. (Added
by JDK 8.)

18-ch18.indd 502 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 503

Pa
rt

 II

Method Description
boolean retainAll(Collection<?> c) Removes all elements from the invoking collection

except those in c. Returns true if the collection changed
(i.e., elements were removed). Otherwise, returns false.

int size() Returns the number of elements held in the invoking
collection.

default Spliterator<E> spliterator() Returns a spliterator to the invoking collections.
(Added by JDK 8.)

default Stream<E> stream() Returns a stream that uses the invoking collection
as its source for elements. The stream is sequential.
(Added by JDK 8.)

Object[] toArray() Returns an array that contains all the elements stored
in the invoking collection. The array elements are
copies of the collection elements.

<T> T[] toArray(T array[]) Returns an array that contains the elements of the
invoking collection. The array elements are copies
of the collection elements. If the size of array equals
the number of elements, these are returned in
array. If the size of array is less than the number
of elements, a new array of the necessary size is
allocated and returned. If the size of array is greater
than the number of elements, the array element
following the last collection element is set to null.
An ArrayStoreException is thrown if any collection
element has a type that is not a subtype of array.

Table 18-1 The Methods Declared by Collection (continued)

Objects are added to a collection by calling add(). Notice that add() takes an
argument of type E, which means that objects added to a collection must be compatible
with the type of data expected by the collection. You can add the entire contents of one
collection to another by calling addAll().

You can remove an object by using remove(). To remove a group of objects, call
removeAll(). You can remove all elements except those of a specified group by calling
retainAll(). Beginning with JDK 8, to remove an element only if it statisfies some condition,
you can use removeIf(). (Predicate is a functional interface added by JDK 8. See Chapter 19.)
To empty a collection, call clear().

You can determine whether a collection contains a specific object by calling contains().
To determine whether one collection contains all the members of another, call containsAll().
You can determine when a collection is empty by calling isEmpty(). The number of
elements currently held in a collection can be determined by calling size().

The toArray() methods return an array that contains the elements stored in the
invoking collection. The first returns an array of Object. The second returns an array
of elements that have the same type as the array specified as a parameter. Normally, the
second form is more convenient because it returns the desired array type. These methods
are more important than it might at first seem. Often, processing the contents of a

18-ch18.indd 503 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

504 PART II The Java Library

collection by using array-like syntax is advantageous. By providing a pathway between
collections and arrays, you can have the best of both worlds.

Two collections can be compared for equality by calling equals(). The precise meaning
of “equality” may differ from collection to collection. For example, you can implement
equals() so that it compares the values of elements stored in the collection. Alternatively,
equals() can compare references to those elements.

Another important method is iterator(), which returns an iterator to a collection. The
new spliterator() method returns a spliterator to the collection. Iterators are frequently
used when working with collections. Finally, the stream() and parallelStream() methods
return a Stream that uses the collection as a source of elements. (See Chapter 29 for a
detailed discussion of the new Stream interface.)

The List Interface
The List interface extends Collection and declares the behavior of a collection that stores
a sequence of elements. Elements can be inserted or accessed by their position in the list,
using a zero-based index. A list may contain duplicate elements. List is a generic interface
that has this declaration:

interface List<E>

Here, E specifies the type of objects that the list will hold.
In addition to the methods defined by Collection, List defines some of its own, which

are summarized in Table 18-2. Note again that several of these methods will throw an
UnsupportedOperationException if the list cannot be modified, and a ClassCastException
is generated when one object is incompatible with another, such as when an attempt is
made to add an incompatible object to a list. Also, several methods will throw an
IndexOutOfBoundsException if an invalid index is used. A NullPointerException is
thrown if an attempt is made to store a null object and null elements are not allowed
in the list. An IllegalArgumentException is thrown if an invalid argument is used.

To the versions of add() and addAll() defined by Collection, List adds the methods
add(int, E) and addAll(int, Collection). These methods insert elements at the specified
index. Also, the semantics of add(E) and addAll(Collection) defined by Collection are
changed by List so that they add elements to the end of the list. You can modify each
element in the collection by using replaceAll(). (UnaryOperator is a functional interface
added by JDK 8. See Chapter 19.)

To obtain the object stored at a specific location, call get() with the index of the object.
To assign a value to an element in the list, call set(), specifying the index of the object to be
changed. To find the index of an object, use indexOf() or lastIndexOf().

You can obtain a sublist of a list by calling subList(), specifying the beginning and ending
indexes of the sublist. As you can imagine, subList() makes list processing quite convenient.
One way to sort a list is with the sort() method defined by List.

The Set Interface
The Set interface defines a set. It extends Collection and specifies the behavior of a
collection that does not allow duplicate elements. Therefore, the add() method returns

18-ch18.indd 504 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 505

Pa
rt

 II

Method Description
void add(int index, E obj) Inserts obj into the invoking list at the index passed

in index. Any preexisting elements at or beyond the
point of insertion are shifted up. Thus, no elements
are overwritten.

boolean addAll(int index,
 Collection<? extends E> c)

Inserts all elements of c into the invoking list at the
index passed in index. Any preexisting elements at or
beyond the point of insertion are shifted up. Thus,
no elements are overwritten. Returns true if the
invoking list changes and returns false otherwise.

E get(int index) Returns the object stored at the specified index
within the invoking collection.

int indexOf(Object obj) Returns the index of the first instance of obj in the
invoking list. If obj is not an element of the list, –1 is
returned.

int lastIndexOf(Object obj) Returns the index of the last instance of obj in the
invoking list. If obj is not an element of the list, –1 is
returned.

ListIterator<E> listIterator() Returns an iterator to the start of the invoking list.

ListIterator<E> listIterator(int index) Returns an iterator to the invoking list that begins at
the specified index.

E remove(int index) Removes the element at position index from the
invoking list and returns the deleted element. The
resulting list is compacted. That is, the indexes of
subsequent elements are decremented by one.

default void
 replaceAll(UnaryOperator<E> opToApply)

Updates each element in the list with the value
obtained from the opToApply function. (Added by
JDK 8.)

E set(int index, E obj) Assigns obj to the location specified by index within
the invoking list. Returns the old value.

default void
 sort(Comparator<? super E> comp)

Sorts the list using the comparator specified by comp.
(Added by JDK 8.)

List<E> subList(int start, int end) Returns a list that includes elements from start to
end–1 in the invoking list. Elements in the returned
list are also referenced by the invoking object.

Table 18-2 The Methods Declared by List

18-ch18.indd 505 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

506 PART II The Java Library

false if an attempt is made to add duplicate elements to a set. It does not specify any
additional methods of its own. Set is a generic interface that has this declaration:

interface Set<E>

Here, E specifies the type of objects that the set will hold.

The SortedSet Interface
The SortedSet interface extends Set and declares the behavior of a set sorted in ascending
order. SortedSet is a generic interface that has this declaration:

interface SortedSet<E>

Here, E specifies the type of objects that the set will hold.
In addition to those methods provided by Set, the SortedSet interface declares the

methods summarized in Table 18-3. Several methods throw a NoSuchElementException
when no items are contained in the invoking set. A ClassCastException is thrown
when an object is incompatible with the elements in a set. A NullPointerException is
thrown if an attempt is made to use a null object and null is not allowed in the set. An
IllegalArgumentException is thrown if an invalid argument is used.

SortedSet defines several methods that make set processing more convenient. To obtain
the first object in the set, call first(). To get the last element, use last(). You can obtain a
subset of a sorted set by calling subSet(), specifying the first and last object in the set. If you
need the subset that starts with the first element in the set, use headSet(). If you want the
subset that ends the set, use tailSet().

Table 18-3 The Methods Declared by SortedSet

Method Description
Comparator<? super E> comparator() Returns the invoking sorted set’s comparator. If the

natural ordering is used for this set, null is returned.

E first() Returns the first element in the invoking sorted set.

SortedSet<E> headSet(E end) Returns a SortedSet containing those elements less
than end that are contained in the invoking sorted
set. Elements in the returned sorted set are also
referenced by the invoking sorted set.

E last() Returns the last element in the invoking sorted set.

SortedSet<E> subSet(E start, E end) Returns a SortedSet that includes those elements
between start and end–1. Elements in the returned
collection are also referenced by the invoking object.

SortedSet<E> tailSet(E start) Returns a SortedSet that contains those elements
greater than or equal to start that are contained in
the sorted set. Elements in the returned set are also
referenced by the invoking object.

18-ch18.indd 506 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 507

Pa
rt

 II

The NavigableSet Interface
The NavigableSet interface extends SortedSet and declares the behavior of a collection
that supports the retrieval of elements based on the closest match to a given value or values.
NavigableSet is a generic interface that has this declaration:

interface NavigableSet<E>

Here, E specifies the type of objects that the set will hold. In addition to the methods
that it inherits from SortedSet, NavigableSet adds those summarized in Table 18-4. A

Table 18-4 The Methods Declared by NavigableSet

Method Description

E ceiling(E obj) Searches the set for the smallest element e such that e >= obj.
If such an element is found, it is returned. Otherwise, null is
returned.

Iterator<E> descendingIterator() Returns an iterator that moves from the greatest to least. In
other words, it returns a reverse iterator.

NavigableSet<E> descendingSet() Returns a NavigableSet that is the reverse of the invoking set.
The resulting set is backed by the invoking set.

E floor(E obj) Searches the set for the largest element e such that e <= obj.
If such an element is found, it is returned. Otherwise, null is
returned.

NavigableSet<E>

 headSet(E upperBound, boolean incl)
Returns a NavigableSet that includes all elements from the
invoking set that are less than upperBound. If incl is true, then
an element equal to upperBound is included. The resulting set is
backed by the invoking set.

E higher(E obj) Searches the set for the largest element e such that e > obj. If
such an element is found, it is returned. Otherwise, null is
returned.

E lower(E obj) Searches the set for the largest element e such that e < obj. If
such an element is found, it is returned. Otherwise, null is
returned.

E pollFirst() Returns the first element, removing the element in the process.
Because the set is sorted, this is the element with the least value.
null is returned if the set is empty.

E pollLast() Returns the last element, removing the element in the process.
Because the set is sorted, this is the element with the greatest
value. null is returned if the set is empty.

NavigableSet<E>

 subSet(E lowerBound,

 boolean lowIncl,
 E upperBound,

 boolean highIncl)

Returns a NavigableSet that includes all elements from
the invoking set that are greater than lowerBound and less
than upperBound. If lowIncl is true, then an element equal to
lowerBound is included. If highIncl is true, then an element equal
to upperBound is included. The resulting set is backed by the
invoking set.

NavigableSet<E>

 tailSet(E lowerBound, boolean incl)
Returns a NavigableSet that includes all elements from the
invoking set that are greater than lowerBound. If incl is true, then
an element equal to lowerBound is included. The resulting set is
backed by the invoking set.

18-ch18.indd 507 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

508 PART II The Java Library

ClassCastException is thrown when an object is incompatible with the elements in
the set. A NullPointerException is thrown if an attempt is made to use a null object
and null is not allowed in the set. An IllegalArgumentException is thrown if an invalid
argument is used.

The Queue Interface
The Queue interface extends Collection and declares the behavior of a queue, which is
often a first-in, first-out list. However, there are types of queues in which the ordering is
based upon other criteria. Queue is a generic interface that has this declaration:

interface Queue<E>

Here, E specifies the type of objects that the queue will hold. The methods declared by
Queue are shown in Table 18-5.

Several methods throw a ClassCastException when an object is incompatible with the
elements in the queue. A NullPointerException is thrown if an attempt is made to store a
null object and null elements are not allowed in the queue. An IllegalArgumentException is
thrown if an invalid argument is used. An IllegalStateException is thrown if an attempt is
made to add an element to a fixed-length queue that is full. A NoSuchElementException is
thrown if an attempt is made to remove an element from an empty queue.

Despite its simplicity, Queue offers several points of interest. First, elements can only
be removed from the head of the queue. Second, there are two methods that obtain and
remove elements: poll() and remove(). The difference between them is that poll() returns
null if the queue is empty, but remove() throws an exception. Third, there are two methods,
element() and peek(), that obtain but don’t remove the element at the head of the queue.
They differ only in that element() throws an exception if the queue is empty, but peek()
returns null. Finally, notice that offer() only attempts to add an element to a queue.
Because some queues have a fixed length and might be full, offer() can fail.

Table 18-5 The Methods Declared by Queue

Method Description
E element() Returns the element at the head of the queue. The element is not

removed. It throws NoSuchElementException if the queue is empty.

boolean offer(E obj) Attempts to add obj to the queue. Returns true if obj was added and false
otherwise.

E peek() Returns the element at the head of the queue. It returns null if the
queue is empty. The element is not removed.

E poll() Returns the element at the head of the queue, removing the element in
the process. It returns null if the queue is empty.

E remove() Removes the element at the head of the queue, returning the element in
the process. It throws NoSuchElementException if the queue is empty.

18-ch18.indd 508 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 509

Pa
rt

 II

The Deque Interface
The Deque interface extends Queue and declares the behavior of a double-ended queue.
Double-ended queues can function as standard, first-in, first-out queues or as last-in, first-
out stacks. Deque is a generic interface that has this declaration:

interface Deque<E>

Here, E specifies the type of objects that the deque will hold. In addition to the methods
that it inherits from Queue, Deque adds those methods summarized in Table 18-6. Several

Table 18-6 The Methods Declared by Deque

Method Description
void addFirst(E obj) Adds obj to the head of the deque. Throws an

IllegalStateException if a capacity-restricted deque
is out of space.

void addLast(E obj) Adds obj to the tail of the deque. Throws an
IllegalStateException if a capacity-restricted deque
is out of space.

Iterator<E> descendingIterator() Returns an iterator that moves from the tail to the head
of the deque. In other words, it returns a reverse iterator.

E getFirst() Returns the first element in the deque. The
object is not removed from the deque. It throws
NoSuchElementException if the deque is empty.

E getLast() Returns the last element in the deque. The
object is not removed from the deque. It throws
NoSuchElementException if the deque is empty.

boolean offerFirst(E obj) Attempts to add obj to the head of the deque. Returns
true if obj was added and false otherwise. Therefore, this
method returns false when an attempt is made to add obj
to a full, capacity-restricted deque.

boolean offerLast(E obj) Attempts to add obj to the tail of the deque. Returns true
if obj was added and false otherwise.

E peekFirst() Returns the element at the head of the deque. It returns
null if the deque is empty. The object is not removed.

E peekLast() Returns the element at the tail of the deque. It returns
null if the deque is empty. The object is not removed.

E pollFirst() Returns the element at the head of the deque, removing the
element in the process. It returns null if the deque is empty.

E pollLast() Returns the element at the tail of the deque, removing the
element in the process. It returns null if the deque is empty.

E pop() Returns the element at the head of the deque, removing
it in the process. It throws NoSuchElementException if
the deque is empty.

18-ch18.indd 509 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

510 PART II The Java Library

methods throw a ClassCastException when an object is incompatible with the elements in
the deque. A NullPointerException is thrown if an attempt is made to store a null object and
null elements are not allowed in the deque. An IllegalArgumentException is thrown if an
invalid argument is used. An IllegalStateException is thrown if an attempt is made to add
an element to a fixed-length deque that is full. A NoSuchElementException is thrown
if an attempt is made to remove an element from an empty deque.

Notice that Deque includes the methods push() and pop(). These methods enable a
Deque to function as a stack. Also, notice the descendingIterator() method. It returns an
iterator that returns elements in reverse order. In other words, it returns an iterator that
moves from the end of the collection to the start. A Deque implementation can be capacity-
restricted, which means that only a limited number of elements can be added to the deque.
When this is the case, an attempt to add an element to the deque can fail. Deque allows you
to handle such a failure in two ways. First, methods such as addFirst() and addLast() throw
an IllegalStateException if a capacity-restricted deque is full. Second, methods such as
offerFirst() and offerLast() return false if the element cannot be added.

The Collection Classes
Now that you are familiar with the collection interfaces, you are ready to examine the
standard classes that implement them. Some of the classes provide full implementations
that can be used as-is. Others are abstract, providing skeletal implementations that are used
as starting points for creating concrete collections. As a general rule, the collection classes
are not synchronized, but as you will see later in this chapter, it is possible to obtain
synchronized versions.

Table 18-6 The Methods Declared by Deque (continued)

Method Description
void push(E obj) Adds obj to the head of the deque. Throws an

IllegalStateException if a capacity-restricted deque
is out of space.

E removeFirst() Returns the element at the head of the deque, removing the
element in the process. It throws NoSuchElementException
if the deque is empty.

boolean
 removeFirstOccurrence(Object obj)

Removes the first occurrence of obj from the deque.
Returns true if successful and false if the deque did not
contain obj.

E removeLast() Returns the element at the tail of the deque, removing the
element in the process. It throws NoSuchElementException
if the deque is empty.

boolean
 removeLastOccurrence(Object obj)

Removes the last occurrence of obj from the deque.
Returns true if successful and false if the deque did not
contain obj.

18-ch18.indd 510 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 511

Pa
rt

 II

The core collection classes are summarized in the following table:

Class Description
AbstractCollection Implements most of the Collection interface.

AbstractList Extends AbstractCollection and implements most of the List interface.

AbstractQueue Extends AbstractCollection and implements parts of the Queue interface.

AbstractSequentialList Extends AbstractList for use by a collection that uses sequential rather than
random access of its elements.

LinkedList Implements a linked list by extending AbstractSequentialList.

ArrayList Implements a dynamic array by extending AbstractList.

ArrayDeque Implements a dynamic double-ended queue by extending AbstractCollection
and implementing the Deque interface.

AbstractSet Extends AbstractCollection and implements most of the Set interface.

EnumSet Extends AbstractSet for use with enum elements.

HashSet Extends AbstractSet for use with a hash table.

LinkedHashSet Extends HashSet to allow insertion-order iterations.

PriorityQueue Extends AbstractQueue to support a priority-based queue.

TreeSet Implements a set stored in a tree. Extends AbstractSet.

The following sections examine the concrete collection classes and illustrate their use.

NOTE In addition to the collection classes, several legacy classes, such as Vector, Stack, and
Hashtable, have been reengineered to support collections. These are examined later in this chapter.

The ArrayList Class
The ArrayList class extends AbstractList and implements the List interface. ArrayList is a
generic class that has this declaration:

class ArrayList<E>

Here, E specifies the type of objects that the list will hold.
ArrayList supports dynamic arrays that can grow as needed. In Java, standard arrays are

of a fixed length. After arrays are created, they cannot grow or shrink, which means that
you must know in advance how many elements an array will hold. But, sometimes, you may
not know until run time precisely how large an array you need. To handle this situation, the
Collections Framework defines ArrayList. In essence, an ArrayList is a variable-length array
of object references. That is, an ArrayList can dynamically increase or decrease in size.
Array lists are created with an initial size. When this size is exceeded, the collection is
automatically enlarged. When objects are removed, the array can be shrunk.

NOTE Dynamic arrays are also supported by the legacy class Vector, which is described later in this
chapter.

18-ch18.indd 511 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

512 PART II The Java Library

ArrayList has the constructors shown here:

ArrayList()
ArrayList(Collection<? extends E> c)
ArrayList(int capacity)

The first constructor builds an empty array list. The second constructor builds an array list
that is initialized with the elements of the collection c. The third constructor builds an array
list that has the specified initial capacity. The capacity is the size of the underlying array that
is used to store the elements. The capacity grows automatically as elements are added to an
array list.

The following program shows a simple use of ArrayList. An array list is created for
objects of type String, and then several strings are added to it. (Recall that a quoted string
is translated into a String object.) The list is then displayed. Some of the elements are
removed and the list is displayed again.

// Demonstrate ArrayList.
import java.util.*;

class ArrayListDemo {
 public static void main(String args[]) {
 // Create an array list.
 ArrayList<String> al = new ArrayList<String>();

 System.out.println("Initial size of al: " +
 al.size());

 // Add elements to the array list.
 al.add("C");
 al.add("A");
 al.add("E");
 al.add("B");
 al.add("D");
 al.add("F");
 al.add(1, "A2");

 System.out.println("Size of al after additions: " +
 al.size());

 // Display the array list.
 System.out.println("Contents of al: " + al);

 // Remove elements from the array list.
 al.remove("F");
 al.remove(2);

 System.out.println("Size of al after deletions: " +
 al.size());

 System.out.println("Contents of al: " + al);
 }
}

18-ch18.indd 512 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 513

Pa
rt

 II

The output from this program is shown here:

 Initial size of al: 0
 Size of al after additions: 7
 Contents of al: [C, A2, A, E, B, D, F]
 Size of al after deletions: 5
 Contents of al: [C, A2, E, B, D]

Notice that a1 starts out empty and grows as elements are added to it. When elements are
removed, its size is reduced.

In the preceding example, the contents of a collection are displayed using the default
conversion provided by toString(), which was inherited from AbstractCollection. Although
it is sufficient for short, sample programs, you seldom use this method to display the
contents of a real-world collection. Usually, you provide your own output routines. But,
for the next few examples, the default output created by toString() is sufficient.

Although the capacity of an ArrayList object increases automatically as objects are
stored in it, you can increase the capacity of an ArrayList object manually by calling
ensureCapacity(). You might want to do this if you know in advance that you will be storing
many more items in the collection than it can currently hold. By increasing its capacity
once, at the start, you can prevent several reallocations later. Because reallocations are
costly in terms of time, preventing unnecessary ones improves performance. The signature
for ensureCapacity() is shown here:

void ensureCapacity(int cap)

Here, cap specifies the new minimum capacity of the collection.
Conversely, if you want to reduce the size of the array that underlies an ArrayList

object so that it is precisely as large as the number of items that it is currently holding, call
trimToSize(), shown here:

void trimToSize()

Obtaining an Array from an ArrayList
When working with ArrayList, you will sometimes want to obtain an actual array that contains
the contents of the list. You can do this by calling toArray(), which is defined by Collection.
Several reasons exist why you might want to convert a collection into an array, such as:

•	 To obtain faster processing times for certain operations

•	 To pass an array to a method that is not overloaded to accept a collection

•	 To integrate collection-based code with legacy code that does not understand
collections

Whatever the reason, converting an ArrayList to an array is a trivial matter.
As explained earlier, there are two versions of toArray(), which are shown again here

for your convenience:

object[] toArray()
<T> T[] toArray(T array[])

18-ch18.indd 513 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

514 PART II The Java Library

The first returns an array of Object. The second returns an array of elements that have
the same type as T. Normally, the second form is more convenient because it returns the
proper type of array. The following program demonstrates its use:

// Convert an ArrayList into an array.
import java.util.*;

class ArrayListToArray {
 public static void main(String args[]) {
 // Create an array list.
 ArrayList<Integer> al = new ArrayList<Integer>();

 // Add elements to the array list.
 al.add(1);
 al.add(2);
 al.add(3);
 al.add(4);

 System.out.println("Contents of al: " + al);

 // Get the array.
 Integer ia[] = new Integer[al.size()];
 ia = al.toArray(ia);

 int sum = 0;

 // Sum the array.
 for(int i : ia) sum += i;

 System.out.println("Sum is: " + sum);
 }
}

The output from the program is shown here:

 Contents of al: [1, 2, 3, 4]
 Sum is: 10

The program begins by creating a collection of integers. Next, toArray() is called and it
obtains an array of Integers. Then, the contents of that array are summed by use of a for-each
style for loop.

There is something else of interest in this program. As you know, collections can store
only references, not values of primitive types. However, autoboxing makes it possible
to pass values of type int to add() without having to manually wrap them within an Integer,
as the program shows. Autoboxing causes them to be automatically wrapped. In this way,
autoboxing significantly improves the ease with which collections can be used to store
primitive values.

18-ch18.indd 514 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 515

Pa
rt

 II

The LinkedList Class
The LinkedList class extends AbstractSequentialList and implements the List, Deque, and
Queue interfaces. It provides a linked-list data structure. LinkedList is a generic class that
has this declaration:

class LinkedList<E>

Here, E specifies the type of objects that the list will hold. LinkedList has the two
constructors shown here:

LinkedList()
LinkedList(Collection<? extends E> c)

The first constructor builds an empty linked list. The second constructor builds a linked list
that is initialized with the elements of the collection c.

Because LinkedList implements the Deque interface, you have access to the methods
defined by Deque. For example, to add elements to the start of a list, you can use addFirst()
or offerFirst(). To add elements to the end of the list, use addLast() or offerLast(). To
obtain the first element, you can use getFirst() or peekFirst(). To obtain the last element,
use getLast() or peekLast(). To remove the first element, use removeFirst() or pollFirst().
To remove the last element, use removeLast() or pollLast().

The following program illustrates LinkedList:

// Demonstrate LinkedList.
import java.util.*;

class LinkedListDemo {
 public static void main(String args[]) {
 // Create a linked list.
 LinkedList<String> ll = new LinkedList<String>();

 // Add elements to the linked list.
 ll.add("F");
 ll.add("B");
 ll.add("D");
 ll.add("E");
 ll.add("C");
 ll.addLast("Z");
 ll.addFirst("A");

 ll.add(1, "A2");

 System.out.println("Original contents of ll: " + ll);

 // Remove elements from the linked list.
 ll.remove("F");
 ll.remove(2);

 System.out.println("Contents of ll after deletion: "
 + ll);

18-ch18.indd 515 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

516 PART II The Java Library

 // Remove first and last elements.
 ll.removeFirst();
 ll.removeLast();

 System.out.println("ll after deleting first and last: "
 + ll);

 // Get and set a value.

 String val = 11.get(2);
 ll.set(2, val + " Changed");

 System.out.println("ll after change: " + ll);
 }
}

The output from this program is shown here:

 Original contents of ll: [A, A2, F, B, D, E, C, Z]
 Contents of ll after deletion: [A, A2, D, E, C, Z]
 ll after deleting first and last: [A2, D, E, C]
 ll after change: [A2, D, E Changed, C]

Because LinkedList implements the List interface, calls to add(E) append items to the
end of the list, as do calls to addLast(). To insert items at a specific location, use the
add(int, E) form of add(), as illustrated by the call to add(1, "A2") in the example.

Notice how the third element in ll is changed by employing calls to get() and set(). To
obtain the current value of an element, pass get() the index at which the element is stored.
To assign a new value to that index, pass set() the index and its new value.

The HashSet Class
HashSet extends AbstractSet and implements the Set interface. It creates a collection that
uses a hash table for storage. HashSet is a generic class that has this declaration:

class HashSet<E>

Here, E specifies the type of objects that the set will hold.
As most readers likely know, a hash table stores information by using a mechanism

called hashing. In hashing, the informational content of a key is used to determine a unique
value, called its hash code. The hash code is then used as the index at which the data
associated with the key is stored. The transformation of the key into its hash code is
performed automatically—you never see the hash code itself. Also, your code can’t directly
index the hash table. The advantage of hashing is that it allows the execution time of add(),
contains(), remove(), and size() to remain constant even for large sets.

The following constructors are defined:

HashSet()
HashSet(Collection<? extends E> c)
HashSet(int capacity)
HashSet(int capacity, float fillRatio)

18-ch18.indd 516 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 517

Pa
rt

 II

The first form constructs a default hash set. The second form initializes the hash set by
using the elements of c. The third form initializes the capacity of the hash set to capacity.
(The default capacity is 16.) The fourth form initializes both the capacity and the fill ratio
(also called load capacity) of the hash set from its arguments. The fill ratio must be between
0.0 and 1.0, and it determines how full the hash set can be before it is resized upward.
Specifically, when the number of elements is greater than the capacity of the hash set
multiplied by its fill ratio, the hash set is expanded. For constructors that do not take a
fill ratio, 0.75 is used.

HashSet does not define any additional methods beyond those provided by its
superclasses and interfaces.

It is important to note that HashSet does not guarantee the order of its elements,
because the process of hashing doesn’t usually lend itself to the creation of sorted sets.
If you need sorted storage, then another collection, such as TreeSet, is a better choice.

Here is an example that demonstrates HashSet:

// Demonstrate HashSet.
import java.util.*;

class HashSetDemo {
 public static void main(String args[]) {
 // Create a hash set.
 HashSet<String> hs = new HashSet<String>();

 // Add elements to the hash set.
 hs.add("Beta");
 hs.add("Alpha");
 hs.add("Eta");
 hs.add("Gamma");
 hs.add("Epsilon");
 hs.add("Omega");

 System.out.println(hs);
 }
}

The following is the output from this program:

 [Gamma, Eta, Alpha, Epsilon, Omega, Beta]

As explained, the elements are not stored in sorted order, and the precise output may vary.

The LinkedHashSet Class
The LinkedHashSet class extends HashSet and adds no members of its own. It is a generic
class that has this declaration:

class LinkedHashSet<E>

Here, E specifies the type of objects that the set will hold. Its constructors parallel those in
HashSet.

18-ch18.indd 517 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

518 PART II The Java Library

LinkedHashSet maintains a linked list of the entries in the set, in the order in which
they were inserted. This allows insertion-order iteration over the set. That is, when cycling
through a LinkedHashSet using an iterator, the elements will be returned in the order in
which they were inserted. This is also the order in which they are contained in the string
returned by toString() when called on a LinkedHashSet object. To see the effect of
LinkedHashSet, try substituting LinkedHashSet for HashSet in the preceding program.
The output will be

 [Beta, Alpha, Eta, Gamma, Epsilon, Omega]

which is the order in which the elements were inserted.

The TreeSet Class
TreeSet extends AbstractSet and implements the NavigableSet interface. It creates a
collection that uses a tree for storage. Objects are stored in sorted, ascending order. Access
and retrieval times are quite fast, which makes TreeSet an excellent choice when storing
large amounts of sorted information that must be found quickly.

TreeSet is a generic class that has this declaration:

class TreeSet<E>

Here, E specifies the type of objects that the set will hold.
TreeSet has the following constructors:

TreeSet()
TreeSet(Collection<? extends E> c)
TreeSet(Comparator<? super E> comp)
TreeSet(SortedSet<E> ss)

The first form constructs an empty tree set that will be sorted in ascending order
according to the natural order of its elements. The second form builds a tree set that
contains the elements of c. The third form constructs an empty tree set that will be sorted
according to the comparator specified by comp. (Comparators are described later in this
chapter.) The fourth form builds a tree set that contains the elements of ss.

Here is an example that demonstrates a TreeSet:

// Demonstrate TreeSet.
import java.util.*;

class TreeSetDemo {
 public static void main(String args[]) {
 // Create a tree set.
 TreeSet<String> ts = new TreeSet<String>();

 // Add elements to the tree set.
 ts.add("C");
 ts.add("A");
 ts.add("B");
 ts.add("E");
 ts.add("F");
 ts.add("D");

18-ch18.indd 518 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 519

Pa
rt

 II

 System.out.println(ts);
 }
}

The output from this program is shown here:

 [A, B, C, D, E, F]

As explained, because TreeSet stores its elements in a tree, they are automatically arranged
in sorted order, as the output confirms.

Because TreeSet implements the NavigableSet interface, you can use the methods defined
by NavigableSet to retrieve elements of a TreeSet. For example, assuming the preceding
program, the following statement uses subSet() to obtain a subset of ts that contains the
elements between C (inclusive) and F (exclusive). It then displays the resulting set.

System.out.println(ts.subSet("C", "F"));

The output from this statement is shown here:

[C, D, E]

You might want to experiment with the other methods defined by NavigableSet.

The PriorityQueue Class
PriorityQueue extends AbstractQueue and implements the Queue interface. It creates a
queue that is prioritized based on the queue’s comparator. PriorityQueue is a generic class
that has this declaration:

class PriorityQueue<E>

Here, E specifies the type of objects stored in the queue. PriorityQueues are dynamic,
growing as necessary.

PriorityQueue defines the six constructors shown here:

PriorityQueue()
PriorityQueue(int capacity)
PriorityQueue(Comparator<? super E> comp) (Added by JDK 8.)
PriorityQueue(int capacity, Comparator<? super E> comp)
PriorityQueue(Collection<? extends E> c)
PriorityQueue(PriorityQueue<? extends E> c)
PriorityQueue(SortedSet<? extends E> c)

The first constructor builds an empty queue. Its starting capacity is 11. The second constructor
builds a queue that has the specified initial capacity. The third constructor specifies a
comparator, and the fourth builds a queue with the specified capacity and comparator. The
last three constructors create queues that are initialized with the elements of the collection
passed in c. In all cases, the capacity grows automatically as elements are added.

18-ch18.indd 519 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

520 PART II The Java Library

If no comparator is specified when a PriorityQueue is constructed, then the default
comparator for the type of data stored in the queue is used. The default comparator will
order the queue in ascending order. Thus, the head of the queue will be the smallest value.
However, by providing a custom comparator, you can specify a different ordering scheme.
For example, when storing items that include a time stamp, you could prioritize the queue
such that the oldest items are first in the queue.

You can obtain a reference to the comparator used by a PriorityQueue by calling its
comparator() method, shown here:

Comparator<? super E> comparator()

It returns the comparator. If natural ordering is used for the invoking queue, null is
returned.

One word of caution: Although you can iterate through a PriorityQueue using an
iterator, the order of that iteration is undefined. To properly use a PriorityQueue, you
must call methods such as offer() and poll(), which are defined by the Queue interface.

The ArrayDeque Class
The ArrayDeque class extends AbstractCollection and implements the Deque interface.
It adds no methods of its own. ArrayDeque creates a dynamic array and has no capacity
restrictions. (The Deque interface supports implementations that restrict capacity, but
does not require such restrictions.) ArrayDeque is a generic class that has this declaration:

class ArrayDeque<E>

Here, E specifies the type of objects stored in the collection.
ArrayDeque defines the following constructors:

ArrayDeque()
ArrayDeque(int size)
ArrayDeque(Collection<? extends E> c)

The first constructor builds an empty deque. Its starting capacity is 16. The second
constructor builds a deque that has the specified initial capacity. The third constructor
creates a deque that is initialized with the elements of the collection passed in c. In all cases,
the capacity grows as needed to handle the elements added to the deque.

The following program demonstrates ArrayDeque by using it to create a stack:

// Demonstrate ArrayDeque.
import java.util.*;

class ArrayDequeDemo {
 public static void main(String args[]) {
 // Create an array deque.
 ArrayDeque<String> adq = new ArrayDeque<String>();

 // Use an ArrayDeque like a stack.
 adq.push("A");
 adq.push("B");
 adq.push("D");

18-ch18.indd 520 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 521

Pa
rt

 II

 adq.push("E");
 adq.push("F");

 System.out.print("Popping the stack: ");

 while(adq.peek() != null)
 System.out.print(adq.pop() + " ");

 System.out.println();
 }
}

The output is shown here:

 Popping the stack: F E D B A

The EnumSet Class
EnumSet extends AbstractSet and implements Set. It is specifically for use with elements of
an enum type. It is a generic class that has this declaration:

class EnumSet<E extends Enum<E>>

Here, E specifies the elements. Notice that E must extend Enum<E>, which enforces the
requirement that the elements must be of the specified enum type.

EnumSet defines no constructors. Instead, it uses the factory methods shown in Table 18-7
to create objects. All methods can throw NullPointerException. The copyOf() and range()
methods can also throw IllegalArgumentException. Notice that the of() method is overloaded
a number of times. This is in the interest of efficiency. Passing a known number of arguments
can be faster than using a vararg parameter when the number of arguments is small.

Accessing a Collection via an Iterator
Often, you will want to cycle through the elements in a collection. For example, you might
want to display each element. One way to do this is to employ an iterator, which is an object
that implements either the Iterator or the ListIterator interface. Iterator enables you to
cycle through a collection, obtaining or removing elements. ListIterator extends Iterator
to allow bidirectional traversal of a list, and the modification of elements. Iterator and
ListIterator are generic interfaces which are declared as shown here:

interface Iterator<E>
interface ListIterator<E>

Here, E specifies the type of objects being iterated. The Iterator interface declares
the methods shown in Table 18-8. The methods declared by ListIterator (along with
those inherited from Iterator) are shown in Table 18-9. In both cases, operations that
modify the underlying collection are optional. For example, remove() will throw
UnsupportedOperationException when used with a read-only collection. Various
other exceptions are possible.

18-ch18.indd 521 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

522 PART II The Java Library

Method Description
static <E extends Enum<E>>
 EnumSet<E> allOf(Class<E> t)

Creates an EnumSet that contains the elements in
the enumeration specified by t.

static <E extends Enum<E>> EnumSet<E>
 complementOf(EnumSet<E> e)

Creates an EnumSet that is comprised of those
elements not stored in e.

static <E extends Enum<E>>
 EnumSet<E> copyOf(EnumSet<E> c)

Creates an EnumSet from the elements stored in c.

static <E extends Enum<E>>
 EnumSet<E> copyOf(Collection<E> c)

Creates an EnumSet from the elements stored in c.

static <E extends Enum<E>>
 EnumSet<E> noneOf(Class<E> t)

Creates an EnumSet that contains the elements
that are not in the enumeration specified by t,
which is an empty set by definition.

static <E extends Enum<E>>
 EnumSet<E> of(E v, E … varargs)

Creates an EnumSet that contains v and zero or
more additional enumeration values.

static <E extends Enum<E>>
 EnumSet<E> of(E v)

Creates an EnumSet that contains v.

static <E extends Enum<E>>
 EnumSet<E> of(E v1, E v2)

Creates an EnumSet that contains v1 and v2.

static <E extends Enum<E>>
 EnumSet<E> of(E v1, E v2, E v3)

Creates an EnumSet that contains v1 through v3.

static <E extends Enum<E>>
 EnumSet<E> of(E v1, E v2, E v3, E v4)

Creates an EnumSet that contains v1 through v4.

static <E extends Enum<E>>
 EnumSet<E> of(E v1, E v2, E v3, E v4,
 E v5)

Creates an EnumSet that contains v1 through v5.

static <E extends Enum<E>>
 EnumSet<E> range(E start, E end)

Creates an EnumSet that contains the elements in
the range specified by start and end.

Table 18-7 The Methods Declared by EnumSet

Method Description
default void
 forEachRemaining(
 Consumer<? super E> action)

The action specified by action is executed on each
unprocessed element in the collection. (Added by JDK 8.)

boolean hasNext() Returns true if there are more elements. Otherwise, returns
false.

E next() Returns the next element. Throws NoSuchElementException
if there is not a next element.

default void remove() Removes the current element. Throws IllegalStateException
if an attempt is made to call remove() that is not preceded
by a call to next(). The default version throws an
UnsupportedOperationException.

Table 18-8 The Methods Declared by Iterator

18-ch18.indd 522 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 523

Pa
rt

 II

NOTE Beginning with JDK 8, you can also use a Spliterator to cycle through a collection. Spliterator works
differently than does Iterator, and it is described later in this chapter.

Using an Iterator
Before you can access a collection through an iterator, you must obtain one. Each of the
collection classes provides an iterator() method that returns an iterator to the start of the
collection. By using this iterator object, you can access each element in the collection, one
element at a time. In general, to use an iterator to cycle through the contents of a collection,
follow these steps:

 1. Obtain an iterator to the start of the collection by calling the collection’s iterator()
method.

 2. Set up a loop that makes a call to hasNext(). Have the loop iterate as long as
hasNext() returns true.

 3. Within the loop, obtain each element by calling next().

Method Description
void add(E obj) Inserts obj into the list in front of the element that will be

returned by the next call to next().

default void
 forEachRemaining(
 Consumer<? super E> action)

The action specified by action is executed on each
unprocessed element in the collection. (Added by JDK 8.)

boolean hasNext() Returns true if there is a next element. Otherwise, returns
false.

boolean hasPrevious() Returns true if there is a previous element. Otherwise,
returns false.

E next() Returns the next element. A NoSuchElementException is
thrown if there is not a next element.

int nextIndex() Returns the index of the next element. If there is not a
next element, returns the size of the list.

E previous() Returns the previous element. A NoSuchElementException
is thrown if there is not a previous element.

int previousIndex() Returns the index of the previous element. If there is not a
previous element, returns –1.

void remove() Removes the current element from the list. An
IllegalStateException is thrown if remove() is called before
next() or previous() is invoked.

void set(E obj) Assigns obj to the current element. This is the element last
returned by a call to either next() or previous().

Table 18-9 The Methods Provided by ListIterator

18-ch18.indd 523 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

524 PART II The Java Library

For collections that implement List, you can also obtain an iterator by calling
listIterator(). As explained, a list iterator gives you the ability to access the collection in
either the forward or backward direction and lets you modify an element. Otherwise,
ListIterator is used just like Iterator.

The following example implements these steps, demonstrating both the Iterator and
ListIterator interfaces. It uses an ArrayList object, but the general principles apply to any
type of collection. Of course, ListIterator is available only to those collections that
implement the List interface.

// Demonstrate iterators.
import java.util.*;

class IteratorDemo {
 public static void main(String args[]) {
 // Create an array list.
 ArrayList<String> al = new ArrayList<String>();

 // Add elements to the array list.
 al.add("C");
 al.add("A");
 al.add("E");
 al.add("B");
 al.add("D");
 al.add("F");

 // Use iterator to display contents of al.
 System.out.print("Original contents of al: ");
 Iterator<String> itr = al.iterator();
 while(itr.hasNext()) {
 String element = itr.next();
 System.out.print(element + " ");
 }
 System.out.println();

 // Modify objects being iterated.
 ListIterator<String> litr = al.listIterator();
 while(litr.hasNext()) {
 String element = litr.next();
 litr.set(element + "+");
 }

 System.out.print("Modified contents of al: ");
 itr = al.iterator();
 while(itr.hasNext()) {
 String element = itr.next();
 System.out.print(element + " ");
 }
 System.out.println();

 // Now, display the list backwards.
 System.out.print("Modified list backwards: ");
 while(litr.hasPrevious()) {

18-ch18.indd 524 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 525

Pa
rt

 II

 String element = litr.previous();
 System.out.print(element + " ");
 }
 System.out.println();
 }
}

The output is shown here:

 Original contents of al: C A E B D F
 Modified contents of al: C+ A+ E+ B+ D+ F+
 Modified list backwards: F+ D+ B+ E+ A+ C+

Pay special attention to how the list is displayed in reverse. After the list is modified, litr
points to the end of the list. (Remember, litr.hasNext() returns false when the end of the
list has been reached.) To traverse the list in reverse, the program continues to use litr, but
this time it checks to see whether it has a previous element. As long as it does, that element
is obtained and displayed.

The For-Each Alternative to Iterators
If you won’t be modifying the contents of a collection or obtaining elements in reverse
order, then the for-each version of the for loop is often a more convenient alternative to
cycling through a collection than is using an iterator. Recall that the for can cycle through
any collection of objects that implement the Iterable interface. Because all of the collection
classes implement this interface, they can all be operated upon by the for.

The following example uses a for loop to sum the contents of a collection:

// Use the for-each for loop to cycle through a collection.
import java.util.*;

class ForEachDemo {
 public static void main(String args[]) {
 // Create an array list for integers.
 ArrayList<Integer> vals = new ArrayList<Integer>();

 // Add values to the array list.
 vals.add(1);
 vals.add(2);
 vals.add(3);
 vals.add(4);
 vals.add(5);

 // Use for loop to display the values.
 System.out.print("Contents of vals: ");
 for(int v : vals)
 System.out.print(v + " ");

 System.out.println();

 // Now, sum the values by using a for loop.

18-ch18.indd 525 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

526 PART II The Java Library

 int sum = 0;
 for(int v : vals)
 sum += v;

 System.out.println("Sum of values: " + sum);
 }
}

The output from the program is shown here:

 Contents of vals: 1 2 3 4 5
 Sum of values: 15

As you can see, the for loop is substantially shorter and simpler to use than the iterator-
based approach. However, it can only be used to cycle through a collection in the forward
direction, and you can’t modify the contents of the collection.

Spliterators
JDK 8 adds a new type of iterator called a spliterator that is defined by the Spliterator interface.
A spliterator cycles through a sequence of elements, and in this regard, it is similar to the
iterators just described. However, the techniques required to use it differ. Furthermore, it
offers substantially more functionality than does either Iterator or ListIterator. Perhaps the
most important aspect of Spliterator is its ability to provide support for parallel iteration of
portions of the sequence. Thus, Spliterator supports parallel programming. (See Chapter 28
for information on concurrency and parallel programming.) However, you can use Spliterator
even if you won’t be using parallel execution. One reason you might want to do so is because it
offers a streamlined approach that combines the hasNext and next operations into one method.

Spliterator is a generic interface that is declared like this:

interface Spliterator<T>

Here, T is the type of elements being iterated. Spliterator declares the methods shown in
Table 18-10.

Using Spliterator for basic iteration tasks is quite easy: simply call tryAdvance() until
it returns false. If you will be applying the same action to each element in the sequence,
forEachRemaining() offers a streamlined alternative. In both cases, the action that will
occur with each iteration is defined by what the Consumer object does with each element.
Consumer is a functional interface that applies an action to an object. It is a generic
functional interface declared in java.util.function. (See Chapter 19 for information on
java.util.function.) Consumer specifies only one abstract method, accept(), which is
shown here:

void accept(T objRef)

In the case of tryAdvance(), each iteration passes the next element in the sequence to
objRef. Often, the easiest way to implement Consumer is by use of a lambda expression.

18-ch18.indd 526 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 527

Pa
rt

 II

Method Description
int characteristics() Returns the characteristics of the invoking spliterator,

encoded into an integer.

long estimateSize() Estimates the number of elements left to iterate and
returns the result. Returns Long.MAX_VALUE if the
count cannot be obtained for any reason.

default void forEachRemaining(
 Consumer<? super T> action)

Applies action to each unprocessed element in the data
source.

default Comparator<? super T>
 getComparator()

Returns the comparator used by the invoking spliterator
or null if natural ordering is used. If the sequence is
unordered, IllegalStateException is thrown.

default long getExactSizeIfKnown() If the invoking spliterator is sized, returns the number of
elements left to iterate. Returns –1 otherwise.

default boolean
 hasCharacteristics(int val)

Returns true if the invoking spliterator has the
characteristics passed in val. Returns false otherwise.

boolean tryAdvance(
 Consumer<? super T> action)

Executes action on the next element in the iteration.
Returns true if there is a next element. Returns false if no
elements remain.

Spliterator<T> trySplit() If possible, splits the invoking spliterator, returning a
reference to a new spliterator for the partition. Otherwise,
returns null. Thus, if successful, the original spliterator
iterates over one portion of the sequence and the
returned spliterator iterates over the other portion.

Table 18-10 The Methods Declared by Spliterator

The following program provides a simple example of Spliterator. Notice that the
program demonstrates both tryAdvance() and forEachRemaining(). Also notice how these
methods combine the actions of Iterator’s next() and hasNext() methods into a single call.

// A simple Spliterator demonstration.
import java.util.*;

class SpliteratorDemo {

 public static void main(String args[]) {
 // Create an array list for doubles.
 ArrayList<Double> vals = new ArrayList<>();

 // Add values to the array list.
 vals.add(1.0);
 vals.add(2.0);
 vals.add(3.0);
 vals.add(4.0);
 vals.add(5.0);

18-ch18.indd 527 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

528 PART II The Java Library

 // Use tryAdvance() to display contents of vals.
 System.out.print("Contents of vals:\n");
 Spliterator<Double> spltitr = vals.spliterator();
 while(spltitr.tryAdvance((n) -> System.out.println(n)));
 System.out.println();

 // Create new list that contains square roots.
 spltitr = vals.spliterator();
 ArrayList<Double> sqrs = new ArrayList<>();
 while(spltitr.tryAdvance((n) -> sqrs.add(Math.sqrt(n))));

 // Use forEachRemaining() to display contents of sqrs.
 System.out.print("Contents of sqrs:\n");
 spltitr = sqrs.spliterator();
 spltitr.forEachRemaining((n) -> System.out.println(n));
 System.out.println();
 }
}

The output is shown here:

Contents of vals:
1.0
2.0
3.0
4.0
5.0

Contents of sqrs:
1.0
1.4142135623730951
1.7320508075688772
2.0
2.23606797749979

Although this program demonstrates the mechanics of using Spliterator, it does not
reveal its full power. As mentioned, Spliterator’s maximum benefit is found in situations
that involve parallel processing.

In Table 18-10, notice the methods characteristics() and hasCharacteristics(). Each
Spliterator has a set of attributes, called characteristics, associated with it. These are defined
by static int fields in Spliterator, such as SORTED, DISTINCT, SIZED, and IMMUTABLE,
to name a few. You can obtain the characteristics by calling characteristics(). You can
determine if a characteristic is present by calling hasCharacteristics(). Often, you won’t
need to access a Spliterator’s characteristics, but in some cases, they can aid in creating
efficient, resilient code.

NOTE For a further discussion of Spliterator, see Chapter 29, where it is used in the context of the new
stream API. For a discussion of lambda expressions, see Chapter 15. See Chapter 28 for a discussion of
parallel programming and concurrency.

18-ch18.indd 528 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 529

Pa
rt

 II

There are several nested subinterfaces of Spliterator designed for use with the primitive
types double, int, and long. These are called Spliterator.OfDouble, Spliterator.OfInt, and
Spliterator.OfLong. There is also a generalized version called Spliterator.OfPrimitive(),
which offers additional flexibility and serves as a superinterface of the aforementioned ones.

Storing User-Defined Classes in Collections
For the sake of simplicity, the foregoing examples have stored built-in objects, such as
String or Integer, in a collection. Of course, collections are not limited to the storage of
built-in objects. Quite the contrary. The power of collections is that they can store any type
of object, including objects of classes that you create. For example, consider the following
example that uses a LinkedList to store mailing addresses:

// A simple mailing list example.
import java.util.*;

class Address {
 private String name;
 private String street;
 private String city;
 private String state;
 private String code;

 Address(String n, String s, String c,
 String st, String cd) {

 name = n;
 street = s;
 city = c;
 state = st;
 code = cd;
 }

 public String toString() {
 return name + "\n" + street + "\n" +
 city + " " + state + " " + code;
 }
}

class MailList {
 public static void main(String args[]) {
 LinkedList<Address> ml = new LinkedList<Address>();

 // Add elements to the linked list.
 ml.add(new Address("J.W. West", "11 Oak Ave",
 "Urbana", "IL", "61801"));
 ml.add(new Address("Ralph Baker", "1142 Maple Lane",
 "Mahomet", "IL", "61853"));
 ml.add(new Address("Tom Carlton", "867 Elm St",
 "Champaign", "IL", "61820"));

18-ch18.indd 529 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

530 PART II The Java Library

 // Display the mailing list.
 for(Address element : ml)
 System.out.println(element + "\n");

 System.out.println();
 }
}

The output from the program is shown here:

 J.W. West
 11 Oak Ave
 Urbana IL 61801

 Ralph Baker
 1142 Maple Lane
 Mahomet IL 61853

 Tom Carlton
 867 Elm St
 Champaign IL 61820

Aside from storing a user-defined class in a collection, another important thing to
notice about the preceding program is that it is quite short. When you consider that it sets
up a linked list that can store, retrieve, and process mailing addresses in about 50 lines of
code, the power of the Collections Framework begins to become apparent. As most readers
know, if all of this functionality had to be coded manually, the program would be several
times longer. Collections offer off-the-shelf solutions to a wide variety of programming
problems. You should use them whenever the situation presents itself.

The RandomAccess Interface
The RandomAccess interface contains no members. However, by implementing this
interface, a collection signals that it supports efficient random access to its elements.
Although a collection might support random access, it might not do so efficiently. By
checking for the RandomAccess interface, client code can determine at run time whether
a collection is suitable for certain types of random access operations—especially as they
apply to large collections. (You can use instanceof to determine if a class implements an
interface.) RandomAccess is implemented by ArrayList and by the legacy Vector class,
among others.

Working with Maps
A map is an object that stores associations between keys and values, or key/value pairs. Given
a key, you can find its value. Both keys and values are objects. The keys must be unique,
but the values may be duplicated. Some maps can accept a null key and null values, others
cannot.

18-ch18.indd 530 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 531

Pa
rt

 II

There is one key point about maps that is important to mention at the outset: they
don’t implement the Iterable interface. This means that you cannot cycle through a map
using a for-each style for loop. Furthermore, you can’t obtain an iterator to a map.
However, as you will soon see, you can obtain a collection-view of a map, which does
allow the use of either the for loop or an iterator.

The Map Interfaces
Because the map interfaces define the character and nature of maps, this discussion of
maps begins with them. The following interfaces support maps:

Interface Description
Map Maps unique keys to values.

Map.Entry Describes an element (a key/value pair) in a map. This is an
inner class of Map.

NavigableMap Extends SortedMap to handle the retrieval of entries based on
closest-match searches.

SortedMap Extends Map so that the keys are maintained in ascending order.

Each interface is examined next, in turn.

The Map Interface
The Map interface maps unique keys to values. A key is an object that you use to retrieve a
value at a later date. Given a key and a value, you can store the value in a Map object. After
the value is stored, you can retrieve it by using its key. Map is generic and is declared as
shown here:

interface Map<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The methods declared by Map are summarized in Table 18-11. Several methods

throw a ClassCastException when an object is incompatible with the elements in a map.
A NullPointerException is thrown if an attempt is made to use a null object and null is not
allowed in the map. An UnsupportedOperationException is thrown when an attempt is
made to change an unmodifiable map. An IllegalArgumentException is thrown if an invalid
argument is used.

Maps revolve around two basic operations: get() and put(). To put a value into a map,
use put(), specifying the key and the value. To obtain a value, call get(), passing the key as
an argument. The value is returned.

As mentioned earlier, although part of the Collections Framework, maps are not,
themselves, collections because they do not implement the Collection interface. However, you
can obtain a collection-view of a map. To do this, you can use the entrySet() method.
It returns a Set that contains the elements in the map. To obtain a collection-view of the keys,
use keySet(). To get a collection-view of the values, use values(). For all three collection-
views, the collection is backed by the map. Changing one affects the other. Collection-views
are the means by which maps are integrated into the larger Collections Framework.

18-ch18.indd 531 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

532 PART II The Java Library

Method Description
void clear() Removes all key/value pairs from the invoking map.

default V compute(K k,
 BiFunction<? super K, ? super V,
 ? extends V> func)

Calls func to construct a new value. If func returns
non-null, the new key/value pair is added to the
map, any preexisting pairing is removed, and the
new value is returned. If func returns null, any
preexisting pairing is removed, and null is returned.
(Added by JDK 8.)

default V computeIfAbsent(K k,
 Function<? super K, ? extends V> func)

Returns the value associated with the key k.
Otherwise, the value is constructed through a call
to func and the pairing is entered into the map and
the constructed value is returned. If no value can be
constructed, null is returned. (Added by JDK 8.)

default V computeIfPresent(K k,
 BiFunction<? super K, ? super V,
 ? extends V> func)

If k is in the map, a new value is constructed through
a call to func and the new value replaces the old value
in the map. In this case, the new value is returned. If
the value returned by func is null, the existing key and
value are removed from the map and null is returned.
(Added by JDK 8.)

boolean containsKey(Object k) Returns true if the invoking map contains k as a key.
Otherwise, returns false.

boolean containsValue(Object v) Returns true if the map contains v as a value.
Otherwise, returns false.

Set<Map.Entry<K, V>> entrySet() Returns a Set that contains the entries in the map.
The set contains objects of type Map.Entry. Thus,
this method provides a set-view of the invoking map.

boolean equals(Object obj) Returns true if obj is a Map and contains the same
entries. Otherwise, returns false.

default void forEach(BiConsumer<
 ? super K,
 ? super V> action)

Executes action on each element in the invoking
map. A ConcurrentModificationException will be
thrown if an element is removed during the process.
(Added by JDK 8.)

V get(Object k) Returns the value associated with the key k. Returns
null if the key is not found.

default V getOrDefault(Object k, V defVal) Returns the value associated with k if it is in the map.
Otherwise, defVal is returned. (Added by JDK 8.)

int hashCode() Returns the hash code for the invoking map.

boolean isEmpty() Returns true if the invoking map is empty.
Otherwise, returns false.

Set<K> keySet() Returns a Set that contains the keys in the invoking
map. This method provides a set-view of the keys in
the invoking map.

Table 18-11 The Methods Declared by Map

18-ch18.indd 532 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 533

Pa
rt

 II

Method Description
default V merge(K k, V v,
 BiFunction<? super V, ? super V,
 ? extends V> func)

If k is not in the map, the pairing k,v is added to
the map. In this case, v is returned. Otherwise, func
returns a new value based on the old value, the key
is updated to use this value, and merge() returns
this value. If the value returned by func is null, the
existing key and value are removed from the map
and null is returned. (Added by JDK 8.)

V put(K k, V v) Puts an entry in the invoking map, overwriting any
previous value associated with the key. The key and
value are k and v, respectively. Returns null if the key
did not already exist. Otherwise, the previous value
linked to the key is returned.

void putAll(Map<? extends K,
 ? extends V> m)

Puts all the entries from m into this map.

default V putIfAbsent(K k, V v) Inserts the key/value pair into the invoking map if
this pairing is not already present or if the existing
value is null. Returns the old value. The null value is
returned when no previous mapping exists, or the
value is null. (Added by JDK 8.)

V remove(Object k) Removes the entry whose key equals k.

default boolean remove(Object k, Object v) If the key/value pair specified by k and v is in the
invoking map, it is removed and true is returned.
Otherwise, false is returned. (Added by JDK 8.)

default boolean replace(K k, V oldV, V newV) If the key/value pair specified by k and oldV is in the
invoking map, the value is replaced by newV and true
is returned. Otherwise false is returned. (Added by
JDK 8.)

default V replace(K k, V v) If the key specified by k is in the invoking map, its
value is set to v and the previous value is returned.
Otherwise, null is returned. (Added by JDK 8.)

default void replaceAll(BiFunction<
 ? super K,
 ? super V,
 ? extends V> func)

Executes func on each element of the invoking map,
replacing the element with the result returned by
func. A ConcurrentModificationException will be
thrown if an element is removed during the process.
(Added by JDK 8.)

int size() Returns the number of key/value pairs in the map.

Collection<V> values() Returns a collection containing the values in the
map. This method provides a collection-view of the
values in the map.

Table 18-11 The Methods Declared by Map (continued)

18-ch18.indd 533 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

534 PART II The Java Library

The SortedMap Interface
The SortedMap interface extends Map. It ensures that the entries are maintained in
ascending order based on the keys. SortedMap is generic and is declared as shown here:

interface SortedMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The methods declared by SortedMap are summarized in Table 18-12. Several

methods throw a NoSuchElementException when no items are in the invoking map. A
ClassCastException is thrown when an object is incompatible with the elements in a map. A
NullPointerException is thrown if an attempt is made to use a null object when null is not
allowed in the map. An IllegalArgumentException is thrown if an invalid argument is used.

Sorted maps allow very efficient manipulations of submaps (in other words, subsets of a
map). To obtain a submap, use headMap(), tailMap(), or subMap(). The submap
returned by these methods is backed by the invoking map. Changing one changes the
other. To get the first key in the set, call firstKey(). To get the last key, use lastKey().

The NavigableMap Interface
The NavigableMap interface extends SortedMap and declares the behavior of a map
that supports the retrieval of entries based on the closest match to a given key or keys.
NavigableMap is a generic interface that has this declaration:

interface NavigableMap<K,V>

Here, K specifies the type of the keys, and V specifies the type of the values associated with
the keys. In addition to the methods that it inherits from SortedMap, NavigableMap adds
those summarized in Table 18-13. Several methods throw a ClassCastException when an
object is incompatible with the keys in the map. A NullPointerException is thrown if an
attempt is made to use a null object and null keys are not allowed in the set. An
IllegalArgumentException is thrown if an invalid argument is used.

Method Description
Comparator<? super K> comparator() Returns the invoking sorted map’s comparator. If

natural ordering is used for the invoking map, null is
returned.

K firstKey() Returns the first key in the invoking map.

SortedMap<K, V> headMap(K end) Returns a sorted map for those map entries with keys
that are less than end.

K lastKey() Returns the last key in the invoking map.

SortedMap<K, V> subMap(K start, K end) Returns a map containing those entries with keys that
are greater than or equal to start and less than end.

SortedMap<K, V> tailMap(K start) Returns a map containing those entries with keys that
are greater than or equal to start.

Table 18-12 The Methods Declared by SortedMap

18-ch18.indd 534 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 535

Pa
rt

 II

Table 18-13 The Methods Declared by NavigableMap

Method Description
Map.Entry<K,V> ceilingEntry(K obj) Searches the map for the smallest key k such that

k >= obj. If such a key is found, its entry is returned.
Otherwise, null is returned.

K ceilingKey(K obj) Searches the map for the smallest key k such
that k >= obj. If such a key is found, it is returned.
Otherwise, null is returned.

NavigableSet<K> descendingKeySet() Returns a NavigableSet that contains the keys in
the invoking map in reverse order. Thus, it returns
a reverse set-view of the keys. The resulting set is
backed by the map.

NavigableMap<K,V> descendingMap() Returns a NavigableMap that is the reverse of the
invoking map. The resulting map is backed by the
invoking map.

Map.Entry<K,V> firstEntry() Returns the first entry in the map. This is the entry
with the least key.

Map.Entry<K,V> floorEntry(K obj) Searches the map for the largest key k such that
k <= obj. If such a key is found, its entry is returned.
Otherwise, null is returned.

K floorKey(K obj) Searches the map for the largest key k such that
k <= obj. If such a key is found, it is returned.
Otherwise, null is returned.

NavigableMap<K,V>
 headMap(K upperBound, boolean incl)

Returns a NavigableMap that includes all entries
from the invoking map that have keys that are less
than upperBound. If incl is true, then an element
equal to upperBound is included. The resulting map
is backed by the invoking map.

Map.Entry<K,V> higherEntry(K obj) Searches the set for the largest key k such that
k > obj. If such a key is found, its entry is returned.
Otherwise, null is returned.

K higherKey(K obj) Searches the set for the largest key k such that
k > obj. If such a key is found, it is returned.
Otherwise, null is returned.

Map.Entry<K,V> lastEntry() Returns the last entry in the map. This is the entry
with the largest key.

Map.Entry<K,V> lowerEntry(K obj) Searches the set for the largest key k such that
k < obj. If such a key is found, its entry is returned.
Otherwise, null is returned.

K lowerKey(K obj) Searches the set for the largest key k such that
k < obj. If such a key is found, it is returned.
Otherwise, null is returned.

18-ch18.indd 535 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

536 PART II The Java Library

The Map.Entry Interface
The Map.Entry interface enables you to work with a map entry. Recall that the entrySet()
method declared by the Map interface returns a Set containing the map entries. Each of
these set elements is a Map.Entry object. Map.Entry is generic and is declared like this:

interface Map.Entry<K, V>

Here, K specifies the type of keys, and V specifies the type of values. Table 18-14 summarizes
the non-static methods declared by Map.Entry. JDK 8 adds two static methods. The first is
comparingByKey(), which returns a Comparator that compares entries by key. The second
is comparingByValue(), which returns a Comparator that compares entries by value.

Table 18-13 The Methods Declared by NavigableMap (continued)

Method Description
NavigableSet<K> navigableKeySet() Returns a NavigableSet that contains the keys in the

invoking map. The resulting set is backed by the
invoking map.

Map.Entry<K,V> pollFirstEntry() Returns the first entry, removing the entry in the
process. Because the map is sorted, this is the entry
with the least key value. null is returned if the map
is empty.

Map.Entry<K,V> pollLastEntry() Returns the last entry, removing the entry in the
process. Because the map is sorted, this is the entry
with the greatest key value. null is returned if the
map is empty.

NavigableMap<K,V>
 subMap(K lowerBound,
 boolean lowIncl,
 K upperBound
 boolean highIncl)

Returns a NavigableMap that includes all entries
from the invoking map that have keys that are
greater than lowerBound and less than upperBound. If
lowIncl is true, then an element equal to lowerBound
is included. If highIncl is true, then an element equal
to highIncl is included. The resulting map is backed
by the invoking map.

NavigableMap<K,V>
 tailMap(K lowerBound, boolean incl)

Returns a NavigableMap that includes all entries
from the invoking map that have keys that are
greater than lowerBound. If incl is true, then an
element equal to lowerBound is included. The
resulting map is backed by the invoking map.

18-ch18.indd 536 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 537

Pa
rt

 II

The Map Classes
Several classes provide implementations of the map interfaces. The classes that can be used
for maps are summarized here:

Class Description
AbstractMap Implements most of the Map interface.

EnumMap Extends AbstractMap for use with enum keys.

HashMap Extends AbstractMap to use a hash table.

TreeMap Extends AbstractMap to use a tree.

WeakHashMap Extends AbstractMap to use a hash table with weak keys.

LinkedHashMap Extends HashMap to allow insertion-order iterations.

IdentityHashMap Extends AbstractMap and uses reference equality when
comparing documents.

Notice that AbstractMap is a superclass for all concrete map implementations.
WeakHashMap implements a map that uses “weak keys,” which allows an element in a

map to be garbage-collected when its key is otherwise unused. This class is not discussed
further here. The other map classes are described next.

The HashMap Class
The HashMap class extends AbstractMap and implements the Map interface. It uses a
hash table to store the map. This allows the execution time of get() and put() to remain
constant even for large sets. HashMap is a generic class that has this declaration:

class HashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.

Method Description
boolean equals(Object obj) Returns true if obj is a Map.Entry whose key and value are equal

to that of the invoking object.

K getKey() Returns the key for this map entry.

V getValue() Returns the value for this map entry.

int hashCode() Returns the hash code for this map entry.

V setValue(V v) Sets the value for this map entry to v. A ClassCastException
is thrown if v is not the correct type for the map. An
IllegalArgumentException is thrown if there is a problem with v.
A NullPointerException is thrown if v is null and the map does
not permit null keys. An UnsupportedOperationException is
thrown if the map cannot be changed.

Table 18-14 The Non-Static Methods Declared by Map.Entry

18-ch18.indd 537 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

538 PART II The Java Library

The following constructors are defined:

HashMap()
HashMap(Map<? extends K, ? extends V> m)
HashMap(int capacity)
HashMap(int capacity, float fillRatio)

The first form constructs a default hash map. The second form initializes the hash map by
using the elements of m. The third form initializes the capacity of the hash map to capacity.
The fourth form initializes both the capacity and fill ratio of the hash map by using its
arguments. The meaning of capacity and fill ratio is the same as for HashSet, described
earlier. The default capacity is 16. The default fill ratio is 0.75.

HashMap implements Map and extends AbstractMap. It does not add any methods of
its own.

You should note that a hash map does not guarantee the order of its elements.
Therefore, the order in which elements are added to a hash map is not necessarily the
order in which they are read by an iterator.

The following program illustrates HashMap. It maps names to account balances. Notice
how a set-view is obtained and used.

import java.util.*;

class HashMapDemo {
 public static void main(String args[]) {

 // Create a hash map.
 HashMap<String, Double> hm = new HashMap<String, Double>();

 // Put elements to the map
 hm.put("John Doe", new Double(3434.34));
 hm.put("Tom Smith", new Double(123.22));
 hm.put("Jane Baker", new Double(1378.00));
 hm.put("Tod Hall", new Double(99.22));
 hm.put("Ralph Smith", new Double(-19.08));

 // Get a set of the entries.
 Set<Map.Entry<String, Double>> set = hm.entrySet();

 // Display the set.
 for(Map.Entry<String, Double> me : set) {
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }

 System.out.println();

 // Deposit 1000 into John Doe's account.
 double balance = hm.get("John Doe");
 hm.put("John Doe", balance + 1000);

18-ch18.indd 538 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 539

Pa
rt

 II

 System.out.println("John Doe's new balance: " +
 hm.get("John Doe"));
 }
}

Output from this program is shown here (the precise order may vary):

 Ralph Smith: -19.08
 Tom Smith: 123.22
 John Doe: 3434.34
 Tod Hall: 99.22
 Jane Baker: 1378.0

 John Doe's new balance: 4434.34

The program begins by creating a hash map and then adds the mapping of names
to balances. Next, the contents of the map are displayed by using a set-view, obtained by
calling entrySet(). The keys and values are displayed by calling the getKey() and getValue()
methods that are defined by Map.Entry. Pay close attention to how the deposit is made into
John Doe’s account. The put() method automatically replaces any preexisting value that is
associated with the specified key with the new value. Thus, after John Doe’s account is
updated, the hash map will still contain just one "John Doe" account.

The TreeMap Class
The TreeMap class extends AbstractMap and implements the NavigableMap interface. It
creates maps stored in a tree structure. A TreeMap provides an efficient means of storing
key/value pairs in sorted order and allows rapid retrieval. You should note that, unlike a
hash map, a tree map guarantees that its elements will be sorted in ascending key order.
TreeMap is a generic class that has this declaration:

class TreeMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
The following TreeMap constructors are defined:

TreeMap()
TreeMap(Comparator<? super K> comp)
TreeMap(Map<? extends K, ? extends V> m)
TreeMap(SortedMap<K, ? extends V> sm)

The first form constructs an empty tree map that will be sorted by using the natural order
of its keys. The second form constructs an empty tree-based map that will be sorted by using
the Comparator comp. (Comparators are discussed later in this chapter.) The third form
initializes a tree map with the entries from m, which will be sorted by using the natural
order of the keys. The fourth form initializes a tree map with the entries from sm, which will
be sorted in the same order as sm.

TreeMap has no map methods beyond those specified by the NavigableMap interface
and the AbstractMap class.

18-ch18.indd 539 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

540 PART II The Java Library

The following program reworks the preceding example so that it uses TreeMap:

import java.util.*;

class TreeMapDemo {
 public static void main(String args[]) {

 // Create a tree map.
 TreeMap<String, Double> tm = new TreeMap<String, Double>();

 // Put elements to the map.
 tm.put("John Doe", new Double(3434.34));
 tm.put("Tom Smith", new Double(123.22));
 tm.put("Jane Baker", new Double(1378.00));
 tm.put("Tod Hall", new Double(99.22));
 tm.put("Ralph Smith", new Double(-19.08));

 // Get a set of the entries.
 Set<Map.Entry<String, Double>> set = tm.entrySet();

 // Display the elements.
 for(Map.Entry<String, Double> me : set) {
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }
 System.out.println();

 // Deposit 1000 into John Doe's account.
 double balance = tm.get("John Doe");
 tm.put("John Doe", balance + 1000);

 System.out.println("John Doe's new balance: " +
 tm.get("John Doe"));
 }
}

The following is the output from this program:

 Jane Baker: 1378.0
 John Doe: 3434.34
 Ralph Smith: -19.08
 Todd Hall: 99.22
 Tom Smith: 123.22

 John Doe's current balance: 4434.34

Notice that TreeMap sorts the keys. However, in this case, they are sorted by first name
instead of last name. You can alter this behavior by specifying a comparator when the map
is created, as described shortly.

The LinkedHashMap Class
LinkedHashMap extends HashMap. It maintains a linked list of the entries in the map, in
the order in which they were inserted. This allows insertion-order iteration over the map.

18-ch18.indd 540 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 541

Pa
rt

 II

That is, when iterating through a collection-view of a LinkedHashMap, the elements will be
returned in the order in which they were inserted. You can also create a LinkedHashMap
that returns its elements in the order in which they were last accessed. LinkedHashMap is a
generic class that has this declaration:

class LinkedHashMap<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
LinkedHashMap defines the following constructors:

LinkedHashMap()
LinkedHashMap(Map<? extends K, ? extends V> m)
LinkedHashMap(int capacity)
LinkedHashMap(int capacity, float fillRatio)
LinkedHashMap(int capacity, float fillRatio, boolean Order)

The first form constructs a default LinkedHashMap. The second form initializes the
LinkedHashMap with the elements from m. The third form initializes the capacity. The
fourth form initializes both capacity and fill ratio. The meaning of capacity and fill ratio are
the same as for HashMap. The default capacity is 16. The default ratio is 0.75. The last form
allows you to specify whether the elements will be stored in the linked list by insertion
order, or by order of last access. If Order is true, then access order is used. If Order is false,
then insertion order is used.

LinkedHashMap adds only one method to those defined by HashMap. This method is
removeEldestEntry(), and it is shown here:

protected boolean removeEldestEntry(Map.Entry<K, V> e)

This method is called by put() and putAll(). The oldest entry is passed in e. By default, this
method returns false and does nothing. However, if you override this method, then you can
have the LinkedHashMap remove the oldest entry in the map. To do this, have your
override return true. To keep the oldest entry, return false.

The IdentityHashMap Class
IdentityHashMap extends AbstractMap and implements the Map interface. It is similar to
HashMap except that it uses reference equality when comparing elements. IdentityHashMap
is a generic class that has this declaration:

class IdentityHashMap<K, V>

Here, K specifies the type of key, and V specifies the type of value. The API documentation
explicitly states that IdentityHashMap is not for general use.

The EnumMap Class
EnumMap extends AbstractMap and implements Map. It is specifically for use with keys of
an enum type. It is a generic class that has this declaration:

class EnumMap<K extends Enum<K>, V>

Here, K specifies the type of key, and V specifies the type of value. Notice that K must
extend Enum<K>, which enforces the requirement that the keys must be of an enum type.

18-ch18.indd 541 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

542 PART II The Java Library

EnumMap defines the following constructors:

EnumMap(Class<K> kType)
EnumMap(Map<K, ? extends V> m)
EnumMap(EnumMap<K, ? extends V> em)

The first constructor creates an empty EnumMap of type kType. The second creates an
EnumMap map that contains the same entries as m. The third creates an EnumMap
initialized with the values in em.

EnumMap defines no methods of its own.

Comparators
Both TreeSet and TreeMap store elements in sorted order. However, it is the comparator
that defines precisely what “sorted order” means. By default, these classes store their
elements by using what Java refers to as “natural ordering,” which is usually the ordering
that you would expect (A before B, 1 before 2, and so forth). If you want to order elements
a different way, then specify a Comparator when you construct the set or map. Doing so
gives you the ability to govern precisely how elements are stored within sorted collections
and maps.

Comparator is a generic interface that has this declaration:

interface Comparator<T>

Here, T specifies the type of objects being compared.
Prior to JDK 8, the Comparator interface defined only two methods: compare() and

equals(). The compare() method, shown here, compares two elements for order:

int compare(T obj1, T obj2)

obj1 and obj2 are the objects to be compared. Normally, this method returns zero if the
objects are equal. It returns a positive value if obj1 is greater than obj2. Otherwise, a negative
value is returned. The method can throw a ClassCastException if the types of the objects
are not compatible for comparison. By implementing compare(), you can alter the way that
objects are ordered. For example, to sort in reverse order, you can create a comparator that
reverses the outcome of a comparison.

The equals() method, shown here, tests whether an object equals the invoking
comparator:

boolean equals(object obj)

Here, obj is the object to be tested for equality. The method returns true if obj and the
invoking object are both Comparator objects and use the same ordering. Otherwise, it
returns false. Overriding equals() is not necessary, and most simple comparators will not
do so.

For many years, the preceding two methods were the only methods defined by
Comparator. With the release of JDK 8, the situation has dramatically changed. JDK 8 adds
significant new functionality to Comparator through the use of default and static interface
methods. Each is described here.

18-ch18.indd 542 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 543

Pa
rt

 II

You can obtain a comparator that reverses the ordering of the comparator on which it is
called by using reversed(), shown here:

default Comparator<T> reversed()

It returns the reverse comparator. For example, assuming a comparator that uses natural
ordering for the characters A through Z, a reverse order comparator would put B before A,
C before B, and so on.

A method related to reversed() is reverseOrder(), shown next:

static <T extends Comparable<? super T>> Comparator<T> reverseOrder()

It returns a comparator that reverses the natural order of the elements. Conversely, you can
obtain a comparator that uses natural ordering by calling the static method
naturalOrder(), shown next:

static <T extends Comparable<? super T>> Comparator<T> naturalOrder()

If you want a comparator that can handle null values, use nullsFirst() or nullsLast(),
shown here:

static <T> Comparator<T> nullsFirst(Comparator<? super T> comp)
static <T> Comparator<T> nullsLast(Comparator<? super T> comp)

The nullsFirst() method returns a comparator that views null values as less than other
values. The nullsLast() method returns a comparator that views null values as greater than
other values. In both cases, if the two values being compared are non-null, comp performs
the comparison. If comp is passed null, then all non-null values are viewed as equivalent.

Another default method added by JDK 8 is thenComparing(). It returns a comparator that
performs a second comparison when the outcome of the first comparison indicates that the
objects being compared are equal. Thus, it can be used to create a “compare by X then
compare by Y” sequence. For example, when comparing cities, the first comparison
might compare names, with the second comparison comparing states. (Therefore,
Springfield, Illinois, would come before Springfield, Missouri, assuming normal, alphabetical
order.) The thenComparing() method has three forms. The first, shown here, lets you
specify the second comparator by passing an instance of Comparator:

default Comparator<T> thenComparing(Comparator<? super T> thenByComp)

Here, thenByComp specifies the comparator that is called if the first comparison returns
equal.

The next versions of thenComparing() let you specify the standard functional interface
Function (defined by java.util.function). They are shown here:

default <U extends Comparable<? super U> Comparator<T>
 thenComparing(Function<? super T, ? extends U> getKey)

default <U> Comparator<T>
 thenComparing(Function<? super T, ? extends U> getKey,
 Comparator<? super U> keyComp)

18-ch18.indd 543 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

544 PART II The Java Library

In both, getKey refers to function that obtains the next comparison key, which is used if the
first comparison returns equal. In the second version, keyComp specifies the comparator
used to compare keys. (Here, and in subsequent uses, U specifies the type of the key.)

Comparator also adds the following specialized versions of “then comparing” methods
for the primitive types:

default Comparator<T>
 thenComparingDouble(ToDoubleFunction<? super T> getKey)

default Comparator<T>
 thenComparingInt(ToIntFunction<? super T> getKey)

default Comparator<T>
 thenComparingLong(ToLongFunction<? super T> getKey)

In all methods, getKey refers to a function that obtains the next comparison key.
Finally, JDK 8 adds to Comparator a method called comparing(). It returns a

comparator that obtains its comparison key from a function passed to the method. There
are two versions of comparing(), shown here:

static <T, U extends Comparable<? super U>> Comparator<T>
 comparing(Function<? super T, ? extends U> getKey)

static <T, U> Comparator<T>
 comparing(Function<? super T, ? extends U> getKey,
 Comparator<? super U> keyComp)

In both, getKey refers to a function that obtains the next comparison key. In the second
version, keyComp specifies the comparator used to compare keys. Comparator also adds the
following specialized versions of these methods for the primitive types:

static <T> Comparator<T>
 ComparingDouble(ToDoubleFunction<? super T> getKey)

static <T> Comparator<T>
 ComparingInt(ToIntFunction<? super T> getKey)

static <T> Comparator<T>
 ComparingLong(ToLongFunction<? super T> getKey)

In all methods, getKey refers to a function that obtains the next comparison key.

Using a Comparator
The following is an example that demonstrates the power of a custom comparator. It
implements the compare() method for strings that operates in reverse of normal. Thus,
it causes a tree set to be sorted in reverse order.

// Use a custom comparator.
import java.util.*;

// A reverse comparator for strings.
class MyComp implements Comparator<String> {

18-ch18.indd 544 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 545

Pa
rt

 II

 public int compare(String aStr, String bStr) {

 // Reverse the comparison.
 return bStr.compareTo(aStr);
 }

 // No need to override equals or the default methods.
}

class CompDemo {
 public static void main(String args[]) {
 // Create a tree set.
 TreeSet<String> ts = new TreeSet<String>(new MyComp());

 // Add elements to the tree set.
 ts.add("C");
 ts.add("A");
 ts.add("B");
 ts.add("E");
 ts.add("F");
 ts.add("D");

 // Display the elements.
 for(String element : ts)
 System.out.print(element + " ");

 System.out.println();
 }
}

As the following output shows, the tree is now sorted in reverse order:

 F E D C B A

Look closely at the MyComp class, which implements Comparator by implementing
compare(). (As explained earlier, overriding equals() is neither necessary nor common. It
is also not necessary to override the default methods added by JDK 8.) Inside compare(),
the String method compareTo() compares the two strings. However, bStr—not aStr—
invokes compareTo(). This causes the outcome of the comparison to be reversed.

Although the way in which the reverse order comparator is implemented by the
preceding program is perfectly adequate, beginning with JDK 8, there is another way to
approach a solution. It is now possible to simply call reversed() on a natural-order
comparator. It will return an equivalent comparator, except that it runs in reverse. For
example, assuming the preceding program, you can rewrite MyComp as a natural-order
comparator, as shown here:

class MyComp implements Comparator<String> {
 public int compare(String aStr, String bStr) {
 return aStr.compareTo(bStr);
 }
}

18-ch18.indd 545 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

546 PART II The Java Library

Next, you can use the following sequence to create a TreeSet that orders its string
elements in reverse:

MyComp mc = new MyComp(); // Create a comparator

// Pass a reverse order version of MyComp to TreeSet.
TreeSet<String> ts = new TreeSet<String>(mc.reversed());

If you plug this new code into the preceding program, it will produce the same results as
before. In this case, there is no advantage gained by using reversed(). However, in cases in
which you need to create both a natural-order comparator and a reversed comparator, then
using reversed() gives you an easy way to obtain the reverse-order comparator without
having to code it explicitly.

Beginning with JDK 8, it is not actually necessary to create the MyComp class in the
preceding examples because a lambda expression can be easily used instead. For example,
you can remove the MyComp class entirely and create the string comparator by using this
statement:

// Use a lambda expression to implement Comparator<String>.
Comparator<String> mc = (aStr, bStr) -> aStr.compareTo(bStr);

One other point: in this simple example, it would also be possible to specify a reverse
comparator via a lambda expression directly in the call to the TreeSet() constructor, as
shown here:

// Pass a reversed comparator to TreeSet() via a
// lambda expression.
TreeSet<String> ts = new TreeSet<String>(
 (aStr, bStr) -> bStr.compareTo(aStr));

By making these changes, the program is substantially shortened, as its final version shown
here illustrates:

// Use a lambda expression to create a reverse comparator.
import java.util.*;

class CompDemo2 {
 public static void main(String args[]) {

 // Pass a reverse comparator to TreeSet() via a
 // lambda expression.
 TreeSet<String> ts = new TreeSet<String>(
 (aStr, bStr) -> bStr.compareTo(aStr));

 // Add elements to the tree set.
 ts.add("C");
 ts.add("A");
 ts.add("B");
 ts.add("E");
 ts.add("F");
 ts.add("D");

18-ch18.indd 546 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 547

Pa
rt

 II

 // Display the elements.
 for(String element : ts)
 System.out.print(element + " ");

 System.out.println();
 }
}

For a more practical example that uses a custom comparator, the following program is an
updated version of the TreeMap program shown earlier that stores account balances. In the
previous version, the accounts were sorted by name, but the sorting began with the first name.
The following program sorts the accounts by last name. To do so, it uses a comparator that
compares the last name of each account. This results in the map being sorted by last name.

// Use a comparator to sort accounts by last name.
import java.util.*;

// Compare last whole words in two strings.
class TComp implements Comparator<String> {
 public int compare(String aStr, String bStr) {
 int i, j, k;

 // Find index of beginning of last name.
 i = aStr.lastIndexOf(' ');
 j = bStr.lastIndexOf(' ');

 k = aStr.substring(i).compareToIgnoreCase (bStr.substring(j));
 if(k==0) // last names match, check entire name
 return aStr.compareToIgnoreCase (bStr);
 else
 return k;
 }

 // No need to override equals.
}

class TreeMapDemo2 {
 public static void main(String args[]) {
 // Create a tree map.
 TreeMap<String, Double> tm = new TreeMap<String, Double>(new TComp());

 // Put elements to the map.
 tm.put("John Doe", new Double(3434.34));
 tm.put("Tom Smith", new Double(123.22));
 tm.put("Jane Baker", new Double(1378.00));
 tm.put("Tod Hall", new Double(99.22));
 tm.put("Ralph Smith", new Double(-19.08));

 // Get a set of the entries.
 Set<Map.Entry<String, Double>> set = tm.entrySet();

18-ch18.indd 547 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

548 PART II The Java Library

 // Display the elements.
 for(Map.Entry<String, Double> me : set) {
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }
 System.out.println();

 // Deposit 1000 into John Doe's account.
 double balance = tm.get("John Doe");
 tm.put("John Doe", balance + 1000);

 System.out.println("John Doe's new balance: " +
 tm.get("John Doe"));
 }
}

Here is the output; notice that the accounts are now sorted by last name:

 Jane Baker: 1378.0
 John Doe: 3434.34
 Todd Hall: 99.22
 Ralph Smith: -19.08
 Tom Smith: 123.22

 John Doe's new balance: 4434.34

The comparator class TComp compares two strings that hold first and last names. It
does so by first comparing last names. To do this, it finds the index of the last space in each
string and then compares the substrings of each element that begin at that point. In cases
where last names are equivalent, the first names are then compared. This yields a tree map
that is sorted by last name, and within last name by first name. You can see this because
Ralph Smith comes before Tom Smith in the output.

If you are using JDK 8 or later, then there is another way that you could code the
preceding program so the map is sorted by last name and then by first name. This approach
uses the thenComparing() method. Recall that thenComparing() lets you specify a second
comparator that will be used if the invoking comparator returns equal. This approach is put
into action by the following program, which reworks the preceding example to use
thenComparing():

// Use thenComparing() to sort by last, then first name.
import java.util.*;

// A comparator that compares last names.
class CompLastNames implements Comparator<String> {
 public int compare(String aStr, String bStr) {
 int i, j;

 // Find index of beginning of last name.
 i = aStr.lastIndexOf(' ');
 j = bStr.lastIndexOf(' ');

18-ch18.indd 548 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 549

Pa
rt

 II

 return aStr.substring(i).compareToIgnoreCase(bStr.substring(j));
 }
}

// Sort by entire name when last names are equal.
class CompThenByFirstName implements Comparator<String> {
 public int compare(String aStr, String bStr) {
 int i, j;

 return aStr.compareToIgnoreCase(bStr);
 }
}

class TreeMapDemo2A {
 public static void main(String args[]) {
 // Use thenComparing() to create a comparator that compares
 // last names, then compares entire name when last names match.
 CompLastNames compLN = new CompLastNames();
 Comparator<String> compLastThenFirst =
 compLN.thenComparing(new CompThenByFirstName());

 // Create a tree map.
 TreeMap<String, Double> tm =
 new TreeMap<String, Double>(compLastThenFirst);

 // Put elements to the map.
 tm.put("John Doe", new Double(3434.34));
 tm.put("Tom Smith", new Double(123.22));
 tm.put("Jane Baker", new Double(1378.00));
 tm.put("Tod Hall", new Double(99.22));
 tm.put("Ralph Smith", new Double(-19.08));

 // Get a set of the entries.
 Set<Map.Entry<String, Double>> set = tm.entrySet();

 // Display the elements.
 for(Map.Entry<String, Double> me : set) {
 System.out.print(me.getKey() + ": ");
 System.out.println(me.getValue());
 }
 System.out.println();

 // Deposit 1000 into John Doe's account.
 double balance = tm.get("John Doe");
 tm.put("John Doe", balance + 1000);

 System.out.println("John Doe's new balance: " +
 tm.get("John Doe"));
 }
}

This version produces the same output as before. It differs only in how it accomplishes its job.
To begin, notice that a comparator called CompLastNames is created. This comparator

18-ch18.indd 549 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

550 PART II The Java Library

compares only the last names. A second comparator, called CompThenByFirstName, compares
the entire name, starting with the first name. Next, the TreeMap is then created by the
following sequence:

CompLastNames compLN = new CompLastNames();
Comparator<String> compLastThenFirst =
 compLN.thenComparing(new CompThenByFirstName());

Here, the primary comparator is compLN. It is an instance of CompLastNames. On it is
called thenComparing(), passing in an instance of CompThenByFirstName. The result is
assigned to the comparator called compLastThenFirst. This comparator is used to construct
the TreeMap, as shown here:

TreeMap<String, Double> tm =
 new TreeMap<String, Double>(compLastThenFirst);

Now, whenever the last names of the items being compared are equal, the entire name,
beginning with the first name, is used to order the two. This means that names are ordered
based on last name, and within last names, by first names.

One last point: in the interest of clarity, this example explicitly creates two comparator
classes called CompLastNames and ThenByFirstNames, but lambda expressions could have
been used instead. You might want to try this on your own. Just follow the same general
approach described for the CompDemo2 example shown earlier.

The Collection Algorithms
The Collections Framework defines several algorithms that can be applied to collections
and maps. These algorithms are defined as static methods within the Collections class.
They are summarized in Table 18-15. As explained earlier, beginning with JDK 5 all of the
algorithms were retrofitted for generics.

Several of the methods can throw a ClassCastException, which occurs when an attempt
is made to compare incompatible types, or an UnsupportedOperationException, which
occurs when an attempt is made to modify an unmodifiable collection. Other exceptions
are possible, depending on the method.

One thing to pay special attention to is the set of checked methods, such as
checkedCollection(), which returns what the API documentation refers to as a
“dynamically typesafe view” of a collection. This view is a reference to the collection that
monitors insertions into the collection for type compatibility at run time. An attempt to
insert an incompatible element will cause a ClassCastException. Using such a view is
especially helpful during debugging because it ensures that the collection always contains
valid elements. Related methods include checkedSet(), checkedList(), checkedMap(),
and so on. They obtain a type-safe view for the indicated collection.

Notice that several methods, such as synchronizedList() and synchronizedSet(), are used
to obtain synchronized (thread-safe) copies of the various collections. As a general rule, the
standard collections implementations are not synchronized. You must use the synchronization
algorithms to provide synchronization. One other point: iterators to synchronized collections
must be used within synchronized blocks.

18-ch18.indd 550 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 551

Pa
rt

 II

Method Description
static <T> boolean
 addAll(Collection <? super T> c,
 T... elements)

Inserts the elements specified by elements into
the collection specified by c. Returns true if the
elements were added and false otherwise.

static <T> Queue<T> asLifoQueue(Deque<T> c) Returns a last-in, first-out view of c.

static <T>
 int binarySearch(List<? extends T> list,
 T value,
 Comparator<? super T> c)

Searches for value in list ordered according
to c. Returns the position of value in list, or a
negative value if value is not found.

static <T>
 int binarySearch(List<? extends
 Comparable<? super T>> list,
 T value)

Searches for value in list. The list must be
sorted. Returns the position of value in list, or a
negative value if value is not found.

static <E> Collection<E>
 checkedCollection(Collection<E> c,
 Class<E> t)

Returns a run-time type-safe view of
a collection. An attempt to insert an
incompatible element will cause a
ClassCastException.

static <E> List<E>
 checkedList(List<E> c, Class<E> t)

Returns a run-time type-safe view of a List. An
attempt to insert an incompatible element will
cause a ClassCastException.

static <K, V> Map<K, V>
 checkedMap(Map<K, V> c,
 Class<K> keyT,
 Class<V> valueT)

Returns a run-time type-safe view of a Map. An
attempt to insert an incompatible element will
cause a ClassCastException.

static <K, V> NavigableMap<K, V>
 checkedNavigableMap(
 NavigableMap<K, V> nm,
 Class<E> keyT,
 Class<V> valueT)

Returns a run-time type-safe view of a
NavigableMap. An attempt to insert
an incompatible element will cause a
ClassCastException. (Added by JDK 8.)

static <E> NavigableSet<E>
 checkedNavigableSet(NavigableSet<E> ns,
 Class<E> t)

Returns a run-time type-safe view of
a NavigableSet. An attempt to insert
an incompatible element will cause a
ClassCastException. (Added by JDK 8.)

static <E> Queue<E>
 checkedQueue(Queue<E> q,
 Class<E> t)

Returns a run-time type-safe view of a Queue.
An attempt to insert an incompatible element
will cause a ClassCastException. (Added by
JDK 8.)

static <E> List<E>
 checkedSet(Set<E> c, Class<E> t)

Returns a run-time type-safe view of a Set. An
attempt to insert an incompatible element will
cause a ClassCastException.

Table 18-15 The Algorithms Defined by Collections

18-ch18.indd 551 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

552 PART II The Java Library

Method Description
static <K, V> SortedMap<K, V>
 checkedSortedMap(SortedMap<K, V> c,
 Class<K> keyT,
 Class<V> valueT)

Returns a run-time type-safe view of
a SortedMap. An attempt to insert
an incompatible element will cause a
ClassCastException.

static <E> SortedSet<E>
 checkedSortedSet(SortedSet<E> c, Class<E> t)

Returns a run-time type-safe view of
a SortedSet. An attempt to insert an
incompatible element will cause a
ClassCastException.

static <T> void copy(List<? super T> list1,
 List<? extends T> list2)

Copies the elements of list2 to list1.

static boolean disjoint(Collection<?> a,
 Collection<?> b)

Compares the elements in a to elements in b.
Returns true if the two collections contain no
common elements (i.e., the collections contain
disjoint sets of elements). Otherwise, returns
false.

static <T>
 Enumeration<T> emptyEnumeration()

Returns an empty enumeration, which is an
enumeration with no elements.

static <T>
 Iterator<T> emptyIterator()

Returns an empty iterator, which is an iterator
with no elements.

static <T> List<T> emptyList() Returns an immutable, empty List object of
the inferred type.

static <T>
 ListIterator<T> emptyListIterator()

Returns an empty list iterator, which is a list
iterator that has no elements.

static <K, V> Map<K, V> emptyMap() Returns an immutable, empty Map object of
the inferred type.

static <K, V> NavigableMap<K, V>
 emptyNavigableMap()

Returns an immutable, empty NavigableMap
object of the inferred type. (Added by JDK 8.)

static <E> NavigableSet<E>
 emptyNavigableSet()

Returns an immutable, empty NavigableSet
object of the inferred type. (Added by JDK 8.)

static <T> Set<T> emptySet() Returns an immutable, empty Set object of the
inferred type.

static <K, V> SortedMap<K, V>
 emptySortedMap()

Returns an immutable, empty SortedMap
object of the inferred type. (Added by JDK 8.)

static <E> SortedSet<E> emptySortedSet() Returns an immutable, empty SortedSet object
of the inferred type. (Added by JDK 8.)

static <T> Enumeration<T>
 enumeration(Collection<T> c)

Returns an enumeration over c. (See “The
Enumeration Interface,” later in this chapter.)

static <T> void fill(List<? super T> list, T obj) Assigns obj to each element of list.

static int frequency(Collection<?> c, object obj) Counts the number of occurrences of obj in c
and returns the result.

Table 18-15 The Algorithms Defined by Collections (continued)

18-ch18.indd 552 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 553

Pa
rt

 II

Method Description
static int indexOfSubList(List<?> list,
 List<?> subList)

Searches list for the first occurrence of subList.
Returns the index of the first match, or –1 if
no match is found.

static int lastIndexOfSubList(List<?> list,
 List<?> subList)

Searches list for the last occurrence of subList.
Returns the index of the last match, or –1 if no
match is found.

static <T>
 ArrayList<T> list(Enumeration<T> enum)

Returns an ArrayList that contains the
elements of enum.

static <T> T max(Collection<? extends T> c,
 Comparator<? super T> comp)

Returns the maximum element in c as
determined by comp.

static <T extends Object &
 Comparable<? super T>>
 T max(Collection<? extends T> c)

Returns the maximum element in c as
determined by natural ordering. The
collection need not be sorted.

static <T> T min(Collection<? extends T> c,
 Comparator<? super T> comp)

Returns the minimum element in c as
determined by comp. The collection need not
be sorted.

static <T extends Object &
 Comparable<? super T>>
 T min(Collection<? extends T> c)

Returns the minimum element in c as
determined by natural ordering.

static <T> List<T> nCopies(int num, T obj) Returns num copies of obj contained in an
immutable list. num must be greater than or
equal to zero.

static <E> Set<E> newSetFromMap(Map<E,
 Boolean> m)

Creates and returns a set backed by the map
specified by m, which must be empty at the
time this method is called.

static <T> boolean replaceAll(List<T> list,
 T old, T new)

Replaces all occurrences of old with new in
list. Returns true if at least one replacement
occurred. Returns false otherwise.

static void reverse(List<T> list) Reverses the sequence in list.

static <T> Comparator<T>
 reverseOrder(Comparator<T> comp)

Returns a reverse comparator based on the
one passed in comp. That is, the returned
comparator reverses the outcome of a
comparison that uses comp.

static <T> Comparator<T> reverseOrder() Returns a reverse comparator, which is a
comparator that reverses the outcome of a
comparison between two elements.

static void rotate(List<T> list, int n) Rotates list by n places to the right. To rotate
left, use a negative value for n.

static void shuffle(List<T> list, Random r) Shuffles (i.e., randomizes) the elements in list
by using r as a source of random numbers.

static void shuffle(List<T> list) Shuffles (i.e., randomizes) the elements in list.

Table 18-15 The Algorithms Defined by Collections (continued)

18-ch18.indd 553 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

554 PART II The Java Library

Method Description
static <T> Set<T> singleton(T obj) Returns obj as an immutable set. This is an easy

way to convert a single object into a set.

static <T> List<T> singletonList(T obj) Returns obj as an immutable list. This is an easy
way to convert a single object into a list.

static <K, V> Map<K, V>
 singletonMap(K k, V v)

Returns the key/value pair k/v as an
immutable map. This is an easy way
to convert a single key/value pair into a map.

static <T>
 void sort(List<T> list,
 Comparator<? super T> comp)

Sorts the elements of list as determined by
comp.

static <T extends Comparable<? super T>>
 void sort(List<T> list)

Sorts the elements of list as determined by
their natural ordering.

static void swap(List<?> list,
 int idx1, int idx2)

Exchanges the elements in list at the indices
specified by idx1 and idx2.

static <T> Collection<T>
 synchronizedCollection(Collection<T> c)

Returns a thread-safe collection backed by c.

static <T> List<T> synchronizedList(List<T> list) Returns a thread-safe list backed by list.

static <K, V> Map<K, V>
 synchronizedMap(Map<K, V> m)

Returns a thread-safe map backed by m.

static <K, V> NavigableMap<K, V>
 synchronizedNavigableMap(
 NavigableMap<K, V> nm)

Returns a synchronized navigable map backed
by nm. (Added by JDK 8.)

static <T> NavigableSet<T>
 synchronizedNavigableSet(
 NavigableSet<T> ns)

Returns a synchronized navigable set backed
by ns. (Added by JDK 8.)

static <T> Set<T> synchronizedSet(Set<T> s) Returns a thread-safe set backed by s.

static <K, V> SortedMap<K, V>
 synchronizedSortedMap(SortedMap<K, V> sm)

Returns a thread-safe sorted map backed
by sm.

static <T> SortedSet<T>
 synchronizedSortedSet(SortedSet<T> ss)

Returns a thread-safe sorted set backed by ss.

static <T> Collection<T>
 unmodifiableCollection(
 Collection<? extends T> c)

Returns an unmodifiable collection backed
by c.

static <T> List<T>
 unmodifiableList(List<? extends T> list)

Returns an unmodifiable list backed by list.

static <K, V> Map<K, V>
 unmodifiableMap(Map<? extends K,
 ? extends V> m)

Returns an unmodifiable map backed by m.

static <K, V> NavigableMap<K, V>
 unmodifiableNavigableMap(
 NavigableMap<K, ? extends V> nm)

Returns an unmodifiable navigable map
backed by nm. (Added by JDK 8.)

Table 18-15 The Algorithms Defined by Collections (continued)

18-ch18.indd 554 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 555

Pa
rt

 II

The set of methods that begins with unmodifiable returns views of the various
collections that cannot be modified. These will be useful when you want to grant some
process read—but not write—capabilities on a collection.

Collections defines three static variables: EMPTY_SET, EMPTY_LIST, and EMPTY_MAP.
All are immutable.

The following program demonstrates some of the algorithms. It creates and initializes a
linked list. The reverseOrder() method returns a Comparator that reverses the comparison
of Integer objects. The list elements are sorted according to this comparator and then are
displayed. Next, the list is randomized by calling shuffle(), and then its minimum and
maximum values are displayed.

// Demonstrate various algorithms.
import java.util.*;

class AlgorithmsDemo {
 public static void main(String args[]) {

 // Create and initialize linked list.
 LinkedList<Integer> ll = new LinkedList<Integer>();
 ll.add(-8);
 ll.add(20);
 ll.add(-20);
 ll.add(8);

 // Create a reverse order comparator.
 Comparator<Integer> r = Collections.reverseOrder();

 // Sort list by using the comparator.
 Collections.sort(ll, r);

 System.out.print("List sorted in reverse: ");
 for(int i : ll)
 System.out.print(i+ " ");

Method Description
static <T> NavigableSet<T>
 unmodifiableNavigableSet(
 NavigableSet<T> ns)

Returns an unmodifiable navigable set backed
by ns. (Added by JDK 8.)

static <T> Set<T>
 unmodifiableSet(Set<? extends T> s)

Returns an unmodifiable set backed by s.

static <K, V> SortedMap<K, V>
 unmodifiableSortedMap(SortedMap<K,
 ? extends V> sm)

Returns an unmodifiable sorted map backed
by sm.

static <T> SortedSet<T>
 unmodifiableSortedSet(SortedSet<T> ss)

Returns an unmodifiable sorted set backed
by ss.

Table 18-15 The Algorithms Defined by Collections (continued)

18-ch18.indd 555 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

556 PART II The Java Library

 System.out.println();

 // Shuffle list.
 Collections.shuffle(ll);

 // Display randomized list.
 System.out.print("List shuffled: ");
 for(int i : ll)
 System.out.print(i + " ");

 System.out.println();
 System.out.println("Minimum: " + Collections.min(ll));
 System.out.println("Maximum: " + Collections.max(ll));
 }
}

Output from this program is shown here:

 List sorted in reverse: 20 8 -8 -20
 List shuffled: 20 -20 8 -8
 Minimum: -20
 Maximum: 20

Notice that min() and max() operate on the list after it has been shuffled. Neither requires
a sorted list for its operation.

Arrays
The Arrays class provides various methods that are useful when working with arrays. These
methods help bridge the gap between collections and arrays. Each method defined by
Arrays is examined in this section.

The asList() method returns a List that is backed by a specified array. In other words,
both the list and the array refer to the same location. It has the following signature:

static <T> List asList(T... array)

Here, array is the array that contains the data.
The binarySearch() method uses a binary search to find a specified value. This method

must be applied to sorted arrays. Here are some of its forms. (Additional forms let you
search a subrange):

static int binarySearch(byte array[], byte value)
static int binarySearch(char array[], char value)
static int binarySearch(double array[], double value)
static int binarySearch(float array[], float value)
static int binarySearch(int array[], int value)
static int binarySearch(long array[], long value)
static int binarySearch(short array[], short value)
static int binarySearch(Object array[], Object value)
static <T> int binarySearch(T[] array, T value, Comparator<? super T> c)

18-ch18.indd 556 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 557

Pa
rt

 II

Here, array is the array to be searched, and value is the value to be located. The last two
forms throw a ClassCastException if array contains elements that cannot be compared (for
example, Double and StringBuffer) or if value is not compatible with the types in array. In
the last form, the Comparator c is used to determine the order of the elements in array. In
all cases, if value exists in array, the index of the element is returned. Otherwise, a negative
value is returned.

The copyOf() method returns a copy of an array and has the following forms:

static boolean[] copyOf(boolean[] source, int len)
static byte[] copyOf(byte[] source, int len)
static char[] copyOf(char[] source, int len)
static double[] copyOf(double[] source, int len)
static float[] copyOf(float[] source, int len)
static int[] copyOf(int[] source, int len)
static long[] copyOf(long[] source, int len)
static short[] copyOf(short[] source, int len)
static <T> T[] copyOf(T[] source, int len)
static <T,U> T[] copyOf(U[] source, int len, Class<? extends T[]> resultT)

The original array is specified by source, and the length of the copy is specified by len. If the
copy is longer than source, then the copy is padded with zeros (for numeric arrays), nulls
(for object arrays), or false (for boolean arrays). If the copy is shorter than source, then
the copy is truncated. In the last form, the type of resultT becomes the type of the array
returned. If len is negative, a NegativeArraySizeException is thrown. If source is null, a
NullPointerException is thrown. If resultT is incompatible with the type of source, an
ArrayStoreException is thrown.

The copyOfRange() method returns a copy of a range within an array and has the
following forms:

static boolean[] copyOfRange(boolean[] source, int start, int end)
static byte[] copyOfRange(byte[] source, int start, int end)
static char[] copyOfRange(char[] source, int start, int end)
static double[] copyOfRange(double[] source, int start, int end)
static float[] copyOfRange(float[] source, int start, int end)
static int[] copyOfRange(int[] source, int start, int end)
static long[] copyOfRange(long[] source, int start, int end)
static short[] copyOfRange(short[] source, int start, int end)
static <T> T[] copyOfRange(T[] source, int start, int end)
static <T,U> T[] copyOfRange(U[] source, int start, int end,
 Class<? extends T[]> resultT)

The original array is specified by source. The range to copy is specified by the indices
passed via start and end. The range runs from start to end – 1. If the range is longer
than source, then the copy is padded with zeros (for numeric arrays), nulls (for object
arrays), or false (for boolean arrays). In the last form, the type of resultT becomes the
type of the array returned. If start is negative or greater than the length of source, an
ArrayIndexOutOfBoundsException is thrown. If start is greater than end, an

18-ch18.indd 557 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

558 PART II The Java Library

IllegalArgumentException is thrown. If source is null, a NullPointerException is thrown. If
resultT is incompatible with the type of source, an ArrayStoreException is thrown.

The equals() method returns true if two arrays are equivalent. Otherwise, it returns
false. The equals() method has the following forms:

static boolean equals(boolean array1[], boolean array2 [])
static boolean equals(byte array1[], byte array2 [])
static boolean equals(char array1[], char array2 [])
static boolean equals(double array1[], double array2 [])
static boolean equals(float array1[], float array2 [])
static boolean equals(int array1[], int array2 [])
static boolean equals(long array1[], long array2 [])
static boolean equals(short array1[], short array2 [])
static boolean equals(Object array1[], Object array2 [])

Here, array1 and array2 are the two arrays that are compared for equality.
The deepEquals() method can be used to determine if two arrays, which might contain

nested arrays, are equal. It has this declaration:

static boolean deepEquals(Object[] a, Object[] b)

It returns true if the arrays passed in a and b contain the same elements. If a and b contain
nested arrays, then the contents of those nested arrays are also checked. It returns false if
the arrays, or any nested arrays, differ.

The fill() method assigns a value to all elements in an array. In other words, it fills an
array with a specified value. The fill() method has two versions. The first version, which has
the following forms, fills an entire array:

static void fill(boolean array[], boolean value)
static void fill(byte array[], byte value)
static void fill(char array[], char value)
static void fill(double array[], double value)
static void fill(float array[], float value)
static void fill(int array[], int value)
static void fill(long array[], long value)
static void fill(short array[], short value)
static void fill(Object array[], Object value)

Here, value is assigned to all elements in array. The second version of the fill() method
assigns a value to a subset of an array.

The sort() method sorts an array so that it is arranged in ascending order. The sort()
method has two versions. The first version, shown here, sorts the entire array:

static void sort(byte array[])
static void sort(char array[])
static void sort(double array[])
static void sort(float array[])
static void sort(int array[])
static void sort(long array[])

18-ch18.indd 558 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 559

Pa
rt

 II

static void sort(short array[])
static void sort(Object array[])
static <T> void sort(T array[], Comparator<? super T> c)

Here, array is the array to be sorted. In the last form, c is a Comparator that is used to order
the elements of array. The last two forms can throw a ClassCastException if elements of the
array being sorted are not comparable. The second version of sort() enables you to specify
a range within an array that you want to sort.

JDK 8 adds several new methods to Arrays. Perhaps the most important is parallelSort()
because it sorts, into ascending order, portions of an array in parallel and then merges the
results. This approach can greatly speed up sorting times. Like sort(), there are two basic
types of parallelSort(), each with several overloads. The first type sorts the entire array. It is
shown here:

static void parallelSort(byte array[])
static void parallelSort(char array[])
static void parallelSort(double array[])
static void parallelSort(float array[])
static void parallelSort(int array[])
static void parallelSort(long array[])
static void parallelSort(short array[])
static <T extends Comparable<? super T>> void parallelSort(T array[])
static <T> void parallelSort(T array[], Comparator<? super T> c)

Here, array is the array to be sorted. In the last form, c is a comparator that is used to order
the elements in the array. The last two forms can throw a ClassCastException if the
elements of the array being sorted are not comparable. The second version of parallelSort()
enables you to specify a range within the array that you want to sort.

JDK 8 gives Arrays support for spliterators by including the spliterator() method. It has
two basic forms. The first type returns a spliterator to an entire array. It is shown here:

static Spliterator.OfDouble spliterator(double array[])
static Spliterator.OfInt spliterator(int array[])
static Spliterator.OfLong spliterator(long array[])
static <T> Spliterator spliterator(T array[])

Here, array is the array that the spliterator will cycle through. The second version of
spliterator() enables you to specify a range to iterate within the array.

Beginning with JDK 8, Arrays supports the new Stream interface (see Chapter 29) by
including the stream() method. It has two forms. The first is shown here:

static DoubleStream stream(double array[])
static IntStream stream(int array[])
static LongStream stream(long array[])
static <T> Stream stream(T array[])

Here, array is the array to which the stream will refer. The second version of stream()
enables you to specify a range within the array.

18-ch18.indd 559 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

560 PART II The Java Library

In addition to those just discussed, JDK 8 adds three other new methods. Two are
related: setAll() and parallelSetAll(). Both assign values to all of the elements, but
parallelSetAll() works in parallel. Here is an example of each:

static void setAll(double array[],
 IntToDoubleFunction<? extends T> genVal)

static void parallelSetAll(double array[],
 IntToDoubleFunction<? extends T> genVal)

Several overloads exist for each of these that handle types int, long, and generic.
Finally, JDK 8 includes one of the more intriguing additions to Arrays. It is called

parallelPrefix(), and it modifies an array so that each element contains the cumulative
result of an operation applied to all previous elements. For example, if the operation is
multiplication, then on return, the array elements will contain the values associated with
the running product of the original values. It has several overloads. Here is one example:

static void parallelPrefix(double array[], DoubleBinaryOperator func)

Here, array is the array being acted upon, and func specifies the operation applied.
(DoubleBinaryOperator is a functional interface defined in java.util.function.) Many other
versions are provided, including those that operate on types int, long, and generic, and
those that let you specify a range within the array on which to operate.

Arrays also provides toString() and hashCode() for the various types of arrays. In
addition, deepToString() and deepHashCode() are provided, which operate effectively on
arrays that contain nested arrays.

The following program illustrates how to use some of the methods of the Arrays class:

// Demonstrate Arrays
import java.util.*;

class ArraysDemo {
 public static void main(String args[]) {

 // Allocate and initialize array.
 int array[] = new int[10];
 for(int i = 0; i < 10; i++)
 array[i] = -3 * i;

 // Display, sort, and display the array.
 System.out.print("Original contents: ");
 display(array);
 Arrays.sort(array);
 System.out.print("Sorted: ");
 display(array);

 // Fill and display the array.
 Arrays.fill(array, 2, 6, -1);
 System.out.print("After fill(): ");
 display(array);

 // Sort and display the array.

18-ch18.indd 560 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 561

Pa
rt

 II

 Arrays.sort(array);
 System.out.print("After sorting again: ");
 display(array);

 // Binary search for -9.
 System.out.print("The value -9 is at location ");
 int index =
 Arrays.binarySearch(array, -9);

 System.out.println(index);
 }

 static void display(int array[]) {
 for(int i: array)
 System.out.print(i + " ");

 System.out.println();
 }
}

The following is the output from this program:

 Original contents: 0 -3 -6 -9 -12 -15 -18 -21 -24 -27
 Sorted: -27 -24 -21 -18 -15 -12 -9 -6 -3 0
 After fill(): -27 -24 -1 -1 -1 -1 -9 -6 -3 0
 After sorting again: -27 -24 -9 -6 -3 -1 -1 -1 -1 0
 The value -9 is at location 2

The Legacy Classes and Interfaces
As explained at the start of this chapter, early versions of java.util did not include the
Collections Framework. Instead, it defined several classes and an interface that provided
an ad hoc method of storing objects. When collections were added (by J2SE 1.2), several
of the original classes were reengineered to support the collection interfaces. Thus, they
are now technically part of the Collections Framework. However, where a modern
collection duplicates the functionality of a legacy class, you will usually want to use the
newer collection class. In general, the legacy classes are supported because there is still
code that uses them.

One other point: none of the modern collection classes described in this chapter are
synchronized, but all the legacy classes are synchronized. This distinction may be important
in some situations. Of course, you can easily synchronize collections by using one of the
algorithms provided by Collections.

The legacy classes defined by java.util are shown here:

Dictionary Hashtable Properties Stack Vector

There is one legacy interface called Enumeration. The following sections examine
Enumeration and each of the legacy classes, in turn.

18-ch18.indd 561 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

562 PART II The Java Library

The Enumeration Interface
The Enumeration interface defines the methods by which you can enumerate (obtain one at
a time) the elements in a collection of objects. This legacy interface has been superseded
by Iterator. Although not deprecated, Enumeration is considered obsolete for new code.
However, it is used by several methods defined by the legacy classes (such as Vector and
Properties) and is used by several other API classes. Because it is still in use, it was retrofitted
for generics by JDK 5. It has this declaration:

interface Enumeration<E>

where E specifies the type of element being enumerated.
Enumeration specifies the following two methods:

boolean hasMoreElements()
E nextElement()

When implemented, hasMoreElements() must return true while there are still more elements
to extract, and false when all the elements have been enumerated. nextElement() returns
the next object in the enumeration. That is, each call to nextElement() obtains the next
object in the enumeration. It throws NoSuchElementException when the enumeration is
complete.

Vector
Vector implements a dynamic array. It is similar to ArrayList, but with two differences: Vector is
synchronized, and it contains many legacy methods that duplicate the functionality of methods
defined by the Collections Framework. With the advent of collections, Vector was reengineered
to extend AbstractList and to implement the List interface. With the release of JDK 5, it was
retrofitted for generics and reengineered to implement Iterable. This means that Vector is
fully compatible with collections, and a Vector can have its contents iterated by the enhanced
for loop.

Vector is declared like this:

class Vector<E>

Here, E specifies the type of element that will be stored.
Here are the Vector constructors:

Vector()
Vector(int size)
Vector(int size, int incr)
Vector(Collection<? extends E> c)

The first form creates a default vector, which has an initial size of 10. The second form
creates a vector whose initial capacity is specified by size. The third form creates a vector
whose initial capacity is specified by size and whose increment is specified by incr. The
increment specifies the number of elements to allocate each time that a vector is resized
upward. The fourth form creates a vector that contains the elements of collection c.

18-ch18.indd 562 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 563

Pa
rt

 II

All vectors start with an initial capacity. After this initial capacity is reached, the next
time that you attempt to store an object in the vector, the vector automatically allocates
space for that object plus extra room for additional objects. By allocating more than just
the required memory, the vector reduces the number of allocations that must take place
as the vector grows. This reduction is important, because allocations are costly in terms of
time. The amount of extra space allocated during each reallocation is determined by the
increment that you specify when you create the vector. If you don’t specify an increment,
the vector’s size is doubled by each allocation cycle.

Vector defines these protected data members:

int capacityIncrement;
int elementCount;
Object[] elementData;

The increment value is stored in capacityIncrement. The number of elements currently in
the vector is stored in elementCount. The array that holds the vector is stored in
elementData.

In addition to the collections methods specified by List, Vector defines several legacy
methods, which are summarized in Table 18-16.

Because Vector implements List, you can use a vector just like you use an ArrayList
instance. You can also manipulate one using its legacy methods. For example, after you
instantiate a Vector, you can add an element to it by calling addElement(). To obtain the
element at a specific location, call elementAt(). To obtain the first element in the vector,
call firstElement(). To retrieve the last element, call lastElement(). You can obtain the
index of an element by using indexOf() and lastIndexOf(). To remove an element, call
removeElement() or removeElementAt().

Method Description
void addElement(E element) The object specified by element is added to the vector.

int capacity() Returns the capacity of the vector.

Object clone() Returns a duplicate of the invoking vector.

boolean contains(Object element) Returns true if element is contained by the vector, and
returns false if it is not.

void copyInto(Object array[]) The elements contained in the invoking vector are
copied into the array specified by array.

E elementAt(int index) Returns the element at the location specified by index.

Enumeration<E> elements() Returns an enumeration of the elements in the vector.

void ensureCapacity(int size) Sets the minimum capacity of the vector to size.

E firstElement() Returns the first element in the vector.

int indexOf(Object element) Returns the index of the first occurrence of element. If
the object is not in the vector, –1 is returned.

Table 18-16 The Legacy Methods Defined by Vector

18-ch18.indd 563 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

564 PART II The Java Library

Table 18-16 The Legacy Methods Defined by Vector (continued)

Method Description
int indexOf(Object element, int start) Returns the index of the first occurrence of element at

or after start. If the object is not in that portion of the
vector, –1 is returned.

void insertElementAt(E element,
 int index)

Adds element to the vector at the location specified
by index.

boolean isEmpty() Returns true if the vector is empty, and returns false if
it contains one or more elements.

E lastElement() Returns the last element in the vector.

int lastIndexOf(Object element) Returns the index of the last occurrence of element. If
the object is not in the vector, –1 is returned.

int lastIndexOf(Object element,
 int start)

Returns the index of the last occurrence of element
before start. If the object is not in that portion of the
vector, –1 is returned.

void removeAllElements() Empties the vector. After this method executes, the
size of the vector is zero.

boolean removeElement(Object element) Removes element from the vector. If more than one
instance of the specified object exists in the vector,
then it is the first one that is removed. Returns true if
successful and false if the object is not found.

void removeElementAt(int index) Removes the element at the location specified by index.

void setElementAt(E element,
 int index)

The location specified by index is assigned element.

void setSize(int size) Sets the number of elements in the vector to size. If the
new size is less than the old size, elements are lost. If
the new size is larger than the old size, null elements
are added.

int size() Returns the number of elements currently in the vector.

String toString() Returns the string equivalent of the vector.

void trimToSize() Sets the vector’s capacity equal to the number of
elements that it currently holds.

The following program uses a vector to store various types of numeric objects. It
demonstrates several of the legacy methods defined by Vector. It also demonstrates the
Enumeration interface.

// Demonstrate various Vector operations.
import java.util.*;

class VectorDemo {
 public static void main(String args[]) {

18-ch18.indd 564 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 565

Pa
rt

 II

 // initial size is 3, increment is 2
 Vector<Integer> v = new Vector<Integer>(3, 2);

 System.out.println("Initial size: " + v.size());
 System.out.println("Initial capacity: " +
 v.capacity());

 v.addElement(1);
 v.addElement(2);
 v.addElement(3);
 v.addElement(4);

 System.out.println("Capacity after four additions: " +
 v.capacity());

 v.addElement(5);
 System.out.println("Current capacity: " +
 v.capacity());

 v.addElement(6);
 v.addElement(7);

 System.out.println("Current capacity: " +
 v.capacity());

 v.addElement(9);
 v.addElement(10);

 System.out.println("Current capacity: " +
 v.capacity());

 v.addElement(11);
 v.addElement(12);

 System.out.println("First element: " + v.firstElement());
 System.out.println("Last element: " + v.lastElement());

 if(v.contains(3))
 System.out.println("Vector contains 3.");

 // Enumerate the elements in the vector.
 Enumeration<Integer> vEnum = v.elements();

 System.out.println("\nElements in vector:");
 while(vEnum.hasMoreElements())
 System.out.print(vEnum.nextElement() + " ");
 System.out.println();
 }
}

18-ch18.indd 565 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

566 PART II The Java Library

The output from this program is shown here:

 Initial size: 0
 Initial capacity: 3
 Capacity after four additions: 5
 Current capacity: 5
 Current capacity: 7
 Current capacity: 9
 First element: 1
 Last element: 12
 Vector contains 3.

 Elements in vector:
 1 2 3 4 5 6 7 9 10 11 12

Instead of relying on an enumeration to cycle through the objects (as the preceding
program does), you can use an iterator. For example, the following iterator-based code can
be substituted into the program:

// Use an iterator to display contents.
Iterator<Integer> vItr = v.iterator();

System.out.println("\nElements in vector:");
while(vItr.hasNext())
 System.out.print(vItr.next() + " ");
System.out.println();

You can also use a for-each for loop to cycle through a Vector, as the following version
of the preceding code shows:

// Use an enhanced for loop to display contents
System.out.println("\nElements in vector:");
for(int i : v)
 System.out.print(i + " ");

System.out.println();

Because the Enumeration interface is not recommended for new code, you will usually
use an iterator or a for-each for loop to enumerate the contents of a vector. Of course,
legacy code will employ Enumeration. Fortunately, enumerations and iterators work in
nearly the same manner.

Stack
Stack is a subclass of Vector that implements a standard last-in, first-out stack. Stack only
defines the default constructor, which creates an empty stack. With the release of JDK 5,
Stack was retrofitted for generics and is declared as shown here:

class Stack<E>

Here, E specifies the type of element stored in the stack.
Stack includes all the methods defined by Vector and adds several of its own, shown in

Table 18-17.

18-ch18.indd 566 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 567

Pa
rt

 II

To put an object on the top of the stack, call push(). To remove and return the top
element, call pop(). You can use peek() to return, but not remove, the top object. An
EmptyStackException is thrown if you call pop() or peek() when the invoking stack is
empty. The empty() method returns true if nothing is on the stack. The search() method
determines whether an object exists on the stack and returns the number of pops that are
required to bring it to the top of the stack. Here is an example that creates a stack, pushes
several Integer objects onto it, and then pops them off again:

// Demonstrate the Stack class.
import java.util.*;

class StackDemo {
 static void showpush(Stack<Integer> st, int a) {
 st.push(a);
 System.out.println("push(" + a + ")");
 System.out.println("stack: " + st);
 }

 static void showpop(Stack<Integer> st) {
 System.out.print("pop -> ");
 Integer a = st.pop();
 System.out.println(a);
 System.out.println("stack: " + st);
 }

 public static void main(String args[]) {
 Stack<Integer> st = new Stack<Integer>();

 System.out.println("stack: " + st);
 showpush(st, 42);
 showpush(st, 66);
 showpush(st, 99);
 showpop(st);
 showpop(st);
 showpop(st);

Table 18-17 The Methods Defined by Stack

Method Description
boolean empty() Returns true if the stack is empty, and returns false if the stack

contains elements.

E peek() Returns the element on the top of the stack, but does not remove it.

E pop() Returns the element on the top of the stack, removing it in the
process.

E push(E element) Pushes element onto the stack. element is also returned.

int search(Object element) Searches for element in the stack. If found, its offset from the top of
the stack is returned. Otherwise, –1 is returned.

18-ch18.indd 567 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

568 PART II The Java Library

 try {
 showpop(st);
 } catch (EmptyStackException e) {
 System.out.println("empty stack");
 }
 }
}

The following is the output produced by the program; notice how the exception handler
for EmptyStackException is caught so that you can gracefully handle a stack underflow:

 stack: []
 push(42)
 stack: [42]
 push(66)
 stack: [42, 66]
 push(99)
 stack: [42, 66, 99]
 pop -> 99
 stack: [42, 66]
 pop -> 66
 stack: [42]
 pop -> 42
 stack: []
 pop -> empty stack

One other point: although Stack is not deprecated, ArrayDeque is a better choice.

Dictionary
Dictionary is an abstract class that represents a key/value storage repository and operates
much like Map. Given a key and value, you can store the value in a Dictionary object. Once
the value is stored, you can retrieve it by using its key. Thus, like a map, a dictionary can be
thought of as a list of key/value pairs. Although not currently deprecated, Dictionary is
classified as obsolete, because it is fully superseded by Map. However, Dictionary is still in
use and thus is discussed here.

With the advent of JDK 5, Dictionary was made generic. It is declared as shown here:

class Dictionary<K, V>

Here, K specifies the type of keys, and V specifies the type of values. The abstract methods
defined by Dictionary are listed in Table 18-18.

To add a key and a value, use the put() method. Use get() to retrieve the value of a
given key. The keys and values can each be returned as an Enumeration by the keys() and
elements() methods, respectively. The size() method returns the number of key/value
pairs stored in a dictionary, and isEmpty() returns true when the dictionary is empty. You
can use the remove() method to delete a key/value pair.

REMEMBER The Dictionary class is obsolete. You should implement the Map interface to obtain
key/value storage functionality.

18-ch18.indd 568 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 569

Pa
rt

 II

Hashtable
Hashtable was part of the original java.util and is a concrete implementation of a
Dictionary. However, with the advent of collections, Hashtable was reengineered to also
implement the Map interface. Thus, Hashtable is integrated into the Collections
Framework. It is similar to HashMap, but is synchronized.

Like HashMap, Hashtable stores key/value pairs in a hash table. However, neither keys
nor values can be null. When using a Hashtable, you specify an object that is used as a key,
and the value that you want linked to that key. The key is then hashed, and the resulting
hash code is used as the index at which the value is stored within the table.

Hashtable was made generic by JDK 5. It is declared like this:

class Hashtable<K, V>

Here, K specifies the type of keys, and V specifies the type of values.
A hash table can only store objects that override the hashCode() and equals() methods

that are defined by Object. The hashCode() method must compute and return the hash
code for the object. Of course, equals() compares two objects. Fortunately, many of Java’s
built-in classes already implement the hashCode() method. For example, the most
common type of Hashtable uses a String object as the key. String implements both
hashCode() and equals().

The Hashtable constructors are shown here:

Hashtable()
Hashtable(int size)
Hashtable(int size, float fillRatio)
Hashtable(Map<? extends K, ? extends V> m)

Method Purpose
Enumeration<V> elements() Returns an enumeration of the values contained in the

dictionary.

V get(Object key) Returns the object that contains the value associated
with key. If key is not in the dictionary, a null object is
returned.

boolean isEmpty() Returns true if the dictionary is empty, and returns
false if it contains at least one key.

Enumeration<K> keys() Returns an enumeration of the keys contained in the
dictionary.

V put(K key, V value) Inserts a key and its value into the dictionary. Returns
null if key is not already in the dictionary; returns the
previous value associated with key if key is already in the
dictionary.

V remove(Object key) Removes key and its value. Returns the value associated
with key. If key is not in the dictionary, a null is returned.

int size() Returns the number of entries in the dictionary.

Table 18-18 The Abstract Methods Defined by Dictionary

18-ch18.indd 569 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

570 PART II The Java Library

The first version is the default constructor. The second version creates a hash table that
has an initial size specified by size. (The default size is 11.) The third version creates a hash
table that has an initial size specified by size and a fill ratio specified by fillRatio. This ratio
must be between 0.0 and 1.0, and it determines how full the hash table can be before it is
resized upward. Specifically, when the number of elements is greater than the capacity of
the hash table multiplied by its fill ratio, the hash table is expanded. If you do not specify a
fill ratio, then 0.75 is used. Finally, the fourth version creates a hash table that is initialized
with the elements in m. The default load factor of 0.75 is used.

In addition to the methods defined by the Map interface, which Hashtable now
implements, Hashtable defines the legacy methods listed in Table 18-19. Several methods
throw NullPointerException if an attempt is made to use a null key or value.

Method Description
void clear() Resets and empties the hash table.

Object clone() Returns a duplicate of the invoking object.

boolean contains(Object value) Returns true if some value equal to value exists within
the hash table. Returns false if the value isn’t found.

boolean containsKey(Object key) Returns true if some key equal to key exists within the
hash table. Returns false if the key isn’t found.

boolean containsValue(Object value) Returns true if some value equal to value exists within
the hash table. Returns false if the value isn’t found.

Enumeration<V> elements() Returns an enumeration of the values contained in
the hash table.

V get(Object key) Returns the object that contains the value associated
with key. If key is not in the hash table, a null object is
returned.

boolean isEmpty() Returns true if the hash table is empty; returns false if
it contains at least one key.

Enumeration<K> keys() Returns an enumeration of the keys contained in the
hash table.

V put(K key, V value) Inserts a key and a value into the hash table. Returns
null if key isn’t already in the hash table; returns the
previous value associated with key if key is already in the
hash table.

void rehash() Increases the size of the hash table and rehashes all of
its keys.

V remove(Object key) Removes key and its value. Returns the value associated
with key. If key is not in the hash table, a null object is
returned.

int size() Returns the number of entries in the hash table.

String toString() Returns the string equivalent of a hash table.

Table 18-19 The Legacy Methods Defined by Hashtable

18-ch18.indd 570 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 571

Pa
rt

 II

The following example reworks the bank account program, shown earlier, so that it uses
a Hashtable to store the names of bank depositors and their current balances:

// Demonstrate a Hashtable.
import java.util.*;

class HTDemo {
 public static void main(String args[]) {
 Hashtable<String, Double> balance =
 new Hashtable<String, Double>();

 Enumeration<String> names;
 String str;
 double bal;

 balance.put("John Doe", 3434.34);
 balance.put("Tom Smith", 123.22);
 balance.put("Jane Baker", 1378.00);
 balance.put("Tod Hall", 99.22);
 balance.put("Ralph Smith", -19.08);

 // Show all balances in hashtable.
 names = balance.keys();
 while(names.hasMoreElements()) {
 str = names.nextElement();
 System.out.println(str + ": " +
 balance.get(str));
 }

 System.out.println();

 // Deposit 1,000 into John Doe's account.
 bal = balance.get("John Doe");
 balance.put("John Doe", bal+1000);
 System.out.println("John Doe's new balance: " +
 balance.get("John Doe"));
 }
}

The output from this program is shown here:

 Todd Hall: 99.22
 Ralph Smith: -19.08
 John Doe: 3434.34
 Jane Baker: 1378.0
 Tom Smith: 123.22

 John Doe's new balance: 4434.34

One important point: Like the map classes, Hashtable does not directly support
iterators. Thus, the preceding program uses an enumeration to display the contents of
balance. However, you can obtain set-views of the hash table, which permits the use of
iterators. To do so, you simply use one of the collection-view methods defined by Map, such

18-ch18.indd 571 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

572 PART II The Java Library

as entrySet() or keySet(). For example, you can obtain a set-view of the keys and cycle
through them using either an iterator or an enhanced for loop. Here is a reworked version
of the program that shows this technique:

// Use iterators with a Hashtable.
import java.util.*;

class HTDemo2 {
 public static void main(String args[]) {
 Hashtable<String, Double> balance =
 new Hashtable<String, Double>();

 String str;
 double bal;

 balance.put("John Doe", 3434.34);
 balance.put("Tom Smith", 123.22);
 balance.put("Jane Baker", 1378.00);
 balance.put("Tod Hall", 99.22);
 balance.put("Ralph Smith", -19.08);

 // Show all balances in hashtable.
 // First, get a set view of the keys.
 Set<String> set = balance.keySet();

 // Get an iterator.
 Iterator<String> itr = set.iterator();
 while(itr.hasNext()) {
 str = itr.next();
 System.out.println(str + ": " +
 balance.get(str));

 }

 System.out.println();

 // Deposit 1,000 into John Doe's account.
 bal = balance.get("John Doe");
 balance.put("John Doe", bal+1000);
 System.out.println("John Doe's new balance: " +
 balance.get("John Doe"));
 }
}

Properties
Properties is a subclass of Hashtable. It is used to maintain lists of values in which the key
is a String and the value is also a String. The Properties class is used by some other Java
classes. For example, it is the type of object returned by System.getProperties() when
obtaining environmental values. Although the Properties class, itself, is not generic, several
of its methods are.

Properties defines the following instance variable:

Properties defaults;

18-ch18.indd 572 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 573

Pa
rt

 II

This variable holds a default property list associated with a Properties object. Properties
defines these constructors:

Properties()
Properties(Properties propDefault)

The first version creates a Properties object that has no default values. The second creates
an object that uses propDefault for its default values. In both cases, the property list is empty.

In addition to the methods that Properties inherits from Hashtable, Properties defines
the methods listed in Table 18-20. Properties also contains one deprecated method: save().
This was replaced by store() because save() did not handle errors correctly.

Method Description
String getProperty(String key) Returns the value associated with key. A null object

is returned if key is neither in the list nor in the
default property list.

String getProperty(String key,
 String defaultProperty)

Returns the value associated with key. defaultProperty
is returned if key is neither in the list nor in the
default property list.

void list(PrintStream streamOut) Sends the property list to the output stream linked
to streamOut.

void list(PrintWriter streamOut) Sends the property list to the output stream linked
to streamOut.

void load(InputStream streamIn)
 throws IOException

Inputs a property list from the input stream linked
to streamIn.

void load(Reader streamIn)
 throws IOException

Inputs a property list from the input stream linked
to streamIn.

void loadFromXML(InputStream streamIn)
 throws IOException,
 InvalidPropertiesFormatException

Inputs a property list from an XML document
linked to streamIn.

Enumeration<?> propertyNames() Returns an enumeration of the keys. This includes
those keys found in the default property list, too.

Object setProperty(String key, String value) Associates value with key. Returns the previous
value associated with key, or returns null if no such
association exists.

void store(OutputStream streamOut,
 String description)
 throws IOException

After writing the string specified by description, the
property list is written to the output stream linked
to streamOut.

void store(Writer streamOut,
 String description)
 throws IOException

After writing the string specified by description, the
property list is written to the output stream linked
to streamOut.

void storeToXML(OutputStream streamOut,
 String description)
 throws IOException

After writing the string specified by description,
the property list is written to the XML document
linked to streamOut.

Table 18-20 The Methods Defined by Properties

18-ch18.indd 573 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

574 PART II The Java Library

One useful capability of the Properties class is that you can specify a default property
that will be returned if no value is associated with a certain key. For example, a default
value can be specified along with the key in the getProperty() method—such as
getProperty("name" ,"default value"). If the "name" value is not found, then "default
value" is returned. When you construct a Properties object, you can pass another instance
of Properties to be used as the default properties for the new instance. In this case, if you
call getProperty("foo") on a given Properties object, and "foo" does not exist, Java looks
for "foo" in the default Properties object. This allows for arbitrary nesting of levels of
default properties.

The following example demonstrates Properties. It creates a property list in which the
keys are the names of states and the values are the names of their capitals. Notice that the
attempt to find the capital for Florida includes a default value.

// Demonstrate a Property list.
import java.util.*;

class PropDemo {
 public static void main(String args[]) {
 Properties capitals = new Properties();

 capitals.put("Illinois", "Springfield");
 capitals.put("Missouri", "Jefferson City");
 capitals.put("Washington", "Olympia");
 capitals.put("California", "Sacramento");
 capitals.put("Indiana", "Indianapolis");

 // Get a set-view of the keys.
 Set<?> states = capitals.keySet();

 // Show all of the states and capitals.
 for(Object name : states)
 System.out.println("The capital of " +
 name + " is " +
 capitals.getProperty((String)name)
 + ".");

 System.out.println();

 // Look for state not in list -- specify default.
 String str = capitals.getProperty("Florida", "Not Found");
 System.out.println("The capital of Florida is " + str + ".");
 }
}

Method Description
void storeToXML(OutputStream streamOut,
 String description,
 String enc)

The property list and the string specified by
description is written to the XML document
linked to streamOut using the specified character
encoding.

Set<String> stringPropertyNames() Returns a set of keys.

Table 18-20 The Methods Defined by Properties (continued)

18-ch18.indd 574 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 575

Pa
rt

 II

The output from this program is shown here:

 The capital of Missouri is Jefferson City.
 The capital of Illinois is Springfield.
 The capital of Indiana is Indianapolis.
 The capital of California is Sacramento.
 The capital of Washington is Olympia.

 The capital of Florida is Not Found.

Since Florida is not in the list, the default value is used.
Although it is perfectly valid to use a default value when you call getProperty(), as

the preceding example shows, there is a better way of handling default values for most
applications of property lists. For greater flexibility, specify a default property list when
constructing a Properties object. The default list will be searched if the desired key is not
found in the main list. For example, the following is a slightly reworked version of the
preceding program, with a default list of states specified. Now, when Florida is sought,
it will be found in the default list:

// Use a default property list.
import java.util.*;

class PropDemoDef {
 public static void main(String args[]) {
 Properties defList = new Properties();
 defList.put("Florida", "Tallahassee");
 defList.put("Wisconsin", "Madison");

 Properties capitals = new Properties(defList);

 capitals.put("Illinois", "Springfield");
 capitals.put("Missouri", "Jefferson City");
 capitals.put("Washington", "Olympia");
 capitals.put("California", "Sacramento");
 capitals.put("Indiana", "Indianapolis");

 // Get a set-view of the keys.
 Set<?> states = capitals.keySet();

 // Show all of the states and capitals.
 for(Object name : states)
 System.out.println("The capital of " +
 name + " is " +
 capitals.getProperty((String)name)
 + ".");

 System.out.println();

 // Florida will now be found in the default list.
 String str = capitals.getProperty("Florida");
 System.out.println("The capital of Florida is "
 + str + ".");
 }
}

18-ch18.indd 575 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

576 PART II The Java Library

Using store() and load()
One of the most useful aspects of Properties is that the information contained in a
Properties object can be easily stored to or loaded from disk with the store() and load()
methods. At any time, you can write a Properties object to a stream or read it back. This
makes property lists especially convenient for implementing simple databases. For example,
the following program uses a property list to create a simple computerized telephone book
that stores names and phone numbers. To find a person’s number, you enter his or her
name. The program uses the store() and load() methods to store and retrieve the list.
When the program executes, it first tries to load the list from a file called phonebook.dat. If
this file exists, the list is loaded. You can then add to the list. If you do, the new list is saved
when you terminate the program. Notice how little code is required to implement a small,
but functional, computerized phone book.

/* A simple telephone number database that uses
 a property list. */
import java.io.*;
import java.util.*;

class Phonebook {
 public static void main(String args[])
 throws IOException
 {
 Properties ht = new Properties();
 BufferedReader br =
 new BufferedReader(new InputStreamReader(System.in));
 String name, number;
 FileInputStream fin = null;
 boolean changed = false;

 // Try to open phonebook.dat file.
 try {
 fin = new FileInputStream("phonebook.dat");
 } catch(FileNotFoundException e) {
 // ignore missing file
 }

 /* If phonebook file already exists,
 load existing telephone numbers. */
 try {
 if(fin != null) {
 ht.load(fin);
 fin.close();
 }
 } catch(IOException e) {
 System.out.println("Error reading file.");
 }

 // Let user enter new names and numbers.
 do {
 System.out.println("Enter new name" +
 " ('quit' to stop): ");

18-ch18.indd 576 14/02/14 5:08 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 18 java.util Part 1: The Collections Framework 577

Pa
rt

 II

 name = br.readLine();
 if(name.equals("quit")) continue;

 System.out.println("Enter number: ");
 number = br.readLine();

 ht.put(name, number);
 changed = true;
 } while(!name.equals("quit"));

 // If phone book data has changed, save it.
 if(changed) {
 FileOutputStream fout = new FileOutputStream("phonebook.dat");

 ht.store(fout, "Telephone Book");
 fout.close();
 }

 // Look up numbers given a name.
 do {
 System.out.println("Enter name to find" +
 " ('quit' to quit): ");
 name = br.readLine();
 if(name.equals("quit")) continue;

 number = (String) ht.get(name);
 System.out.println(number);
 } while(!name.equals("quit"));
 }
}

Parting Thoughts on Collections
The Collections Framework gives you, the programmer, a powerful set of well-engineered
solutions to some of programming’s most common tasks. Consider using a collection the
next time that you need to store and retrieve information. Remember, collections need not
be reserved for only the “large jobs,” such as corporate databases, mailing lists, or inventory
systems. They are also effective when applied to smaller jobs. For example, a TreeMap might
make an excellent collection to hold the directory structure of a set of files. A TreeSet could
be quite useful for storing project-management information. Frankly, the types of problems
that will benefit from a collections-based solution are limited only by your imagination. One
last point: In Chapter 29, the new stream API is discussed. Because streams are now
integrated with collections, consider using a stream when operating on a collection.

18-ch18.indd 577 14/02/14 5:08 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

19
CHAPTER

 579

java.util Part 2:
More Utility Classes

This chapter continues our discussion of java.util by examining those classes and interfaces
that are not part of the Collections Framework. These include classes that tokenize strings,
work with dates, compute random numbers, bundle resources, and observe events. Also
covered are the Formatter and Scanner classes which make it easy to write and read formatted
data, and the new Optional class, which makes it easier to handle situations in which a value
may be absent. Finally, the subpackages of java.util are summarized at the end of this chapter.
Of particular interest is java.util.function, which defines several standard functional interfaces.

StringTokenizer
The processing of text often consists of parsing a formatted input string. Parsing is the
division of text into a set of discrete parts, or tokens, which in a certain sequence can convey
a semantic meaning. The StringTokenizer class provides the first step in this parsing process,
often called the lexer (lexical analyzer) or scanner. StringTokenizer implements the
Enumeration interface. Therefore, given an input string, you can enumerate the individual
tokens contained in it using StringTokenizer.

To use StringTokenizer, you specify an input string and a string that contains delimiters.
Delimiters are characters that separate tokens. Each character in the delimiters string is
considered a valid delimiter—for example, ",;:" sets the delimiters to a comma, semicolon,
and colon. The default set of delimiters consists of the whitespace characters: space, tab,
form feed, newline, and carriage return.

The StringTokenizer constructors are shown here:

StringTokenizer(String str)
StringTokenizer(String str, String delimiters)
StringTokenizer(String str, String delimiters, boolean delimAsToken)

In all versions, str is the string that will be tokenized. In the first version, the default
delimiters are used. In the second and third versions, delimiters is a string that specifies the
delimiters. In the third version, if delimAsToken is true, then the delimiters are also returned

19-ch19.indd 579 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

580 PART II The Java Library

as tokens when the string is parsed. Otherwise, the delimiters are not returned. Delimiters
are not returned as tokens by the first two forms.

Once you have created a StringTokenizer object, the nextToken() method is used to extract
consecutive tokens. The hasMoreTokens() method returns true while there are more tokens
to be extracted. Since StringTokenizer implements Enumeration, the hasMoreElements()
and nextElement() methods are also implemented, and they act the same as hasMoreTokens()
and nextToken(), respectively. The StringTokenizer methods are shown in Table 19-1.

Here is an example that creates a StringTokenizer to parse "key=value" pairs.
Consecutive sets of "key=value" pairs are separated by a semicolon.

// Demonstrate StringTokenizer.
import java.util.StringTokenizer;

class STDemo {
 static String in = "title=Java: The Complete Reference;" +
 "author=Schildt;" +
 "publisher=McGraw-Hill;" +
 "copyright=2014";

 public static void main(String args[]) {
 StringTokenizer st = new StringTokenizer(in, "=;");

 while(st.hasMoreTokens()) {
 String key = st.nextToken();
 String val = st.nextToken();
 System.out.println(key + "\t" + val);
 }
 }
}

The output from this program is shown here:

 title Java: The Complete Reference
 author Schildt
 publisher McGraw-Hill
 copyright 2014

Table 19-1 The Methods Defined by StringTokenizer

Method Description
int countTokens() Using the current set of delimiters, the method determines

the number of tokens left to be parsed and returns the result.

boolean hasMoreElements() Returns true if one or more tokens remain in the string and
returns false if there are none.

boolean hasMoreTokens() Returns true if one or more tokens remain in the string and
returns false if there are none.

Object nextElement() Returns the next token as an Object.

String nextToken() Returns the next token as a String.

String nextToken(String delimiters) Returns the next token as a String and sets the delimiters
string to that specified by delimiters.

19-ch19.indd 580 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 581

Pa
rt

 II

BitSet
A BitSet class creates a special type of array that holds bit values in the form of boolean
values. This array can increase in size as needed. This makes it similar to a vector of bits.
The BitSet constructors are shown here:

BitSet()
BitSet(int size)

The first version creates a default object. The second version allows you to specify its initial
size (that is, the number of bits that it can hold). All bits are initialized to false.

BitSet defines the methods listed in Table 19-2.

Table 19-2 The Methods Defined by BitSet

Method Description
void and(BitSet bitSet) ANDs the contents of the invoking BitSet object with

those specified by bitSet. The result is placed into the
invoking object.

void andNot(BitSet bitSet) For each set bit in bitSet, the corresponding bit in the
invoking BitSet is cleared.

int cardinality() Returns the number of set bits in the invoking object.

void clear() Zeros all bits.

void clear(int index) Zeros the bit specified by index.

void clear(int startIndex, int endIndex) Zeros the bits from startIndex to endIndex –1.

Object clone() Duplicates the invoking BitSet object.

boolean equals(Object bitSet) Returns true if the invoking bit set is equivalent to the one
passed in bitSet. Otherwise, the method returns false.

void flip(int index) Reverses the bit specified by index.

void flip(int startIndex, int endIndex) Reverses the bits from startIndex to endIndex –1.

boolean get(int index) Returns the current state of the bit at the specified index.

BitSet get(int startIndex, int endIndex) Returns a BitSet that consists of the bits from startIndex to
endIndex –1. The invoking object is not changed.

int hashCode() Returns the hash code for the invoking object.

boolean intersects(BitSet bitSet) Returns true if at least one pair of corresponding bits
within the invoking object and bitSet are set.

boolean isEmpty() Returns true if all bits in the invoking object are cleared.

int length() Returns the number of bits required to hold the contents
of the invoking BitSet. This value is determined by the
location of the last set bit.

int nextClearBit(int startIndex) Returns the index of the next cleared bit (that is, the next
false bit), starting from the index specified by startIndex.

19-ch19.indd 581 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

582 PART II The Java Library

Method Description
int nextSetBit(int startIndex) Returns the index of the next set bit (that is, the next

true bit), starting from the index specified by startIndex. If
no bit is set, –1 is returned.

void or(BitSet bitSet) ORs the contents of the invoking BitSet object with that
specified by bitSet. The result is placed into the invoking
object.

int previousClearBit(int startIndex) Returns the index of the next cleared bit (that is, the next
false bit) at or prior to the index specified by startIndex. If
no cleared bit is found, –1 is returned.

int previousSetBit(int startIndex) Returns the index of the next set bit (that is, the next
true bit) at or prior to the index specified by startIndex. If
no set bit is found, –1 is returned.

void set(int index) Sets the bit specified by index.

void set(int index, boolean v) Sets the bit specified by index to the value passed in v. true
sets the bit; false clears the bit.

void set(int startIndex, int endIndex) Sets the bits from startIndex to endIndex –1.

void set(int startIndex, int endIndex,
 boolean v)

Sets the bits from startIndex to endIndex –1 to the value
passed in v. true sets the bits; false clears the bits.

int size() Returns the number of bits in the invoking BitSet object.

IntStream stream() Returns a stream that contains the bit positions, from low
to high, that have set bits. (Added by JDK 8.)

byte[] toByteArray() Returns a byte array that contains the invoking BitSet
object.

long[] toLongArray() Returns a long array that contains the invoking BitSet
object.

String toString() Returns the string equivalent of the invoking BitSet
object.

static BitSet valueOf(byte[] v) Returns a BitSet that contains the bits in v.

static BitSet valueOf(ByteBuffer v) Returns a BitSet that contains the bits in v.

static BitSet valueOf(long[] v) Returns a BitSet that contains the bits in v.

static BitSet valueOf(LongBuffer v) Returns a BitSet that contains the bits in v.

void xor(BitSet bitSet) XORs the contents of the invoking BitSet object with that
specified by bitSet. The result is placed into the invoking
object.

Table 19-2 The Methods Defined by BitSet (continued)

19-ch19.indd 582 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 583

Pa
rt

 II

Here is an example that demonstrates BitSet:

// BitSet Demonstration.
import java.util.BitSet;

class BitSetDemo {
 public static void main(String args[]) {
 BitSet bits1 = new BitSet(16);
 BitSet bits2 = new BitSet(16);

 // set some bits
 for(int i=0; i<16; i++) {
 if((i%2) == 0) bits1.set(i);
 if((i%5) != 0) bits2.set(i);
 }

 System.out.println("Initial pattern in bits1: ");
 System.out.println(bits1);
 System.out.println("\nInitial pattern in bits2: ");
 System.out.println(bits2);

 // AND bits
 bits2.and(bits1);
 System.out.println("\nbits2 AND bits1: ");
 System.out.println(bits2);

 // OR bits
 bits2.or(bits1);
 System.out.println("\nbits2 OR bits1: ");
 System.out.println(bits2);

 // XOR bits
 bits2.xor(bits1);
 System.out.println("\nbits2 XOR bits1: ");
 System.out.println(bits2);
 }
}

The output from this program is shown here. When toString() converts a BitSet object to its
string equivalent, each set bit is represented by its bit position. Cleared bits are not shown.

 Initial pattern in bits1:
 {0, 2, 4, 6, 8, 10, 12, 14}

 Initial pattern in bits2:
 {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14}

 bits2 AND bits1:
 {2, 4, 6, 8, 12, 14}

 bits2 OR bits1:
 {0, 2, 4, 6, 8, 10, 12, 14}

 bits2 XOR bits1:
 {}

19-ch19.indd 583 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

584 PART II The Java Library

Optional, OptionalDouble, OptionalInt, and OptionalLong
JDK 8 adds classes called Optional, OptionalDouble, OptionalInt, and OptionalLong that
offer a way to handle situations in which a value may or may not be present. In the past, you
would normally use the value null to indicate that no value is present. However, this can
lead to null pointer exceptions if an attempt is made to dereference a null reference. As a
result, frequent checks for a null value were necessary to avoid generating an exception.
These classes provide a better way to handle such situations.

The first and most general of these classes is Optional. For this reason, it is the primary
focus of this discussion. It is shown here:

class Optional<T>

Here, T specifies the type of value stored. It is important to understand that an Optional
instance can either contain a value of type T or be empty. In other words, an Optional
object does not necessarily contain a value. Optional does not define any constructors, but
it does define several methods that let you work with Optional objects. For example, you
can determine if a value is present, obtain the value if it is present, obtain a default value
when no value is present, and construct an Optional value. The Optional methods are
shown in Table 19-3.

Method Description
static <T> Optional<T> empty() Returns an object for which isPresent() returns false.

boolean equals(Object optional) Returns true if the invoking object equals optional.
Otherwise, returns false.

Optional<T> filter(
 Predicate<? super T> condition)

Returns an Optional instance that contains the same
value as the invoking object if that value satisfies condition.
Otherwise, an empty object is returned.

U Optional<U> flatMap(
 Function<? super T,
 Optional<U>> mapFunc)

Applies the mapping function specified by mapFunc to the
invoking object if that object contains a value and returns
the result. Returns an empty object otherwise.

T get() Returns the value in the invoking object. However, if no
value is present, NoSuchElementException is thrown.

int hashCode() Returns a hashcode for the invoking object.

void ifPresent(
 Consumer<? super T> func)

Calls func if a value is present in the invoking object,
passing the object to func. If no value is present, no action
occurs.

boolean isPresent() Returns true if the invoking object contains a value.
Returns false if no value is present.

U Optional<U> map(
 Function<? super T,
 ? extends U>> mapFunc)

Applies the mapping function specified by mapFunc to the
invoking object if that object contains a value and returns
the result. Returns an empty object otherwise.

static <T> Optional<T> of(T val) Creates an Optional instance that contains val and returns
the result. The value of val must not be null.

Table 19-3 The Methods Defined by Optional

19-ch19.indd 584 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 585

Pa
rt

 II

Method Description
static <T> Optional<T>
 ofNullable(T val)

Creates an Optional instance that contains val and returns
the result. However, if val is null, then an empty Optional
instance is returned.

T orElse(T defVal) If the invoking object contains a value, the value is
returned. Otherwise, the value specified by defVal is
returned.

T orElseGet(
 Supplier<? extends T> getFunc)

If the invoking object contains a value, the value is
returned. Otherwise, the value obtained from getFunc is
returned.

<X extends Throwable> T
orElseThrow(
 Supplier<? extends X> excFunc)
 throws X extends Throwable

Returns the value in the invoking object. However, if no
value is present, the exception generated by excFunc is
thrown.

String toString() Returns a string corresponding to the invoking object.

Table 19-3 The Methods Defined by Optional (continued)

The best way to understand Optional is to work through an example that uses its
core methods. At the foundation of Optional are isPresent() and get(). You can
determine if a value is present by calling isPresent(). If a value is available, it will return true.
Otherwise, false is returned. If a value is present in an Optional instance, you can obtain it
by calling get(). However, if you call get() on an object that does not contain a value,
NoSuchElementException is thrown. For this reason, you should always first confirm that a
value is present before calling get() on an Optional object.

Of course, having to call two methods to retrieve a value adds overhead to each access.
Fortunately, Optional defines methods that combine the check for a value with the retrieval
of the value. One such method is orElse(). If the object on which it is called contains a
value, the value is returned. Otherwise, a default value is returned.

Optional does not define any constructors. Instead, you will use one of its methods to
create an instance. For example, you can create an Optional instance with a specified value
by using of(). You can create an instance of Optional that does not contain a value by using
empty().

The following program demonstrates these methods:

// Demonstrate several Optional<T> methods

import java.util.*;

class OptionalDemo {
 public static void main(String args[]) {

 Optional<String> noVal = Optional.empty();

 Optional<String> hasVal = Optional.of("ABCDEFG");

19-ch19.indd 585 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

586 PART II The Java Library

 if(noVal.isPresent()) System.out.println("This won't be displayed");
 else System.out.println("noVal has no value");

 if(hasVal.isPresent()) System.out.println("The string in hasVal is: " +
 hasVal.get());

 String defStr = noVal.orElse("Default String");
 System.out.println(defStr);
 }
}

The output is shown here:

noVal has no value
The string in hasVal is: ABCDEFG
Default String

As the output shows, a value can be obtained from an Optional object only if one is present.
This basic mechanism enables Optional to prevent null pointer exceptions.

The OptionalDouble, OptionalInt, and OptionalLong classes work much like Optional,
except that they are designed expressly for use on double, int, and long values, respectively.
As such, they specify the methods getAsDouble(), getAsInt(), and getAsLong(),
respectively, rather than get(). Also, they do not support the filter(), ofNullable(),
map() and flatMap() methods.

Date
The Date class encapsulates the current date and time. Before beginning our examination
of Date, it is important to point out that it has changed substantially from its original
version defined by Java 1.0. When Java 1.1 was released, many of the functions carried out
by the original Date class were moved into the Calendar and DateFormat classes, and as a
result, many of the original 1.0 Date methods were deprecated. Since the deprecated 1.0
methods should not be used for new code, they are not described here.

Date supports the following non-deprecated constructors:

Date()
Date(long millisec)

The first constructor initializes the object with the current date and time. The second
constructor accepts one argument that equals the number of milliseconds that have elapsed
since midnight, January 1, 1970. The nondeprecated methods defined by Date are shown
in Table 19-4. Date also implements the Comparable interface.

19-ch19.indd 586 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 587

Pa
rt

 II

Table 19-4 The Nondeprecated Methods Defined by Date

Method Description
boolean after(Date date) Returns true if the invoking Date object contains a date that is

later than the one specified by date. Otherwise, it returns false.

boolean before(Date date) Returns true if the invoking Date object contains a date that is
earlier than the one specified by date. Otherwise, it returns false.

Object clone() Duplicates the invoking Date object.

int compareTo(Date date) Compares the value of the invoking object with that of date.
Returns 0 if the values are equal. Returns a negative value if the
invoking object is earlier than date. Returns a positive value if the
invoking object is later than date.

boolean equals(Object date) Returns true if the invoking Date object contains the same time
and date as the one specified by date. Otherwise, it returns false.

static Date from(Instant t) Returns a Date object corresponding to the Instant object passed
in t. (Added by JDK 8.)

long getTime() Returns the number of milliseconds that have elapsed since
January 1, 1970.

int hashCode() Returns a hash code for the invoking object.

void setTime(long time) Sets the time and date as specified by time, which represents an
elapsed time in milliseconds from midnight, January 1, 1970.

Instant toInstant() Returns an Instant object corresponding to the invoking Date
object. (Added by JDK 8.)

String toString() Converts the invoking Date object into a string and returns the result.

As you can see by examining Table 19-4, the non-deprecated Date features do not allow
you to obtain the individual components of the date or time. As the following program
demonstrates, you can only obtain the date and time in terms of milliseconds, in its default
string representation as returned by toString(), or (beginning with JDK 8) as an Instant object.
To obtain more-detailed information about the date and time, you will use the Calendar class.

// Show date and time using only Date methods.
import java.util.Date;

class DateDemo {
 public static void main(String args[]) {
 // Instantiate a Date object
 Date date = new Date();

 // display time and date using toString()
 System.out.println(date);

 // Display number of milliseconds since midnight, January 1, 1970 GMT
 long msec = date.getTime();
 System.out.println("Milliseconds since Jan. 1, 1970 GMT = " + msec);
 }
}

19-ch19.indd 587 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

588 PART II The Java Library

Sample output is shown here:

 Wed Jan 01 11:11:44 CST 2014
 Milliseconds since Jan. 1, 1970 GMT = 1388596304803

Calendar
The abstract Calendar class provides a set of methods that allows you to convert a time in
milliseconds to a number of useful components. Some examples of the type of information
that can be provided are year, month, day, hour, minute, and second. It is intended that
subclasses of Calendar will provide the specific functionality to interpret time information
according to their own rules. This is one aspect of the Java class library that enables you to
write programs that can operate in international environments. An example of such a
subclass is GregorianCalendar.

NOTE JDK 8 defines a new date and time API in java.time, which new applications may want to employ.
See Chapter 30.

Calendar provides no public constructors. Calendar defines several protected instance
variables. areFieldsSet is a boolean that indicates if the time components have been set.
fields is an array of ints that holds the components of the time. isSet is a boolean array that
indicates if a specific time component has been set. time is a long that holds the current
time for this object. isTimeSet is a boolean that indicates if the current time has been set.

A sampling of methods defined by Calendar are shown in Table 19-5.

Method Description
abstract void add(int which, int val) Adds val to the time or date component specified by

which. To subtract, add a negative value. which must
be one of the fields defined by Calendar, such as
Calendar.HOUR.

boolean after(Object calendarObj) Returns true if the invoking Calendar object
contains a date that is later than the one specified by
calendarObj. Otherwise, it returns false.

boolean before(Object calendarObj) Returns true if the invoking Calendar object
contains a date that is earlier than the one specified
by calendarObj. Otherwise, it returns false.

final void clear() Zeros all time components in the invoking object.

final void clear(int which) Zeros the time component specified by which in the
invoking object.

Object clone() Returns a duplicate of the invoking object.

boolean equals(Object calendarObj) Returns true if the invoking Calendar object
contains a date that is equal to the one specified by
calendarObj. Otherwise, it returns false.

Table 19-5 A Sampling of the Methods Defined by Calendar

19-ch19.indd 588 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 589

Pa
rt

 II

Method Description
int get(int calendarField) Returns the value of one component of the invoking

object. The component is indicated by calendarField.
Examples of the components that can be requested
are Calendar.YEAR, Calendar.MONTH,
Calendar.MINUTE, and so forth.

static Locale[] getAvailableLocales() Returns an array of Locale objects that contains the
locales for which calendars are available.

static Calendar getInstance() Returns a Calendar object for the default locale and
time zone.

static Calendar getInstance(TimeZone tz) Returns a Calendar object for the time zone
specified by tz. The default locale is used.

static Calendar getInstance(Locale locale) Returns a Calendar object for the locale specified by
locale. The default time zone is used.

static Calendar getInstance(TimeZone tz,
 Locale locale)

Returns a Calendar object for the time zone
specified by tz and the locale specified by locale.

final Date getTime() Returns a Date object equivalent to the time of the
invoking object.

TimeZone getTimeZone() Returns the time zone for the invoking object.

final boolean isSet(int which) Returns true if the specified time component is set.
Otherwise, it returns false.

void set(int which, int val) Sets the date or time component specified by which
to the value specified by val in the invoking object.
which must be one of the fields defined by Calendar,
such as Calendar.HOUR.

final void set(int year, int month,
 int dayOfMonth)

Sets various date and time components of the
invoking object.

final void set(int year, int month,
 int dayOfMonth, int hours,
 int minutes)

Sets various date and time components of the
invoking object.

 final void set(int year, int month,
 int dayOfMonth, int hours,
 int minutes, int seconds)

Sets various date and time components of the
invoking object.

final void setTime(Date d) Sets various date and time components of the
invoking object. This information is obtained from
the Date object d.

void setTimeZone(TimeZone tz) Sets the time zone for the invoking object to that
specified by tz.

final Instant toInstant() Returns an Instant object corresponding to the
invoking Calendar instance. (Added by JDK 8.)

Table 19-5 A Sampling of the Methods Defined by Calendar (continued)

19-ch19.indd 589 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

590 PART II The Java Library

Calendar defines the following int constants, which are used when you get or set
components of the calendar. (The ones with the suffix FORMAT or STANDALONE were
added by JDK 8.)

ALL_STYLES HOUR_OF_DAY PM

AM JANUARY SATURDAY

AM_PM JULY SECOND

APRIL JUNE SEPTEMBER

AUGUST LONG SHORT

DATE LONG_FORMAT SHORT_FORMAT

DAY_OF_MONTH LONG_STANDALONE SHORT_STANDALONE

DAY_OF_WEEK MARCH SUNDAY

DAY_OF_WEEK_IN_MONTH MAY THURSDAY

DAY_OF_YEAR MILLISECOND TUESDAY

DECEMBER MINUTE UNDECIMBER

DST_OFFSET MONDAY WEDNESDAY

ERA MONTH WEEK_OF_MONTH

FEBRUARY NARROW_FORMAT WEEK_OF_YEAR

FIELD_COUNT NARROW_STANDALONE YEAR

FRIDAY NOVEMBER ZONE_OFFSET

HOUR OCTOBER

The following program demonstrates several Calendar methods:

// Demonstrate Calendar
import java.util.Calendar;

class CalendarDemo {
 public static void main(String args[]) {
 String months[] = {
 "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul", "Aug",
 "Sep", "Oct", "Nov", "Dec"};

 // Create a calendar initialized with the
 // current date and time in the default
 // locale and timezone.
 Calendar calendar = Calendar.getInstance();

 // Display current time and date information.
 System.out.print("Date: ");
 System.out.print(months[calendar.get(Calendar.MONTH)]);
 System.out.print(" " + calendar.get(Calendar.DATE) + " ");
 System.out.println(calendar.get(Calendar.YEAR));

 System.out.print("Time: ");
 System.out.print(calendar.get(Calendar.HOUR) + ":");

19-ch19.indd 590 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 591

Pa
rt

 II

 System.out.print(calendar.get(Calendar.MINUTE) + ":");
 System.out.println(calendar.get(Calendar.SECOND));

 // Set the time and date information and display it.
 calendar.set(Calendar.HOUR, 10);
 calendar.set(Calendar.MINUTE, 29);
 calendar.set(Calendar.SECOND, 22);
 System.out.print("Updated time: ");
 System.out.print(calendar.get(Calendar.HOUR) + ":");
 System.out.print(calendar.get(Calendar.MINUTE) + ":");
 System.out.println(calendar.get(Calendar.SECOND));
 }
}

Sample output is shown here:

 Date: Jan 1 2014
 Time: 11:29:39
 Updated time: 10:29:22

GregorianCalendar
GregorianCalendar is a concrete implementation of a Calendar that implements the
normal Gregorian calendar with which you are familiar. The getInstance() method of
Calendar will typically return a GregorianCalendar initialized with the current date and
time in the default locale and time zone.

GregorianCalendar defines two fields: AD and BC. These represent the two eras defined
by the Gregorian calendar.

There are also several constructors for GregorianCalendar objects. The default,
GregorianCalendar(), initializes the object with the current date and time in the default
locale and time zone. Three more constructors offer increasing levels of specificity:

GregorianCalendar(int year, int month, int dayOfMonth)
GregorianCalendar(int year, int month, int dayOfMonth, int hours,
 int minutes)
GregorianCalendar(int year, int month, int dayOfMonth, int hours,
 int minutes, int seconds)

All three versions set the day, month, and year. Here, year specifies the year. The month is
specified by month, with zero indicating January. The day of the month is specified by
dayOfMonth. The first version sets the time to midnight. The second version also sets the
hours and the minutes. The third version adds seconds.

You can also construct a GregorianCalendar object by specifying the locale and/or time
zone. The following constructors create objects initialized with the current date and time
using the specified time zone and/or locale:

GregorianCalendar(Locale locale)
GregorianCalendar(TimeZone timeZone)
GregorianCalendar(TimeZone timeZone, Locale locale)

19-ch19.indd 591 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

592 PART II The Java Library

GregorianCalendar provides an implementation of all the abstract methods in
Calendar. It also provides some additional methods. Perhaps the most interesting is
isLeapYear(), which tests if the year is a leap year. Its form is

boolean isLeapYear(int year)

This method returns true if year is a leap year and false otherwise. JDK 8 also adds the
following methods: from() and toZonedDateTime(), which support the new date and time
API, and getCalendarType(), which returns the calendar type as a string, which is “gregory”.

The following program demonstrates GregorianCalendar:

// Demonstrate GregorianCalendar
import java.util.*;

class GregorianCalendarDemo {
 public static void main(String args[]) {
 String months[] = {
 "Jan", "Feb", "Mar", "Apr",
 "May", "Jun", "Jul", "Aug",
 "Sep", "Oct", "Nov", "Dec"};
 int year;

 // Create a Gregorian calendar initialized
 // with the current date and time in the
 // default locale and timezone.
 GregorianCalendar gcalendar = new GregorianCalendar();

 // Display current time and date information.
 System.out.print("Date: ");
 System.out.print(months[gcalendar.get(Calendar.MONTH)]);
 System.out.print(" " + gcalendar.get(Calendar.DATE) + " ");
 System.out.println(year = gcalendar.get(Calendar.YEAR));

 System.out.print("Time: ");
 System.out.print(gcalendar.get(Calendar.HOUR) + ":");
 System.out.print(gcalendar.get(Calendar.MINUTE) + ":");
 System.out.println(gcalendar.get(Calendar.SECOND));

 // Test if the current year is a leap year
 if(gcalendar.isLeapYear(year)) {
 System.out.println("The current year is a leap year");
 }
 else {
 System.out.println("The current year is not a leap year");
 }
 }
}

Sample output is shown here:

 Date: Jan 1 2014
 Time: 1:45:5
 The current year is not a leap year

19-ch19.indd 592 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 593

Pa
rt

 II

Method Description
Object clone() Returns a TimeZone-specific version of clone().

static String[] getAvailableIDs() Returns an array of String objects representing the
names of all time zones.

static String[]
 getAvailableIDs(int timeDelta)

Returns an array of String objects representing the names
of all time zones that are timeDelta offset from GMT.

static TimeZone getDefault() Returns a TimeZone object that represents the default
time zone used on the host computer.

String getID() Returns the name of the invoking TimeZone object.

abstract int getOffset(int era, int year,
 int month,
 int dayOfMonth,
 int dayOfWeek,
 int millisec)

Returns the offset that should be added to GMT to
compute local time. This value is adjusted for daylight
saving time. The parameters to the method represent
date and time components.

abstract int getRawOffset() Returns the raw offset (in milliseconds) that should be
added to GMT to compute local time. This value is not
adjusted for daylight saving time.

static TimeZone
 getTimeZone(String tzName)

Returns the TimeZone object for the time zone named
tzName.

abstract boolean inDaylightTime(Date d) Returns true if the date represented by d is in daylight
saving time in the invoking object. Otherwise, it
returns false.

static void setDefault(TimeZone tz) Sets the default time zone to be used on this host. tz is
a reference to the TimeZone object to be used.

void setID(String tzName) Sets the name of the time zone (that is, its ID) to that
specified by tzName.

abstract void setRawOffset(int millis) Sets the offset in milliseconds from GMT.

ZoneId toZoneId() Converts the invoking object into a ZoneId and returns
the result. ZoneId is packaged in java.time. (Added by
JDK 8.)

abstract boolean useDaylightTime() Returns true if the invoking object uses daylight saving
time. Otherwise, it returns false.

Table 19-6 A Sampling of the Methods Defined by TimeZone

TimeZone
Another time-related class is TimeZone. The abstract TimeZone class allows you to work
with time zone offsets from Greenwich mean time (GMT), also referred to as Coordinated
Universal Time (UTC). It also computes daylight saving time. TimeZone only supplies the
default constructor.

A sampling of methods defined by TimeZone is given in Table 19-6.

19-ch19.indd 593 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

594 PART II The Java Library

SimpleTimeZone
The SimpleTimeZone class is a convenient subclass of TimeZone. It implements
TimeZone's abstract methods and allows you to work with time zones for a Gregorian
calendar. It also computes daylight saving time.

SimpleTimeZone defines four constructors. One is

SimpleTimeZone(int timeDelta, String tzName)

This constructor creates a SimpleTimeZone object. The offset relative to Greenwich mean
time (GMT) is timeDelta. The time zone is named tzName.

The second SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
 int dstDayInMonth0, int dstDay0, int time0,
 int dstMonth1, int dstDayInMonth1, int dstDay1,
 int time1)

Here, the offset relative to GMT is specified in timeDelta. The time zone name is passed in
tzId. The start of daylight saving time is indicated by the parameters dstMonth0, dstDayInMonth0,
dstDay0, and time0. The end of daylight saving time is indicated by the parameters
dstMonth1, dstDayInMonth1, dstDay1, and time1.

The third SimpleTimeZone constructor is

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
 int dstDayInMonth0, int dstDay0, int time0,
 int dstMonth1, int dstDayInMonth1,
 int dstDay1, int time1, int dstDelta)

Here, dstDelta is the number of milliseconds saved during daylight saving time.
The fourth SimpleTimeZone constructor is:

SimpleTimeZone(int timeDelta, String tzId, int dstMonth0,
 int dstDayInMonth0, int dstDay0, int time0,
 int time0mode, int dstMonth1, int dstDayInMonth1,
 int dstDay1, int time1, int time1mode, int dstDelta)

Here, time0mode specifies the mode of the starting time, and time1mode specifies the mode of
the ending time. Valid mode values include:

STANDARD_TIME WALL_TIME UTC_TIME

The time mode indicates how the time values are interpreted. The default mode used by
the other constructors is WALL_TIME.

Locale
The Locale class is instantiated to produce objects that describe a geographical or cultural
region. It is one of several classes that provide you with the ability to write programs that
can execute in different international environments. For example, the formats used to
display dates, times, and numbers are different in various regions.

19-ch19.indd 594 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 595

Pa
rt

 II

Internationalization is a large topic that is beyond the scope of this book. However, many
programs will only need to deal with its basics, which include setting the current locale.

The Locale class defines the following constants that are useful for dealing with several
common locales:

CANADA GERMAN KOREAN

CANADA_FRENCH GERMANY PRC

CHINA ITALIAN SIMPLIFIED_CHINESE

CHINESE ITALY TAIWAN

ENGLISH JAPAN TRADITIONAL_CHINESE

FRANCE JAPANESE UK

FRENCH KOREA US

For example, the expression Locale.CANADA represents the Locale object for Canada.
The constructors for Locale are

Locale(String language)
Locale(String language, String country)
Locale(String language, String country, String variant)

These constructors build a Locale object to represent a specific language and in the case
of the last two, country. These values must contain standard language and country codes.
Auxiliary variant information can be provided in variant.

Locale defines several methods. One of the most important is setDefault(), shown here:

static void setDefault(Locale localeObj)

This sets the default locale used by the JVM to that specified by localeObj.
Some other interesting methods are the following:

final String getDisplayCountry()
final String getDisplayLanguage()
final String getDisplayName()

These return human-readable strings that can be used to display the name of the country,
the name of the language, and the complete description of the locale.

The default locale can be obtained using getDefault(), shown here:

static Locale getDefault()

JDK 7 added significant upgrades to the Locale class that support Internet Engineering
Task Force (IETF) BCP 47, which defines tags for identifying languages, and Unicode
Technical Standard (UTS) 35, which defines the Locale Data Markup Language (LDML).
Support for BCP 47 and UTS 35 caused several features to be added to Locale, including
several new methods and the Locale.Builder class. Among others, new methods include
getScript(), which obtains the locale’s script, and toLanguageTag(), which obtains a string
that contains the locale’s language tag. The Locale.Builder class constructs Locale instances.
It ensures that a locale specification is well-formed as defined by BCP 47. (The Locale
constructors do not provide such a check.) Several new methods have also been added to
Locale by JDK 8. Among these are methods that support filtering, extensions, and lookups.

19-ch19.indd 595 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

596 PART II The Java Library

Calendar and GregorianCalendar are examples of classes that operate in a locale-
sensitive manner. DateFormat and SimpleDateFormat also depend on the locale.

Random
The Random class is a generator of pseudorandom numbers. These are called pseudorandom
numbers because they are simply uniformly distributed sequences. Random defines the
following constructors:

Random()
Random(long seed)

The first version creates a number generator that uses a reasonably unique seed. The
second form allows you to specify a seed value manually.

If you initialize a Random object with a seed, you define the starting point for the
random sequence. If you use the same seed to initialize another Random object, you will
extract the same random sequence. If you want to generate different sequences, specify
different seed values. One way to do this is to use the current time to seed a Random object.
This approach reduces the possibility of getting repeated sequences.

The core public methods defined by Random are shown in Table 19-7. These are the
methods that have been available in Random for several years (many since Java 1.0) and are
widely used.

As you can see, there are seven types of random numbers that you can extract from a
Random object. Random Boolean values are available from nextBoolean(). Random bytes
can be obtained by calling nextBytes(). Integers can be extracted via the nextInt() method.
Long integers, uniformly distributed over their range, can be obtained with nextLong().
The nextFloat() and nextDouble() methods return a uniformly distributed float and
double, respectively, between 0.0 and 1.0. Finally, nextGaussian() returns a double value
centered at 0.0 with a standard deviation of 1.0. This is what is known as a bell curve.

Here is an example that demonstrates the sequence produced by nextGaussian(). It
obtains 100 random Gaussian values and averages these values. The program also counts the

Method Description
boolean nextBoolean() Returns the next boolean random number.

void nextBytes(byte vals[]) Fills vals with randomly generated values.

double nextDouble() Returns the next double random number.

float nextFloat() Returns the next float random number.

double nextGaussian() Returns the next Gaussian random number.

int nextInt() Returns the next int random number.

int nextInt(int n) Returns the next int random number within the range zero to n.

long nextLong() Returns the next long random number.

void setSeed(long newSeed) Sets the seed value (that is, the starting point for the random
number generator) to that specified by newSeed.

Table 19-7 The Core Methods Defined by Random

19-ch19.indd 596 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 597

Pa
rt

 II

number of values that fall within two standard deviations, plus or minus, using increments of
0.5 for each category. The result is graphically displayed sideways on the screen.

// Demonstrate random Gaussian values.
import java.util.Random;
class RandDemo {
 public static void main(String args[]) {
 Random r = new Random();
 double val;
 double sum = 0;
 int bell[] = new int[10];

 for(int i=0; i<100; i++) {
 val = r.nextGaussian();
 sum += val;
 double t = -2;

 for(int x=0; x<10; x++, t += 0.5)
 if(val < t) {
 bell[x]++;
 break;
 }
 }
 System.out.println("Average of values: " +
 (sum/100));

 // display bell curve, sideways
 for(int i=0; i<10; i++) {
 for(int x=bell[i]; x>0; x--)
 System.out.print("*");
 System.out.println();
 }
 }
}

Here is a sample program run. As you can see, a bell-like distribution of numbers is
obtained.

 Average of values: 0.0702235271133344
 **

JDK 8 adds three new methods to Random that support the new stream API (see
Chapter 29). They are called doubles(), ints(), and longs(), and each returns a reference

19-ch19.indd 597 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

598 PART II The Java Library

to a stream that contains a sequence of pseudorandom values of the specified type. Each
method defines several overloads. Here are their simplest forms:

DoubleStream doubles()

IntStream ints()

LongStream longs()

The doubles() method returns a stream that contains pseudorandom double values. (The
range of these values will be less than 1.0 but greater than 0.0.) The ints() method returns
a stream that contains pseudorandom int values. The longs() method returns a stream that
contains pseudorandom long values. For these three methods, the stream returned is
effectively infinite. Several overloads of each method are provided that let you specify the
size of the stream, an origin, and an upper bound.

Observable
The Observable class is used to create subclasses that other parts of your program can
observe. When an object of such a subclass undergoes a change, observing classes are
notified. Observing classes must implement the Observer interface, which defines the
update() method. The update() method is called when an observer is notified of a change
in an observed object.

Observable defines the methods shown in Table 19-8. An object that is being observed
must follow two simple rules. First, if it has changed, it must call setChanged(). Second,
when it is ready to notify observers of this change, it must call notifyObservers(). This
causes the update() method in the observing object(s) to be called. Be careful—if the

Method Description
void addObserver(Observer obj) Adds obj to the list of objects observing the invoking object.

protected void clearChanged() Calling this method returns the status of the invoking object
to "unchanged."

int countObservers() Returns the number of objects observing the invoking object.

void deleteObserver(Observer obj) Removes obj from the list of objects observing the invoking
object.

void deleteObservers() Removes all observers for the invoking object.

boolean hasChanged() Returns true if the invoking object has been modified and
false if it has not.

void notifyObservers() Notifies all observers of the invoking object that it has
changed by calling update(). A null is passed as the second
argument to update().

void notifyObservers(Object obj) Notifies all observers of the invoking object that it has changed
by calling update(). obj is passed as an argument to update().

protected void setChanged() Called when the invoking object has changed.

Table 19-8 The Methods Defined by Observable

19-ch19.indd 598 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 599

Pa
rt

 II

object calls notifyObservers() without having previously called setChanged(), no action
will take place. The observed object must call both setChanged() and notifyObservers()
before update() will be called.

Notice that notifyObservers() has two forms: one that takes an argument and one
that does not. If you call notifyObservers() with an argument, this object is passed to the
observer’s update() method as its second parameter. Otherwise, null is passed to update().
You can use the second parameter for passing any type of object that is appropriate for your
application.

The Observer Interface
To observe an observable object, you must implement the Observer interface. This
interface defines only the one method shown here:

void update(Observable observOb, Object arg)

Here, observOb is the object being observed, and arg is the value passed by notifyObservers().
The update() method is called when a change in the observed object takes place.

An Observer Example
Here is an example that demonstrates an observable object. It creates an observer class,
called Watcher, that implements the Observer interface. The class being monitored is
called BeingWatched. It extends Observable. Inside BeingWatched is the method counter(),
which simply counts down from a specified value. It uses sleep() to wait a tenth of a second
between counts. Each time the count changes, notifyObservers() is called with the current
count passed as its argument. This causes the update() method inside Watcher to be called,
which displays the current count. Inside main(), a Watcher and a BeingWatched object,
called observing and observed, respectively, are created. Then, observing is added to the
list of observers for observed. This means that observing.update() will be called each time
counter() calls notifyObservers().

/* Demonstrate the Observable class and the
 Observer interface.
*/
import java.util.*;

// This is the observing class.
class Watcher implements Observer {
 public void update(Observable obj, Object arg) {
 System.out.println("update() called, count is " +
 ((Integer)arg).intValue());
 }
}

// This is the class being observed.
class BeingWatched extends Observable {
 void counter(int period) {
 for(; period >=0; period--) {
 setChanged();
 notifyObservers(new Integer(period));

19-ch19.indd 599 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

600 PART II The Java Library

 try {
 Thread.sleep(100);
 } catch(InterruptedException e) {
 System.out.println("Sleep interrupted");
 }
 }
 }

}

class ObserverDemo {
 public static void main(String args[]) {
 BeingWatched observed = new BeingWatched();
 Watcher observing = new Watcher();

 /* Add the observing to the list of observers for
 observed object. */
 observed.addObserver(observing);

 observed.counter(10);
 }
}

The output from this program is shown here:

 update() called, count is 10
 update() called, count is 9
 update() called, count is 8
 update() called, count is 7
 update() called, count is 6
 update() called, count is 5
 update() called, count is 4
 update() called, count is 3
 update() called, count is 2
 update() called, count is 1
 update() called, count is 0

More than one object can be an observer. For example, the following program
implements two observing classes and adds an object of each class to the BeingWatched
observer list. The second observer waits until the count reaches zero and then rings the bell.

/* An object may be observed by two or more
 observers.
*/

import java.util.*;

// This is the first observing class.
class Watcher1 implements Observer {
 public void update(Observable obj, Object arg) {
 System.out.println("update() called, count is " +
 ((Integer)arg).intValue());

19-ch19.indd 600 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 601

Pa
rt

 II

 }
}

// This is the second observing class.
class Watcher2 implements Observer {
 public void update(Observable obj, Object arg) {
 // Ring bell when done
 if(((Integer)arg).intValue() == 0)
 System.out.println("Done" + '\7');
 }
}

// This is the class being observed.
class BeingWatched extends Observable {
 void counter(int period) {
 for(; period >=0; period--) {
 setChanged();
 notifyObservers(new Integer(period));
 try {
 Thread.sleep(100);
 } catch(InterruptedException e) {
 System.out.println("Sleep interrupted");
 }
 }
 }
}

class TwoObservers {
 public static void main(String args[]) {
 BeingWatched observed = new BeingWatched();
 Watcher1 observing1 = new Watcher1();
 Watcher2 observing2 = new Watcher2();

 // add both observers
 observed.addObserver(observing1);
 observed.addObserver(observing2);

 observed.counter(10);
 }
}

The Observable class and the Observer interface allow you to implement sophisticated
program architectures based on the document/view methodology.

19-ch19.indd 601 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

602 PART II The Java Library

Timer and TimerTask
An interesting and useful feature offered by java.util is the ability to schedule a task for
execution at some future time. The classes that support this are Timer and TimerTask.
Using these classes, you can create a thread that runs in the background, waiting for a
specific time. When the time arrives, the task linked to that thread is executed. Various
options allow you to schedule a task for repeated execution, and to schedule a task to run
on a specific date. Although it was always possible to manually create a task that would be
executed at a specific time using the Thread class, Timer and TimerTask greatly simplify
this process.

Timer and TimerTask work together. Timer is the class that you will use to schedule a
task for execution. The task being scheduled must be an instance of TimerTask. Thus, to
schedule a task, you will first create a TimerTask object and then schedule it for execution
using an instance of Timer.

TimerTask implements the Runnable interface; thus, it can be used to create a thread
of execution. Its constructor is shown here:

protected TimerTask()

TimerTask defines the methods shown in Table 19-9. Notice that run() is abstract,
which means that it must be overridden. The run() method, defined by the Runnable
interface, contains the code that will be executed. Thus, the easiest way to create a timer
task is to extend TimerTask and override run().

Once a task has been created, it is scheduled for execution by an object of type Timer.
The constructors for Timer are shown here:

Timer()
Timer(boolean DThread)
Timer(String tName)
Timer(String tName, boolean DThread)

The first version creates a Timer object that runs as a normal thread. The second uses a
daemon thread if DThread is true. A daemon thread will execute only as long as the rest of
the program continues to execute. The third and fourth constructors allow you to specify a
name for the Timer thread. The methods defined by Timer are shown in Table 19-9.

Once a Timer has been created, you will schedule a task by calling schedule() on the
Timer that you created. As Table 19-10 shows, there are several forms of schedule() which
allow you to schedule tasks in a variety of ways.

Method Description
boolean cancel() Terminates the task. Returns true if an execution of the task

is prevented. Otherwise, returns false.

abstract void run() Contains the code for the timer task.

long scheduledExecutionTime() Returns the time at which the last execution of the task was
scheduled to have occurred.

Table 19-9 The Methods Defined by TimerTask

19-ch19.indd 602 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 603

Pa
rt

 II

If you create a non-daemon task, then you will want to call cancel() to end the task when
your program ends. If you don’t do this, then your program may "hang" for a period of time.

The following program demonstrates Timer and TimerTask. It defines a timer task
whose run() method displays the message "Timer task executed." This task is scheduled
to run once every half second after an initial delay of one second.

// Demonstrate Timer and TimerTask.

import java.util.*;

class MyTimerTask extends TimerTask {
 public void run() {
 System.out.println("Timer task executed.");
 }
}

class TTest {

Method Description
void cancel() Cancels the timer thread.

int purge() Deletes canceled tasks from the timer’s queue.

void schedule(TimerTask TTask,
 long wait)

TTask is scheduled for execution after the period passed
in wait has elapsed. The wait parameter is specified in
milliseconds.

void schedule(TimerTask TTask,
 long wait, long repeat)

TTask is scheduled for execution after the period passed
in wait has elapsed. The task is then executed repeatedly
at the interval specified by repeat. Both wait and repeat are
specified in milliseconds.

void schedule(TimerTask TTask,
 Date targetTime)

TTask is scheduled for execution at the time specified by
targetTime.

void schedule(TimerTask TTask,
 Date targetTime,
 long repeat)

TTask is scheduled for execution at the time specified by
targetTime. The task is then executed repeatedly at the
interval passed in repeat. The repeat parameter is specified
in milliseconds.

void scheduleAtFixedRate(
 TimerTask TTask,
 long wait, long repeat)

TTask is scheduled for execution after the period passed
in wait has elapsed. The task is then executed repeatedly
at the interval specified by repeat. Both wait and repeat are
specified in milliseconds. The time of each repetition
is relative to the first execution, not the preceding
execution. Thus, the overall rate of execution is fixed.

void scheduleAtFixedRate(
 TimerTask TTask,
 Date targetTime,
 long repeat)

TTask is scheduled for execution at the time specified by
targetTime. The task is then executed repeatedly at the
interval passed in repeat. The repeat parameter is specified
in milliseconds. The time of each repetition is relative to
the first execution, not the preceding execution. Thus,
the overall rate of execution is fixed.

Table 19-10 The Methods Defined by Timer

19-ch19.indd 603 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

604 PART II The Java Library

 public static void main(String args[]) {
 MyTimerTask myTask = new MyTimerTask();
 Timer myTimer = new Timer();

 /* Set an initial delay of 1 second,
 then repeat every half second.
 */
 myTimer.schedule(myTask, 1000, 500);

 try {
 Thread.sleep(5000);
 } catch (InterruptedException exc) {}

 myTimer.cancel();
 }
}

Currency
The Currency class encapsulates information about a currency. It defines no constructors.
The methods supported by Currency are shown in Table 19-11. The following program
demonstrates Currency:

// Demonstrate Currency.
import java.util.*;

Method Description
static Set<Currency> getAvailableCurrencies() Returns a set of the supported currencies.
String getCurrencyCode() Returns the code (as defined by ISO 4217) that

describes the invoking currency.
int getDefaultFractionDigits() Returns the number of digits after the decimal

point that are normally used by the invoking
currency. For example, there are two fractional
digits normally used for dollars.

String getDisplayName() Returns the name of the invoking currency for
the default locale.

String getDisplayName(Locale loc) Returns the name of the invoking currency for
the specified locale.

static Currency getInstance(Locale localeObj) Returns a Currency object for the locale specified
by localeObj.

static Currency getInstance(String code) Returns a Currency object associated with the
currency code passed in code.

int getNumericCode() Returns the numeric code (as defined by ISO 4217)
for the invoking currency.

String getSymbol() Returns the currency symbol (such as $) for the
invoking object.

String getSymbol(Locale localeObj) Returns the currency symbol (such as $) for the
locale passed in localeObj.

String toString() Returns the currency code for the invoking object.

Table 19-11 The Methods Defined by Currency

19-ch19.indd 604 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 605

Pa
rt

 II

class CurDemo {
 public static void main(String args[]) {
 Currency c;

 c = Currency.getInstance(Locale.US);

 System.out.println("Symbol: " + c.getSymbol());
 System.out.println("Default fractional digits: " +
 c.getDefaultFractionDigits());
 }
}

The output is shown here:

 Symbol: $
 Default fractional digits: 2

Formatter
At the core of Java’s support for creating formatted output is the Formatter class. It provides
format conversions that let you display numbers, strings, and time and date in virtually any
format you like. It operates in a manner similar to the C/C++ printf() function, which means
that if you are familiar with C/C++, then learning to use Formatter will be very easy. It also
further streamlines the conversion of C/C++ code to Java. If you are not familiar with C/C++,
it is still quite easy to format data.

NOTE Although Java’s Formatter class operates in a manner very similar to the C/C++ printf() function,
there are some differences, and some new features. Therefore, if you have a C/C++ background, a
careful reading is advised.

The Formatter Constructors
Before you can use Formatter to format output, you must create a Formatter object. In
general, Formatter works by converting the binary form of data used by a program into
formatted text. It stores the formatted text in a buffer, the contents of which can be
obtained by your program whenever they are needed. It is possible to let Formatter supply
this buffer automatically, or you can specify the buffer explicitly when a Formatter object is
created. It is also possible to have Formatter output its buffer to a file.

The Formatter class defines many constructors, which enable you to construct a
Formatter in a variety of ways. Here is a sampling:

Formatter()

Formatter(Appendable buf)

Formatter(Appendable buf, Locale loc)

Formatter(String filename)
 throws FileNotFoundException

Formatter(String filename, String charset)
 throws FileNotFoundException, UnsupportedEncodingException

19-ch19.indd 605 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

606 PART II The Java Library

Formatter(File outF)
 throws FileNotFoundException

Formatter(OutputStream outStrm)

Here, buf specifies a buffer for the formatted output. If buf is null, then Formatter
automatically allocates a StringBuilder to hold the formatted output. The loc parameter
specifies a locale. If no locale is specified, the default locale is used. The filename
parameter specifies the name of a file that will receive the formatted output. The
charset parameter specifies the character set. If no character set is specified, then the
default character set is used. The outF parameter specifies a reference to an open file that
will receive output. The outStrm parameter specifies a reference to an output stream
that will receive output. When using a file, output is also written to the file.

Perhaps the most widely used constructor is the first, which has no parameters. It
automatically uses the default locale and allocates a StringBuilder to hold the formatted
output.

The Formatter Methods
Formatter defines the methods shown in Table 19-12.

Method Description
void close() Closes the invoking Formatter. This causes any resources

used by the object to be released. After a Formatter has
been closed, it cannot be reused. An attempt to use a closed
Formatter results in a FormatterClosedException.

void flush() Flushes the format buffer. This causes any output currently
in the buffer to be written to the destination. This applies
mostly to a Formatter tied to a file.

Formatter format(String fmtString,
 Object ... args)

Formats the arguments passed via args according to the format
specifiers contained in fmtString. Returns the invoking object.

Formatter format(Locale loc,
 String fmtString,
 Object ... args)

Formats the arguments passed via args according to the
format specifiers contained in fmtString. The locale specified
by loc is used for this format. Returns the invoking object.

IOException ioException() If the underlying object that is the destination for output
throws an IOException, then this exception is returned.
Otherwise, null is returned.

Locale locale() Returns the invoking object’s locale.

Appendable out() Returns a reference to the underlying object that is the
destination for output.

String toString() Returns a String containing the formatted output.

Table 19-12 The Methods Defined by Formatter

19-ch19.indd 606 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 607

Pa
rt

 II

Formatting Basics
After you have created a Formatter, you can use it to create a formatted string. To do so,
use the format() method. The most commonly used version is shown here:

Formatter format(String fmtString, Object ... args)

The fmtSring consists of two types of items. The first type is composed of characters
that are simply copied to the output buffer. The second type contains format specifiers that
define the way the subsequent arguments are displayed.

In its simplest form, a format specifier begins with a percent sign followed by the format
conversion specifier. All format conversion specifiers consist of a single character. For
example, the format specifier for floating-point data is %f. In general, there must be the
same number of arguments as there are format specifiers, and the format specifiers and the
arguments are matched in order from left to right. For example, consider this fragment:

Formatter fmt = new Formatter();
fmt.format("Formatting %s is easy %d %f", "with Java", 10, 98.6);

This sequence creates a Formatter that contains the following string:

Formatting with Java is easy 10 98.600000

In this example, the format specifiers, %s, %d, and %f, are replaced with the arguments
that follow the format string. Thus, %s is replaced by “with Java”, %d is replaced by 10, and
%f is replaced by 98.6. All other characters are simply used as-is. As you might guess, the
format specifier %s specifies a string, and %d specifies an integer value. As mentioned
earlier, the %f specifies a floating-point value.

The format() method accepts a wide variety of format specifiers, which are shown in
Table 19-13. Notice that many specifiers have both upper- and lowercase forms. When an
uppercase specifier is used, then letters are shown in uppercase. Otherwise, the upper- and

Format Specifier Conversion Applied
%a
%A

Floating-point hexadecimal

%b
%B

Boolean

%c Character

%d Decimal integer

%h
%H

Hash code of the argument

%e
%E

Scientific notation

%f Decimal floating-point

Table 19-13 The Format Specifiers

19-ch19.indd 607 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

608 PART II The Java Library

lowercase specifiers perform the same conversion. It is important to understand that Java
type-checks each format specifier against its corresponding argument. If the argument
doesn’t match, an IllegalFormatException is thrown.

Once you have formatted a string, you can obtain it by calling toString(). For example,
continuing with the preceding example, the following statement obtains the formatted
string contained in fmt:

String str = fmt.toString();

Of course, if you simply want to display the formatted string, there is no reason to first
assign it to a String object. When a Formatter object is passed to println(), for example, its
toString() method is automatically called.

Here is a short program that puts together all of the pieces, showing how to create and
display a formatted string:

// A very simple example that uses Formatter.
import java.util.*;

class FormatDemo {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 fmt.format("Formatting %s is easy %d %f", "with Java", 10, 98.6);

 System.out.println(fmt);
 fmt.close();
 }
}

One other point: You can obtain a reference to the underlying output buffer by calling
out(). It returns a reference to an Appendable object.

Now that you know the general mechanism used to create a formatted string, the
remainder of this section discusses in detail each conversion. It also describes various
options, such as justification, minimum field width, and precision.

Format Specifier Conversion Applied
%g
%G

Uses %e or %f, based on the value being formatted
and the precision

%o Octal integer

%n Inserts a newline character

%s
%S

String

%t
%T

Time and date

%x
%X

Integer hexadecimal

%% Inserts a % sign

Table 19-13 The Format Specifiers (continued)

19-ch19.indd 608 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 609

Pa
rt

 II

Formatting Strings and Characters
To format an individual character, use %c. This causes the matching character argument to
be output, unmodified. To format a string, use %s.

Formatting Numbers
To format an integer in decimal format, use %d. To format a floating-point value in decimal
format, use %f. To format a floating-point value in scientific notation, use %e. Numbers
represented in scientific notation take this general form:

x.dddddde+/–yy

The %g format specifier causes Formatter to use either %f or %e, based on the value being
formatted and the precision, which is 6 by default. The following program demonstrates
the effect of the %f and %e format specifiers:

// Demonstrate the %f and %e format specifiers.
import java.util.*;

class FormatDemo2 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 for(double i=1.23; i < 1.0e+6; i *= 100) {
 fmt.format("%f %e", i, i);
 System.out.println(fmt);
 }
 fmt.close();

 }
}

It produces the following output:

1.230000 1.230000e+00
1.230000 1.230000e+00 123.000000 1.230000e+02
1.230000 1.230000e+00 123.000000 1.230000e+02 12300.000000 1.230000e+04

You can display integers in octal or hexadecimal format by using %o and %x,
respectively. For example, this fragment:

fmt.format("Hex: %x, Octal: %o", 196, 196);

produces this output:

 Hex: c4, Octal: 304

You can display floating-point values in hexadecimal format by using %a. The format
produced by %a appears a bit strange at first glance. This is because its representation uses
a form similar to scientific notation that consists of a hexadecimal significand and a decimal
exponent of powers of 2. Here is the general format:

0x1.sigpexp

19-ch19.indd 609 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

610 PART II The Java Library

Here, sig contains the fractional portion of the significand and exp contains the exponent.
The p indicates the start of the exponent. For example, this call:

fmt.format("%a", 512.0);

produces this output:

 0x1.0p9

Formatting Time and Date
One of the more powerful conversion specifiers is %t. It lets you format time and date
information. The %t specifier works a bit differently than the others because it requires the
use of a suffix to describe the portion and precise format of the time or date desired. The
suffixes are shown in Table 19-14. For example, to display minutes, you would use %tM,
where M indicates minutes in a two-character field. The argument corresponding to the
%t specifier must be of type Calendar, Date, Long, or long.

Here is a program that demonstrates several of the formats:

// Formatting time and date.
import java.util.*;

class TimeDateFormat {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();
 Calendar cal = Calendar.getInstance();

 // Display standard 12-hour time format.
 fmt.format("%tr", cal);
 System.out.println(fmt);
 fmt.close();

 // Display complete time and date information.
 fmt = new Formatter();
 fmt.format("%tc", cal);
 System.out.println(fmt);
 fmt.close();

 // Display just hour and minute.
 fmt = new Formatter();
 fmt.format("%tl:%tM", cal, cal);
 System.out.println(fmt);
 fmt.close();

 // Display month by name and number.
 fmt = new Formatter();
 fmt.format("%tB %tb %tm", cal, cal, cal);
 System.out.println(fmt);
 fmt.close();
 }
}

19-ch19.indd 610 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 611

Pa
rt

 II

Suffix Replaced By
a Abbreviated weekday name

A Full weekday name

b Abbreviated month name

B Full month name

c Standard date and time string formatted as
 day month date hh::mm:ss tzone year

C First two digits of year

d Day of month as a decimal (01—31)

D month/day/year

e Day of month as a decimal (1—31)

F year-month-day

h Abbreviated month name

H Hour (00 to 23)

I Hour (01 to 12)

j Day of year as a decimal (001 to 366)

k Hour (0 to 23)

l Hour (1 to 12)

L Millisecond (000 to 999)

m Month as decimal (01 to 13)

M Minute as decimal (00 to 59)

N Nanosecond (000000000 to 999999999)

p Locale’s equivalent of AM or PM in lowercase

Q Milliseconds from 1/1/1970

r hh:mm:ss (12-hour format)

R hh:mm (24-hour format)

S Seconds (00 to 60)

s Seconds from 1/1/1970 UTC

T hh:mm:ss (24-hour format)

y Year in decimal without century (00 to 99)

Y Year in decimal including century (0001 to 9999)

z Offset from UTC

Z Time zone name

Table 19-14 The Time and Date Format Suffixes

19-ch19.indd 611 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

612 PART II The Java Library

Sample output is shown here:

 03:15:34 PM
 Wed Jan 01 15:15:34 CST 2014
 3:15
 January Jan 01

The %n and %% Specifiers
The %n and%% format specifiers differ from the others in that they do not match an
argument. Instead, they are simply escape sequences that insert a character into the output
sequence. The %n inserts a newline. The %% inserts a percent sign. Neither of these
characters can be entered directly into the format string. Of course, you can also use
the standard escape sequence \n to embed a newline character.

Here is an example that demonstrates the %n and %% format specifiers:

// Demonstrate the %n and %% format specifiers.
import java.util.*;

class FormatDemo3 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 fmt.format("Copying file%nTransfer is %d%% complete", 88);
 System.out.println(fmt);
 fmt.close();
 }
}

It displays the following output:

 Copying file
 Transfer is 88% complete

Specifying a Minimum Field Width
An integer placed between the % sign and the format conversion code acts as a minimum
field-width specifier. This pads the output with spaces to ensure that it reaches a certain
minimum length. If the string or number is longer than that minimum, it will still be
printed in full. The default padding is done with spaces. If you want to pad with 0’s, place
a 0 before the field-width specifier. For example, %05d will pad a number of less than five
digits with 0’s so that its total length is five. The field-width specifier can be used with all
format specifiers except %n.

The following program demonstrates the minimum field-width specifier by applying it
to the %f conversion:

// Demonstrate a field-width specifier.
import java.util.*;

class FormatDemo4 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

19-ch19.indd 612 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 613

Pa
rt

 II

 fmt.format("|%f|%n|%12f|%n|%012f|",
 10.12345, 10.12345, 10.12345);

 System.out.println(fmt);
 fmt.close();

 }
}

This program produces the following output:

 |10.123450|
 | 10.123450|
 |00010.123450|

The first line displays the number 10.12345 in its default width. The second line
displays that value in a 12-character field. The third line displays the value in a 12-character
field, padded with leading zeros.

The minimum field-width modifier is often used to produce tables in which the columns
line up. For example, the next program produces a table of squares and cubes for the
numbers between 1 and 10:

// Create a table of squares and cubes.
import java.util.*;

class FieldWidthDemo {
 public static void main(String args[]) {
 Formatter fmt;

 for(int i=1; i <= 10; i++) {
 fmt = new Formatter();
 fmt.format("%4d %4d %4d", i, i*i, i*i*i);
 System.out.println(fmt);
 fmt.close();
 }

 }
}

Its output is shown here:

 1 1 1
 2 4 8
 3 9 27
 4 16 64
 5 25 125
 6 36 216
 7 49 343
 8 64 512
 9 81 729
 10 100 1000

19-ch19.indd 613 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

614 PART II The Java Library

Specifying Precision
A precision specifier can be applied to the %f, %e, %g, and %s format specifiers. It follows the
minimum field-width specifier (if there is one) and consists of a period followed by an integer.
Its exact meaning depends upon the type of data to which it is applied.

When you apply the precision specifier to floating-point data using the %f or %e specifiers,
it determines the number of decimal places displayed. For example, %10.4f displays a number
at least ten characters wide with four decimal places. When using %g, the precision determines
the number of significant digits. The default precision is 6.

Applied to strings, the precision specifier specifies the maximum field length. For
example, %5.7s displays a string of at least five and not exceeding seven characters long.
If the string is longer than the maximum field width, the end characters will be truncated.

The following program illustrates the precision specifier:

// Demonstrate the precision modifier.
import java.util.*;

class PrecisionDemo {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 // Format 4 decimal places.
 fmt.format("%.4f", 123.1234567);
 System.out.println(fmt);
 fmt.close();

 // Format to 2 decimal places in a 16 character field
 fmt = new Formatter();
 fmt.format("%16.2e", 123.1234567);
 System.out.println(fmt);
 fmt.close();

 // Display at most 15 characters in a string.
 fmt = new Formatter();
 fmt.format("%.15s", "Formatting with Java is now easy.");
 System.out.println(fmt);
 fmt.close();
 }
}

It produces the following output:

 123.1235
 1.23e+02
 Formatting with

Using the Format Flags
Formatter recognizes a set of format flags that lets you control various aspects of a
conversion. All format flags are single characters, and a format flag follows the % in a
format specification. The flags are shown here:

19-ch19.indd 614 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 615

Pa
rt

 II

Flag Effect
– Left justification

Alternate conversion format

0 Output is padded with zeros rather than spaces

space Positive numeric output is preceded by a space

+ Positive numeric output is preceded by a + sign

, Numeric values include grouping separators

(Negative numeric values are enclosed within parentheses

Not all flags apply to all format specifiers. The following sections explain each in detail.

Justifying Output
By default, all output is right-justified. That is, if the field width is larger than the data
printed, the data will be placed on the right edge of the field. You can force output to be
left-justified by placing a minus sign directly after the %. For instance, %–10.2f left-justifies
a floating-point number with two decimal places in a 10-character field. For example,
consider this program:

// Demonstrate left justification.
import java.util.*;

class LeftJustify {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 // Right justify by default
 fmt.format("|%10.2f|", 123.123);
 System.out.println(fmt);
 fmt.close();

 // Now, left justify.
 fmt = new Formatter();
 fmt.format("|%-10.2f|", 123.123);
 System.out.println(fmt);
 fmt.close();
 }
}

It produces the following output:

 | 123.12|
 |123.12 |

As you can see, the second line is left-justified within a 10-character field.

19-ch19.indd 615 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

616 PART II The Java Library

The Space, +, 0, and (Flags
To cause a + sign to be shown before positive numeric values, add the + flag. For example,

fmt.format("%+d", 100);

creates this string:

 +100

When creating columns of numbers, it is sometimes useful to output a space before
positive values so that positive and negative values line up. To do this, add the space flag.
For example,

// Demonstrate the space format specifiers.
import java.util.*;

class FormatDemo5 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();

 fmt.format("% d", -100);
 System.out.println(fmt);
 fmt.close();

 fmt = new Formatter();
 fmt.format("% d", 100);
 System.out.println(fmt);
 fmt.close();

 fmt = new Formatter();
 fmt.format("% d", -200);
 System.out.println(fmt);
 fmt.close();

 fmt = new Formatter();
 fmt.format("% d", 200);
 System.out.println(fmt);
 fmt.close();
 }
}

The output is shown here:

 -100
 100
 -200
 200

Notice that the positive values have a leading space, which causes the digits in the column
to line up properly.

19-ch19.indd 616 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 617

Pa
rt

 II

To show negative numeric output inside parentheses, rather than with a leading –, use
the (flag. For example,

fmt.format("%(d", -100);

creates this string:

 (100)

The 0 flag causes output to be padded with zeros rather than spaces.

The Comma Flag
When displaying large numbers, it is often useful to add grouping separators, which in
English are commas. For example, the value 1234567 is more easily read when formatted
as 1,234,567. To add grouping specifiers, use the comma (,) flag. For example,

fmt.format("%,.2f", 4356783497.34);

creates this string:

 4,356,783,497.34

The # Flag
The # can be applied to %o, %x, %e, and %f. For %e, and %f, the # ensures that there
will be a decimal point even if there are no decimal digits. If you precede the %x format
specifier with a #, the hexadecimal number will be printed with a 0x prefix. Preceding the
%o specifier with # causes the number to be printed with a leading zero.

The Uppercase Option
As mentioned earlier, several of the format specifiers have uppercase versions that cause the
conversion to use uppercase where appropriate. The following table describes the effect.

Specifier Effect
%A Causes the hexadecimal digits a through f to be displayed in uppercase as A

through F. Also, the prefix 0x is displayed as 0X, and the p will be displayed as P.

%B Uppercases the values true and false.

%E Causes the e symbol that indicates the exponent to be displayed in uppercase.

%G Causes the e symbol that indicates the exponent to be displayed in uppercase.

%H Causes the hexadecimal digits a through f to be displayed in uppercase as A
through F.

%S Uppercases the corresponding string.

%T Causes all alphabetical output to be displayed in uppercase.

%X Causes the hexadecimal digits a through f to be displayed in uppercase as A
through F. Also, the optional prefix 0x is displayed as 0X, if present.

19-ch19.indd 617 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

618 PART II The Java Library

For example, this call:

fmt.format("%X", 250);

creates this string:

 FA

This call:

fmt.format("%E", 123.1234);

creates this string:

 1.231234E+02

Using an Argument Index
Formatter includes a very useful feature that lets you specify the argument to which a
format specifier applies. Normally, format specifiers and arguments are matched in order,
from left to right. That is, the first format specifier matches the first argument, the second
format specifier matches the second argument, and so on. However, by using an argument
index, you can explicitly control which argument a format specifier matches.

An argument index immediately follows the % in a format specifier. It has the following
format:

n$

where n is the index of the desired argument, beginning with 1. For example, consider this
example:

fmt.format("%3$d %1$d %2$d", 10, 20, 30);

It produces this string:

 30 10 20

In this example, the first format specifier matches 30, the second matches 10, and the
third matches 20. Thus, the arguments are used in an order other than strictly left to right.

One advantage of argument indexes is that they enable you to reuse an argument
without having to specify it twice. For example, consider this line:

fmt.format("%d in hex is %1$x", 255);

It produces the following string:

 255 in hex is ff

As you can see, the argument 255 is used by both format specifiers.
There is a convenient shorthand called a relative index that enables you to reuse the

argument matched by the preceding format specifier. Simply specify < for the argument
index. For example, the following call to format() produces the same results as the
previous example:

fmt.format("%d in hex is %<x", 255);

19-ch19.indd 618 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 619

Pa
rt

 II

Relative indexes are especially useful when creating custom time and date formats.
Consider the following example:

// Use relative indexes to simplify the
// creation of a custom time and date format.
import java.util.*;

class FormatDemo6 {
 public static void main(String args[]) {
 Formatter fmt = new Formatter();
 Calendar cal = Calendar.getInstance();

 fmt.format("Today is day %te of %<tB, %<tY", cal);
 System.out.println(fmt);
 fmt.close();
 }
}

Here is sample output:

 Today is day 1 of January, 2014

Because of relative indexing, the argument cal need only be passed once, rather than
three times.

Closing a Formatter
In general, you should close a Formatter when you are done using it. Doing so frees any
resources that it was using. This is especially important when formatting to a file, but it
can be important in other cases, too. As the previous examples have shown, one way to
close a Formatter is to explicitly call close(). However, beginning with JDK 7, Formatter
implements the AutoCloseable interface. This means that it supports the try-with-resources
statement. Using this approach, the Formatter is automatically closed when it is no
longer needed.

The try-with-resources statement is described in Chapter 13, in connection with files,
because files are some of the most commonly used resources that must be closed. However,
the same basic techniques apply here. For example, here is the first Formatter example
reworked to use automatic resource management:

// Use automatic resource management with Formatter.
import java.util.*;

class FormatDemo {
 public static void main(String args[]) {

 try (Formatter fmt = new Formatter())
 {
 fmt.format("Formatting %s is easy %d %f", "with Java",
 10, 98.6);
 System.out.println(fmt);

19-ch19.indd 619 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

620 PART II The Java Library

 }
 }
}

The output is the same as before.

The Java printf() Connection
Although there is nothing technically wrong with using Formatter directly (as the preceding
examples have done) when creating output that will be displayed on the console, there is a
more convenient alternative: the printf() method. The printf() method automatically uses
Formatter to create a formatted string. It then displays that string on System.out, which is
the console by default. The printf() method is defined by both PrintStream and PrintWriter.
The printf() method is described in Chapter 20.

Scanner
Scanner is the complement of Formatter. It reads formatted input and converts it into its
binary form. Scanner can be used to read input from the console, a file, a string, or any
source that implements the Readable interface or ReadableByteChannel. For example, you
can use Scanner to read a number from the keyboard and assign its value to a variable. As
you will see, given its power, Scanner is surprisingly easy to use.

The Scanner Constructors
Scanner defines the constructors shown in Table 19-15. In general, a Scanner can be
created for a String, an InputStream, a File, or any object that implements the Readable
or ReadableByteChannel interfaces. Here are some examples.

The following sequence creates a Scanner that reads the file Test.txt:

FileReader fin = new FileReader("Test.txt");
Scanner src = new Scanner(fin);

This works because FileReader implements the Readable interface. Thus, the call to the
constructor resolves to Scanner(Readable).

This next line creates a Scanner that reads from standard input, which is the keyboard
by default:

Scanner conin = new Scanner(System.in);

This works because System.in is an object of type InputStream. Thus, the call to the
constructor maps to Scanner(InputStream).

The next sequence creates a Scanner that reads from a string.

String instr = "10 99.88 scanning is easy.";
Scanner conin = new Scanner(instr);

Scanning Basics
Once you have created a Scanner, it is a simple matter to use it to read formatted input.
In general, a Scanner reads tokens from the underlying source that you specified when the
Scanner was created. As it relates to Scanner, a token is a portion of input that is delineated

19-ch19.indd 620 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 621

Pa
rt

 II

by a set of delimiters, which is whitespace by default. A token is read by matching it with a
particular regular expression, which defines the format of the data. Although Scanner allows
you to define the specific type of expression that its next input operation will match, it
includes many predefined patterns, which match the primitive types, such as int and double,
and strings. Thus, often you won’t need to specify a pattern to match.

In general, to use Scanner, follow this procedure:

 1. Determine if a specific type of input is available by calling one of Scanner’s
hasNextX methods, where X is the type of data desired.

 2. If input is available, read it by calling one of Scanner’s nextX methods.

 3. Repeat the process until input is exhausted.

 4. Close the Scanner by calling close().

As the preceding indicates, Scanner defines two sets of methods that enable you to read
input. The first are the hasNextX methods, which are shown in Table 19-16. These methods
determine if the specified type of input is available. For example, calling hasNextInt()
returns true only if the next token to be read is an integer. If the desired data is available,
then you read it by calling one of Scanner’s nextX methods, which are shown in Table 19-17.

Method Description
Scanner(File from)
 throws FileNotFoundException

Creates a Scanner that uses the file specified by from
as a source for input.

Scanner(File from, String charset)
 throws FileNotFoundException

Creates a Scanner that uses the file specified by from
with the encoding specified by charset as a source for
input.

Scanner(InputStream from) Creates a Scanner that uses the stream specified by
from as a source for input.

Scanner(InputStream from, String charset) Creates a Scanner that uses the stream specified by
from with the encoding specified by charset as a source
for input.

Scanner(Path from)
 throws IOException

Creates a Scanner that uses the file specified by from
as a source for input.

Scanner(Path from, String charset)
 throws IOException

Creates a Scanner that uses the file specified by from
with the encoding specified by charset as a source
for input.

Scanner(Readable from) Creates a Scanner that uses the Readable object
specified by from as a source for input.

Scanner (ReadableByteChannel from) Creates a Scanner that uses the ReadableByteChannel
specified by from as a source for input.

Scanner(ReadableByteChannel from,
 String charset)

Creates a Scanner that uses the ReadableByteChannel
specified by from with the encoding specified by
charset as a source for input.

Scanner(String from) Creates a Scanner that uses the string specified by
from as a source for input.

Table 19-15 The Scanner Constructors

19-ch19.indd 621 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

622 PART II The Java Library

Table 19-16 The Scanner hasNext Methods

Method Description
boolean hasNext() Returns true if another token of any type is available to

be read. Returns false otherwise.

boolean hasNext(Pattern pattern) Returns true if a token that matches the pattern passed
in pattern is available to be read. Returns false otherwise.

boolean hasNext(String pattern) Returns true if a token that matches the pattern passed
in pattern is available to be read. Returns false otherwise.

boolean hasNextBigDecimal() Returns true if a value that can be stored in a BigDecimal
object is available to be read. Returns false otherwise.

boolean hasNextBigInteger() Returns true if a value that can be stored in a BigInteger
object is available to be read. Returns false otherwise. The
default radix is used. (Unless changed, the default radix
is 10.)

boolean hasNextBigInteger(int radix) Returns true if a value in the specified radix that can
be stored in a BigInteger object is available to be read.
Returns false otherwise.

boolean hasNextBoolean() Returns true if a boolean value is available to be read.
Returns false otherwise.

boolean hasNextByte() Returns true if a byte value is available to be read.
Returns false otherwise. The default radix is used.
(Unless changed, the default radix is 10.)

boolean hasNextByte(int radix) Returns true if a byte value in the specified radix is
available to be read. Returns false otherwise.

boolean hasNextDouble() Returns true if a double value is available to be read.
Returns false otherwise.

boolean hasNextFloat() Returns true if a float value is available to be read.
Returns false otherwise.

boolean hasNextInt() Returns true if an int value is available to be read.
Returns false otherwise. The default radix is used.
(Unless changed, the default radix is 10.)

boolean hasNextInt(int radix) Returns true if an int value in the specified radix is
available to be read. Returns false otherwise.

boolean hasNextLine() Returns true if a line of input is available.

boolean hasNextLong() Returns true if a long value is available to be read.
Returns false otherwise. The default radix is used.
(Unless changed, the default radix is 10.)

boolean hasNextLong(int radix) Returns true if a long value in the specified radix is
available to be read. Returns false otherwise.

boolean hasNextShort() Returns true if a short value is available to be read.
Returns false otherwise. The default radix is used.
(Unless changed, the default radix is 10.)

boolean hasNextShort(int radix) Returns true if a short value in the specified radix is
available to be read. Returns false otherwise.

19-ch19.indd 622 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 623

Pa
rt

 II

For example, to read the next integer, call nextInt(). The following sequence shows how to
read a list of integers from the keyboard.

Scanner conin = new Scanner(System.in);
int i;

// Read a list of integers.
while(conin.hasNextInt()) {

Method Description
String next() Returns the next token of any type from the input

source.

String next(Pattern pattern) Returns the next token that matches the pattern passed
in pattern from the input source.

String next(String pattern) Returns the next token that matches the pattern passed
in pattern from the input source.

BigDecimal nextBigDecimal() Returns the next token as a BigDecimal object.

BigInteger nextBigInteger() Returns the next token as a BigInteger object. The
default radix is used. (Unless changed, the default
radix is 10.)

BigInteger nextBigInteger(int radix) Returns the next token (using the specified radix) as a
BigInteger object.

boolean nextBoolean() Returns the next token as a boolean value.

byte nextByte() Returns the next token as a byte value. The default
radix is used. (Unless changed, the default radix is 10.)

byte nextByte(int radix) Returns the next token (using the specified radix) as a
byte value.

double nextDouble() Returns the next token as a double value.

float nextFloat() Returns the next token as a float value.

int nextInt() Returns the next token as an int value. The default
radix is used. (Unless changed, the default radix is 10.)

int nextInt(int radix) Returns the next token (using the specified radix) as
an int value.

String nextLine() Returns the next line of input as a string.

long nextLong() Returns the next token as a long value. The default
radix is used. (Unless changed, the default radix is 10.)

long nextLong(int radix) Returns the next token (using the specified radix) as a
long value.

short nextShort() Returns the next token as a short value. The default
radix is used. (Unless changed, the default radix is 10.)

short nextShort(int radix) Returns the next token (using the specified radix) as a
short value.

Table 19-17 The Scanner next Methods

19-ch19.indd 623 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

624 PART II The Java Library

 i = conin.nextInt();
 // ...
}

The while loop stops as soon as the next token is not an integer. Thus, the loop stops
reading integers as soon as a non-integer is encountered in the input stream.

If a next method cannot find the type of data it is looking for, it throws an
InputMismatchException. A NoSuchElementException is thrown if no more input is
available. For this reason, it is best to first confirm that the desired type of data is
available by calling a hasNext method before calling its corresponding next method.

Some Scanner Examples
Scanner makes what could be a tedious task into an easy one. To understand why, let’s
look at some examples. The following program averages a list of numbers entered at the
keyboard:

// Use Scanner to compute an average of the values.
import java.util.*;

class AvgNums {
 public static void main(String args[]) {
 Scanner conin = new Scanner(System.in);

 int count = 0;
 double sum = 0.0;

 System.out.println("Enter numbers to average.");

 // Read and sum numbers.
 while(conin.hasNext()) {
 if(conin.hasNextDouble()) {
 sum += conin.nextDouble();
 count++;
 }
 else {
 String str = conin.next();
 if(str.equals("done")) break;
 else {
 System.out.println("Data format error.");
 return;
 }
 }
 }

 conin.close();
 System.out.println("Average is " + sum / count);
 }
}

19-ch19.indd 624 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 625

Pa
rt

 II

The program reads numbers from the keyboard, summing them in the process, until
the user enters the string "done". It then stops input and displays the average of the
numbers. Here is a sample run:

 Enter numbers to average.
 1.2
 2
 3.4
 4
 done
 Average is 2.65

The program reads numbers until it encounters a token that does not represent a valid
double value. When this occurs, it confirms that the token is the string "done". If it is, the
program terminates normally. Otherwise, it displays an error.

Notice that the numbers are read by calling nextDouble(). This method reads any
number that can be converted into a double value, including an integer value, such as 2,
and a floating-point value like 3.4. Thus, a number read by nextDouble() need not specify
a decimal point. This same general principle applies to all next methods. They will match
and read any data format that can represent the type of value being requested.

One thing that is especially nice about Scanner is that the same technique used to read
from one source can be used to read from another. For example, here is the preceding
program reworked to average a list of numbers contained in a text file:

// Use Scanner to compute an average of the values in a file.
import java.util.*;
import java.io.*;

class AvgFile {
 public static void main(String args[])
 throws IOException {

 int count = 0;
 double sum = 0.0;

 // Write output to a file.
 FileWriter fout = new FileWriter("test.txt");
 fout.write("2 3.4 5 6 7.4 9.1 10.5 done");
 fout.close();

 FileReader fin = new FileReader("Test.txt");

 Scanner src = new Scanner(fin);

 // Read and sum numbers.
 while(src.hasNext()) {
 if(src.hasNextDouble()) {
 sum += src.nextDouble();
 count++;
 }
 else {

19-ch19.indd 625 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

626 PART II The Java Library

 String str = src.next();
 if(str.equals("done")) break;
 else {
 System.out.println("File format error.");
 return;
 }
 }
 }

 src.close();
 System.out.println("Average is " + sum / count);
 }
}

Here is the output:

 Average is 6.2

The preceding program illustrates another important feature of Scanner. Notice that
the file reader referred to by fin is not closed directly. Rather, it is closed automatically
when src calls close(). When you close a Scanner, the Readable associated with it is also
closed (if that Readable implements the Closeable interface). Therefore, in this case, the
file referred to by fin is automatically closed when src is closed.

Beginning with JDK 7, Scanner also implements the AutoCloseable interface. This
means that it can be managed by a try-with-resources block. As explained in Chapter 13,
when try-with-resources is used, the scanner is automatically closed when the block ends.
For example, src in the preceding program could have been managed like this:

try (Scanner src = new Scanner(fin))
{
 // Read and sum numbers.
 while(src.hasNext()) {
 if(src.hasNextDouble()) {
 sum += src.nextDouble();
 count++;
 }
 else {
 String str = src.next();
 if(str.equals("done")) break;
 else {
 System.out.println("File format error.");
 return;
 }
 }
 }
}

To clearly demonstrate the closing of a Scanner, the following examples will call close()
explicitly. (Doing so also allows them to be compiled by versions of Java prior to JDK 7.)
However, the try-with-resources approach is more streamlined and can help prevent errors.
Its use is recommended for new code.

19-ch19.indd 626 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 627

Pa
rt

 II

One other point: To keep this and the other examples in this section compact, I/O
exceptions are simply thrown out of main(). However, your real-world code will normally
handle I/O exceptions itself.

You can use Scanner to read input that contains several different types of data—even if
the order of that data is unknown in advance. You must simply check what type of data is
available before reading it. For example, consider this program:

// Use Scanner to read various types of data from a file.
import java.util.*;
import java.io.*;

class ScanMixed {
 public static void main(String args[])
 throws IOException {

 int i;
 double d;
 boolean b;
 String str;

 // Write output to a file.
 FileWriter fout = new FileWriter("test.txt");
 fout.write("Testing Scanner 10 12.2 one true two false");
 fout.close();

 FileReader fin = new FileReader("Test.txt");

 Scanner src = new Scanner(fin);

 // Read to end.
 while(src.hasNext()) {
 if(src.hasNextInt()) {
 i = src.nextInt();
 System.out.println("int: " + i);
 }
 else if(src.hasNextDouble()) {
 d = src.nextDouble();
 System.out.println("double: " + d);
 }
 else if(src.hasNextBoolean()) {
 b = src.nextBoolean();
 System.out.println("boolean: " + b);
 }
 else {
 str = src.next();
 System.out.println("String: " + str);
 }
 }

 src.close();
 }
}

19-ch19.indd 627 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

628 PART II The Java Library

Here is the output:

 String: Testing
 String: Scanner
 int: 10
 double: 12.2
 String: one
 boolean: true
 String: two
 boolean: false

When reading mixed data types, as the preceding program does, you need to be a
bit careful about the order in which you call the next methods. For example, if the loop
reversed the order of the calls to nextInt() and nextDouble(), both numeric values would
have been read as doubles, because nextDouble() matches any numeric string that can be
represented as a double.

Setting Delimiters
Scanner defines where a token starts and ends based on a set of delimiters. The default
delimiters are the whitespace characters, and this is the delimiter set that the preceding
examples have used. However, it is possible to change the delimiters by calling the
useDelimiter() method, shown here:

Scanner useDelimiter(String pattern)

Scanner useDelimiter(Pattern pattern)

Here, pattern is a regular expression that specifies the delimiter set.
Here is the program that reworks the average program shown earlier so that it reads a

list of numbers that are separated by commas, and any number of spaces:

// Use Scanner to compute an average a list of
// comma-separated values.
import java.util.*;
import java.io.*;

class SetDelimiters {
 public static void main(String args[])
 throws IOException {

 int count = 0;
 double sum = 0.0;

 // Write output to a file.
 FileWriter fout = new FileWriter("test.txt");

 // Now, store values in comma-separated list.
 fout.write("2, 3.4, 5,6, 7.4, 9.1, 10.5, done");
 fout.close();

 FileReader fin = new FileReader("Test.txt");

 Scanner src = new Scanner(fin);

19-ch19.indd 628 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 629

Pa
rt

 II

 // Set delimiters to space and comma.
 src.useDelimiter(", *");

 // Read and sum numbers.
 while(src.hasNext()) {
 if(src.hasNextDouble()) {
 sum += src.nextDouble();
 count++;
 }
 else {
 String str = src.next();
 if(str.equals("done")) break;
 else {
 System.out.println("File format error.");
 return;
 }
 }
 }

 src.close();
 System.out.println("Average is " + sum / count);
 }
}

In this version, the numbers written to test.txt are separated by commas and spaces.
The use of the delimiter pattern ", * " tells Scanner to match a comma and zero or more
spaces as delimiters. The output is the same as before.

You can obtain the current delimiter pattern by calling delimiter(), shown here:

Pattern delimiter()

Other Scanner Features
Scanner defines several other methods in addition to those already discussed. One that is
particularly useful in some circumstances is findInLine(). Its general forms are shown here:

String findInLine(Pattern pattern)
String findInLine(String pattern)

This method searches for the specified pattern within the next line of text. If the
pattern is found, the matching token is consumed and returned. Otherwise, null is
returned. It operates independently of any delimiter set. This method is useful if you want
to locate a specific pattern. For example, the following program locates the Age field in the
input string and then displays the age:

// Demonstrate findInLine().
import java.util.*;

class FindInLineDemo {
 public static void main(String args[]) {
 String instr = "Name: Tom Age: 28 ID: 77";

19-ch19.indd 629 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

630 PART II The Java Library

 Scanner conin = new Scanner(instr);

 // Find and display age.
 conin.findInLine("Age:"); // find Age

 if(conin.hasNext())
 System.out.println(conin.next());
 else
 System.out.println("Error!");

 conin.close();
 }
}

The output is 28. In the program, findInLine() is used to find an occurrence of the
pattern "Age". Once found, the next token is read, which is the age.

Related to findInLine() is findWithinHorizon(). It is shown here:

String findWithinHorizon(Pattern pattern, int count)

String findWithinHorizon(String pattern, int count)

This method attempts to find an occurrence of the specified pattern within the next count
characters. If successful, it returns the matching pattern. Otherwise, it returns null. If count
is zero, then all input is searched until either a match is found or the end of input is
encountered.

You can bypass a pattern using skip(), shown here:

Scanner skip(Pattern pattern)

Scanner skip(String pattern)

If pattern is matched, skip() simply advances beyond it and returns a reference to the
invoking object. If pattern is not found, skip() throws NoSuchElementException.

Other Scanner methods include radix(), which returns the default radix used by the
Scanner; useRadix(), which sets the radix; reset(), which resets the scanner; and close(),
which closes the scanner.

The ResourceBundle, ListResourceBundle, and
PropertyResourceBundle Classes
The java.util package includes three classes that aid in the internationalization of your
program. The first is the abstract class ResourceBundle. It defines methods that enable you
to manage a collection of locale-sensitive resources, such as the strings that are used to label
the user interface elements in your program. You can define two or more sets of translated
strings that support various languages, such as English, German, or Chinese, with each
translation set residing in its own bundle. You can then load the bundle appropriate to
the current locale and use the strings to construct the program’s user interface.

19-ch19.indd 630 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 631

Pa
rt

 II

Resource bundles are identified by their family name (also called their base name). To
the family name can be added a two-character lowercase language code which specifies the
language. In this case, if a requested locale matches the language code, then that version of
the resource bundle is used. For example, a resource bundle with a family name of SampleRB
could have a German version called SampleRB_de and a Russian version called SampleRB_ru.
(Notice that an underscore links the family name to the language code.) Therefore, if the
locale is Locale.GERMAN, SampleRB_de will be used.

It is also possible to indicate specific variants of a language that relate to a specific country
by specifying a country code after the language code. A country code is a two-character
uppercase identifier, such as AU for Australia or IN for India. A country code is also preceded
by an underscore when linked to the resource bundle name. A resource bundle that has only
the family name is the default bundle. It is used when no language-specific bundles are
applicable.

NOTE The language codes are defined by ISO standard 639 and the country codes by ISO standard 3166.

The methods defined by ResourceBundle are summarized in Table 19-18. One important
point: null keys are not allowed and several of the methods will throw a NullPointerException
if null is passed as the key. Notice the nested class ResourceBundle.Control. It is used to
control the resource-bundle loading process.

Method Description
static final void clearCache() Deletes all resource bundles from the cache that

were loaded by the default class loader.

static final void
 clearCache(ClassLoader ldr)

Deletes all resource bundles from the cache that
were loaded by ldr.

boolean containsKey(String k) Returns true if k is a key within the invoking
resource bundle (or its parent).

String getBaseBundleName() Returns the resource bundle’s base name if available.
Returns null otherwise. (Added by JDK 8.)

static final ResourceBundle
 getBundle(String familyName)

Loads the resource bundle with a family name of
familyName using the default locale and the default
class loader. Throws MissingResourceException
if no resource bundle matching the family name
specified by familyName is available.

static final ResourceBundle
 getBundle(String familyName,
 Locale loc)

Loads the resource bundle with a family name of
familyName using the specified locale and the default
class loader. Throws MissingResourceException
if no resource bundle matching the family name
specified by familyName is available.

static ResourceBundle
 getBundle(String familyName,
 Locale loc,
 ClassLoader ldr)

Loads the resource bundle with a family name of
familyName using the specified locale and the specified
class loader. Throws MissingResourceException if no
resource bundle matching the family name specified
by familyName is available.

Table 19-18 The Methods Defined by ResourceBundle

19-ch19.indd 631 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

632 PART II The Java Library

Method Description
static final ResourceBundle
 getBundle(String familyName,
 ResourceBundle.Control cntl)

 Loads the resource bundle with a family name of
familyName using the default locale and the default
class loader. The loading process is under the
control of cntl. Throws MissingResourceException
if no resource bundle matching the family name
specified by familyName is available.

static final ResourceBundle
 getBundle(String familyName,
 Locale loc,
 ResourceBundle.Control cntl)

Loads the resource bundle with a family name of
familyName using the specified locale and the default
class loader. The loading process is under the
control of cntl. Throws MissingResourceException
if no resource bundle matching the family name
specified by familyName is available.

 static ResourceBundle
 getBundle(String familyName,
 Locale loc,
 ClassLoader ldr,
 ResourceBundle.Control cntl)

Loads the resource bundle with a family name of
familyName using the specified locale and the specified
class loader. The loading process is under the control
of cntl. Throws MissingResourceException if no
resource bundle matching the family name specified
by familyName is available.

abstract Enumeration<String> getKeys() Returns the resource bundle keys as an enumeration
of strings. Any parent’s keys are also obtained.

Locale getLocale() Returns the locale supported by the resource bundle.

final Object getObject(String k) Returns the object associated with the key passed
via k. Throws MissingResourceException if k is not
in the resource bundle.

final String getString(String k) Returns the string associated with the key passed via
k. Throws MissingResourceException if k is not in
the resource bundle. Throws ClassCastException if
the object associated with k is not a string.

final String[] getStringArray(String k) Returns the string array associated with the key
passed via k. Throws MissingResourceException
if k is not in the resource bundle. Throws
MissingResourceException if the object associated
with k is not a string array.

protected abstract Object
 handleGetObject(String k)

Returns the object associated with the key passed
via k. Returns null if k is not in the resource bundle.

protected Set<String> handleKeySet() Returns the resource bundle keys as a set of strings.
No parent’s keys are obtained. Also, keys with null
values are not obtained.

Set<String> keySet() Returns the resource bundle keys as a set of strings.
Any parent keys are also obtained.

protected void
 setParent(ResourceBundle parent)

Sets parent as the parent bundle for the resource
bundle. When a key is looked up, the parent will
be searched if the key is not found in the invoking
resource object.

Table 19-18 The Methods Defined by ResourceBundle (continued)

19-ch19.indd 632 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 633

Pa
rt

 II

There are two subclasses of ResourceBundle. The first is PropertyResourceBundle,
which manages resources by using property files. PropertyResourceBundle adds no
methods of its own. The second is the abstract class ListResourceBundle, which manages
resources in an array of key/value pairs. ListResourceBundle adds the method getContents(),
which all subclasses must implement. It is shown here:

protected abstract Object[][] getContents()

It returns a two-dimensional array that contains key/value pairs that represent resources.
The keys must be strings. The values are typically strings, but can be other types of objects.

Here is an example that demonstrates using a resource bundle. The resource bundle
has the family name SampleRB. Two resource bundle classes of this family are created by
extending ListResourceBundle. The first is called SampleRB, and it is the default bundle
(which uses English). It is shown here:

import java.util.*;
public class SampleRB extends ListResourceBundle {
 protected Object[][] getContents() {
 Object[][] resources = new Object[3][2];

 resources[0][0] = "title";
 resources[0][1] = "My Program";

 resources[1][0] = "StopText";
 resources[1][1] = "Stop";

 resources[2][0] = "StartText";
 resources[2][1] = "Start";

 return resources;
 }
}

The second resource bundle, shown next, is called SampleRB_de. It contains the
German translation.

import java.util.*;

// German version.
public class SampleRB_de extends ListResourceBundle {
 protected Object[][] getContents() {
 Object[][] resources = new Object[3][2];

 resources[0][0] = "title";
 resources[0][1] = "Mein Programm";

 resources[1][0] = "StopText";
 resources[1][1] = "Anschlag";

 resources[2][0] = "StartText";
 resources[2][1] = "Anfang";

19-ch19.indd 633 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

634 PART II The Java Library

 return resources;
 }
}

The following program demonstrates these two resource bundles by displaying the
string associated with each key for both the default (English) version and the German
version:

// Demonstrate a resource bundle.
import java.util.*;

class LRBDemo {
 public static void main(String args[]) {
 // Load the default bundle.
 ResourceBundle rd = ResourceBundle.getBundle("SampleRB");

 System.out.println("English version: ");
 System.out.println("String for Title key : " +
 rd.getString("title"));

 System.out.println("String for StopText key: " +
 rd.getString("StopText"));

 System.out.println("String for StartText key: " +
 rd.getString("StartText"));

 // Load the German bundle.
 rd = ResourceBundle.getBundle("SampleRB", Locale.GERMAN);

 System.out.println("\nGerman version: ");
 System.out.println("String for Title key : " +
 rd.getString("title"));

 System.out.println("String for StopText key: " +
 rd.getString("StopText"));

 System.out.println("String for StartText key: " +
 rd.getString("StartText"));
 }
}

The output from the program is shown here:

 English version:
 String for Title key : My Program
 String for StopText key: Stop
 String for StartText key: Start

 German version:
 String for Title key : Mein Programm
 String for StopText key: Anschlag
 String for StartText key: Anfang

19-ch19.indd 634 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 635

Pa
rt

 II

Miscellaneous Utility Classes and Interfaces
In addition to the classes already discussed, java.util includes the following classes:

Base64 Supports Base64 encoding. Encoder and Decoder nested
classes are also defined. (Added by JDK 8.)

DoubleSummaryStatistics Supports the compilation of double values. The following
statistics are available: average, minimum, maximum, count,
and sum. (Added by JDK 8.)

EventListenerProxy Extends the EventListener class to allow additional
parameters. See Chapter 24 for a discussion of event listeners.

EventObject The superclass for all event classes. Events are discussed in
Chapter 24.

FormattableFlags Defines formatting flags that are used with the Formattable
interface.

IntSummaryStatistics Supports the compilation of int values. The following statistics
are available: average, minimum, maximum, count, and sum.
(Added by JDK 8.)

Objects Various methods that operate on objects.

PropertyPermission Manages property permissions.

ServiceLoader Provides a means of finding service providers.

StringJoiner Supports the concatenation of CharSequences, which may
include a separator, a prefix, and a suffix. (Added by JDK 8.)

UUID Encapsulates and manages Universally Unique Identifiers
(UUIDs).

The following interfaces are also packaged in java.util:

EventListener Indicates that a class is an event listener. Events are discussed in
Chapter 24.

Formattable Enables a class to provide custom formatting.

The java.util Subpackages
Java defines the following subpackages of java.util:

•	 java.util.concurrent

•	 java.util.concurrent.atomic

•	 java.util.concurrent.locks

•	 java.util.function

•	 java.util.jar

•	 java.util.logging

•	 java.util.prefs

19-ch19.indd 635 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

636 PART II The Java Library

•	 java.util.regex

•	 java.util.spi

•	 java.util.stream

•	 java.util.zip

Each is briefly examined here.

java.util.concurrent, java.util.concurrent.atomic,
and java.util.concurrent.locks
The java.util.concurrent package along with its two subpackages, java.util.concurrent.atomic
and java.util.concurrent.locks, support concurrent programming. These packages provide a
high-performance alternative to using Java’s built-in synchronization features when thread-
safe operation is required. Beginning with JDK 7, java.util.concurrent also provides the
Fork/Join Framework. These packages are examined in detail in Chapter 28.

java.util.function
The java.util.function package defines several predefined functional interfaces that you can
use when creating lambda expressions or method references. They are also widely used
throughout the Java API. The functional interfaces defined by java.util.function are shown
in Table 19-19 along with a synopsis of their abstract methods. Be aware that some of these
interfaces also define default or static methods that supply additional functionality. You will
want to explore them fully on your own. (For a discussion of the use of functional interfaces,
see Chapter 15.)

Interface Abstract Method
BiConsumer<T, U> void accept(T tVal, U uVal)

Description: Acts on tVal and uVal.

BiFunction<T, U, R> R apply(T tVal, U uVal)
Description: Acts on tVal and uVal and returns the result.

BinaryOperator<T> T apply(T val1, T val2)
Description: Acts on two objects of the same type and returns
the result, which is also of the same type.

BiPredicate<T, U> boolean test(T tVal, U uVal)
Description: Returns true if tVal and uVal satisfy the condition
defined by test() and false otherwise.

BooleanSupplier boolean getAsBoolean()
Description: Returns a boolean value.

Consumer<T> void accept(T val)
Description: Acts on val.

Table 19-19 Functional Interfaces Defined by java.util.function and Their Abstract Methods

19-ch19.indd 636 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 637

Pa
rt

 II

Interface Abstract Method
DoubleBinaryOperator double applyAsDouble(double val1, double val2)

Description: Acts on two double values and returns a double
result.

DoubleConsumer void accept(double val)
Description: Acts on val.

DoubleFunction<R> R apply(double val)
Description: Acts on a double value and returns the result.

DoublePredicate boolean test(double val)
Description: Returns true if val satisfies the condition defined
by test() and false otherwise.

DoubleSupplier double getAsDouble()
Description: Returns a double result.

DoubleToIntFunction int applyAsInt(double val)
Description: Acts on a double value and returns the result as
an int.

DoubleToLongFunction long applyAsLong(double val)
Description: Acts on a double value and returns the result as
a long.

DoubleUnaryOperator double applyAsDouble(double val)
Description: Acts on a double and returns a double result.

Function<T, R> R apply(T val)
Description: Acts on val and returns the result.

IntBinaryOperator int applyAsInt(int val1, int val2)
Description: Acts on two int values and returns an int result.

IntConsumer int accept(int val)
Description: Acts on val.

IntFunction<R> R apply(int val)
Description: Acts on an int value and returns the result.

IntPredicate boolean test(int val)
Description: Returns true if val satisfies the condition defined
by test() and false otherwise.

IntSupplier int getAsInt()
Description: Returns an int result.

IntToDoubleFunction double applyAsDouble(int val)
Description: Acts on an int value and returns the result as a
double.

IntToLongFunction long applyAsLong(int val)
Description: Acts on an int value and returns the result as
a long.

Table 19-19 Functional Interfaces Defined by java.util.function and Their Abstract Methods (continued)

19-ch19.indd 637 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

638 PART II The Java Library

Interface Abstract Method
IntUnaryOperator int applyAsInt(int val)

Description: Acts on an int and returns an int result.

LongBinaryOperator long applyAsLong(long val1, long val2)
Description: Acts on two long values and returns a long result.

LongConsumer void accept(long val)
Description: Acts on val.

LongFunction<R> R apply(long val)
Description: Acts on a long value and returns the result.

LongPredicate boolean test(long val)
Description: Returns true if val satisfies the condition defined
by test() and false otherwise.

LongSupplier long getAsLong()
Description: Returns a long result.

LongToDoubleFunction double applyAsDouble(long val)
Description: Acts on a long value and returns the result as a
double.

LongToIntFunction int applyAsInt(long val)
Description: Acts on a long value and returns the result
as an int.

LongUnaryOperator long applyAsLong(long val)
Description: Acts on a long and returns a long result.

ObjDoubleConsumer<T> void accept(T val1, double val2)
Description: Acts on val1 and the double value val2.

ObjIntConsumer<T> void accept(T val1, int val2)
Description: Acts on val1 and the int value val2.

ObjLongConsumer<T> void accept(T val1, long val2)
Description: Acts on val1 and the long value val2.

Predicate<T> boolean test(T val)
Description: Returns true if val satisfies the condition defined
by test() and false otherwise.

Supplier<T> T get()
Description: Returns an object of type T.

ToDoubleBiFunction<T, U> double applyAsDouble(T tVal, U uVal)
Description: Acts on tVal and uVal and returns the result as a
double.

ToDoubleFunction<T> double applyAsDouble(T val)
Description: Acts on val and returns the result as a double.

Table 19-19 Functional Interfaces Defined by java.util.function and Their Abstract Methods (continued)

19-ch19.indd 638 14/02/14 5:09 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 19 java.util Part 2: More Utility Classes 639

Pa
rt

 II

Interface Abstract Method
ToIntBiFunction<T, U> int applyAsInt(T tVal, U uVal)

Description: Acts on tVal and uVal and returns the result
as an int.

ToIntFunction<T> int applyAsInt(T val)
Description: Acts on val and returns the result as an int.

ToLongBiFunction<T, U> long applyAsLong(T tVal, U uVal)
Description: Acts on tVal and uVal and returns the result as a
long.

ToLongFunction<T> long applyAsLong(T val)
Description: Acts on val and returns the result as a long.

UnaryOperator<T> T apply(T val)
Description: Acts on val and returns the result

java.util.jar
The java.util.jar package provides the ability to read and write Java Archive (JAR) files.

java.util.logging
The java.util.logging package provides support for program activity logs, which can be used
to record program actions, and to help find and debug problems.

java.util.prefs
The java.util.prefs package provides support for user preferences. It is typically used to
support program configuration.

java.util.regex
The java.util.regex package provides support for regular expression handling. It is
described in detail in Chapter 30.

java.util.spi
The java.util.spi package provides support for service providers.

java.util.stream
The java.util.stream package contains Java’s stream API, which was added by JDK 8. A
discussion of the stream API is found in Chapter 29.

java.util.zip
The java.util.zip package provides the ability to read and write files in the popular ZIP and
GZIP formats. Both ZIP and GZIP input and output streams are available.

Table 19-19 Functional Interfaces Defined by java.util.function and Their Abstract Methods (continued)

19-ch19.indd 639 14/02/14 5:09 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

20
CHAPTER

 641

Input/Output:
Exploring java.io

This chapter explores java.io, which provides support for I/O operations. Chapter 13
presented an overview of Java’s I/O system, including basic techniques for reading and
writing files, handling I/O exceptions, and closing a file. Here, we will examine the Java
I/O system in greater detail.

As all programmers learn early on, most programs cannot accomplish their goals
without accessing external data. Data is retrieved from an input source. The results of a
program are sent to an output destination. In Java, these sources or destinations are defined
very broadly. For example, a network connection, memory buffer, or disk file can be
manipulated by the Java I/O classes. Although physically different, these devices are all
handled by the same abstraction: the stream. An I/O stream, as explained in Chapter 13, is a
logical entity that either produces or consumes information. An I/O stream is linked to a
physical device by the Java I/O system. All I/O streams behave in the same manner, even if
the actual physical devices they are linked to differ.

NOTE The stream-based I/O system packaged in java.io and described in this chapter has been part of
Java since its original release and is widely used. However, beginning with version 1.4, a second I/O
system was added to Java. It is called NIO (which was originally an acronym for New I/O). NIO is
packaged in java.nio and its subpackages. The NIO system is described in Chapter 21.

NOTE It is important not to confuse the I/O streams used by the I/O system discussed here with the new
stream API added by JDK 8. Although conceptually related, they are two different things. Therefore,
when the term stream is used in this chapter, it refers to an I/O stream.

The I/O Classes and Interfaces
The I/O classes defined by java.io are listed here:

BufferedInputStream FileWriter PipedOutputStream

BufferedOutputStream FilterInputStream PipedReader

20-ch20.indd 641 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

642 PART II The Java Library

BufferedReader FilterOutputStream PipedWriter

BufferedWriter FilterReader PrintStream

ByteArrayInputStream FilterWriter PrintWriter

ByteArrayOutputStream InputStream PushbackInputStream

CharArrayReader InputStreamReader PushbackReader

CharArrayWriter LineNumberReader RandomAccessFile

Console ObjectInputStream Reader

DataInputStream ObjectInputStream.GetField SequenceInputStream

DataOutputStream ObjectOutputStream SerializablePermission

File ObjectOutputStream.PutField StreamTokenizer

FileDescriptor ObjectStreamClass StringReader

FileInputStream ObjectStreamField StringWriter

FileOutputStream OutputStream Writer

FilePermission OutputStreamWriter

FileReader PipedInputStream

The java.io package also contains two deprecated classes that are not shown in the
preceding table: LineNumberInputStream and StringBufferInputStream. These classes
should not be used for new code.

The following interfaces are defined by java.io:

Closeable FileFilter ObjectInputValidation

DataInput FilenameFilter ObjectOutput

DataOutput Flushable ObjectStreamConstants

Externalizable ObjectInput Serializable

As you can see, there are many classes and interfaces in the java.io package. These
include byte and character streams, and object serialization (the storage and retrieval of
objects). This chapter examines several commonly used I/O components. We begin our
discussion with one of the most distinctive I/O classes: File.

File
Although most of the classes defined by java.io operate on streams, the File class does not.
It deals directly with files and the file system. That is, the File class does not specify how
information is retrieved from or stored in files; it describes the properties of a file itself. A
File object is used to obtain or manipulate the information associated with a disk file, such
as the permissions, time, date, and directory path, and to navigate subdirectory hierarchies.

NOTE The Path interface and Files class, which are part of the NIO system, offer a powerful alternative to
File in many cases. See Chapter 21 for details.

20-ch20.indd 642 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 643

Pa
rt

 II

Files are a primary source and destination for data within many programs. Although
there are severe restrictions on their use within applets for security reasons, files are still a
central resource for storing persistent and shared information. A directory in Java is treated
simply as a File with one additional property—a list of filenames that can be examined by
the list() method.

The following constructors can be used to create File objects:

File(String directoryPath)
File(String directoryPath, String filename)
File(File dirObj, String filename)
File(URI uriObj)

Here, directoryPath is the path name of the file; filename is the name of the file or subdirectory;
dirObj is a File object that specifies a directory; and uriObj is a URI object that describes a file.

The following example creates three files: f1, f2, and f3. The first File object is constructed
with a directory path as the only argument. The second includes two arguments—the path and
the filename. The third includes the file path assigned to f1 and a filename; f3 refers to the
same file as f2.

File f1 = new File("/");
File f2 = new File("/","autoexec.bat");
File f3 = new File(f1,"autoexec.bat");

NOTE Java does the right thing with path separators between UNIX and Windows conventions. If you use
a forward slash (/) on a Windows version of Java, the path will still resolve correctly. Remember, if
you are using the Windows convention of a backslash character (\), you will need to use its escape
sequence (\\) within a string.

File defines many methods that obtain the standard properties of a File object. For
example, getName() returns the name of the file; getParent() returns the name of the
parent directory; and exists() returns true if the file exists, false if it does not. The
following example demonstrates several of the File methods. It assumes that a directory
called java exists off the root directory and that it contains a file called COPYRIGHT.

// Demonstrate File.
import java.io.File;

class FileDemo {
 static void p(String s) {
 System.out.println(s);
 }

 public static void main(String args[]) {
 File f1 = new File("/java/COPYRIGHT");

 p("File Name: " + f1.getName());
 p("Path: " + f1.getPath());
 p("Abs Path: " + f1.getAbsolutePath());
 p("Parent: " + f1.getParent());
 p(f1.exists() ? "exists" : "does not exist");

20-ch20.indd 643 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

644 PART II The Java Library

 p(f1.canWrite() ? "is writeable" : "is not writeable");
 p(f1.canRead() ? "is readable" : "is not readable");
 p("is " + (f1.isDirectory() ? "" : "not" + " a directory"));
 p(f1.isFile() ? "is normal file" : "might be a named pipe");
 p(f1.isAbsolute() ? "is absolute" : "is not absolute");
 p("File last modified: " + f1.lastModified());
 p("File size: " + f1.length() + " Bytes");
 }
}

This program will produce output similar to this:

File Name: COPYRIGHT
Path: \java\COPYRIGHT
Abs Path: C:\java\COPYRIGHT
Parent: \java
exists
is writeable
is readable
is not a directory
is normal file
is not absolute
File last modified: 1282832030047
File size: 695 Bytes

Most of the File methods are self-explanatory. isFile() and isAbsolute() are not. isFile()
returns true if called on a file and false if called on a directory. Also, isFile() returns false
for some special files, such as device drivers and named pipes, so this method can be used
to make sure the file will behave as a file. The isAbsolute() method returns true if the file
has an absolute path and false if its path is relative.

File includes two useful utility methods of special interest. The first is renameTo(),
shown here:

boolean renameTo(File newName)

Here, the filename specified by newName becomes the new name of the invoking File
object. It will return true upon success and false if the file cannot be renamed (if you
attempt to rename a file so that it uses an existing filename, for example).

The second utility method is delete(), which deletes the disk file represented by the
path of the invoking File object. It is shown here:

boolean delete()

You can also use delete() to delete a directory if the directory is empty. delete() returns
true if it deletes the file and false if the file cannot be removed.

20-ch20.indd 644 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 645

Pa
rt

 II

Here are some other File methods that you will find helpful:

Method Description
void deleteOnExit() Removes the file associated with the invoking object

when the Java Virtual Machine terminates.

long getFreeSpace() Returns the number of free bytes of storage available on
the partition associated with the invoking object.

long getTotalSpace() Returns the storage capacity of the partition associated
with the invoking object.

long getUsableSpace() Returns the number of usable free bytes of storage
available on the partition associated with the invoking
object.

boolean isHidden() Returns true if the invoking file is hidden. Returns false
otherwise.

boolean setLastModified(long millisec) Sets the time stamp on the invoking file to that specified
by millisec, which is the number of milliseconds from
January 1, 1970, Coordinated Universal Time (UTC).

boolean setReadOnly() Sets the invoking file to read-only.

Methods also exist to mark files as readable, writable, and executable. Because File
implements the Comparable interface, the method compareTo() is also supported.

JDK 7 added a method to File called toPath(), which is shown here:

Path toPath()

toPath() returns a Path object that represents the file encapsulated by the invoking File
object. (In other words, toPath() converts a File into a Path.) Path is packaged in
java.nio.file and is part of NIO. Thus, toPath() forms a bridge between the older File class
and the newer Path interface. (See Chapter 21 for a discussion of Path.)

Directories
A directory is a File that contains a list of other files and directories. When you create a File
object that is a directory, the isDirectory() method will return true. In this case, you can
call list() on that object to extract the list of other files and directories inside. It has two
forms. The first is shown here:

String[] list()

The list of files is returned in an array of String objects.
The program shown here illustrates how to use list() to examine the contents of a

directory:

// Using directories.
import java.io.File;

class DirList {
 public static void main(String args[]) {
 String dirname = "/java";
 File f1 = new File(dirname);

20-ch20.indd 645 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

646 PART II The Java Library

 if (f1.isDirectory()) {
 System.out.println("Directory of " + dirname);
 String s[] = f1.list();

 for (int i=0; i < s.length; i++) {
 File f = new File(dirname + "/" + s[i]);
 if (f.isDirectory()) {
 System.out.println(s[i] + " is a directory");
 } else {
 System.out.println(s[i] + " is a file");
 }
 }
 } else {
 System.out.println(dirname + " is not a directory");
 }
 }
}

Here is sample output from the program. (Of course, the output you see will be different,
based on what is in the directory.)

Directory of /java
bin is a directory
lib is a directory
demo is a directory
COPYRIGHT is a file
README is a file
index.html is a file
include is a directory
src.zip is a file
src is a directory

Using FilenameFilter
You will often want to limit the number of files returned by the list() method to include
only those files that match a certain filename pattern, or filter. To do this, you must use a
second form of list(), shown here:

String[] list(FilenameFilter FFObj)

In this form, FFObj is an object of a class that implements the FilenameFilter interface.
FilenameFilter defines only a single method, accept(), which is called once for each file

in a list. Its general form is given here:

boolean accept(File directory, String filename)

The accept() method returns true for files in the directory specified by directory that should
be included in the list (that is, those that match the filename argument) and returns false
for those files that should be excluded.

20-ch20.indd 646 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 647

Pa
rt

 II

The OnlyExt class, shown next, implements FilenameFilter. It will be used to modify the
preceding program to restrict the visibility of the filenames returned by list() to files with
names that end in the file extension specified when the object is constructed.

import java.io.*;

public class OnlyExt implements FilenameFilter {
 String ext;

 public OnlyExt(String ext) {
 this.ext = "." + ext;
 }

 public boolean accept(File dir, String name) {
 return name.endsWith(ext);
 }
}

The modified directory listing program is shown here. Now it will only display files that use
the .html extension.

// Directory of .HTML files.
import java.io.*;

class DirListOnly {
 public static void main(String args[]) {
 String dirname = "/java";
 File f1 = new File(dirname);
 FilenameFilter only = new OnlyExt("html");
 String s[] = f1.list(only);

 for (int i=0; i < s.length; i++) {
 System.out.println(s[i]);
 }
 }
}

The listFiles() Alternative
There is a variation to the list() method, called listFiles(), which you might find useful.
The signatures for listFiles() are shown here:

File[] listFiles()
File[] listFiles(FilenameFilter FFObj)
File[] listFiles(FileFilter FObj)

These methods return the file list as an array of File objects instead of strings. The first
method returns all files, and the second returns those files that satisfy the specified
FilenameFilter. Aside from returning an array of File objects, these two versions of listFiles()
work like their equivalent list() methods.

20-ch20.indd 647 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

648 PART II The Java Library

The third version of listFiles() returns those files with path names that satisfy the
specified FileFilter. FileFilter defines only a single method, accept(), which is called once
for each file in a list. Its general form is given here:

boolean accept(File path)

The accept() method returns true for files that should be included in the list (that is, those
that match the path argument) and false for those that should be excluded.

Creating Directories
Another two useful File utility methods are mkdir() and mkdirs(). The mkdir() method
creates a directory, returning true on success and false on failure. Failure can occur for
various reasons, such as the path specified in the File object already exists, or the directory
cannot be created because the entire path does not exist yet. To create a directory for
which no path exists, use the mkdirs() method. It creates both a directory and all the
parents of the directory.

The AutoCloseable, Closeable, and Flushable Interfaces
There are three interfaces that are quite important to the stream classes. Two are Closeable
and Flushable. They are defined in java.io and were added by JDK 5. The third, AutoCloseable,
was added by JDK 7. It is packaged in java.lang.

AutoCloseable provides support for the try-with-resources statement, which automates
the process of closing a resource. (See Chapter 13.) Only objects of classes that implement
AutoCloseable can be managed by try-with-resources. AutoCloseable is discussed in
Chapter 17, but it is reviewed here for convenience. The AutoCloseable interface defines
only the close() method:

void close() throws Exception

This method closes the invoking object, releasing any resources that it may hold. It is called
automatically at the end of a try-with-resources statement, thus eliminating the need to
explicitly call close(). Because this interface is implemented by all of the I/O classes that
open a stream, all such streams can be automatically closed by a try-with-resources statement.
Automatically closing a stream ensures that it is properly closed when it is no longer
needed, thus preventing memory leaks and other problems.

The Closeable interface also defines the close() method. Objects of a class that
implement Closeable can be closed. Beginning with JDK 7, Closeable extends AutoCloseable.
Therefore, any class that implements Closeable also implements AutoCloseable.

Objects of a class that implements Flushable can force buffered output to be written to
the stream to which the object is attached. It defines the flush() method, shown here:

void flush() throws IOException

Flushing a stream typically causes buffered output to be physically written to the underlying
device. This interface is implemented by all of the I/O classes that write to a stream.

20-ch20.indd 648 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 649

Pa
rt

 II

I/O Exceptions
Two exceptions play an important role in I/O handling. The first is IOException. As it
relates to most of the I/O classes described in this chapter, if an I/O error occurs, an
IOException is thrown. In many cases, if a file cannot be opened, a FileNotFoundException
is thrown. FileNotFoundException is a subclass of IOException, so both can be caught with
a single catch that catches IOException. For brevity, this is the approach used by most of
the sample code in this chapter. However, in your own applications, you might find it useful
to catch each exception separately.

Another exception class that is sometimes important when performing I/O is
SecurityException. As explained in Chapter 13, in situations in which a security manager
is present, several of the file classes will throw a SecurityException if a security violation
occurs when attempting to open a file. By default, applications run via java do not use a
security manager. For that reason, the I/O examples in this book do not need to watch for
a possible SecurityException. However, applets will use the security manager provided by
the browser, and file I/O performed by an applet could generate a SecurityException. In
such a case, you will need to handle this exception.

Two Ways to Close a Stream
In general, a stream must be closed when it is no longer needed. Failure to do so can lead
to memory leaks and resource starvation. The techniques used to close a stream were
described in Chapter 13, but because of their importance, they warrant a brief review here
before the stream classes are examined.

Beginning with JDK 7, there are two basic ways in which you can close a stream. The
first is to explicitly call close() on the stream. This is the traditional approach that has been
used since the original release of Java. With this approach, close() is typically called within
a finally block. Thus, a simplified skeleton for the traditional approach is shown here:

try {
 // open and access file
} catch(I/O-exception) {
 // ...
} finally {
 // close the file
}

This general technique (or variation thereof) is common in code that predates JDK 7.
The second approach to closing a stream is to automate the process by using the

try-with-resources statement that was added by JDK 7 (and, of course, supported by JDK 8).
The try-with-resources statement is an enhanced form of try that has the following form:

try (resource-specification) {
 // use the resource
}

Here, resource-specification is a statement or statements that declares and initializes a
resource, such as a file or other stream-related resource. It consists of a variable declaration
in which the variable is initialized with a reference to the object being managed. When the

20-ch20.indd 649 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

650 PART II The Java Library

try block ends, the resource is automatically released. In the case of a file, this means that
the file is automatically closed. Thus, there is no need to call close() explicitly.

Here are three key points about the try-with-resources statement:

•	 Resources managed by try-with-resources must be objects of classes that implement
AutoCloseable.

•	 The resource declared in the try is implicitly final.

•	 You can manage more than one resource by separating each declaration by a
semicolon.

Also, remember that the scope of the declared resource is limited to the try-with-resources
statement.

The principal advantage of try-with-resources is that the resource (in this case, a
stream) is closed automatically when the try block ends. Thus, it is not possible to forget to
close the stream, for example. The try-with-resources approach also typically results in
shorter, clearer, easier-to-maintain source code.

Because of its advantages, try-with-resources is expected to be used extensively in new
code. As a result, most of the code in this chapter (and in this book) will use it. However,
because a large amount of older code still exists, it is important for all programmers to also
be familiar with the traditional approach to closing a stream. For example, you will quite
likely have to work on legacy code that uses the traditional approach or in an environment
that uses an older version of Java. There may also be times when the automated approach is
not appropriate because of other aspects of your code. For this reason, a few I/O examples
in this book will demonstrate the traditional approach so you can see it in action.

One last point: The examples that use try-with-resources must be compiled by a
modern version of Java. They won’t work with an older compiler. The examples that use
the traditional approach can be compiled by older versions of Java.

REMEMBER Because try-with-resources streamlines the process of releasing a resource and eliminates
the possibility of accidentally forgetting to release a resource, it is the approach recommended for
new code when its use is appropriate.

The Stream Classes
Java’s stream-based I/O is built upon four abstract classes: InputStream, OutputStream,
Reader, and Writer. These classes were briefly discussed in Chapter 13. They are used to
create several concrete stream subclasses. Although your programs perform their I/O
operations through concrete subclasses, the top-level classes define the basic functionality
common to all stream classes.

InputStream and OutputStream are designed for byte streams. Reader and Writer are
designed for character streams. The byte stream classes and the character stream classes
form separate hierarchies. In general, you should use the character stream classes when
working with characters or strings and use the byte stream classes when working with bytes
or other binary objects.

In the remainder of this chapter, both the byte- and character-oriented streams are
examined.

20-ch20.indd 650 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 651

Pa
rt

 II

The Byte Streams
The byte stream classes provide a rich environment for handling byte-oriented I/O. A byte
stream can be used with any type of object, including binary data. This versatility makes
byte streams important to many types of programs. Since the byte stream classes are topped
by InputStream and OutputStream, our discussion begins with them.

InputStream
InputStream is an abstract class that defines Java’s model of streaming byte input. It
implements the AutoCloseable and Closeable interfaces. Most of the methods in this class
will throw an IOException when an I/O error occurs. (The exceptions are mark() and
markSupported().) Table 20-1 shows the methods in InputStream.

NOTE Most of the methods described in Table 20-1 are implemented by the subclasses of InputStream.
The mark() and reset() methods are exceptions; notice their use, or lack thereof, by each subclass
in the discussions that follow.

OutputStream
OutputStream is an abstract class that defines streaming byte output. It implements the
AutoCloseable, Closeable, and Flushable interfaces. Most of the methods defined by this
class return void and throw an IOException in the case of I/O errors. Table 20-2 shows the
methods in OutputStream.

Table 20-1 The Methods Defined by InputStream

Method Description
int available() Returns the number of bytes of input currently available for

reading.

void close() Closes the input source. Further read attempts will generate an
IOException.

void mark(int numBytes) Places a mark at the current point in the input stream that will
remain valid until numBytes bytes are read.

boolean markSupported() Returns true if mark() / reset() are supported by the invoking
stream.

int read() Returns an integer representation of the next available byte of
input. –1 is returned when the end of the file is encountered.

int read(byte buffer[]) Attempts to read up to buffer.length bytes into buffer and returns the
actual number of bytes that were successfully read. –1 is returned
when the end of the file is encountered.

int read(byte buffer[],
 int offset,
 int numBytes)

Attempts to read up to numBytes bytes into buffer starting at
buffer[offset], returning the number of bytes successfully read. –1
is returned when the end of the file is encountered.

void reset() Resets the input pointer to the previously set mark.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes of input, returning the
number of bytes actually ignored.

20-ch20.indd 651 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

652 PART II The Java Library

FileInputStream
The FileInputStream class creates an InputStream that you can use to read bytes from a file.
Two commonly used constructors are shown here:

FileInputStream(String filePath)
FileInputStream(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full path name of a file,
and fileObj is a File object that describes the file.

The following example creates two FileInputStreams that use the same disk file and
each of the two constructors:

FileInputStream f0 = new FileInputStream("/autoexec.bat")
File f = new File("/autoexec.bat");
FileInputStream f1 = new FileInputStream(f);

Although the first constructor is probably more commonly used, the second allows you
to closely examine the file using the File methods, before attaching it to an input stream.
When a FileInputStream is created, it is also opened for reading. FileInputStream overrides
six of the methods in the abstract class InputStream. The mark() and reset() methods are
not overridden, and any attempt to use reset() on a FileInputStream will generate an
IOException.

The next example shows how to read a single byte, an array of bytes, and a subrange of
an array of bytes. It also illustrates how to use available() to determine the number of bytes
remaining and how to use the skip() method to skip over unwanted bytes. The program
reads its own source file, which must be in the current directory. Notice that it uses the
try-with-resources statement to automatically close the file when it is no longer needed.

// Demonstrate FileInputStream.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

Method Description
void close() Closes the output stream. Further write attempts will generate

an IOException.

void flush() Finalizes the output state so that any buffers are cleared. That is,
it flushes the output buffers.

void write(int b) Writes a single byte to an output stream. Note that the
parameter is an int, which allows you to call write() with an
expression without having to cast it back to byte.

void write(byte buffer[]) Writes a complete array of bytes to an output stream.

void write(byte buffer[],
 int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

Table 20-2 The Methods Defined by OutputStream

20-ch20.indd 652 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 653

Pa
rt

 II

class FileInputStreamDemo {
 public static void main(String args[]) {
 int size;

 // Use try-with-resources to close the stream.
 try (FileInputStream f =
 new FileInputStream("FileInputStreamDemo.java")) {

 System.out.println("Total Available Bytes: " +
 (size = f.available()));

 int n = size/40;
 System.out.println("First " + n +
 " bytes of the file one read() at a time");
 for (int i=0; i < n; i++) {
 System.out.print((char) f.read());
 }

 System.out.println("\nStill Available: " + f.available());

 System.out.println("Reading the next " + n +
 " with one read(b[])");
 byte b[] = new byte[n];
 if (f.read(b) != n) {
 System.err.println("couldn’t read " + n + " bytes.");
 }

 System.out.println(new String(b, 0, n));
 System.out.println("\nStill Available: " + (size = f.available()));
 System.out.println("Skipping half of remaining bytes with skip()");
 f.skip(size/2);
 System.out.println("Still Available: " + f.available());

 System.out.println("Reading " + n/2 + " into the end of array");
 if (f.read(b, n/2, n/2) != n/2) {
 System.err.println("couldn’t read " + n/2 + " bytes.");
 }

 System.out.println(new String(b, 0, b.length));
 System.out.println("\nStill Available: " + f.available());
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Here is the output produced by this program:

Total Available Bytes: 1785
First 44 bytes of the file one read() at a time
// Demonstrate FileInputStream.
// This pr
Still Available: 1741

20-ch20.indd 653 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

654 PART II The Java Library

Reading the next 44 with one read(b[])
ogram uses try-with-resources. It requires J

Still Available: 1697
Skipping half of remaining bytes with skip()
Still Available: 849
Reading 22 into the end of array
ogram uses try-with-rebyte[n];
 if (

Still Available: 827

This somewhat contrived example demonstrates how to read three ways, to skip input, and
to inspect the amount of data available on a stream.

NOTE The preceding example and the other examples in this chapter handle any I/O exceptions that
might occur as described in Chapter 13. See Chapter 13 for details and alternatives.

FileOutputStream
FileOutputStream creates an OutputStream that you can use to write bytes to a file. It
implements the AutoCloseable, Closeable, and Flushable interfaces. Four of its constructors
are shown here:

FileOutputStream(String filePath)
FileOutputStream(File fileObj)
FileOutputStream(String filePath, boolean append)
FileOutputStream(File fileObj, boolean append)

They can throw a FileNotFoundException. Here, filePath is the full path name of a file, and
fileObj is a File object that describes the file. If append is true, the file is opened in append
mode.

Creation of a FileOutputStream is not dependent on the file already existing.
FileOutputStream will create the file before opening it for output when you create the
object. In the case where you attempt to open a read-only file, an exception will be thrown.

The following example creates a sample buffer of bytes by first making a String and
then using the getBytes() method to extract the byte array equivalent. It then creates three
files. The first, file1.txt, will contain every other byte from the sample. The second, file2.txt,
will contain the entire set of bytes. The third and last, file3.txt, will contain only the last
quarter.

// Demonstrate FileOutputStream.
// This program uses the traditional approach to closing a file.

import java.io.*;

class FileOutputStreamDemo {
 public static void main(String args[]) {
 String source = "Now is the time for all good men\n"
 + " to come to the aid of their country\n"
 + " and pay their due taxes.";

20-ch20.indd 654 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 655

Pa
rt

 II

 byte buf[] = source.getBytes();
 FileOutputStream f0 = null;
 FileOutputStream f1 = null;
 FileOutputStream f2 = null;

 try {
 f0 = new FileOutputStream("file1.txt");
 f1 = new FileOutputStream("file2.txt");
 f2 = new FileOutputStream("file3.txt");

 // write to first file
 for (int i=0; i < buf.length; i += 2) f0.write(buf[i]);

 // write to second file
 f1.write(buf);

 // write to third file
 f2.write(buf, buf.length-buf.length/4, buf.length/4);
 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 } finally {
 try {
 if(f0 != null) f0.close();
 } catch(IOException e) {
 System.out.println("Error Closing file1.txt");
 }
 try {
 if(f1 != null) f1.close();
 } catch(IOException e) {
 System.out.println("Error Closing file2.txt");
 }
 try {
 if(f2 != null) f2.close();
 } catch(IOException e) {
 System.out.println("Error Closing file3.txt");
 }
 }
 }
}

Here are the contents of each file after running this program. First, file1.txt:

 Nwi h iefralgo e
 t oet h i ftercuty n a hi u ae.

Next, file2.txt:

 Now is the time for all good men
 to come to the aid of their country
 and pay their due taxes.

Finally, file3.txt:

 nd pay their due taxes.

20-ch20.indd 655 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

656 PART II The Java Library

As the comment at the top of the program states, the preceding program shows an
example that uses the traditional approach to closing a file when it is no longer needed.
This approach is required by all versions of Java prior to JDK 7 and is widely used in legacy
code. As you can see, quite a bit of rather awkward code is required to explicitly call close()
because each call could generate an IOException if the close operation fails. This program
can be substantially improved by using the new try-with-resources statement. For comparison,
here is the revised version. Notice that it is much shorter and streamlined:

// Demonstrate FileOutputStream.
// This version uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class FileOutputStreamDemo {
 public static void main(String args[]) {
 String source = "Now is the time for all good men\n"
 + " to come to the aid of their country\n"
 + " and pay their due taxes.";
 byte buf[] = source.getBytes();

 // Use try-with-resources to close the files.
 try (FileOutputStream f0 = new FileOutputStream("file1.txt");
 FileOutputStream f1 = new FileOutputStream("file2.txt");
 FileOutputStream f2 = new FileOutputStream("file3.txt"))
 {

 // write to first file
 for (int i=0; i < buf.length; i += 2) f0.write(buf[i]);

 // write to second file
 f1.write(buf);

 // write to third file
 f2.write(buf, buf.length-buf.length/4, buf.length/4);
 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 }
 }
}

ByteArrayInputStream
ByteArrayInputStream is an implementation of an input stream that uses a byte array as the
source. This class has two constructors, each of which requires a byte array to provide the
data source:

ByteArrayInputStream(byte array [])
ByteArrayInputStream(byte array [], int start, int numBytes)

Here, array is the input source. The second constructor creates an InputStream from a subset of
the byte array that begins with the character at the index specified by start and is numBytes long.

The close() method has no effect on a ByteArrayInputStream. Therefore, it is not
necessary to call close() on a ByteArrayInputStream, but doing so is not an error.

20-ch20.indd 656 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 657

Pa
rt

 II

The following example creates a pair of ByteArrayInputStreams, initializing them with
the byte representation of the alphabet:

// Demonstrate ByteArrayInputStream.
import java.io.*;

class ByteArrayInputStreamDemo {
 public static void main(String args[]) {
 String tmp = "abcdefghijklmnopqrstuvwxyz";
 byte b[] = tmp.getBytes();

 ByteArrayInputStream input1 = new ByteArrayInputStream(b);
 ByteArrayInputStream input2 = new ByteArrayInputStream(b,0,3);
 }
}

The input1 object contains the entire lowercase alphabet, whereas input2 contains only the
first three letters.

A ByteArrayInputStream implements both mark() and reset(). However, if mark() has
not been called, then reset() sets the stream pointer to the start of the stream—which, in
this case, is the start of the byte array passed to the constructor. The next example shows
how to use the reset() method to read the same input twice. In this case, the program reads
and prints the letters "abc" once in lowercase and then again in uppercase.

import java.io.*;

class ByteArrayInputStreamReset {
 public static void main(String args[]) {
 String tmp = "abc";
 byte b[] = tmp.getBytes();
 ByteArrayInputStream in = new ByteArrayInputStream(b);

 for (int i=0; i<2; i++) {
 int c;
 while ((c = in.read()) != -1) {
 if (i == 0) {
 System.out.print((char) c);
 } else {
 System.out.print(Character.toUpperCase((char) c));
 }
 }
 System.out.println();
 in.reset();
 }
 }
}

This example first reads each character from the stream and prints it as-is in lowercase. It
then resets the stream and begins reading again, this time converting each character to
uppercase before printing. Here’s the output:

 abc
 ABC

20-ch20.indd 657 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

658 PART II The Java Library

ByteArrayOutputStream
ByteArrayOutputStream is an implementation of an output stream that uses a byte array as
the destination. ByteArrayOutputStream has two constructors, shown here:

ByteArrayOutputStream()
ByteArrayOutputStream(int numBytes)

In the first form, a buffer of 32 bytes is created. In the second, a buffer is created with
a size equal to that specified by numBytes. The buffer is held in the protected buf field
of ByteArrayOutputStream. The buffer size will be increased automatically, if needed.
The number of bytes held by the buffer is contained in the protected count field of
ByteArrayOutputStream.

The close() method has no effect on a ByteArrayOutputStream. Therefore, it is not
necessary to call close() on a ByteArrayOutputStream, but doing so is not an error.

The following example demonstrates ByteArrayOutputStream:

// Demonstrate ByteArrayOutputStream.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class ByteArrayOutputStreamDemo {
 public static void main(String args[]) {
 ByteArrayOutputStream f = new ByteArrayOutputStream();
 String s = "This should end up in the array";
 byte buf[] = s.getBytes();

 try {
 f.write(buf);
 } catch(IOException e) {
 System.out.println("Error Writing to Buffer");
 return;
 }

 System.out.println("Buffer as a string");
 System.out.println(f.toString());
 System.out.println("Into array");
 byte b[] = f.toByteArray();
 for (int i=0; i<b.length; i++) System.out.print((char) b[i]);

 System.out.println("\nTo an OutputStream()");

 // Use try-with-resources to manage the file stream.
 try (FileOutputStream f2 = new FileOutputStream("test.txt"))
 {
 f.writeTo(f2);
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 return;
 }

20-ch20.indd 658 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 659

Pa
rt

 II

 System.out.println("Doing a reset");
 f.reset();

 for (int i=0; i\<3; i++) f.write('X');

 System.out.println(f.toString());
 }
}

When you run the program, you will create the following output. Notice how after the call
to reset(), the three X’s end up at the beginning.

 Buffer as a string
 This should end up in the array
 Into array
 This should end up in the array
 To an OutputStream()
 Doing a reset
 XXX

This example uses the writeTo() convenience method to write the contents of f to test.txt.
Examining the contents of the test.txt file created in the preceding example shows the
result we expected:

 This should end up in the array

Filtered Byte Streams
Filtered streams are simply wrappers around underlying input or output streams that
transparently provide some extended level of functionality. These streams are typically
accessed by methods that are expecting a generic stream, which is a superclass of the
filtered streams. Typical extensions are buffering, character translation, and raw data
translation. The filtered byte streams are FilterInputStream and FilterOutputStream.
Their constructors are shown here:

FilterOutputStream(OutputStream os)
FilterInputStream(InputStream is)

The methods provided in these classes are identical to those in InputStream and
OutputStream.

Buffered Byte Streams
For the byte-oriented streams, a buffered stream extends a filtered stream class by attaching a
memory buffer to the I/O stream. This buffer allows Java to do I/O operations on more
than a byte at a time, thereby improving performance. Because the buffer is available,
skipping, marking, and resetting of the stream become possible. The buffered byte stream
classes are BufferedInputStream and BufferedOutputStream. PushbackInputStream also
implements a buffered stream.

20-ch20.indd 659 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

660 PART II The Java Library

BufferedInputStream
Buffering I/O is a very common performance optimization. Java’s BufferedInputStream
class allows you to "wrap" any InputStream into a buffered stream to improve performance.

BufferedInputStream has two constructors:

BufferedInputStream(InputStream inputStream)
BufferedInputStream(InputStream inputStream, int bufSize)

The first form creates a buffered stream using a default buffer size. In the second, the size
of the buffer is passed in bufSize. Use of sizes that are multiples of a memory page, a disk
block, and so on, can have a significant positive impact on performance. This is, however,
implementation-dependent. An optimal buffer size is generally dependent on the host
operating system, the amount of memory available, and how the machine is configured. To
make good use of buffering doesn’t necessarily require quite this degree of sophistication.
A good guess for a size is around 8,192 bytes, and attaching even a rather small buffer to an
I/O stream is always a good idea. That way, the low-level system can read blocks of data
from the disk or network and store the results in your buffer. Thus, even if you are reading
the data a byte at a time out of the InputStream, you will be manipulating fast memory most
of the time.

Buffering an input stream also provides the foundation required to support moving
backward in the stream of the available buffer. Beyond the read() and skip() methods
implemented in any InputStream, BufferedInputStream also supports the mark() and
reset() methods. This support is reflected by BufferedInputStream.markSupported()
returning true.

The following example contrives a situation where we can use mark() to remember
where we are in an input stream and later use reset() to get back there. This example is
parsing a stream for the HTML entity reference for the copyright symbol. Such a reference
begins with an ampersand (&) and ends with a semicolon (;) without any intervening
whitespace. The sample input has two ampersands to show the case where the reset()
happens and where it does not.

// Use buffered input.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class BufferedInputStreamDemo {
 public static void main(String args[]) {
 String s = "This is a © copyright symbol " +
 "but this is © not.\n";
 byte buf[] = s.getBytes();

 ByteArrayInputStream in = new ByteArrayInputStream(buf);
 int c;
 boolean marked = false;

 // Use try-with-resources to manage the file.
 try (BufferedInputStream f = new BufferedInputStream(in))

20-ch20.indd 660 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 661

Pa
rt

 II

 {
 while ((c = f.read()) != -1) {
 switch(c) {
 case '&':
 if (!marked) {
 f.mark(32);
 marked = true;
 } else {
 marked = false;
 }
 break;
 case ';':
 if (marked) {
 marked = false;
 System.out.print("(c)");
 } else
 System.out.print((char) c);
 break;
 case ' ':
 if (marked) {
 marked = false;
 f.reset();
 System.out.print("&");
 } else
 System.out.print((char) c);
 break;
 default:
 if (!marked)
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Notice that this example uses mark(32), which preserves the mark for the next 32 bytes
read (which is enough for all entity references). Here is the output produced by this
program:

 This is a (c) copyright symbol but this is © not.

BufferedOutputStream
A BufferedOutputStream is similar to any OutputStream with the exception that the flush()
method is used to ensure that data buffers are written to the stream being buffered. Since
the point of a BufferedOutputStream is to improve performance by reducing the number
of times the system actually writes data, you may need to call flush() to cause any data that
is in the buffer to be immediately written.

20-ch20.indd 661 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

662 PART II The Java Library

Unlike buffered input, buffering output does not provide additional functionality.
Buffers for output in Java are there to increase performance. Here are the two available
constructors:

BufferedOutputStream(OutputStream outputStream)
BufferedOutputStream(OutputStream outputStream, int bufSize)

The first form creates a buffered stream using the default buffer size. In the second form,
the size of the buffer is passed in bufSize.

PushbackInputStream
One of the novel uses of buffering is the implementation of pushback. Pushback is used on
an input stream to allow a byte to be read and then returned (that is, "pushed back") to the
stream. The PushbackInputStream class implements this idea. It provides a mechanism to
"peek" at what is coming from an input stream without disrupting it.

PushbackInputStream has the following constructors:

PushbackInputStream(InputStream inputStream)
PushbackInputStream(InputStream inputStream, int numBytes)

The first form creates a stream object that allows one byte to be returned to the input
stream. The second form creates a stream that has a pushback buffer that is numBytes long.
This allows multiple bytes to be returned to the input stream.

Beyond the familiar methods of InputStream, PushbackInputStream provides unread(),
shown here:

void unread(int b)
void unread(byte buffer [])
void unread(byte buffer, int offset, int numBytes)

The first form pushes back the low-order byte of b. This will be the next byte returned by a
subsequent call to read(). The second form pushes back the bytes in buffer. The third form
pushes back numBytes bytes beginning at offset from buffer. An IOException will be thrown if
there is an attempt to push back a byte when the pushback buffer is full.

Here is an example that shows how a programming language parser might use a
PushbackInputStream and unread() to deal with the difference between the = = operator
for comparison and the = operator for assignment:

// Demonstrate unread().
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class PushbackInputStreamDemo {
 public static void main(String args[]) {
 String s = "if (a == 4) a = 0;\n";
 byte buf[] = s.getBytes();
 ByteArrayInputStream in = new ByteArrayInputStream(buf);
 int c;

20-ch20.indd 662 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 663

Pa
rt

 II

 try (PushbackInputStream f = new PushbackInputStream(in))
 {
 while ((c = f.read()) != -1) {
 switch(c) {
 case '=':
 if ((c = f.read()) == '=')
 System.out.print(".eq.");
 else {
 System.out.print("<-");
 f.unread(c);
 }
 break;
 default:
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Here is the output for this example. Notice that == was replaced by ".eq." and = was
replaced by "<–".

 if (a .eq. 4) a <- 0;

CAUTION PushbackInputStream has the side effect of invalidating the mark() or reset() methods of
the InputStream used to create it. Use markSupported() to check any stream on which you are
going to use mark()/reset().

SequenceInputStream
The SequenceInputStream class allows you to concatenate multiple InputStreams. The
construction of a SequenceInputStream is different from any other InputStream. A
SequenceInputStream constructor uses either a pair of InputStreams or an Enumeration
of InputStreams as its argument:

SequenceInputStream(InputStream first, InputStream second)
SequenceInputStream(Enumeration <? extends InputStream> streamEnum)

Operationally, the class fulfills read requests from the first InputStream until it runs out
and then switches over to the second one. In the case of an Enumeration, it will continue
through all of the InputStreams until the end of the last one is reached. When the end
of each file is reached, its associated stream is closed. Closing the stream created by
SequenceInputStream causes all unclosed streams to be closed.

Here is a simple example that uses a SequenceInputStream to output the contents of
two files. For demonstration purposes, this program uses the traditional technique used to

20-ch20.indd 663 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

664 PART II The Java Library

close a file. As an exercise, you might want to try changing it to use the try-with-resources
statement.

// Demonstrate sequenced input.
// This program uses the traditional approach to closing a file.

import java.io.*;
import java.util.*;

class InputStreamEnumerator implements Enumeration<FileInputStream> {
 private Enumeration<String> files;

 public InputStreamEnumerator(Vector<String> files) {
 this.files = files.elements();
 }

 public boolean hasMoreElements() {
 return files.hasMoreElements();
 }

 public FileInputStream nextElement() {
 try {
 return new FileInputStream(files.nextElement().toString());
 } catch (IOException e) {
 return null;
 }
 }
}

class SequenceInputStreamDemo {
 public static void main(String args[]) {
 int c;
 Vector<String> files = new Vector<String>();

 files.addElement("file1.txt");
 files.addElement("file2.txt");
 files.addElement("file3.txt");
 InputStreamEnumerator ise = new InputStreamEnumerator(files);
 InputStream input = new SequenceInputStream(ise);

 try {
 while ((c = input.read()) != -1)
 System.out.print((char) c);
 } catch(NullPointerException e) {
 System.out.println("Error Opening File.");
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 } finally {
 try {
 input.close();

20-ch20.indd 664 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 665

Pa
rt

 II

 } catch(IOException e) {
 System.out.println("Error Closing SequenceInputStream");
 }
 }
 }
}

This example creates a Vector and then adds three filenames to it. It passes that vector of
names to the InputStreamEnumerator class, which is designed to provide a wrapper on the
vector where the elements returned are not the filenames but, rather, open FileInputStreams
on those names. The SequenceInputStream opens each file in turn, and this example prints
the contents of the files.

Notice in nextElement() that if a file cannot be opened, null is returned. This results in
a NullPointerException, which is caught in main().

PrintStream
The PrintStream class provides all of the output capabilities we have been using from the
System file handle, System.out, since the beginning of the book. This makes PrintStream
one of Java’s most often used classes. It implements the Appendable, AutoCloseable,
Closeable, and Flushable interfaces.

PrintStream defines several constructors. The ones shown next have been specified
from the start:

PrintStream(OutputStream outputStream)
PrintStream(OutputStream outputStream, boolean autoFlushingOn)
PrintStream(OutputStream outputStream, boolean autoFlushingOn String charSet)
 throws UnsupportedEncodingException

Here, outputStream specifies an open OutputStream that will receive output. The
autoFlushingOn parameter controls whether the output buffer is automatically flushed
every time a newline (\n) character or a byte array is written or when println() is called.
If autoFlushingOn is true, flushing automatically takes place. If it is false, flushing is not
automatic. The first constructor does not automatically flush. You can specify a character
encoding by passing its name in charSet.

The next set of constructors gives you an easy way to construct a PrintStream that writes
its output to a file:

PrintStream(File outputFile) throws FileNotFoundException
PrintStream(File outputFile, String charSet)
 throws FileNotFoundException, UnsupportedEncodingException
PrintStream(String outputFileName) throws FileNotFoundException
PrintStream(String outputFileName, String charSet) throws FileNotFoundException,
 UnsupportedEncodingException

These allow a PrintStream to be created from a File object or by specifying the name of a
file. In either case, the file is automatically created. Any preexisting file by the same name is
destroyed. Once created, the PrintStream object directs all output to the specified file. You
can specify a character encoding by passing its name in charSet.

20-ch20.indd 665 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

666 PART II The Java Library

NOTE If a security manager is present, some PrintStream constructors will throw a SecurityException if
a security violation occurs.

PrintStream supports the print() and println() methods for all types, including Object.
If an argument is not a primitive type, the PrintStream methods will call the object’s
toString() method and then display the result.

Somewhat recently (with the release of JDK 5), the printf() method was added to
PrintStream. It allows you to specify the precise format of the data to be written. The printf()
method uses the Formatter class (described in Chapter 19) to format data. It then writes
this data to the invoking stream. Although formatting can be done manually, by using
Formatter directly, printf() streamlines the process. It also parallels the C/C++ printf()
function, which makes it easy to convert existing C/C++ code into Java. Frankly, printf()
was a much welcome addition to the Java API because it greatly simplified the output of
formatted data to the console.

The printf() method has the following general forms:

PrintStream printf(String fmtString, Object … args)
PrintStream printf(Locale loc, String fmtString, Object … args)

The first version writes args to standard output in the format specified by fmtString, using
the default locale. The second lets you specify a locale. Both return the invoking
PrintStream.

In general, printf() works in a manner similar to the format() method specified by
Formatter. The fmtString consists of two types of items. The first type is composed of
characters that are simply copied to the output buffer. The second type contains format
specifiers that define the way the subsequent arguments, specified by args, are displayed.
For complete information on formatting output, including a description of the format
specifiers, see the Formatter class in Chapter 19.

Because System.out is a PrintStream, you can call printf() on System.out. Thus, printf()
can be used in place of println() when writing to the console whenever formatted output is
desired. For example, the following program uses printf() to output numeric values in
various formats. Prior to JDK 5, such formatting required a bit of work. With the addition
of printf(), this is now an easy task.

// Demonstrate printf().

class PrintfDemo {
 public static void main(String args[]) {
 System.out.println("Here are some numeric values " +
 "in different formats.\n");

 System.out.printf("Various integer formats: ");
 System.out.printf("%d %(d %+d %05d\n", 3, -3, 3, 3);

 System.out.println();
 System.out.printf("Default floating-point format: %f\n",
 1234567.123);
 System.out.printf("Floating-point with commas: %,f\n",
 1234567.123);

20-ch20.indd 666 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 667

Pa
rt

 II

 System.out.printf("Negative floating-point default: %,f\n",
 -1234567.123);
 System.out.printf("Negative floating-point option: %,(f\n",
 -1234567.123);

 System.out.println();

 System.out.printf("Line up positive and negative values:\n");
 System.out.printf("% ,.2f\n% ,.2f\n",
 1234567.123, -1234567.123);
 }
}

The output is shown here:

 Here are some numeric values in different formats.

 Various integer formats: 3 (3) +3 00003

 Default floating-point format: 1234567.123000
 Floating-point with commas: 1,234,567.123000
 Negative floating-point default: -1,234,567.123000
 Negative floating-point option: (1,234,567.123000)

 Line up positive and negative values:
 1,234,567.12
 -1,234,567.12

PrintStream also defines the format() method. It has these general forms:

PrintStream format(String fmtString, Object … args)
PrintStream format(Locale loc, String fmtString, Object … args)

It works exactly like printf().

DataOutputStream and DataInputStream
DataOutputStream and DataInputStream enable you to write or read primitive data to or
from a stream. They implement the DataOutput and DataInput interfaces, respectively.
These interfaces define methods that convert primitive values to or from a sequence of
bytes. These streams make it easy to store binary data, such as integers or floating-point
values, in a file. Each is examined here.

DataOutputStream extends FilterOutputStream, which extends OutputStream. In
addition to implementing DataOutput, DataOutputStream also implements AutoCloseable,
Closeable, and Flushable. DataOutputStream defines the following constructor:

DataOutputStream(OutputStream outputStream)

Here, outputStream specifies the output stream to which data will be written. When a
DataOutputStream is closed (by calling close()), the underlying stream specified by
outputStream is also closed automatically.

20-ch20.indd 667 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

668 PART II The Java Library

DataOutputStream supports all of the methods defined by its superclasses. However,
it is the methods defined by the DataOutput interface, which it implements, that make it
interesting. DataOutput defines methods that convert values of a primitive type into a byte
sequence and then writes it to the underlying stream. Here is a sampling of these methods:

final void writeDouble(double value) throws IOException
final void writeBoolean(boolean value) throws IOException
final void writeInt(int value) throws IOException

Here, value is the value written to the stream.
DataInputStream is the complement of DataOuputStream. It extends

FilterInputStream, which extends InputStream. In addition to implementing
the DataInput interface, DataInputStream also implements AutoCloseable and
Closeable. Here is its only constructor:

DataInputStream(InputStream inputStream)

Here, inputStream specifies the input stream from which data will be read. When a
DataInputStream is closed (by calling close()), the underlying stream specified by
inputStream is also closed automatically.

Like DataOutputStream, DataInputStream supports all of the methods of its superclasses,
but it is the methods defined by the DataInput interface that make it unique. These methods
read a sequence of bytes and convert them into values of a primitive type. Here is a sampling
of these methods:

final double readDouble() throws IOException
final boolean readBoolean() throws IOException
final int readInt() throws IOException

The following program demonstrates the use of DataOutputStream and
DataInputStream:

// Demonstrate DataInputStream and DataOutputStream.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class DataIODemo {
 public static void main(String args[]) throws IOException {

 // First, write the data.
 try (DataOutputStream dout =
 new DataOutputStream(new FileOutputStream("Test.dat")))
 {
 dout.writeDouble(98.6);
 dout.writeInt(1000);
 dout.writeBoolean(true);

20-ch20.indd 668 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 669

Pa
rt

 II

 } catch(FileNotFoundException e) {
 System.out.println("Cannot Open Output File");
 return;
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 // Now, read the data back.
 try (DataInputStream din =
 new DataInputStream(new FileInputStream("Test.dat")))
 {

 double d = din.readDouble();
 int i = din.readInt();
 boolean b = din.readBoolean();

 System.out.println("Here are the values: " +
 d + " " + i + " " + b);
 } catch(FileNotFoundException e) {
 System.out.println("Cannot Open Input File");
 return;
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

The output is shown here:

 Here are the values: 98.6 1000 true

RandomAccessFile
RandomAccessFile encapsulates a random-access file. It is not derived from InputStream
or OutputStream. Instead, it implements the interfaces DataInput and DataOutput, which
define the basic I/O methods. It also implements the AutoCloseable and Closeable
interfaces. RandomAccessFile is special because it supports positioning requests—that
is, you can position the file pointer within the file. It has these two constructors:

RandomAccessFile(File fileObj, String access)
 throws FileNotFoundException

RandomAccessFile(String filename, String access)
 throws FileNotFoundException

In the first form, fileObj specifies the file to open as a File object. In the second form, the
name of the file is passed in filename. In both cases, access determines what type of file access
is permitted. If it is "r", then the file can be read, but not written. If it is "rw", then the file is
opened in read-write mode. If it is "rws", the file is opened for read-write operations and

20-ch20.indd 669 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

670 PART II The Java Library

every change to the file’s data or metadata will be immediately written to the physical
device. If it is "rwd", the file is opened for read-write operations and every change to the
file’s data will be immediately written to the physical device.

The method seek(), shown here, is used to set the current position of the file pointer
within the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the beginning of
the file. After a call to seek(), the next read or write operation will occur at the new file
position.

RandomAccessFile implements the standard input and output methods, which you can
use to read and write to random access files. It also includes some additional methods. One
is setLength(). It has this signature:

void setLength(long len) throws IOException

This method sets the length of the invoking file to that specified by len. This method
can be used to lengthen or shorten a file. If the file is lengthened, the added portion is
undefined.

The Character Streams
While the byte stream classes provide sufficient functionality to handle any type of I/O
operation, they cannot work directly with Unicode characters. Since one of the main
purposes of Java is to support the "write once, run anywhere" philosophy, it was necessary
to include direct I/O support for characters. In this section, several of the character I/O
classes are discussed. As explained earlier, at the top of the character stream hierarchies
are the Reader and Writer abstract classes. We will begin with them.

Reader
Reader is an abstract class that defines Java’s model of streaming character input. It
implements the AutoCloseable, Closeable, and Readable interfaces. All of the methods in
this class (except for markSupported()) will throw an IOException on error conditions.
Table 20-3 provides a synopsis of the methods in Reader.

Writer
Writer is an abstract class that defines streaming character output. It implements the
AutoCloseable, Closeable, Flushable, and Appendable interfaces. All of the methods in
this class throw an IOException in the case of errors. Table 20-4 shows a synopsis of the
methods in Writer.

20-ch20.indd 670 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 671

Pa
rt

 II

Method Description
abstract void close() Closes the input source. Further read attempts will generate an

IOException.

void mark(int numChars) Places a mark at the current point in the input stream that will
remain valid until numChars characters are read.

boolean markSupported() Returns true if mark()/reset() are supported on this stream.

int read() Returns an integer representation of the next available character
from the invoking input stream. –1 is returned when the end of
the file is encountered.

int read(char buffer[]) Attempts to read up to buffer.length characters into buffer and
returns the actual number of characters that were successfully
read. –1 is returned when the end of the file is encountered.

int read(CharBuffer buffer) Attempts to read characters into buffer and returns the actual
number of characters that were successfully read. –1 is returned
when the end of the file is encountered.

abstract
 int read(char buffer[],
 int offset,
 int numChars)

Attempts to read up to numChars characters into buffer starting at
buffer[offset], returning the number of characters successfully read.
–1 is returned when the end of the file is encountered.

boolean ready() Returns true if the next input request will not wait. Otherwise, it
returns false.

void reset() Resets the input pointer to the previously set mark.

long skip(long numChars) Skips over numChars characters of input, returning the number of
characters actually skipped.

Table 20-3 The Methods Defined by Reader

Method Description
Writer append(char ch) Appends ch to the end of the invoking output stream. Returns a

reference to the invoking stream.

Writer
 append(CharSequence chars)

Appends chars to the end of the invoking output stream.
Returns a reference to the invoking stream.

Writer
 append(CharSequence chars,
 int begin, int end)

Appends the subrange of chars specified by begin and end–1 to
the end of the invoking output stream. Returns a reference to
the invoking stream.

abstract void close() Closes the output stream. Further write attempts will generate
an IOException.

abstract void flush() Finalizes the output state so that any buffers are cleared. That is,
it flushes the output buffers.

Table 20-4 The Methods Defined by Writer

20-ch20.indd 671 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

672 PART II The Java Library

FileReader
The FileReader class creates a Reader that you can use to read the contents of a file. Two
commonly used constructors are shown here:

FileReader(String filePath)
FileReader(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full path name of a file,
and fileObj is a File object that describes the file.

The following example shows how to read lines from a file and display them on the
standard output device. It reads its own source file, which must be in the current directory.

// Demonstrate FileReader.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class FileReaderDemo {
 public static void main(String args[]) {

 try (FileReader fr = new FileReader("FileReaderDemo.java"))
 {
 int c;

 // Read and display the file.
 while((c = fr.read()) != -1) System.out.print((char) c);

 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Method Description
void write(int ch) Writes a single character to the invoking output stream. Note

that the parameter is an int, which allows you to call write with
an expression without having to cast it back to char. However,
only the low-order 16 bits are written.

void write(char buffer[]) Writes a complete array of characters to the invoking output
stream.

abstract
 void write(char buffer[],
 int offset,
 int numChars)

Writes a subrange of numChars characters from the array buffer,
beginning at buffer[offset] to the invoking output stream.

void write(String str) Writes str to the invoking output stream.

void write(String str, int offset,
 int numChars)

Writes a subrange of numChars characters from the string str,
beginning at the specified offset.

Table 20-4 The Methods Defined by Writer (continued)

20-ch20.indd 672 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 673

Pa
rt

 II

FileWriter
FileWriter creates a Writer that you can use to write to a file. Four commonly used
constructors are shown here:

FileWriter(String filePath)
FileWriter(String filePath, boolean append)
FileWriter(File fileObj)
FileWriter(File fileObj, boolean append)

They can all throw an IOException. Here, filePath is the full path name of a file, and fileObj
is a File object that describes the file. If append is true, then output is appended to the end
of the file.

Creation of a FileWriter is not dependent on the file already existing. FileWriter will
create the file before opening it for output when you create the object. In the case where
you attempt to open a read-only file, an IOException will be thrown.

The following example is a character stream version of an example shown earlier when
FileOutputStream was discussed. This version creates a sample buffer of characters by first
making a String and then using the getChars() method to extract the character array
equivalent. It then creates three files. The first, file1.txt, will contain every other character
from the sample. The second, file2.txt, will contain the entire set of characters. Finally, the
third, file3.txt, will contain only the last quarter.

// Demonstrate FileWriter.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class FileWriterDemo {
 public static void main(String args[]) throws IOException {
 String source = "Now is the time for all good men\n"
 + " to come to the aid of their country\n"
 + " and pay their due taxes.";
 char buffer[] = new char[source.length()];
 source.getChars(0, source.length(), buffer, 0);

 try (FileWriter f0 = new FileWriter("file1.txt");
 FileWriter f1 = new FileWriter("file2.txt");
 FileWriter f2 = new FileWriter("file3.txt"))
 {
 // write to first file
 for (int i=0; i < buffer.length; i += 2) {
 f0.write(buffer[i]);
 }

 // write to second file
 f1.write(buffer);

 // write to third file
 f2.write(buffer,buffer.length-buffer.length/4,buffer.length/4);

20-ch20.indd 673 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

674 PART II The Java Library

 } catch(IOException e) {
 System.out.println("An I/O Error Occurred");
 }
 }
}

CharArrayReader
CharArrayReader is an implementation of an input stream that uses a character array as the
source. This class has two constructors, each of which requires a character array to provide
the data source:

CharArrayReader(char array [])
CharArrayReader(char array [], int start, int numChars)

Here, array is the input source. The second constructor creates a Reader from a subset of
your character array that begins with the character at the index specified by start and is
numChars long.

The close() method implemented by CharArrayReader does not throw any exceptions.
This is because it cannot fail.

The following example uses a pair of CharArrayReaders:

// Demonstrate CharArrayReader.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

public class CharArrayReaderDemo {
 public static void main(String args[]) {
 String tmp = "abcdefghijklmnopqrstuvwxyz";
 int length = tmp.length();
 char c[] = new char[length];

 tmp.getChars(0, length, c, 0);
 int i;

 try (CharArrayReader input1 = new CharArrayReader(c))
 {
 System.out.println("input1 is:");
 while((i = input1.read()) != -1) {
 System.out.print((char)i);
 }
 System.out.println();
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 try (CharArrayReader input2 = new CharArrayReader(c, 0, 5))
 {
 System.out.println("input2 is:");
 while((i = input2.read()) != -1) {
 System.out.print((char)i);
 }

20-ch20.indd 674 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 675

Pa
rt

 II

 System.out.println();
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

The input1 object is constructed using the entire lowercase alphabet, whereas input2
contains only the first five letters. Here is the output:

 input1 is:
 abcdefghijklmnopqrstuvwxyz
 input2 is:
 abcde

CharArrayWriter
CharArrayWriter is an implementation of an output stream that uses an array as the
destination. CharArrayWriter has two constructors, shown here:

CharArrayWriter()
CharArrayWriter(int numChars)

In the first form, a buffer with a default size is created. In the second, a buffer is created
with a size equal to that specified by numChars. The buffer is held in the buf field of
CharArrayWriter. The buffer size will be increased automatically, if needed. The number of
characters held by the buffer is contained in the count field of CharArrayWriter. Both buf
and count are protected fields.

The close() method has no effect on a CharArrayWriter.
The following example demonstrates CharArrayWriter by reworking the sample

program shown earlier for ByteArrayOutputStream. It produces the same output as the
previous version.

// Demonstrate CharArrayWriter.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class CharArrayWriterDemo {
 public static void main(String args[]) throws IOException {
 CharArrayWriter f = new CharArrayWriter();
 String s = "This should end up in the array";
 char buf[] = new char[s.length()];

 s.getChars(0, s.length(), buf, 0);

 try {
 f.write(buf);
 } catch(IOException e) {
 System.out.println("Error Writing to Buffer");
 return;
 }

20-ch20.indd 675 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

676 PART II The Java Library

 System.out.println("Buffer as a string");
 System.out.println(f.toString());
 System.out.println("Into array");

 char c[] = f.toCharArray();
 for (int i=0; i<c.length; i++) {
 System.out.print(c[i]);
 }

 System.out.println("\nTo a FileWriter()");

 // Use try-with-resources to manage the file stream.
 try (FileWriter f2 = new FileWriter("test.txt"))
 {
 f.writeTo(f2);
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 System.out.println("Doing a reset");
 f.reset();

 for (int i=0; i<3; i++) f.write('X');

 System.out.println(f.toString());
 }
}

BufferedReader
BufferedReader improves performance by buffering input. It has two constructors:

BufferedReader(Reader inputStream)
BufferedReader(Reader inputStream, int bufSize)

The first form creates a buffered character stream using a default buffer size. In the second,
the size of the buffer is passed in bufSize.

Closing a BufferedReader also causes the underlying stream specified by inputStream to
be closed.

As is the case with the byte-oriented stream, buffering an input character stream also
provides the foundation required to support moving backward in the stream within the
available buffer. To support this, BufferedReader implements the mark() and reset()
methods, and BufferedReader.markSupported() returns true. JDK 8 adds a new method to
BufferedReader called lines(). It returns a Stream reference to the sequence of lines read
by the reader. (Stream is part of the new stream API discussed in Chapter 29.)

The following example reworks the BufferedInputStream example, shown earlier, so
that it uses a BufferedReader character stream rather than a buffered byte stream. As
before, it uses the mark() and reset() methods to parse a stream for the HTML entity
reference for the copyright symbol. Such a reference begins with an ampersand (&) and
ends with a semicolon (;) without any intervening whitespace. The sample input has two
ampersands to show the case where the reset() happens and where it does not. Output is
the same as that shown earlier.

20-ch20.indd 676 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 677

Pa
rt

 II

// Use buffered input.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class BufferedReaderDemo {
 public static void main(String args[]) throws IOException {
 String s = "This is a © copyright symbol " +
 "but this is © not.\n";
 char buf[] = new char[s.length()];
 s.getChars(0, s.length(), buf, 0);

 CharArrayReader in = new CharArrayReader(buf);
 int c;
 boolean marked = false;

 try (BufferedReader f = new BufferedReader(in))
 {

 while ((c = f.read()) != -1) {
 switch(c) {
 case '&':
 if (!marked) {
 f.mark(32);
 marked = true;
 } else {
 marked = false;
 }
 break;
 case ';':
 if (marked) {
 marked = false;
 System.out.print("(c)");
 } else
 System.out.print((char) c);
 break;
 case ' ':
 if (marked) {
 marked = false;
 f.reset();
 System.out.print("&");
 } else
 System.out.print((char) c);
 break;
 default:
 if (!marked)
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

20-ch20.indd 677 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

678 PART II The Java Library

BufferedWriter
A BufferedWriter is a Writer that buffers output. Using a BufferedWriter can improve
performance by reducing the number of times data is actually physically written to the
output device.

A BufferedWriter has these two constructors:

BufferedWriter(Writer outputStream)
BufferedWriter(Writer outputStream, int bufSize)

The first form creates a buffered stream using a buffer with a default size. In the second,
the size of the buffer is passed in bufSize.

PushbackReader
The PushbackReader class allows one or more characters to be returned to the input
stream. This allows you to look ahead in the input stream. Here are its two constructors:

PushbackReader(Reader inputStream)
PushbackReader(Reader inputStream, int bufSize)

The first form creates a buffered stream that allows one character to be pushed back. In the
second, the size of the pushback buffer is passed in bufSize.

Closing a PushbackReader also closes the underlying stream specified by inputStream.
PushbackReader provides unread(), which returns one or more characters to the

invoking input stream. It has the three forms shown here:

void unread(int ch) throws IOException
void unread(char buffer []) throws IOException
void unread(char buffer [], int offset, int numChars) throws IOException

The first form pushes back the character passed in ch. This will be the next character
returned by a subsequent call to read(). The second form returns the characters in buffer.
The third form pushes back numChars characters beginning at offset from buffer. An
IOException will be thrown if there is an attempt to return a character when the pushback
buffer is full.

The following program reworks the earlier PushbackInputStream example by replacing
PushbackInputStream with PushbackReader. As before, it shows how a programming
language parser can use a pushback stream to deal with the difference between the ==
operator for comparison and the = operator for assignment.

// Demonstrate unread().
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

class PushbackReaderDemo {
 public static void main(String args[]) {
 String s = "if (a == 4) a = 0;\n";
 char buf[] = new char[s.length()];
 s.getChars(0, s.length(), buf, 0);
 CharArrayReader in = new CharArrayReader(buf);

 int c;

20-ch20.indd 678 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 679

Pa
rt

 II

 try (PushbackReader f = new PushbackReader(in))
 {
 while ((c = f.read()) != -1) {
 switch(c) {
 case '=':
 if ((c = f.read()) == '=')
 System.out.print(".eq.");
 else {
 System.out.print("<-");
 f.unread(c);
 }
 break;
 default:
 System.out.print((char) c);
 break;
 }
 }
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

PrintWriter
PrintWriter is essentially a character-oriented version of PrintStream. It implements the
Appendable, AutoCloseable, Closeable, and Flushable interfaces. PrintWriter has several
constructors. The following have been supplied by PrintWriter from the start:

PrintWriter(OutputStream outputStream)
PrintWriter(OutputStream outputStream, boolean autoFlushingOn)
PrintWriter(Writer outputStream)
PrintWriter(Writer outputStream, boolean autoFlushingOn)

Here, outputStream specifies an open OutputStream that will receive output. The
autoFlushingOn parameter controls whether the output buffer is automatically flushed
every time println(), printf(), or format() is called. If autoFlushingOn is true, flushing
automatically takes place. If false, flushing is not automatic. Constructors that do not
specify the autoFlushingOn parameter do not automatically flush.

The next set of constructors gives you an easy way to construct a PrintWriter that writes
its output to a file.

PrintWriter(File outputFile) throws FileNotFoundException
PrintWriter(File outputFile, String charSet)
 throws FileNotFoundException, UnsupportedEncodingException
PrintWriter(String outputFileName) throws FileNotFoundException
PrintWriter(String outputFileName, String charSet)
 throws FileNotFoundException, UnsupportedEncodingException

These allow a PrintWriter to be created from a File object or by specifying the name of a
file. In either case, the file is automatically created. Any preexisting file by the same name is
destroyed. Once created, the PrintWriter object directs all output to the specified file. You
can specify a character encoding by passing its name in charSet.

20-ch20.indd 679 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

680 PART II The Java Library

PrintWriter supports the print() and println() methods for all types, including Object.
If an argument is not a primitive type, the PrintWriter methods will call the object’s toString()
method and then output the result.

PrintWriter also supports the printf() method. It works the same way it does in the
PrintStream class described earlier: It allows you to specify the precise format of the data.
Here is how printf() is declared in PrintWriter:

PrintWriter printf(String fmtString, Object … args)
PrintWriter printf(Locale loc, String fmtString, Object …args)

The first version writes args to standard output in the format specified by fmtString, using
the default locale. The second lets you specify a locale. Both return the invoking
PrintWriter.

The format() method is also supported. It has these general forms:

PrintWriter format(String fmtString, Object … args)
PrintWriter format(Locale loc, String fmtString, Object … args)

It works exactly like printf().

The Console Class
The Console class was added to java.io by JDK 6. It is used to read from and write to the
console, if one exists. It implements the Flushable interface. Console is primarily a
convenience class because most of its functionality is available through System.in and
System.out. However, its use can simplify some types of console interactions, especially
when reading strings from the console.

Console supplies no constructors. Instead, a Console object is obtained by calling
System.console(), which is shown here:

static Console console()

If a console is available, then a reference to it is returned. Otherwise, null is returned. A
console will not be available in all cases. Thus, if null is returned, no console I/O is possible.

Console defines the methods shown in Table 20-5. Notice that the input methods, such
as readLine(), throw IOError if an input error occurs. IOError is a subclass of Error. It
indicates an I/O failure that is beyond the control of your program. Thus, you will not
normally catch an IOError. Frankly, if an IOError is thrown while accessing the console,
it usually means there has been a catastrophic system failure.

Also notice the readPassword() methods. These methods let your application read a
password without echoing what is typed. When reading passwords, you should "zero-out"
both the array that holds the string entered by the user and the array that holds the
password that the string is tested against. This reduces the chance that a malicious program
will be able to obtain a password by scanning memory.

20-ch20.indd 680 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 681

Pa
rt

 II

Here is an example that demonstrates the Console class:

// Demonstrate Console.
import java.io.*;

class ConsoleDemo {
 public static void main(String args[]) {
 String str;
 Console con;

Method Description
void flush() Causes buffered output to be written physically to the

console.

Console format(String fmtString,
 Object...args)

Writes args to the console using the format specified by
fmtString.

Console printf(String fmtString,
 Object...args)

Writes args to the console using the format specified by
fmtString.

Reader reader() Returns a reference to a Reader connected to the
console.

String readLine() Reads and returns a string entered at the keyboard.
Input stops when the user presses enter. If the end
of the console input stream has been reached, null is
returned. An IOError is thrown on failure.

String readLine(String fmtString,
 Object…args)

Displays a prompting string formatted as specified by
fmtString and args, and then reads and returns a string
entered at the keyboard. Input stops when the user
presses enter. If the end of the console input stream
has been reached, null is returned. An IOError is
thrown on failure.

char[] readPassword() Reads a string entered at the keyboard. Input stops
when the user presses enter. The string is not
displayed. If the end of the console input stream has
been reached, null is returned. An IOError is thrown
on failure.

char[] readPassword(String fmtString,
 Object… args)

Displays a prompting string formatted as specified by
fmtString and args, and then reads a string entered at the
keyboard. Input stops when the user presses enter. The
string is not displayed. If the end of the console input
stream has been reached, null is returned. An IOError
is thrown on failure.

PrintWriter writer() Returns a reference to a Writer connected to the console.

Table 20-5 The Methods Defined by Console

20-ch20.indd 681 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

682 PART II The Java Library

 // Obtain a reference to the console.
 con = System.console();
 // If no console available, exit.
 if(con == null) return;

 // Read a string and then display it.
 str = con.readLine("Enter a string: ");
 con.printf("Here is your string: %s\n", str);
 }
}

Here is sample output:

 Enter a string: This is a test.
 Here is your string: This is a test.

Serialization
Serialization is the process of writing the state of an object to a byte stream. This is useful
when you want to save the state of your program to a persistent storage area, such as a file.
At a later time, you may restore these objects by using the process of deserialization.

Serialization is also needed to implement Remote Method Invocation (RMI). RMI allows a
Java object on one machine to invoke a method of a Java object on a different machine.
An object may be supplied as an argument to that remote method. The sending machine
serializes the object and transmits it. The receiving machine deserializes it. (More
information about RMI appears in Chapter 30.)

Assume that an object to be serialized has references to other objects, which, in turn,
have references to still more objects. This set of objects and the relationships among them
form a directed graph. There may also be circular references within this object graph. That
is, object X may contain a reference to object Y, and object Y may contain a reference back
to object X. Objects may also contain references to themselves. The object serialization and
deserialization facilities have been designed to work correctly in these scenarios. If you
attempt to serialize an object at the top of an object graph, all of the other referenced
objects are recursively located and serialized. Similarly, during the process of deserialization,
all of these objects and their references are correctly restored.

An overview of the interfaces and classes that support serialization follows.

Serializable
Only an object that implements the Serializable interface can be saved and restored by the
serialization facilities. The Serializable interface defines no members. It is simply used to
indicate that a class may be serialized. If a class is serializable, all of its subclasses are also
serializable.

20-ch20.indd 682 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 683

Pa
rt

 II

Variables that are declared as transient are not saved by the serialization facilities. Also,
static variables are not saved.

Externalizable
The Java facilities for serialization and deserialization have been designed so that much of
the work to save and restore the state of an object occurs automatically. However, there are
cases in which the programmer may need to have control over these processes. For example,
it may be desirable to use compression or encryption techniques. The Externalizable
interface is designed for these situations.

The Externalizable interface defines these two methods:

void readExternal(ObjectInput inStream)
 throws IOException, ClassNotFoundException
void writeExternal(ObjectOutput outStream)
 throws IOException

In these methods, inStream is the byte stream from which the object is to be read, and
outStream is the byte stream to which the object is to be written.

ObjectOutput
The ObjectOutput interface extends the DataOutput and AutoCloseable interfaces and
supports object serialization. It defines the methods shown in Table 20-6. Note especially
the writeObject() method. This is called to serialize an object. All of these methods will
throw an IOException on error conditions.

Method Description
void close() Closes the invoking stream. Further write attempts will

generate an IOException.

void flush() Finalizes the output state so any buffers are cleared. That is,
it flushes the output buffers.

void write(byte buffer[]) Writes an array of bytes to the invoking stream.

void write(byte buffer[],
 int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

void write(int b) Writes a single byte to the invoking stream. The byte
written is the low-order byte of b.

void writeObject(Object obj) Writes object obj to the invoking stream.

Table 20-6 The Methods Defined by ObjectOutput

20-ch20.indd 683 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

684 PART II The Java Library

ObjectOutputStream
The ObjectOutputStream class extends the OutputStream class and implements the
ObjectOutput interface. It is responsible for writing objects to a stream. One constructor of
this class is shown here:

ObjectOutputStream(OutputStream outStream) throws IOException

The argument outStream is the output stream to which serialized objects will be written.
Closing an ObjectOutputStream automatically closes the underlying stream specified by
outStream.

Several commonly used methods in this class are shown in Table 20-7. They will throw
an IOException on error conditions. There is also an inner class to ObjectOuputStream
called PutField. It facilitates the writing of persistent fields, and its use is beyond the scope
of this book.

Method Description
void close() Closes the invoking stream. Further write attempts will

generate an IOException. The underlying stream is also
closed.

void flush() Finalizes the output state so any buffers are cleared. That is,
it flushes the output buffers.

void write(byte buffer[]) Writes an array of bytes to the invoking stream.

void write(byte buffer[],
 int offset,
 int numBytes)

Writes a subrange of numBytes bytes from the array buffer,
beginning at buffer[offset].

void write(int b) Writes a single byte to the invoking stream. The byte written
is the low-order byte of b.

void writeBoolean(boolean b) Writes a boolean to the invoking stream.

void writeByte(int b) Writes a byte to the invoking stream. The byte written is the
low-order byte of b.

void writeBytes(String str) Writes the bytes representing str to the invoking stream.

void writeChar(int c) Writes a char to the invoking stream.

void writeChars(String str) Writes the characters in str to the invoking stream.

void writeDouble(double d) Writes a double to the invoking stream.

void writeFloat(float f) Writes a float to the invoking stream.

void writeInt(int i) Writes an int to the invoking stream.

void writeLong(long l) Writes a long to the invoking stream.

final void writeObject(Object obj) Writes obj to the invoking stream.

void writeShort(int i) Writes a short to the invoking stream.

Table 20-7 A Sampling of Commonly Used Methods Defined by ObjectOutputStream

20-ch20.indd 684 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 685

Pa
rt

 II

ObjectInput
The ObjectInput interface extends the DataInput and AutoCloseable interfaces and
defines the methods shown in Table 20-8. It supports object serialization. Note especially
the readObject() method. This is called to deserialize an object. All of these methods will
throw an IOException on error conditions. The readObject() method can also throw
ClassNotFoundException.

ObjectInputStream
The ObjectInputStream class extends the InputStream class and implements the ObjectInput
interface. ObjectInputStream is responsible for reading objects from a stream. One
constructor of this class is shown here:

ObjectInputStream(InputStream inStream) throws IOException

The argument inStream is the input stream from which serialized objects should be read.
Closing an ObjectInputStream automatically closes the underlying stream specified by
inStream.

Several commonly used methods in this class are shown in Table 20-9. They will
throw an IOException on error conditions. The readObject() method can also throw
ClassNotFoundException. There is also an inner class to ObjectInputStream called
GetField. It facilitates the reading of persistent fields, and its use is beyond the scope
of this book.

Method Description
int available() Returns the number of bytes that are now available in the

input buffer.

void close() Closes the invoking stream. Further read attempts will
generate an IOException.

int read() Returns an integer representation of the next available byte of
input. –1 is returned when the end of the file is encountered.

int read(byte buffer[]) Attempts to read up to buffer.length bytes into buffer, returning
the number of bytes that were successfully read. –1 is returned
when the end of the file is encountered.

int read(byte buffer[],
 int offset,
 int numBytes)

Attempts to read up to numBytes bytes into buffer starting
at buffer[offset], returning the number of bytes that were
successfully read. –1 is returned when the end of the file is
encountered.

Object readObject() Reads an object from the invoking stream.

long skip(long numBytes) Ignores (that is, skips) numBytes bytes in the invoking stream,
returning the number of bytes actually ignored.

Table 20-8 The Methods Defined by ObjectInput

20-ch20.indd 685 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

686 PART II The Java Library

A Serialization Example
The following program illustrates how to use object serialization and deserialization. It
begins by instantiating an object of class MyClass. This object has three instance variables
that are of types String, int, and double. This is the information we want to save and restore.

A FileOutputStream is created that refers to a file named "serial", and an
ObjectOutputStream is created for that file stream. The writeObject() method
of ObjectOutputStream is then used to serialize our object. The object output stream
is flushed and closed.

A FileInputStream is then created that refers to the file named "serial", and
an ObjectInputStream is created for that file stream. The readObject() method of
ObjectInputStream is then used to deserialize our object. The object input stream
is then closed.

Method Description
int available() Returns the number of bytes that are now available in the

input buffer.

void close() Closes the invoking stream. Further read attempts will generate
an IOException. The underlying stream is also closed.

int read() Returns an integer representation of the next available
byte of input. –1 is returned when the end of the file is
encountered.

int read(byte buffer[],
 int offset,
 int numBytes)

 Attempts to read up to numBytes bytes into buffer starting at
buffer[offset], returning the number of bytes successfully read.
–1 is returned when the end of the file is encountered.

Boolean readBoolean() Reads and returns a boolean from the invoking stream.

byte readByte() Reads and returns a byte from the invoking stream.

char readChar() Reads and returns a char from the invoking stream.

double readDouble() Reads and returns a double from the invoking stream.

float readFloat() Reads and returns a float from the invoking stream.

void readFully(byte buffer[]) Reads buffer.length bytes into buffer. Returns only when all bytes
have been read.

void readFully(byte buffer[],
 int offset,
 int numBytes)

Reads numBytes bytes into buffer starting at buffer[offset].
Returns only when numBytes have been read.

int readInt() Reads and returns an int from the invoking stream.

long readLong() Reads and returns a long from the invoking stream.

final Object readObject() Reads and returns an object from the invoking stream.

short readShort() Reads and returns a short from the invoking stream.

int readUnsignedByte() Reads and returns an unsigned byte from the invoking stream.

int readUnsignedShort() Reads and returns an unsigned short from the invoking stream.

Table 20-9 Commonly Used Methods Defined by ObjectInputStream

20-ch20.indd 686 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 20 Input/Output: Exploring java.io 687

Pa
rt

 II

Note that MyClass is defined to implement the Serializable interface. If this is not done,
a NotSerializableException is thrown. Try experimenting with this program by declaring
some of the MyClass instance variables to be transient. That data is then not saved during
serialization.

// A serialization demo.
// This program uses try-with-resources. It requires JDK 7 or later.

import java.io.*;

public class SerializationDemo {
 public static void main(String args[]) {

 // Object serialization

 try (ObjectOutputStream objOStrm =
 new ObjectOutputStream(new FileOutputStream("serial")))
 {
 MyClass object1 = new MyClass("Hello", -7, 2.7e10);
 System.out.println("object1: " + object1);

 objOStrm.writeObject(object1);
 }
 catch(IOException e) {
 System.out.println("Exception during serialization: " + e);
 }

 // Object deserialization

 try (ObjectInputStream objIStrm =
 new ObjectInputStream(new FileInputStream("serial")))
 {
 MyClass object2 = (MyClass)objIStrm.readObject();
 System.out.println("object2: " + object2);
 }
 catch(Exception e) {
 System.out.println("Exception during deserialization: " + e);
 }
 }
}

class MyClass implements Serializable {
 String s;
 int i;
 double d;

 public MyClass(String s, int i, double d) {
 this.s = s;
 this.i = i;
 this.d = d;
 }

20-ch20.indd 687 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

688 PART II The Java Library

 public String toString() {
 return "s=" + s + "; i=" + i + "; d=" + d;
 }
}

This program demonstrates that the instance variables of object1 and object2 are identical.
The output is shown here:

 object1: s=Hello; i=-7; d=2.7E10
 object2: s=Hello; i=-7; d=2.7E10

Stream Benefits
The streaming interface to I/O in Java provides a clean abstraction for a complex and often
cumbersome task. The composition of the filtered stream classes allows you to dynamically
build the custom streaming interface to suit your data transfer requirements. Java programs
written to adhere to the abstract, high-level InputStream, OutputStream, Reader, and Writer
classes will function properly in the future even when new and improved concrete stream
classes are invented. As you will see in Chapter 22, this model works very well when we
switch from a file system–based set of streams to the network and socket streams. Finally,
serialization of objects plays an important role in many types of Java programs. Java’s
serialization I/O classes provide a portable solution to this sometimes tricky task.

20-ch20.indd 688 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

21
CHAPTER

 689

Exploring NIO

Beginning with version 1.4, Java has provided a second I/O system called NIO (which is
short for New I/O). It supports a buffer-oriented, channel-based approach to I/O operations.
With the release of JDK 7, the NIO system was greatly expanded, providing enhanced
support for file-handling and file system features. In fact, so significant were the changes
that the term NIO.2 is often used. Because of the capabilities supported by the NIO file
classes, NIO is expected to become an increasingly important approach to file handling.
This chapter explores several of the key features of the NIO system.

The NIO Classes
The NIO classes are contained in the packages shown here:

Package Purpose
java.nio Top-level package for the NIO system. Encapsulates various types

of buffers that contain data operated upon by the NIO system.

java.nio.channels Supports channels, which are essentially open I/O connections.

java.nio.channels.spi Supports service providers for channels.

java.nio.charset Encapsulates character sets. Also supports encoders and decoders
that convert characters to bytes and bytes to characters, respectively.

java.nio.charset.spi Supports service providers for character sets.

java.nio.file Provides support for files.

java.nio.file.attribute Provides support for file attributes.

java.nio.file.spi Supports service providers for file systems.

Before we begin, it is important to emphasize that the NIO subsystem does not replace the
stream-based I/O classes found in java.io, which are discussed in Chapter 20, and good
working knowledge of the stream-based I/O in java.io is helpful to understanding NIO.

21-ch21.indd 689 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

690 PART II The Java Library

NOTE This chapter assumes that you have read the overview of I/O given in Chapter 13 and the
discussion of stream-based I/O supplied in Chapter 20.

NIO Fundamentals
The NIO system is built on two foundational items: buffers and channels. A buffer holds
data. A channel represents an open connection to an I/O device, such as a file or a socket.
In general, to use the NIO system, you obtain a channel to an I/O device and a buffer to
hold data. You then operate on the buffer, inputting or outputting data as needed. The
following sections examine buffers and channels in more detail.

Buffers
Buffers are defined in the java.nio package. All buffers are subclasses of the Buffer class,
which defines the core functionality common to all buffers: current position, limit, and
capacity. The current position is the index within the buffer at which the next read or write
operation will take place. The current position is advanced by most read or write operations.
The limit is the index value one past the last valid location in the buffer. The capacity is the
number of elements that the buffer can hold. Often the limit equals the capacity of the
buffer. Buffer also supports mark and reset. Buffer defines several methods, which are
shown in Table 21-1.

Table 21-1 The Methods Defined by Buffer

Method Description
abstract Object array() If the invoking buffer is backed by an array, returns a reference

to the array. Otherwise, an UnsupportedOperationException is
thrown. If the array is read-only, a ReadOnlyBufferException
is thrown.

abstract int arrayOffset() If the invoking buffer is backed by an array, returns
the index of the first element. Otherwise, an
UnsupportedOperationException is thrown. If the array
is read-only, a ReadOnlyBufferException is thrown.

final int capacity() Returns the number of elements that the invoking buffer is
capable of holding.

final Buffer clear() Clears the invoking buffer and returns a reference to the buffer.

final Buffer flip() Sets the invoking buffer’s limit to the current position and resets
the current position to 0. Returns a reference to the buffer.

abstract boolean hasArray() Returns true if the invoking buffer is backed by a read/write
array and false otherwise.

final boolean hasRemaining() Returns true if there are elements remaining in the invoking
buffer. Returns false otherwise.

21-ch21.indd 690 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 691

Pa
rt

 II

From Buffer, the following specific buffer classes are derived, which hold the type of
data that their names imply:

ByteBuffer CharBuffer DoubleBuffer FloatBuffer

IntBuffer LongBuffer MappedByteBuffer ShortBuffer

MappedByteBuffer is a subclass of ByteBuffer and is used to map a file to a buffer.
All of the aforementioned buffers provide various get() and put() methods, which

allow you to get data from a buffer or put data into a buffer. (Of course, if a buffer is
read-only, then put() operations are not available.) Table 21-2 shows the get() and put()
methods defined by ByteBuffer. The other buffer classes have similar methods. All buffer
classes also support methods that perform various buffer operations. For example, you can
allocate a buffer manually using allocate(). You can wrap an array inside a buffer using
wrap(). You can create a subsequence of a buffer using slice().

Channels
Channels are defined in java.nio.channels. A channel represents an open connection to an
I/O source or destination. Channels implement the Channel interface. It extends Closeable,
and it extends AutoCloseable. By implementing AutoCloseable, channels can be managed

Method Description
abstract boolean isDirect() Returns true if the invoking buffer is direct, which means I/O

operations act directly upon it. Returns false otherwise.

abstract boolean isReadOnly() Returns true if the invoking buffer is read-only. Returns false
otherwise.

final int limit() Returns the invoking buffer’s limit.

final Buffer limit(int n) Sets the invoking buffer’s limit to n. Returns a reference to
the buffer.

final Buffer mark() Sets the mark and returns a reference to the invoking buffer.

final int position() Returns the current position.

final Buffer position(int n) Sets the invoking buffer’s current position to n. Returns a
reference to the buffer.

int remaining() Returns the number of elements available before the limit is
reached. In other words, it returns the limit minus the current
position.

final Buffer reset() Resets the current position of the invoking buffer to the
previously set mark. Returns a reference to the buffer.

final Buffer rewind() Sets the position of the invoking buffer to 0. Returns a
reference to the buffer.

Table 21-1 The Methods Defined by Buffer (continued)

21-ch21.indd 691 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

692 PART II The Java Library

with a try-with-resources statement. When used in a try-with-resources block, a channel is
closed automatically when it is no longer needed. (See Chapter 13 for a discussion of try-
with-resources.)

One way to obtain a channel is by calling getChannel() on an object that supports
channels. For example, getChannel() is supported by the following I/O classes:

DatagramSocket FileInputStream FileOutputStream

RandomAccessFile ServerSocket Socket

The specific type of channel returned depends upon the type of object getChannel()
is called on. For example, when called on a FileInputStream, FileOutputStream, or
RandomAccessFile, getChannel() returns a channel of type FileChannel. When called
on a Socket, getChannel() returns a SocketChannel.

Table 21-2 The get() and put() Methods Defined for ByteBuffer

Method Description
abstract byte get() Returns the byte at the current position.

ByteBuffer get(byte vals[]) Copies the invoking buffer into the array referred to
by vals. Returns a reference to the buffer. If there are
not vals.length elements remaining in the buffer, a
BufferUnderflowException is thrown.

ByteBuffer get(byte vals[],
 int start, int num)

Copies num elements from the invoking buffer into
the array referred to by vals, beginning at the index
specified by start. Returns a reference to the buffer. If
there are not num elements remaining in the buffer, a
BufferUnderflowException is thrown.

abstract byte get(int idx) Returns the byte at the index specified by idx within the
invoking buffer.

abstract ByteBuffer put(byte b) Copies b into the invoking buffer at the current position.
Returns a reference to the buffer. If the buffer is full, a
BufferOverflowException is thrown.

final ByteBuffer put(byte vals[]) Copies all elements of vals into the invoking buffer,
beginning at the current position. Returns a reference to
the buffer. If the buffer cannot hold all of the elements, a
BufferOverflowException is thrown.

ByteBuffer put(byte vals[],
 int start, int num)

Copies num elements from vals, beginning at start,
into the invoking buffer. Returns a reference to the
buffer. If the buffer cannot hold all of the elements, a
BufferOverflowException is thrown.

ByteBuffer put(ByteBuffer bb) Copies the elements in bb to the invoking buffer,
beginning at the current position. If the buffer cannot
hold all of the elements, a BufferOverflowException is
thrown. Returns a reference to the buffer.

abstract ByteBuffer put(int idx, byte b) Copies b into the invoking buffer at the location specified
by idx. Returns a reference to the buffer.

21-ch21.indd 692 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 693

Pa
rt

 II

Another way to obtain a channel is to use one of the static methods defined by the Files
class. For example, using Files, you can obtain a byte channel by calling newByteChannel().
It returns a SeekableByteChannel, which is an interface implemented by FileChannel. (The
Files class is examined in detail later in this chapter.)

Channels such as FileChannel and SocketChannel support various read() and write()
methods that enable you to perform I/O operations through the channel. For example,
here are a few of the read() and write() methods defined for FileChannel.

Method Description
abstract int read(ByteBuffer bb)
 throws IOException

Reads bytes from the invoking channel into bb until the
buffer is full or there is no more input. Returns the
number of bytes actually read. Returns –1 at end-of-
stream.

abstract int read(ByteBuffer bb,
 long start)
 throws IOException

Beginning at the file location specified by start, reads
bytes from the invoking channel into bb until the buffer
is full or there is no more input. The current position is
unchanged. Returns the number of bytes actually read
or –1 if start is beyond the end of the file.

abstract int write(ByteBuffer bb)
 throws IOException

Writes the contents of bb to the invoking channel, starting
at the current position. Returns the number of bytes
written.

abstract int write(ByteBuffer bb,
 long start)
 throws IOException

Beginning at the file location specified by start, writes the
contents of bb to the invoking channel. The current
position is unchanged. Returns the number of bytes
written.

All channels support additional methods that give you access to and control over the
channel. For example, FileChannel supports methods to get or set the current position,
transfer information between file channels, obtain the current size of the channel, and lock
the channel, among others. FileChannel provides a static method called open(), which
opens a file and returns a channel to it. This provides another way to obtain a channel.
FileChannel also provides the map() method, which lets you map a file to a buffer.

Charsets and Selectors
Two other entities used by NIO are charsets and selectors. A charset defines the way that
bytes are mapped to characters. You can encode a sequence of characters into bytes using
an encoder. You can decode a sequence of bytes into characters using a decoder. Charsets,
encoders, and decoders are supported by classes defined in the java.nio.charset package.
Because default encoders and decoders are provided, you will not often need to work
explicitly with charsets.

A selector supports key-based, non-blocking, multiplexed I/O. In other words, selectors
enable you to perform I/O through multiple channels. Selectors are supported by classes
defined in the java.nio.channels package. Selectors are most applicable to socket-backed
channels.

We will not use charsets or selectors in this chapter, but you might find them useful in
your own applications.

21-ch21.indd 693 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

694 PART II The Java Library

Enhancements Added to NIO by JDK 7
Beginning with JDK 7, the NIO system was substantially expanded and enhanced. In
addition to support for the try-with-resources statement (which provides automatic
resource management), the improvements included three new packages (java.nio.file,
java.nio.file.attribute, and java.nio.file.spi); several new classes, interfaces, and methods;
and direct support for stream-based I/O. The additions have greatly expanded the ways
in which NIO can be used, especially with files. Several of the key additions are described in
the following sections.

The Path Interface
Perhaps the single most important addition to the NIO system is the Path interface because it
encapsulates a path to a file. As you will see, Path is the glue that binds together many of the
NIO.2 file-based features. It describes a file’s location within the directory structure. Path is
packaged in java.nio.file, and it inherits the following interfaces: Watchable, Iterable<Path>,
and Comparable<Path>. Watchable describes an object that can be monitored for changes.
The Iterable and Comparable interfaces were described earlier in this book.

Path declares a number of methods that operate on the path. A sampling is shown in
Table 21-3. Pay special attention to the getName() method. It is used to obtain an element
in a path. It works using an index. At index zero is the part of the path nearest the root,
which is the leftmost element in a path. Subsequent indexes specify elements to the right of
the root. The number of elements in a path can be obtained by calling getNameCount(). If
you want to obtain a string representation of the entire path, simply call toString(). Notice
that you can resolve a relative path into an absolute path by using the resolve() method.

Table 21-3 A Sampling of Methods Specified by Path

Method Description
boolean endsWith(String path) Returns true if the invoking Path ends with the path specified

by path. Otherwise, returns false.

boolean endsWith(Path path) Returns true if the invoking Path ends with the path specified
by path. Otherwise, returns false.

Path getFileName() Returns the filename associated with the invoking Path.

Path getName(int idx) Returns a Path object that contains the name of the path
element specified by idx within the invoking object. The
leftmost element is at index 0. This is the element nearest the
root. The rightmost element is at getNameCount() – 1.

int getNameCount() Returns the number of elements beyond the root directory in
the invoking Path.

Path getParent() Returns a Path that contains the entire path except for the
name of the file specified by the invoking Path.

Path getRoot() Returns the root of the invoking Path.

21-ch21.indd 694 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 695

Pa
rt

 II

One other point: When updating legacy code that uses the File class defined by java.io,
it is possible to convert a File instance into a Path instance by calling toPath() on the File
object. Furthermore, it is possible to obtain a File instance by calling the toFile() method
defined by Path.

The Files Class
Many of the actions that you perform on a file are provided by static methods within the
Files class. The file to be acted upon is specified by its Path. Thus, the Files methods use a
Path to specify the file that is being operated upon. Files contains a wide array of functionality.
For example, it has methods that let you open or create a file that has the specified path.
You can obtain information about a Path, such as whether it is executable, hidden, or read-
only. Files also supplies methods that let you copy or move files. A sampling is shown in
Table 21-4. In addition to IOException, several other exceptions are possible. JDK 8 adds
these four methods to Files: list(), walk(), lines(), and find(). All return a Stream object.
These methods help integrate NIO with the new stream API defined by JDK 8 and
described in Chapter 29.

Notice that several of the methods in Table 21-4 take an argument of type
OpenOption. This is an interface that describes how to open a file. It is implemented by
the StandardOpenOption class, which defines an enumeration that has the values shown
in Table 21-5.

Table 21-3 A Sampling of Methods Specified by Path (continued)

Method Description
boolean isAbsolute() Returns true if the invoking Path is absolute. Otherwise,

returns false.

Path resolve(Path path) If path is absolute, path is returned. Otherwise, if path does
not contain a root, path is prefixed by the root specified by
the invoking Path and the result is returned. If path is empty,
the invoking Path is returned. Otherwise, the behavior is
unspecified.

Path resolve(String path) If path is absolute, path is returned. Otherwise, if path does
not contain a root, path is prefixed by the root specified by
the invoking Path and the result is returned. If path is empty,
the invoking Path is returned. Otherwise, the behavior is
unspecified.

boolean startsWith(String path) Returns true if the invoking Path starts with the path specified
by path. Otherwise, returns false.

boolean startsWith(Path path) Returns true if the invoking Path starts with the path specified
by path. Otherwise, returns false.

Path toAbsolutePath() Returns the invoking Path as an absolute path.

String toString() Returns a string representation of the invoking Path.

21-ch21.indd 695 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

696 PART II The Java Library

Table 21-4 A Sampling of Methods Defined by Files

Method Description
static Path copy(Path src, Path dest,
 CopyOption ... how)
 throws IOException

Copies the file specified by src to the location
specified by dest. The how parameter specifies how
the copy will take place.

static Path createDirectory(Path path,
 FileAttribute<?> ... attribs)
 throws IOException

Creates the directory whose path is specified by
path. The directory attributes are specified by attribs.

static Path createFile(Path path,
 FileAttribute<?> ... attribs)
 throws IOException

Creates the file whose path is specified by path. The
file attributes are specified by attribs.

static void delete(Path path)
 throws IOException

Deletes the file whose path is specified by path.

static boolean exists(Path path,
 LinkOption ... opts)

Returns true if the file specified by path exists
and false otherwise. If opts is not specified,
then symbolic links are followed. To prevent
the following of symbolic links, pass
NOFOLLOW_LINKS to opts.

static boolean isDirectory(Path path,
 LinkOption ... opts)

Returns true if path specifies a directory and false
otherwise. If opts is not specified, then symbolic
links are followed. To prevent the following of
symbolic links, pass NOFOLLOW_LINKS to opts.

static boolean isExecutable(Path path) Returns true if the file specified by path is
executable and false otherwise.

static boolean isHidden(Path path)
 throws IOException

Returns true if the file specified by path is hidden
and false otherwise.

static boolean isReadable(Path path) Returns true if the file specified by path can be read
from and false otherwise.

static boolean isRegularFile(Path path,
 LinkOption ... opts)

Returns true if path specifies a file and false
otherwise. If opts is not specified, then symbolic
links are followed. To prevent the following of
symbolic links, pass NOFOLLOW_LINKS to opts.

static boolean isWritable(Path path) Returns true if the file specified by path can be
written to and false otherwise.

static Path move(Path src, Path dest,
 CopyOption ... how)
 throws IOException

Moves the file specified by src to the location
specified by dest. The how parameter specifies how
the move will take place.

static SeekableByteChannel
 newByteChannel(Path path,
 OpenOption ... how)
 throws IOException

Opens the file specified by path, as specified by how.
Returns a SeekableByteChannel to the file. This
is a byte channel whose current position can be
changed. SeekableByteChannel is implemented by
FileChannel.

static DirectoryStream<Path>
 newDirectoryStream(Path path)
 throws IOException

Opens the directory specified by path. Returns a
DirectoryStream linked to the directory.

21-ch21.indd 696 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 697

Pa
rt

 II

Table 21-4 A Sampling of Methods Defined by Files (continued)

Method Description
static InputStream
 newInputStream(Path path,
 OpenOption ... how)
 throws IOException

Opens the file specified by path, as specified by how.
Returns an InputStream linked to the file.

static OutputStream
 newOutputStream(Path path,
 OpenOption ... how)
 throws IOException

Opens the file specified by the invoking object, as
specified by how. Returns an OutputStream linked
to the file.

static boolean
 notExists(Path path,
 LinkOption ... opts)

Returns true if the file specified by path does not
exist and false otherwise. If opts is not specified,
then symbolic links are followed. To prevent
the following of symbolic links, pass
NOFOLLOW_LINKS to opts.

 static <A extends BasicFileAttributes> A
 readAttributes(Path path,
 Class<A> attribType,
 LinkOption ... opts)
 throws IOException

Obtains the attributes associated with the file
specified by path. The type of attributes to obtain
is passed in attribType. If opts is not specified,
then symbolic links are followed. To prevent
the following of symbolic links, pass
NOFOLLOW_LINKS to opts.

static long size(Path path)
 throws IOException

Returns the size of the file specified by path.

Table 21-5 The Standard Open Options

Value Meaning
APPEND Causes output to be written to the end of the file.

CREATE Creates the file if it does not already exist.

CREATE_NEW Creates the file only if it does not already exist.

DELETE_ON_CLOSE Deletes the file when it is closed.

DSYNC Causes changes to the file to be immediately written to the physical
file. Normally, changes to a file are buffered by the file system in the
interest of efficiency, being written to the file only as needed.

READ Opens the file for input operations.

SPARSE Indicates to the file system that the file is sparse, meaning that it may
not be completely filled with data. If the file system does not support
sparse files, this option is ignored.

SYNC Causes changes to the file or its metadata to be immediately written
to the physical file. Normally, changes to a file are buffered by the file
system in the interest of efficiency, being written to the file only as
needed.

TRUNCATE_EXISTING Causes a preexisting file opened for output to be reduced to zero length.

WRITE Opens the file for output operations.

21-ch21.indd 697 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

698 PART II The Java Library

The Paths Class
Because Path is an interface, not a class, you can’t create an instance of Path directly through
the use of a constructor. Instead, you obtain a Path by a calling a method that returns one.
Frequently, you do this by using the get() method defined by the Paths class. There are two
forms of get(). The one used in this chapter is shown here:

static Path get(String pathname, String ... parts)

It returns a Path that encapsulates the specified path. The path can be specified in two ways.
First, if parts is not used, then the path must be specified in its entirety by pathname.
Alternatively, you can pass the path in pieces, with the first part passed in pathname and the
subsequent elements specified by the parts varargs parameter. In either case, if the path
specified is syntactically invalid, get() will throw an InvalidPathException.

The second form of get() creates a Path from a URI. It is shown here:

static Path get(URI uri)

The Path corresponding to uri is returned.
It is important to understand that creating a Path to a file does not open or create a file.

It simply creates an object that encapsulates the file’s directory path.

The File Attribute Interfaces
Associated with a file is a set of attributes. These attributes include such things as the file’s
time of creation, the time of its last modification, whether the file is a directory, and its size.
NIO organizes file attributes into several different interfaces. Attributes are represented by
a hierarchy of interfaces defined in java.nio.file.attribute. At the top is BasicFileAttributes.
It encapsulates the set of attributes that are commonly found in a variety of file systems.
The methods defined by BasicFileAttributes are shown in Table 21-6.

Method Description
FileTime creationTime() Returns the time at which the file was created. If creation time is not

provided by the file system, then an implementation-dependent value is
returned.

Object fileKey() Returns the file key. If not supported, null is returned.

boolean isDirectory() Returns true if the file represents a directory.

boolean isOther() Returns true if the file is not a file, symbolic link, or a directory.

boolean isRegularFile() Returns true if the file is a normal file, rather than a directory or
symbolic link.

boolean isSymbolicLink() Returns true if the file is a symbolic link.

FileTime lastAccessTime() Returns the time at which the file was last accessed. If the time of last
access is not provided by the file system, then an implementation-
dependent value is returned.

FileTime lastModifiedTime() Returns the time at which the file was last modified. If the time of last
modification is not provided by the file system, then an implementation-
dependent value is returned.

long size() Returns the size of the file.

Table 21-6 The Methods Defined by BasicFileAttributes

21-ch21.indd 698 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 699

Pa
rt

 II

From BasicFileAttributes two interfaces are derived: DosFileAttributes and
PosixFileAttributes. DosFileAttributes describes those attributes related to the FAT
file system as first defined by DOS. It defines the methods shown here:

Method Description
boolean isArchive() Returns true if the file is flagged for archiving and false otherwise.

boolean isHidden() Returns true if the file is hidden and false otherwise.

boolean isReadOnly() Returns true if the file is read-only and false otherwise.

boolean isSystem() Returns true if the file is flagged as a system file and false otherwise.

PosixFileAttributes encapsulates attributes defined by the POSIX standards. (POSIX stands
for Portable Operating System Interface.) It defines the methods shown here:

Method Description
GroupPrincipal group() Returns the file’s group owner.

UserPrincipal owner() Returns the file’s owner.

Set<PosixFilePermission> permissions() Returns the file’s permissions.

There are various ways to access a file’s attributes. First, you can obtain an object that
encapsulates a file’s attributes by calling readAttributes(), which is a static method defined
by Files. One of its forms is shown here:

static <A extends BasicFileAttributes>
 A readAttributes(Path path, Class<A> attrType, LinkOption... opts)
 throws IOException

This method returns a reference to an object that specifies the attributes associated with the
file passed in path. The specific type of attributes is specified as a Class object in the attrType
parameter. For example, to obtain the basic file attributes, pass BasicFileAttributes.class to
attrType. For DOS attributes, use DosFileAttributes.class, and for POSIX attributes, use
PosixFileAttributes.class. Optional link options are passed via opts. If not specified, symbolic
links are followed. The method returns a reference to requested attributes. If the requested
attribute type is not available, UnsupportedOperationException is thrown. Using the object
returned, you can access the file’s attributes.

A second way to gain access to a file’s attributes is to call getFileAttributeView()
defined by Files. NIO defines several attribute view interfaces, including AttributeView,
BasicFileAttributeView, DosFileAttributeView, and PosixFileAttributeView, among others.
Although we won’t be using attribute views in this chapter, they are a feature that you may
find helpful in some situations.

In some cases, you won’t need to use the file attribute interfaces directly because the
Files class offers static convenience methods that access several of the attributes. For example,
Files includes methods such as isHidden() and isWritable().

It is important to understand that not all file systems support all possible attributes. For
example, the DOS file attributes apply to the older FAT file system as first defined by DOS. The
attributes that will apply to a wide variety of file systems are described by BasicFileAttributes.
For this reason, these attributes are used in the examples in this chapter.

21-ch21.indd 699 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

700 PART II The Java Library

The FileSystem, FileSystems, and FileStore Classes
You can easily access the file system through the FileSystem and FileSystems classes packaged
in java.nio.file. In fact, by using the newFileSystem() method defined by FileSystems, it is
even possible to obtain a new file system. The FileStore class encapsulates the file storage
system. Although these classes are not used directly in this chapter, you may find them
helpful in your own applications.

Using the NIO System
This section illustrates how to apply the NIO system to a variety of tasks. Before beginning,
it is important to emphasize that with the release of JDK 7, the NIO subsystem was greatly
expanded. As a result, its uses have also been greatly expanded. As mentioned, the
enhanced version is sometimes referred to as NIO.2. Because the features added by NIO.2
are so substantial, they have changed the way that much NIO-based code is written and
have increased the types of tasks to which NIO can be applied. Because of its importance,
most of the remaining discussion and examples in this chapter utilize NIO.2 features and,
therefore, require JDK 7, JDK 8, or later. However, at the end of the chapter is a brief
description of pre-JDK 7 code. This will be of aid to those programmers working in pre-JDK 7
environments or maintaining older code.

REMEMBER Most of the examples in this chapter require JDK 7 or later.

In the past, the primary purpose of NIO was channel-based I/O, and this is still a very
important use. However, you can now use NIO for stream-based I/O and for performing
file-system operations. As a result, the discussion of using NIO is divided into three parts:

•	 Using NIO for channel-based I/O

•	 Using NIO for stream-based I/O

•	 Using NIO for path and file system operations

Because the most common I/O device is the disk file, the rest of this chapter uses disk
files in the examples. Because all file channel operations are byte-based, the type of buffers
that we will be using are of type ByteBuffer.

Before you can open a file for access via the NIO system, you must obtain a Path that
describes the file. One way to do this is to call the Paths.get() factory method, which was
described earlier. The form of get() used in the examples is shown here:

static Path get(String pathname, String ... parts)

Recall that the path can be specified in two ways. It can be passed in pieces, with the
first part passed in pathname and the subsequent elements specified by the parts varargs
parameter. Alternatively, the entire path can be specified in pathname and parts is not used.
This is the approach used by the examples.

Use NIO for Channel-Based I/O
An important use of NIO is to access a file via a channel and buffers. The following sections
demonstrate some techniques that use a channel to read from and write to a file.

21-ch21.indd 700 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 701

Pa
rt

 II

Reading a File via a Channel
There are several ways to read data from a file using a channel. Perhaps the most common
way is to manually allocate a buffer and then perform an explicit read operation that loads
that buffer with data from the file. It is with this approach that we begin.

Before you can read from a file, you must open it. To do this, first create a Path that
describes the file. Then use this Path to open the file. There are various ways to open the
file depending on how it will be used. In this example, the file will be opened for byte-based
input via explicit input operations. Therefore, this example will open the file and establish
a channel to it by calling Files.newByteChannel(). The newByteChannel() method has this
general form:

static SeekableByteChannel newByteChannel(Path path, OpenOption ... how)
 throws IOException

It returns a SeekableByteChannel object, which encapsulates the channel for file operations.
The Path that describes the file is passed in path. The how parameter specifies how the file
will be opened. Because it is a varargs parameter, you can specify zero or more comma-
separated arguments. (The valid values were discussed earlier and shown in Table 21-5.) If
no arguments are specified, the file is opened for input operations. SeekableByteChannel is
an interface that describes a channel that can be used for file operations. It is implemented
by the FileChannel class. When the default file system is used, the returned object can be
cast to FileChannel. You must close the channel after you have finished with it. Since all
channels, including FileChannel, implement AutoCloseable, you can use a try-with-resources
statement to close the file automatically instead of calling close() explicitly. This approach is
used in the examples.

Next, you must obtain a buffer that will be used by the channel either by wrapping an
existing array or by allocating the buffer dynamically. The examples use allocation, but the
choice is yours. Because file channels operate on byte buffers, we will use the allocate()
method defined by ByteBuffer to obtain the buffer. It has this general form:

static ByteBuffer allocate(int cap)

Here, cap specifies the capacity of the buffer. A reference to the buffer is returned.
After you have created the buffer, call read() on the channel, passing a reference to the

buffer. The version of read() that we will use is shown next:

int read(ByteBuffer buf) throws IOException

Each time it is called, read() fills the buffer specified by buf with data from the file. The
reads are sequential, meaning that each call to read() reads the next buffer’s worth of bytes
from the file. The read() method returns the number of bytes actually read. It returns –1
when there is an attempt to read at the end of the file.

The following program puts the preceding discussion into action by reading a file
called test.txt through a channel using explicit input operations:

// Use Channel I/O to read a file. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

21-ch21.indd 701 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

702 PART II The Java Library

public class ExplicitChannelRead {
 public static void main(String args[]) {
 int count;
 Path filepath = null;

 // First, obtain a path to the file.
 try {
 filepath = Paths.get("test.txt");
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 return;
 }

 // Next, obtain a channel to that file within a try-with-resources block.
 try (SeekableByteChannel fChan = Files.newByteChannel(filepath))
 {

 // Allocate a buffer.
 ByteBuffer mBuf = ByteBuffer.allocate(128);

 do {
 // Read a buffer.
 count = fChan.read(mBuf);

 // Stop when end of file is reached.
 if(count != -1) {

 // Rewind the buffer so that it can be read.
 mBuf.rewind();

 // Read bytes from the buffer and show
 // them on the screen as characters.
 for(int i=0; i < count; i++)
 System.out.print((char)mBuf.get());
 }
 } while(count != -1);

 System.out.println();
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

Here is how the program works. First, a Path object is obtained that contains the relative
path to a file called test.txt. A reference to this object is assigned to filepath. Next, a channel
connected to the file is obtained by calling newByteChannel(), passing in filepath. Because
no open option is specified, the file is opened for reading. Notice that this channel is the
object managed by the try-with-resources statement. Thus, the channel is automatically
closed when the block ends. The program then calls the allocate() method of ByteBuffer
to allocate a buffer that will hold the contents of the file when it is read. A reference to this
buffer is stored in mBuf. The contents of the file are then read, one buffer at a time, into
mBuf through a call to read(). The number of bytes read is stored in count. Next, the

21-ch21.indd 702 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 703

Pa
rt

 II

buffer is rewound through a call to rewind(). This call is necessary because the current
position is at the end of the buffer after the call to read(). It must be reset to the start of
the buffer in order for the bytes in mBuf to be read by calling get(). (Recall that get() is
defined by ByteBuffer.) Because mBuf is a byte buffer, the values returned by get() are
bytes. They are cast to char so the file can be displayed as text. (Alternatively, it is possible
to create a buffer that encodes the bytes into characters and then read that buffer.) When
the end of the file has been reached, the value returned by read() will be –1. When this
occurs, the program ends, and the channel is automatically closed.

As a point of interest, notice that the program obtains the Path within one try block
and then uses another try block to obtain and manage a channel linked to that path.
Although there is nothing wrong, per se, with this approach, in many cases, it can be
streamlined so that only one try block is needed. In this approach, the calls to Paths.get()
and newByteChannel() are sequenced together. For example, here is a reworked version
of the program that uses this approach:

// A more compact way to open a channel. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class ExplicitChannelRead {
 public static void main(String args[]) {
 int count;

 // Here, the channel is opened on the Path returned by Paths.get().
 // There is no need for the filepath variable.
 try (SeekableByteChannel fChan =
 Files.newByteChannel(Paths.get("test.txt")))
 {
 // Allocate a buffer.
 ByteBuffer mBuf = ByteBuffer.allocate(128);

 do {
 // Read a buffer.
 count = fChan.read(mBuf);

 // Stop when end of file is reached.
 if(count != -1) {

 // Rewind the buffer so that it can be read.
 mBuf.rewind();

 // Read bytes from the buffer and show
 // them on the screen as characters.
 for(int i=0; i < count; i++)
 System.out.print((char)mBuf.get());
 }
 } while(count != -1);

21-ch21.indd 703 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

704 PART II The Java Library

 System.out.println();
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

In this version, the variable filepath is not needed and both exceptions are handled by
the same try statement. Because this approach is more compact, it is the approach used
in the rest of the examples in this chapter. Of course, in your own code, you may encounter
situations in which the creation of a Path object needs to be separate from the acquisition
of a channel. In these cases, the previous approach can be used.

Another way to read a file is to map it to a buffer. The advantage is that the buffer
automatically contains the contents of the file. No explicit read operation is necessary.
To map and read the contents of a file, follow this general procedure. First, obtain a Path
object that encapsulates the file as previously described. Next, obtain a channel to that file
by calling Files.newByteChannel(), passing in the Path and casting the returned object to
FileChannel. As explained, newByteChannel() returns a SeekableByteChannel. When using
the default file system, this object can be cast to FileChannel. Then, map the channel to a
buffer by calling map() on the channel. The map() method is defined by FileChannel.
This is why the cast to FileChannel is needed. The map() function is shown here:

MappedByteBuffer map(FileChannel.MapMode how,
 long pos, long size) throws IOException

The map() method causes the data in the file to be mapped into a buffer in memory. The
value in how determines what type of operations are allowed. It must be one of these values:

MapMode.READ_ONLY MapMode.READ_WRITE MapMode.PRIVATE

For reading a file, use MapMode.READ_ONLY. To read and write, use
MapMode.READ_WRITE. MapMode.PRIVATE causes a private copy of the file to
be made, and changes to the buffer do not affect the underlying file. The location
within the file to begin mapping is specified by pos, and the number of bytes to map are
specified by size. A reference to this buffer is returned as a MappedByteBuffer, which is a
subclass of ByteBuffer. Once the file has been mapped to a buffer, you can read the file
from that buffer. Here is an example that illustrates this approach:

// Use a mapped file to read a file. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class MappedChannelRead {
 public static void main(String args[]) {

21-ch21.indd 704 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 705

Pa
rt

 II

 // Obtain a channel to a file within a try-with-resources block.
 try (FileChannel fChan =
 (FileChannel) Files.newByteChannel(Paths.get("test.txt")))
 {

 // Get the size of the file.
 long fSize = fChan.size();

 // Now, map the file into a buffer.
 MappedByteBuffer mBuf = fChan.map(FileChannel.MapMode.READ_ONLY, 0, fSize);

 // Read and display bytes from buffer.
 for(int i=0; i < fSize; i++)
 System.out.print((char)mBuf.get());

 System.out.println();

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

In the program, a Path to the file is created and then opened via newByteChannel(). The
channel is cast to FileChannel and stored in fChan. Next, the size of the file is obtained by
calling size() on the channel. Then, the entire file is mapped into memory by calling map()
on fChan and a reference to the buffer is stored in mBuf. Notice that mBuf is declared as a
reference to a MappedByteBuffer. The bytes in mBuf are read by calling get().

Writing to a File via a Channel
As is the case when reading from a file, there are also several ways to write data to a file
using a channel. We will begin with one of the most common. In this approach, you
manually allocate a buffer, write data to that buffer, and then perform an explicit write
operation to write that data to a file.

Before you can write to a file, you must open it. To do this, first obtain a Path that
describes the file and then use this Path to open the file. In this example, the file will be
opened for byte-based output via explicit output operations. Therefore, this example will
open the file and establish a channel to it by calling Files.newByteChannel(). As shown in
the previous section, the newByteChannel() method has this general form:

static SeekableByteChannel newByteChannel(Path path, OpenOption ... how)
 throws IOException

It returns a SeekableByteChannel object, which encapsulates the channel for file operations.
To open a file for output, the how parameter must specify StandardOpenOption.WRITE.
If you want to create the file if it does not already exist, then you must also specify
StandardOpenOption.CREATE. (Other options, which are shown in Table 21-5, are also
available.) As explained in the previous section, SeekableByteChannel is an interface that
describes a channel that can be used for file operations. It is implemented by the FileChannel

21-ch21.indd 705 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

706 PART II The Java Library

class. When the default file system is used, the return object can be cast to FileChannel. You
must close the channel after you have finished with it.

Here is one way to write to a file through a channel using explicit calls to write(). First,
obtain a Path to the file and then open it with a call to newByteChannel(), casting the result
to FileChannel. Next, allocate a byte buffer and write data to that buffer. Before the data
is written to the file, call rewind() on the buffer to set its current position to zero. (Each
output operation on the buffer increases the current position. Thus, it must be reset prior
to writing to the file.) Then, call write() on the channel, passing in the buffer. The following
program demonstrates this procedure. It writes the alphabet to a file called test.txt.

// Write to a file using NIO. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class ExplicitChannelWrite {
 public static void main(String args[]) {

 // Obtain a channel to a file within a try-with-resources block.
 try (FileChannel fChan = (FileChannel)
 Files.newByteChannel(Paths.get("test.txt"),
 StandardOpenOption.WRITE,
 StandardOpenOption.CREATE))
 {
 // Create a buffer.
 ByteBuffer mBuf = ByteBuffer.allocate(26);

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 // Reset the buffer so that it can be written.
 mBuf.rewind();

 // Write the buffer to the output file.
 fChan.write(mBuf);

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error: " + e);
 System.exit(1);
 }
 }
}

It is useful to emphasize an important aspect of this program. As mentioned, after data
is written to mBuf, but before it is written to the file, a call to rewind() on mBuf is made.
This is necessary in order to reset the current position to zero after data has been written
to mBuf. Remember, each call to put() on mBuf advances the current position. Therefore,

21-ch21.indd 706 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 707

Pa
rt

 II

it is necessary for the current position to be reset to the start of the buffer before calling
write(). If this is not done, write() will think that there is no data in the buffer.

Another way to handle the resetting of the buffer between input and output operations
is to call flip() instead of rewind(). The flip() method sets the value of the current position
to zero and the limit to the previous current position. In the preceding example, because
the capacity of the buffer equals its limit, flip() could have been used instead of rewind().
However, the two methods are not interchangeable in all cases.

In general, you must reset the buffer between read and write operations. For example,
assuming the preceding example, the following loop will write the alphabet to the file three
times. Pay special attention to the calls to rewind().

for(int h=0; h<3; h++) {
 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 // Rewind the buffer so that it can be written.
 mBuf.rewind();

 // Write the buffer to the output file.
 fChan.write(mBuf);

 // Rewind the buffer so that it can be written to again.
 mBuf.rewind();
}

Notice that rewind() is called between each read and write operation.
One other thing about the program warrants mentioning: When the buffer is written to

the file, the first 26 bytes in the file will contain the output. If the file test.txt was preexisting,
then after the program executes, the first 26 bytes of test.txt will contain the alphabet, but
the remainder of the file will remain unchanged.

Another way to write to a file is to map it to a buffer. The advantage to this approach is
that the data written to the buffer will automatically be written to the file. No explicit write
operation is necessary. To map and write the contents of a file, we will use this general
procedure. First, obtain a Path object that encapsulates the file and then create a channel
to that file by calling Files.newByteChannel(), passing in the Path. Cast the reference
returned by newByteChannel() to FileChannel. Next, map the channel to a buffer by
calling map() on the channel. The map() method was described in detail in the previous
section. It is summarized here for your convenience. Here is its general form:

MappedByteBuffer map(FileChannel.MapMode how,
 long pos, long size) throws IOException

The map() method causes the data in the file to be mapped into a buffer in memory.
The value in how determines what type of operations are allowed. For writing to a file,
how must be MapMode.READ_WRITE. The location within the file to begin mapping is
specified by pos, and the number of bytes to map are specified by size. A reference to this
buffer is returned. Once the file has been mapped to a buffer, you can write data to that
buffer, and it will automatically be written to the file. Therefore, no explicit write
operations to the channel are necessary.

21-ch21.indd 707 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

708 PART II The Java Library

Here is the preceding program reworked so that a mapped file is used. Notice that in
the call to newByteChannel(), the open option StandardOpenOption.READ has been
added. This is because a mapped buffer can either be read-only or read/write. Thus, to
write to the mapped buffer, the channel must be opened as read/write.

// Write to a mapped file. Requires JDK 7 or later.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class MappedChannelWrite {
 public static void main(String args[]) {

 // Obtain a channel to a file within a try-with-resources block.
 try (FileChannel fChan = (FileChannel)
 Files.newByteChannel(Paths.get("test.txt"),
 StandardOpenOption.WRITE,
 StandardOpenOption.READ,
 StandardOpenOption.CREATE))
 {

 // Then, map the file into a buffer.
 MappedByteBuffer mBuf = fChan.map(FileChannel.MapMode.READ_WRITE, 0, 26);

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

As you can see, there are no explicit write operations to the channel itself. Because mBuf is
mapped to the file, changes to mBuf are automatically reflected in the underlying file.

Copying a File Using NIO
NIO simplifies several types of file operations. Although we can’t examine them all, an
example will give you an idea of what is available. The following program copies a file using
a call to a single NIO method: copy(), which is a static method defined by Files. It has
several forms. Here is the one we will be using:

static Path copy(Path src, Path dest, CopyOption ... how) throws IOException

The file specified by src is copied to the file specified by dest. How the copy is performed is
specified by how. Because it is a varargs parameter, it can be missing. If specified, it can be
one or more of these values, which are valid for all file systems:

21-ch21.indd 708 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 709

Pa
rt

 II

StandardCopyOption.COPY_ATTRIBUTES Request that the file’s attributes be copied.

StandardLinkOption.NOFOLLOW_LINKS Do not follow symbolic links.

StandardCopyOption.REPLACE_EXISTING Overwrite a preexisting file.

Other options may be supported, depending on the implementation.
The following program demonstrates copy(). The source and destination files are

specified on the command line, with the source file specified first. Notice how short the
program is. You might want to compare this version of the file copy program to the one
found in Chapter 13. As you will find, the part of the program that actually copies the file
is substantially shorter in the NIO version shown here.

// Copy a file using NIO. Requires JDK 7 or later.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.file.*;

public class NIOCopy {

 public static void main(String args[]) {

 if(args.length != 2) {
 System.out.println("Usage: Copy from to");
 return;
 }

 try {
 Path source = Paths.get(args[0]);
 Path target = Paths.get(args[1]);

 // Copy the file.
 Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 }
 }
}

Use NIO for Stream-Based I/O
Beginning with NIO.2, you can use NIO to open an I/O stream. Once you have a Path,
open a file by calling newInputStream() or newOutputStream(), which are static methods
defined by Files. These methods return a stream connected to the specified file. In either
case, the stream can then be operated on in the way described in Chapter 20, and the same
techniques apply. The advantage of using Path to open a file is that all of the features
defined by NIO are available for your use.

21-ch21.indd 709 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

710 PART II The Java Library

To open a file for stream-based input, use Files.newInputStream(). It is shown here:

static InputStream newInputStream(Path path, OpenOption ... how)
 throws IOException

Here, path specifies the file to open and how specifies how the file will be opened. It must
be one or more of the values defined by StandardOpenOption, described earlier. (Of
course, only those options that relate to an input stream will apply.) If no options are
specified, then the file is opened as if StandardOpenOption.READ were passed.

Once opened, you can use any of the methods defined by InputStream. For example,
you can use read() to read bytes from the file.

The following program demonstrates the use of NIO-based stream I/O. It reworks the
ShowFile program from Chapter 13 so that it uses NIO features to open the file and obtain
a stream. As you can see, it is very similar to the original, except for the use of Path and
newInputStream().

/* Display a text file using stream-based, NIO code.
 Requires JDK 7 or later.

 To use this program, specify the name
 of the file that you want to see.
 For example, to see a file called TEST.TXT,
 use the following command line.

 java ShowFile TEST.TXT
*/

import java.io.*;
import java.nio.file.*;

class ShowFile {
 public static void main(String args[])
 {
 int i;

 // First, confirm that a filename has been specified.
 if(args.length != 1) {
 System.out.println("Usage: ShowFile filename");
 return;
 }

 // Open the file and obtain a stream linked to it.
 try (InputStream fin = Files.newInputStream(Paths.get(args[0])))
 {
 do {
 i = fin.read();
 if(i != -1) System.out.print((char) i);
 } while(i != -1);

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(IOException e) {

21-ch21.indd 710 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 711

Pa
rt

 II

 System.out.println("I/O Error " + e);
 }
 }
}

Because the stream returned by newInputStream() is a normal stream, it can be used
like any other stream. For example, you can wrap the stream inside a buffered stream, such
as a BufferedInputStream, to provide buffering, as shown here:

new BufferedInputStream(Files.newInputStream(Paths.get(args[0])))

Now, all reads will be automatically buffered.
To open a file for output, use Files.newOutputStream(). It is shown here:

static OutputStream newOutputStream(Path path, OpenOption ... how)
 throws IOException

Here, path specifies the file to open and how specifies how the file will be opened. It must be
one or more of the values defined by StandardOpenOption, described earlier. (Of course,
only those options that relate to an output stream will apply.) If no options are specified,
then the file is opened as if StandardOpenOption.WRITE, StandardOpenOption.CREATE,
and StandardOpenOption.TRUNCATE_EXISTING were passed.

The methodology for using newOutputStream() is similar to that shown previously for
newInputStream(). Once opened, you can use any of the methods defined by OutputStream.
For example, you can use write() to write bytes to the file. You can also wrap the stream
inside a BufferedOutputStream to buffer the stream.

The following program shows newOutputStream() in action. It writes the alphabet to a
file called test.txt. Notice the use of buffered I/O.

// Demonstrate NIO-based, stream output. Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;

class NIOStreamWrite {
 public static void main(String args[])
 {
 // Open the file and obtain a stream linked to it.
 try (OutputStream fout =
 new BufferedOutputStream(
 Files.newOutputStream(Paths.get("test.txt"))))
 {
 // Write some bytes to the stream.
 for(int i=0; i < 26; i++)
 fout.write((byte)('A' + i));

 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

21-ch21.indd 711 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

712 PART II The Java Library

Use NIO for Path and File System Operations
At the beginning of Chapter 20, the File class in the java.io package was examined. As
explained there, the File class deals with the file system and with the various attributes
associated with a file, such as whether a file is read-only, hidden, and so on. It was also used
to obtain information about a file’s path. Although the File class is still perfectly acceptable,
the interfaces and classes defined by NIO.2 offer a better way to perform these functions.
The benefits include support for symbolic links, better support for directory tree traversal,
and improved handling of metadata, among others. The following sections show samples
of two common file system operations: obtaining information about a path and file and
getting the contents of a directory.

REMEMBER If you want to update older code that uses java.io.File to the new Path interface, you can
use the toPath() method to obtain a Path instance from a File instance.

Obtain Information About a Path and a File
Information about a path can be obtained by using methods defined by Path. Some
attributes associated with the file described by a Path (such as whether or not the file is
hidden) are obtained by using methods defined by Files. The Path methods used here are
getName(), getParent(), and toAbsolutePath(). Those provided by Files are isExecutable(),
isHidden(), isReadable(), isWritable(), and exists(). These are summarized in Tables 21-3
and 21-4, shown earlier.

CAUTION Methods such as isExecutable(), isReadable(), isWritable(), and exists() must be used
with care because the state of the file system may change after the call, in which case a program
malfunction could occur. Such a situation could have security implications.

Other file attributes are obtained by requesting a list of attributes by calling
Files.readAttributes(). In the program, this method is called to obtain the BasicFileAttributes
associated with a file, but the general approach applies to other types of attributes.

The following program demonstrates several of the Path and Files methods, along with
several methods provided by BasicFileAttributes. This program assumes that a file called
test.txt exists in a directory called examples, which must be a subdirectory of the current
directory.

// Obtain information about a path and a file.
// Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

class PathDemo {
 public static void main(String args[]) {
 Path filepath = Paths.get("examples\\test.txt");

21-ch21.indd 712 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 713

Pa
rt

 II

 System.out.println("File Name: " + filepath.getName(1));
 System.out.println("Path: " + filepath);
 System.out.println("Absolute Path: " + filepath.toAbsolutePath());
 System.out.println("Parent: " + filepath.getParent());

 if(Files.exists(filepath))
 System.out.println("File exists");
 else
 System.out.println("File does not exist");

 try {
 if(Files.isHidden(filepath))
 System.out.println("File is hidden");
 else
 System.out.println("File is not hidden");
 } catch(IOException e) {
 System.out.println("I/O Error: " + e);
 }

 Files.isWritable(filepath);
 System.out.println("File is writable");

 Files.isReadable(filepath);
 System.out.println("File is readable");

 try {
 BasicFileAttributes attribs =
 Files.readAttributes(filepath, BasicFileAttributes.class);

 if(attribs.isDirectory())
 System.out.println("The file is a directory");
 else
 System.out.println("The file is not a directory");

 if(attribs.isRegularFile())
 System.out.println("The file is a normal file");
 else
 System.out.println("The file is not a normal file");

 if(attribs.isSymbolicLink())
 System.out.println("The file is a symbolic link");
 else
 System.out.println("The file is not a symbolic link");

 System.out.println("File last modified: " + attribs.lastModifiedTime());
 System.out.println("File size: " + attribs.size() + " Bytes");
 } catch(IOException e) {
 System.out.println("Error reading attributes: " + e);
 }
 }
}

21-ch21.indd 713 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

714 PART II The Java Library

If you execute this program from a directory called MyDir, which has a subdirectory called
examples, and the examples directory contains the test.txt file, then you will see output
similar to that shown here. (Of course, the information you see will differ.)

File Name: test.txt
Path: examples\test.txt
Absolute Path: C:\MyDir\examples\test.txt
Parent: examples
File exists
File is not hidden
File is writable
File is readable
The file is not a directory
The file is a normal file
The file is not a symbolic link
File last modified: 2014-01-01T18:20:46.380445Z
File size: 18 Bytes

If you are using a computer that supports the FAT file system (i.e., the DOS file system),
then you might want to try using the methods defined by DosFileAttributes. If you are using
a POSIX-compatible system, then try using PosixFileAttributes.

List the Contents of a Directory
If a path describes a directory, then you can read the contents of that directory by using
static methods defined by Files. To do this, you first obtain a directory stream by calling
newDirectoryStream(), passing in a Path that describes the directory. One form of
newDirectoryStream() is shown here:

static DirectoryStream<Path> newDirectoryStream(Path dirPath)
 throws IOException

Here, dirPath encapsulates the path to the directory. The method returns a
DirectoryStream<Path> object that can be used to obtain the contents of the directory.
It will throw an IOException if an I/O error occurs and a NotDirectoryException (which
is a subclass of IOException) if the specified path is not a directory. A SecurityException is
also possible if access to the directory is not permitted.

DirectoryStream<Path> implements AutoCloseable, so it can be managed by a try-with-
resources statement. It also implements Iterable<Path>. This means that you can obtain the
contents of the directory by iterating over the DirectoryStream object. When iterating, each
directory entry is represented by a Path instance. An easy way to iterate over a DirectoryStream
is to use a for-each style for loop. It is important to understand, however, that the iterator
implemented by DirectoryStream<Path> can be obtained only once for each instance.
Thus, the iterator() method can be called only once, and a for-each loop can be executed
only once.

The following program displays the contents of a directory called MyDir:

// Display a directory. Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

21-ch21.indd 714 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 715

Pa
rt

 II

class DirList {
 public static void main(String args[]) {
 String dirname = "\\MyDir";

 // Obtain and manage a directory stream within a try block.
 try (DirectoryStream<Path> dirstrm =
 Files.newDirectoryStream(Paths.get(dirname)))
 {
 System.out.println("Directory of " + dirname);

 // Because DirectoryStream implements Iterable, we
 // can use a "foreach" loop to display the directory.
 for(Path entry : dirstrm) {
 BasicFileAttributes attribs =
 Files.readAttributes(entry, BasicFileAttributes.class);

 if(attribs.isDirectory())
 System.out.print("<DIR> ");
 else
 System.out.print(" ");

 System.out.println(entry.getName(1));
 }
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(NotDirectoryException e) {
 System.out.println(dirname + " is not a directory.");
 } catch (IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Here is sample output from the program:

Directory of \MyDir
 DirList.class
 DirList.java
<DIR> examples
 Test.txt

You can filter the contents of a directory in two ways. The easiest is to use this version of
newDirectoryStream():

static DirectoryStream<Path> newDirectoryStream(Path dirPath, String wildcard)
 throws IOException

In this version, only files that match the wildcard filename specified by wildcard will be
obtained. For wildcard, you can specify either a complete filename or a glob. A glob is a string
that defines a general pattern that will match one or more files using the familiar * and ?
wildcard characters. These match zero or more of any character and any one character,
respectively. The following are also recognized within a glob.

21-ch21.indd 715 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

716 PART II The Java Library

** Matches zero or more of any character across directories.

[chars] Matches any one character in chars. A * or ? within chars will be treated as a normal
character, not a wildcard. A range can be specified by use of a hyphen, such as [x-z].

{globlist} Matches any one of the globs specified in a comma-separated list of globs in globlist.

You can specify a * or ? character, using * and \?. To specify a \, use \\. You can experiment
with a glob by substituting this call to newDirectoryStream() into the previous program:

Files.newDirectoryStream(Paths.get(dirname), "{Path,Dir}*.{java,class}")

This obtains a directory stream that contains only those files whose names begin with either
"Path" or "Dir" and use either the "java" or "class" extension. Thus, it would match names
like DirList.java and PathDemo.java, but not MyPathDemo.java, for example.

Another way to filter a directory is to use this version of newDirectoryStream():

static DirectoryStream<Path> newDirectoryStream(Path dirPath,
 DirectoryStream.Filter<? super Path> filefilter)
 throws IOException

Here, DirectoryStream.Filter is an interface that specifies the following method:

boolean accept(T entry) throws IOException

In this case, T will be Path. If you want to include entry in the list, return true. Otherwise,
return false. This form of newDirectoryStream() offers the advantage of being able to filter
a directory based on something other than a filename. For example, you can filter based on
size, creation date, modification date, or attribute, to name a few.

The following program demonstrates the process. It will list only those files that are
writable.

// Display a directory of only those files that are writable.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

class DirList {
 public static void main(String args[]) {
 String dirname = "\\MyDir";

 // Create a filter that returns true only for writable files.
 DirectoryStream.Filter<Path> how = new DirectoryStream.Filter<Path>() {
 public boolean accept(Path filename) throws IOException {
 if(Files.isWritable(filename)) return true;
 return false;
 }
 };

21-ch21.indd 716 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 717

Pa
rt

 II

 // Obtain and manage a directory stream of writable files.
 try (DirectoryStream<Path> dirstrm =
 Files.newDirectoryStream(Paths.get(dirname), how))
 {
 System.out.println("Directory of " + dirname);

 for(Path entry : dirstrm) {
 BasicFileAttributes attribs =
 Files.readAttributes(entry, BasicFileAttributes.class);

 if(attribs.isDirectory())
 System.out.print("<DIR> ");
 else
 System.out.print(" ");

 System.out.println(entry.getName(1));
 }
 } catch(InvalidPathException e) {
 System.out.println("Path Error " + e);
 } catch(NotDirectoryException e) {
 System.out.println(dirname + " is not a directory.");
 } catch (IOException e) {
 System.out.println("I/O Error: " + e);
 }
 }
}

Use walkFileTree() to List a Directory Tree
The preceding examples have obtained the contents of only a single directory. However,
sometimes you will want to obtain a list of the files in a directory tree. In the past, this was
quite a chore, but NIO.2 makes it easy because now you can use the walkFileTree() method
defined by Files to process a directory tree. It has two forms. The one used in this chapter is
shown here:

static Path walkFileTree(Path root, FileVisitor<? extends Path> fv)
 throws IOException

The path to the starting point of the directory walk is passed in root. An instance of
FileVisitor is passed in fv. The implementation of FileVisitor determines how the directory
tree is traversed, and it gives you access to the directory information. If an I/O error occurs,
an IOException is thrown. A SecurityException is also possible.

FileVisitor is an interface that defines how files are visited when a directory tree is
traversed. It is a generic interface that is declared like this:

interface FileVisitor<T>

21-ch21.indd 717 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

718 PART II The Java Library

For use in walkFileTree(), T will be Path (or any type derived from Path). FileVisitor
defines the following methods.

Method Description
FileVisitResult
 postVisitDirectory(T dir, IOException exc)
 throws IOException

Called after a directory has been visited. The
directory is passed in dir, and any IOException
is passed in exc. If exc is null, no exception
occurred. The result is returned.

FileVisitResult
 preVisitDirectory(T dir,
 BasicFileAttributes attribs)
 throws IOException

Called before a directory is visited. The directory
is passed in dir, and the attributes associated
with the directory are passed in attribs. The result
is returned. To examine the directory, return
FileVisitResult.CONTINUE.

FileVisitResult
 visitFile(T file, BasicFileAttributes attribs)
 throws IOException

Called when a file is visited. The file is passed in
file, and the attributes associated with the file are
passed in attribs. The result is returned.

FileVisitResult
 visitFileFailed(T file, IOException exc)
 throws IOException

Called when an attempt to visit a file fails. The file
that failed is passed in file, and the IOException is
passed in exc. The result is returned.

Notice that each method returns a FileVisitResult. This enumeration defines the following
values:

CONTINUE SKIP_SIBLINGS SKIP_SUBTREE TERMINATE

In general, to continue traversing the directory and subdirectories, a method should return
CONTINUE. For preVisitDirectory(), return SKIP_SIBLINGS to bypass the directory and
its siblings and prevent postVisitDirectory() from being called. To bypass just the directory
and subdirectories, return SKIP_SUBTREE. To stop the directory traversal, return
TERMINATE.

Although it is certainly possible to create your own visitor class that implements these
methods defined by FileVisitor, you won’t normally do so because a simple implementation
is provided by SimpleFileVisitor. You can just override the default implementation of the
method or methods in which you are interested. Here is a short example that illustrates the
process. It displays all files in the directory tree that has \MyDir as its root. Notice how short
this program is.

// A simple example that uses walkFileTree() to display a directory tree.
// Requires JDK 7 or later.

import java.io.*;
import java.nio.file.*;
import java.nio.file.attribute.*;

// Create a custom version of SimpleFileVisitor that overrides
// the visitFile() method.
class MyFileVisitor extends SimpleFileVisitor<Path> {
 public FileVisitResult visitFile(Path path, BasicFileAttributes attribs)

21-ch21.indd 718 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 719

Pa
rt

 II

 throws IOException
 {
 System.out.println(path);
 return FileVisitResult.CONTINUE;
 }
}

class DirTreeList {
 public static void main(String args[]) {
 String dirname = "\\MyDir";

 System.out.println("Directory tree starting with " + dirname + ":\n");

 try {
 Files.walkFileTree(Paths.get(dirname), new MyFileVisitor());
 } catch (IOException exc) {
 System.out.println("I/O Error");
 }
 }
}

Here is sample output produced by the program when used on the same MyDir
directory shown earlier. In this example, the subdirectory called examples contains one file
called MyProgram.java.

Directory tree starting with \MyDir:

\MyDir\DirList.class
\MyDir\DirList.java
\MyDir\examples\MyProgram.java
\MyDir\Test.txt

In the program, the class MyFileVisitor extends SimpleFileVisitor, overriding only
the visitFile() method. In this example, visitFile() simply displays the files, but more
sophisticated functionality is easy to achieve. For example, you could filter the files or
perform actions on the files, such as copying them to a backup device. For the sake of
clarity, a named class was used to override visitFile(), but you could also use an anonymous
inner class.

One last point: It is possible to watch a directory for changes by using
java.nio.file.WatchService.

Pre-JDK 7 Channel-Based Examples
Before concluding this chapter, one more aspect of NIO needs to be covered. The preceding
sections have used several of the new features added to NIO by JDK 7. However, you may
encounter pre-JDK 7 code that will need to be maintained or possibly converted to use the
new features. For this reason, the following sections show how to read and write files using
the pre-JDK 7 NIO system. They do so by reworking some of the examples shown earlier so
that they use the original NIO features, rather than those supported by NIO.2. This means
that the examples in this section will work with versions of Java prior to JDK 7.

21-ch21.indd 719 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

720 PART II The Java Library

The key difference between pre-JDK 7 NIO code and newer NIO code is the Path
interface, which was added by JDK 7. Thus, pre-JDK 7 code does not use Path to describe a
file or open a channel to it. Also, pre-JDK 7 code does not use try-with-resource statements
since automatic resource management was also added by JDK 7.

REMEMBER The examples in this section describe how legacy NIO code works. This section is strictly for
the benefit of those programmers working on pre-JDK 7 code or using pre-JDK 7 compilers. New
code should take advantage of the NIO features added by JDK 7.

Read a File, Pre-JDK 7
This section reworks the two channel-based file input examples shown earlier so they use
only pre-JDK 7 features. The first example reads a file by manually allocating a buffer and
then performing an explicit read operation. The second example uses a mapped file, which
automates the process.

When using a pre-JDK 7 version of Java to read a file using a channel and a manually
allocated buffer, you first open the file for input using FileInputStream, using the same
mechanism explained in Chapter 20. Next, obtain a channel to this file by calling getChannel()
on the FileInputStream object. It has this general form:

FileChannel getChannel()

It returns a FileChannel object, which encapsulates the channel for file operations. Then,
call allocate() to allocate a buffer. Because file channels operate on byte buffers, you will
use the allocate() method defined by ByteBuffer, which works as previously described.

The following program shows how to read and display a file called test.txt through a
channel using explicit input operations for versions of Java prior to JDK 7:

// Use Channels to read a file. Pre-JDK 7 version.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class ExplicitChannelRead {
 public static void main(String args[]) {
 FileInputStream fIn = null;
 FileChannel fChan = null;
 ByteBuffer mBuf;
 int count;

 try {
 // First, open a file for input.
 fIn = new FileInputStream("test.txt");

 // Next, obtain a channel to that file.
 fChan = fIn.getChannel();

 // Allocate a buffer.
 mBuf = ByteBuffer.allocate(128);

 do {

21-ch21.indd 720 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 721

Pa
rt

 II

 // Read a buffer.
 count = fChan.read(mBuf);

 // Stop when end of file is reached.
 if(count != -1) {

 // Rewind the buffer so that it can be read.
 mBuf.rewind();

 // Read bytes from the buffer and show
 // them on the screen.
 for(int i=0; i < count; i++)
 System.out.print((char)mBuf.get());
 }
 } while(count != -1);

 System.out.println();

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fIn != null) fIn.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

In this program, notice that the file is opened by using the FileInputStream constructor,
and a reference to that object is assigned to fIn. Next, a channel connected to the file is
obtained by calling getChannel() on fIn. After this point, the program works like the NIO.2
version shown previously. To synopsize: The program then calls the allocate() method of
ByteBuffer to allocate a buffer that will hold the contents of the file when it is read. A byte
buffer is used because FileChannel operates on bytes. A reference to this buffer is stored in
mBuf. The contents of the file are then read, one buffer at a time, into mBuf through a call
to read(). The number of bytes read is stored in count. Next, the buffer is rewound through
a call to rewind(). This call is necessary because the current position is at the end of the
buffer after the call to read(), and it must be reset to the start of the buffer in order for the
bytes in mBuf to be read by calling get(). When the end of the file has been reached, the
value returned by read() will be –1. When this occurs, the program ends, explicitly closing
the channel and the file.

Another way to read a file is to map it to a buffer. As explained earlier, a principal
advantage to this approach is that the buffer automatically contains the contents of the
file. No explicit read operation is necessary. To map and read the contents of a file using

21-ch21.indd 721 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

722 PART II The Java Library

pre-JDK 7 NIO, first open the file using FileInputStream. Next, obtain a channel to that file
by calling getChannel() on the file object. Then, map the channel to a buffer by calling
map() on the FileChannel object. The map() method works as described earlier.

The following program reworks the preceding example so that it uses only pre-JDK 7
features to create a mapped file:

// Use a mapped file to read a file. Pre-JDK 7 version.

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class MappedChannelRead {
 public static void main(String args[]) {
 FileInputStream fIn = null;
 FileChannel fChan = null;
 long fSize;
 MappedByteBuffer mBuf;

 try {
 // First, open a file for input.
 fIn = new FileInputStream("test.txt");

 // Next, obtain a channel to that file.
 fChan = fIn.getChannel();

 // Get the size of the file.
 fSize = fChan.size();

 // Now, map the file into a buffer.
 mBuf = fChan.map(FileChannel.MapMode.READ_ONLY, 0, fSize);

 // Read and display bytes from buffer.
 for(int i=0; i < fSize; i++)
 System.out.print((char)mBuf.get());

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fIn != null) fIn.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

21-ch21.indd 722 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 723

Pa
rt

 II

In the program, the file is opened by using the FileInputStream constructor, and a
reference to that object is assigned to fIn. A channel connected to the file is obtained by
calling getChannel() on fIn. Next, the size of the file is obtained. Then, the entire file is
mapped into memory by calling map(), and a reference to the buffer is stored in mBuf.
The bytes in mBuf are read by calling get().

Write to a File, Pre-JDK 7
This section reworks the two channel-based file output examples shown earlier so that they
use only pre-JDK 7 features. The first example writes to a file by manually allocating a buffer
and then performing an explicit output operation. The second example uses a mapped file,
which automates the process. In both cases, neither Path nor try-with-resources is used. This
is because neither were part of Java until JDK 7.

When using a pre-JDK 7 version of Java to write a file using a channel and a manually
allocated buffer, first open the file for output. This is done by creating a FileOutputStream,
as described in Chapter 20. Next, obtain a channel to the file by calling getChannel() and
then allocate a byte buffer by calling allocate(), as described in the previous section. Next,
put the data you want to write into that buffer, and then call write() on the channel. The
following program demonstrates this procedure. It writes the alphabet to a file called test.txt.

// Write to a file using NIO. Pre-JDK 7 Version.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class ExplicitChannelWrite {
 public static void main(String args[]) {
 FileOutputStream fOut = null;
 FileChannel fChan = null;
 ByteBuffer mBuf;

 try {
 // First, open the output file.
 fOut = new FileOutputStream("test.txt");

 // Next, get a channel to the output file.
 fChan = fOut.getChannel();

 // Create a buffer.
 mBuf = ByteBuffer.allocate(26);

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 // Rewind the buffer so that it can be written.
 mBuf.rewind();

 // Write the buffer to the output file.
 fChan.write(mBuf);

21-ch21.indd 723 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

724 PART II The Java Library

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fOut != null) fOut.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

The call to rewind() on mBuf is necessary in order to reset the current position to zero
after data has been written to mBuf. Remember, each call to put() advances the current
position. Therefore, it is necessary for the current position to be reset to the start of the
buffer before calling write(). If this is not done, write() will think that there is no data in
the buffer.

When using a pre-JDK 7 version of Java to write to a file using a mapped file, follow
these steps. First, open the file for read/write operations by creating a RandomAccessFile
object. This is necessary to enable the file to be both read from and written to. Next, map
that file to a buffer by calling map() on that object. Then, write to the buffer. Because the
buffer is mapped to the file, any changes to that buffer are automatically reflected in the
file. Thus, no explicit write operations to the channel are necessary.

Here is the preceding program reworked so that a mapped file is used:

// Write to a mapped file. Pre JDK 7 version.
import java.io.*;
import java.nio.*;
import java.nio.channels.*;

public class MappedChannelWrite {
 public static void main(String args[]) {
 RandomAccessFile fOut = null;
 FileChannel fChan = null;
 ByteBuffer mBuf;

 try {
 fOut = new RandomAccessFile("test.txt", "rw");

 // Next, obtain a channel to that file.
 fChan = fOut.getChannel();

 // Then, map the file into a buffer.
 mBuf = fChan.map(FileChannel.MapMode.READ_WRITE, 0, 26);

21-ch21.indd 724 14/02/14 5:10 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 21 Exploring NIO 725

Pa
rt

 II

 // Write some bytes to the buffer.
 for(int i=0; i<26; i++)
 mBuf.put((byte)('A' + i));

 } catch (IOException e) {
 System.out.println("I/O Error " + e);
 } finally {
 try {
 if(fChan != null) fChan.close(); // close channel
 } catch(IOException e) {
 System.out.println("Error Closing Channel.");
 }
 try {
 if(fOut != null) fOut.close(); // close file
 } catch(IOException e) {
 System.out.println("Error Closing File.");
 }
 }
 }
}

As you can see, there are no explicit write operations to the channel itself. Because mBuf is
mapped to the file, changes to mBuf are automatically reflected in the underlying file.

21-ch21.indd 725 14/02/14 5:10 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

22
CHAPTER

 727

Networking

As all readers know, Java is practically a synonym for Internet programming. There are a
number of reasons for this, not the least of which is its ability to generate secure, cross-
platform, portable code. However, one of the most important reasons that Java is the premier
language for network programming are the classes defined in the java.net package. They
provide an easy-to-use means by which programmers of all skill levels can access network
resources.

This chapter explores the java.net package. It is important to emphasize that networking
is a very large and at times complicated topic. It is not possible for this book to discuss all
of the capabilities contained in java.net. Instead, this chapter focuses on several of its core
classes and interfaces.

Networking Basics
Before we begin, it will be useful to review some key networking concepts and terms. At the
core of Java’s networking support is the concept of a socket. A socket identifies an endpoint
in a network. The socket paradigm was part of the 4.2BSD Berkeley UNIX release in the
early 1980s. Because of this, the term Berkeley socket is also used. Sockets are at the foundation
of modern networking because a socket allows a single computer to serve many different
clients at once, as well as to serve many different types of information. This is accomplished
through the use of a port, which is a numbered socket on a particular machine. A server
process is said to "listen" to a port until a client connects to it. A server is allowed to accept
multiple clients connected to the same port number, although each session is unique. To
manage multiple client connections, a server process must be multithreaded or have some
other means of multiplexing the simultaneous I/O.

Socket communication takes place via a protocol. Internet Protocol (IP) is a low-level
routing protocol that breaks data into small packets and sends them to an address across a
network, which does not guarantee to deliver said packets to the destination. Transmission
Control Protocol (TCP) is a higher-level protocol that manages to robustly string together
these packets, sorting and retransmitting them as necessary to reliably transmit data. A
third protocol, User Datagram Protocol (UDP), sits next to TCP and can be used directly to
support fast, connectionless, unreliable transport of packets.

22-ch22.indd 727 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

728 PART II The Java Library

Once a connection has been established, a higher-level protocol ensues, which is
dependent on which port you are using. TCP/IP reserves the lower 1,024 ports for specific
protocols. Many of these will seem familiar to you if you have spent any time surfing the
Internet. Port number 21 is for FTP; 23 is for Telnet; 25 is for e-mail; 43 is for whois; 80 is
for HTTP; 119 is for netnews—and the list goes on. It is up to each protocol to determine
how a client should interact with the port.

For example, HTTP is the protocol that web browsers and servers use to transfer
hypertext pages and images. It is a quite simple protocol for a basic page-browsing web
server. Here’s how it works. When a client requests a file from an HTTP server, an action
known as a hit, it simply sends the name of the file in a special format to a predefined port
and reads back the contents of the file. The server also responds with a status code to tell
the client whether or not the request can be fulfilled and why.

A key component of the Internet is the address. Every computer on the Internet has
one. An Internet address is a number that uniquely identifies each computer on the Net.
Originally, all Internet addresses consisted of 32-bit values, organized as four 8-bit values.
This address type was specified by IPv4 (Internet Protocol, version 4). However, a new
addressing scheme, called IPv6 (Internet Protocol, version 6) has come into play. IPv6 uses
a 128-bit value to represent an address, organized into eight 16-bit chunks. Although there
are several reasons for and advantages to IPv6, the main one is that it supports a much
larger address space than does IPv4. Fortunately, when using Java, you won’t normally need
to worry about whether IPv4 or IPv6 addresses are used because Java handles the details
for you.

Just as the numbers of an IP address describe a network hierarchy, the name of an
Internet address, called its domain name, describes a machine’s location in a name space.
For example, www.HerbSchildt.com is in the COM top-level domain (reserved for U.S.
commercial sites); it is called HerbSchildt, and www identifies the server for web requests.
An Internet domain name is mapped to an IP address by the Domain Naming Service (DNS).
This enables users to work with domain names, but the Internet operates on IP addresses.

The Networking Classes and Interfaces
Java supports TCP/IP both by extending the already established stream I/O interface
introduced in Chapter 20 and by adding the features required to build I/O objects across
the network. Java supports both the TCP and UDP protocol families. TCP is used for reliable
stream-based I/O across the network. UDP supports a simpler, hence faster, point-to-point
datagram-oriented model. The classes contained in the java.net package are shown here:

Authenticator InetAddress SocketAddress

CacheRequest InetSocketAddress SocketImpl

CacheResponse InterfaceAddress SocketPermission

ContentHandler JarURLConnection StandardSocketOption

CookieHandler MulticastSocket URI

CookieManager NetPermission URL

DatagramPacket NetworkInterface URLClassLoader

22-ch22.indd 728 14/02/14 5:11 PM

http://www.HerbSchildt.com

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 729

Pa
rt

 II

DatagramSocket PasswordAuthentication URLConnection

DatagramSocketImpl Proxy URLDecoder

HttpCookie ProxySelector URLEncoder

HttpURLConnection ResponseCache URLPermission (Added by JDK 8.)

IDN SecureCacheResponse URLStreamHandler

Inet4Address ServerSocket

Inet6Address Socket

The java.net package’s interfaces are listed here:

ContentHandlerFactory FileNameMap SocketOptions

CookiePolicy ProtocolFamily URLStreamHandlerFactory

CookieStore SocketImplFactory

DatagramSocketImplFactory SocketOption

In the sections that follow, we will examine the main networking classes and show
several examples that apply to them. Once you understand these core networking classes,
you will be able to easily explore the others on your own.

InetAddress
The InetAddress class is used to encapsulate both the numerical IP address and the domain
name for that address. You interact with this class by using the name of an IP host, which is
more convenient and understandable than its IP address. The InetAddress class hides the
number inside. InetAddress can handle both IPv4 and IPv6 addresses.

Factory Methods
The InetAddress class has no visible constructors. To create an InetAddress object, you have
to use one of the available factory methods. Factory methods are merely a convention whereby
static methods in a class return an instance of that class. This is done in lieu of overloading a
constructor with various parameter lists when having unique method names makes the results
much clearer. Three commonly used InetAddress factory methods are shown here:

static InetAddress getLocalHost()
 throws UnknownHostException

static InetAddress getByName(String hostName)
 throws UnknownHostException

static InetAddress[] getAllByName(String hostName)
 throws UnknownHostException

The getLocalHost() method simply returns the InetAddress object that represents the local
host. The getByName() method returns an InetAddress for a host name passed to it. If these
methods are unable to resolve the host name, they throw an UnknownHostException.

22-ch22.indd 729 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

730 PART II The Java Library

On the Internet, it is common for a single name to be used to represent several
machines. In the world of web servers, this is one way to provide some degree of scaling. The
getAllByName() factory method returns an array of InetAddresses that represent all of the
addresses that a particular name resolves to. It will also throw an UnknownHostException if
it can’t resolve the name to at least one address.

InetAddress also includes the factory method getByAddress(), which takes an IP
address and returns an InetAddress object. Either an IPv4 or an IPv6 address can be used.

The following example prints the addresses and names of the local machine and two
Internet web sites:

// Demonstrate InetAddress.
import java.net.*;

class InetAddressTest
{
 public static void main(String args[]) throws UnknownHostException {
 InetAddress Address = InetAddress.getLocalHost();
 System.out.println(Address);

 Address = InetAddress.getByName("www.HerbSchildt.com");
 System.out.println(Address);

 InetAddress SW[] = InetAddress.getAllByName("www.nba.com");
 for (int i=0; i<SW.length; i++)
 System.out.println(SW[i]);
 }
}

Here is the output produced by this program. (Of course, the output you see may be
slightly different.)

 default/166.203.115.212
 www.HerbSchildt.com/216.92.65.4
 www.nba.com/216.66.31.161
 www.nba.com/216.66.31.179

Instance Methods
The InetAddress class has several other methods, which can be used on the objects returned
by the methods just discussed. Here are some of the more commonly used methods:

boolean equals(Object other) Returns true if this object has the same Internet address
as other.

byte[] getAddress() Returns a byte array that represents the object’s IP address
in network byte order.

String getHostAddress() Returns a string that represents the host address
associated with the InetAddress object.

22-ch22.indd 730 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 731

Pa
rt

 II

String getHostName() Returns a string that represents the host name associated
with the InetAddress object.

boolean isMulticastAddress() Returns true if this address is a multicast address.
Otherwise, it returns false.

String toString() Returns a string that lists the host name and the IP
address for convenience.

Internet addresses are looked up in a series of hierarchically cached servers. That
means that your local computer might know a particular name-to-IP-address mapping
automatically, such as for itself and nearby servers. For other names, it may ask a local DNS
server for IP address information. If that server doesn’t have a particular address, it can go
to a remote site and ask for it. This can continue all the way up to the root server. This
process might take a long time, so it is wise to structure your code so that you cache IP
address information locally rather than look it up repeatedly.

Inet4Address and Inet6Address
Java includes support for both IPv4 and IPv6 addresses. Because of this, two subclasses of
InetAddress were created: Inet4Address and Inet6Address. Inet4Address represents a
traditional-style IPv4 address. Inet6Address encapsulates a newer IPv6 address. Because they
are subclasses of InetAddress, an InetAddress reference can refer to either. This is one way
that Java was able to add IPv6 functionality without breaking existing code or adding many
more classes. For the most part, you can simply use InetAddress when working with IP
addresses because it can accommodate both styles.

TCP/IP Client Sockets
TCP/IP sockets are used to implement reliable, bidirectional, persistent, point-to-point,
stream-based connections between hosts on the Internet. A socket can be used to connect
Java’s I/O system to other programs that may reside either on the local machine or on any
other machine on the Internet.

NOTE As a general rule, applets may only establish socket connections back to the host from which the
applet was downloaded. This restriction exists because it would be dangerous for applets loaded
through a firewall to have access to any arbitrary machine.

There are two kinds of TCP sockets in Java. One is for servers, and the other is for clients.
The ServerSocket class is designed to be a "listener," which waits for clients to connect
before doing anything. Thus, ServerSocket is for servers. The Socket class is for clients. It is
designed to connect to server sockets and initiate protocol exchanges. Because client
sockets are the most commonly used by Java applications, they are examined here.

22-ch22.indd 731 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

732 PART II The Java Library

The creation of a Socket object implicitly establishes a connection between the client
and server. There are no methods or constructors that explicitly expose the details of
establishing that connection. Here are two constructors used to create client sockets:

Socket(String hostName, int port)
 throws UnknownHostException,
 IOException

Creates a socket connected to the named host
and port.

Socket(InetAddress ipAddress, int port)
 throws IOException

Creates a socket using a preexisting InetAddress
object and a port.

Socket defines several instance methods. For example, a Socket can be examined at any
time for the address and port information associated with it, by use of the following methods:

InetAddress getInetAddress() Returns the InetAddress associated with the Socket
object. It returns null if the socket is not connected.

int getPort() Returns the remote port to which the invoking
Socket object is connected. It returns 0 if the socket
is not connected.

int getLocalPort() Returns the local port to which the invoking Socket
object is bound. It returns –1 if the socket is not
bound.

You can gain access to the input and output streams associated with a Socket by use of
the getInputStream() and getOuptutStream() methods, as shown here. Each can throw an
IOException if the socket has been invalidated by a loss of connection. These streams are
used exactly like the I/O streams described in Chapter 20 to send and receive data.

InputStream getInputStream()
 throws IOException

Returns the InputStream associated with the
invoking socket.

OutputStream getOutputStream()
 throws IOException

Returns the OutputStream associated with the
invoking socket.

Several other methods are available, including connect(), which allows you to specify a
new connection; isConnected(), which returns true if the socket is connected to a server;
isBound(), which returns true if the socket is bound to an address; and isClosed(), which
returns true if the socket is closed. To close a socket, call close(). Closing a socket also
closes the I/O streams associated with the socket. Beginning with JDK 7, Socket also
implements AutoCloseable, which means that you can use a try-with-resources block
to manage a socket.

The following program provides a simple Socket example. It opens a connection to a
"whois" port (port 43) on the InterNIC server, sends the command-line argument down the
socket, and then prints the data that is returned. InterNIC will try to look up the argument
as a registered Internet domain name, and then send back the IP address and contact
information for that site.

22-ch22.indd 732 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 733

Pa
rt

 II

// Demonstrate Sockets.
import java.net.*;
import java.io.*;

class Whois {
 public static void main(String args[]) throws Exception {
 int c;

 // Create a socket connected to internic.net, port 43.
 Socket s = new Socket("whois.internic.net", 43);

 // Obtain input and output streams.
 InputStream in = s.getInputStream();
 OutputStream out = s.getOutputStream();

 // Construct a request string.

 String str = (args.length == 0 ? "MHProfessional.com" : args[0]) + "\n";
 // Convert to bytes.
 byte buf[] = str.getBytes();

 // Send request.
 out.write(buf);

 // Read and display response.
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 s.close();
 }
}

If, for example, you obtained information about MHProfessional.com, you’d get something
similar to the following:

Whois Server Version 2.0

Domain names in the .com and .net domains can now be registered
with many different competing registrars. Go to http://www.internic.net
for detailed information.

 Domain Name: MHPROFESSIONAL.COM
 Registrar: CSC CORPORATE DOMAINS, INC.
 Whois Server: whois.corporatedomains.com
 Referral URL: http://www.cscglobal.com
 Name Server: NS1.MHEDU.COM
 Name Server: NS2.MHEDU.COM
.
.
.

22-ch22.indd 733 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

734 PART II The Java Library

Here is how the program works. First, a Socket is constructed that specifies the host
name "whois.internic.net" and the port number 43. Internic.net is the InterNIC web site
that handles whois requests. Port 43 is the whois port. Next, both input and output streams
are opened on the socket. Then, a string is constructed that contains the name of the web
site you want to obtain information about. In this case, if no web site is specified on the
command line, then "MHProfessional.com" is used. The string is converted into a byte
array and then sent out of the socket. The response is read by inputting from the socket,
and the results are displayed. Finally, the socket is closed, which also closes the I/O streams.

In the preceding example, the socket was closed manually by calling close(). If you are
using JDK 7 or later, then you can use a try-with-resources block to automatically close the
socket. For example, here is another way to write the main() method of the previous
program:

// Use try-with-resources to close a socket.
public static void main(String args[]) throws Exception {
 int c;

 // Create a socket connected to internic.net, port 43. Manage this
 // socket with a try-with-resources block.
 try (Socket s = new Socket("whois.internic.net", 43)) {

 // Obtain input and output streams.
 InputStream in = s.getInputStream();
 OutputStream out = s.getOutputStream();

 // Construct a request string.
 String str = (args.length == 0 ? "MHProfessional.com" : args[0]) + "\n";
 // Convert to bytes.
 byte buf[] = str.getBytes();

 // Send request.
 out.write(buf);

 // Read and display response.
 while ((c = in.read()) != -1) {
 System.out.print((char) c);
 }
 }
 // The socket is now closed.
}

In this version, the socket is automatically closed when the try block ends.
So the examples will work with earlier versions of Java and to clearly illustrate when a

network resource can be closed, subsequent examples will continue to call close()
explicitly. However, in your own code, you should consider using automatic resource
management since it offers a more streamlined approach. One other point: In this version,
exceptions are still thrown out of main(), but they could be handled by adding catch
clauses to the end of the try-with-resources block.

22-ch22.indd 734 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 735

Pa
rt

 II

NOTE For simplicity, the examples in this chapter simply throw all exceptions out of main(). This allows
the logic of the network code to be clearly illustrated. However, in real-world code, you will normally
need to handle the exceptions in an appropriate way.

URL
The preceding example was rather obscure because the modern Internet is not about the
older protocols such as whois, finger, and FTP. It is about WWW, the World Wide Web. The
Web is a loose collection of higher-level protocols and file formats, all unified in a web
browser. One of the most important aspects of the Web is that Tim Berners-Lee devised a
scalable way to locate all of the resources of the Net. Once you can reliably name anything
and everything, it becomes a very powerful paradigm. The Uniform Resource Locator
(URL) does exactly that.

The URL provides a reasonably intelligible form to uniquely identify or address
information on the Internet. URLs are ubiquitous; every browser uses them to identify
information on the Web. Within Java’s network class library, the URL class provides a
simple, concise API to access information across the Internet using URLs.

All URLs share the same basic format, although some variation is allowed. Here are two
examples: http://www.MHProfessional.com/ and http://www.MHProfessional.com:80/
index.htm. A URL specification is based on four components. The first is the protocol to
use, separated from the rest of the locator by a colon (:). Common protocols are HTTP,
FTP, gopher, and file, although these days almost everything is being done via HTTP (in
fact, most browsers will proceed correctly if you leave off the "http://" from your URL
specification). The second component is the host name or IP address of the host to use;
this is delimited on the left by double slashes (//) and on the right by a slash (/) or
optionally a colon (:). The third component, the port number, is an optional parameter,
delimited on the left from the host name by a colon (:) and on the right by a slash (/). (It
defaults to port 80, the predefined HTTP port; thus, ":80" is redundant.) The fourth part is
the actual file path. Most HTTP servers will append a file named index.html or index.htm
to URLs that refer directly to a directory resource. Thus, http://www.MHProfessional.com/
is the same as http://www.MHProfessional.com/index.htm.

Java’s URL class has several constructors; each can throw a MalformedURLException.
One commonly used form specifies the URL with a string that is identical to what you see
displayed in a browser:

URL(String urlSpecifier) throws MalformedURLException

The next two forms of the constructor allow you to break up the URL into its
component parts:

URL(String protocolName, String hostName, int port, String path)
 throws MalformedURLException

URL(String protocolName, String hostName, String path)
 throws MalformedURLException

22-ch22.indd 735 14/02/14 5:11 PM

http://www.MHProfessional.com/
http://www.MHProfessional.com:80/index.htm
http://www.MHProfessional.com/
http://www.MHProfessional.com/index.htm
http://www.MHProfessional.com:80/index.htm

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

736 PART II The Java Library

Another frequently used constructor allows you to use an existing URL as a reference
context and then create a new URL from that context. Although this sounds a little
contorted, it’s really quite easy and useful.

URL(URL urlObj, String urlSpecifier) throws MalformedURLException

The following example creates a URL to a page on HerbSchildt.com and then examines
its properties:

// Demonstrate URL.
import java.net.*;
class URLDemo {
 public static void main(String args[]) throws MalformedURLException {
 URL hp = new URL(http://www.HerbSchildt.com/WhatsNew");

 System.out.println("Protocol: " + hp.getProtocol());
 System.out.println("Port: " + hp.getPort());

 System.out.println("Host: " + hp.getHost());
 System.out.println("File: " + hp.getFile());
 System.out.println("Ext:" + hp.toExternalForm());
 }
}

When you run this, you will get the following output:

 Protocol: http
 Port: -1
 Host: www.HerbSchildt.com
 File: /WhatsNew
 Ext:http://www.HerbSchildt.com/WhatsNew

Notice that the port is –1; this means that a port was not explicitly set. Given a URL object,
you can retrieve the data associated with it. To access the actual bits or content information
of a URL, create a URLConnection object from it, using its openConnection() method,
like this:

urlc = url.openConnection()

openConnection() has the following general form:

URLConnection openConnection() throws IOException

It returns a URLConnection object associated with the invoking URL object. Notice that it
may throw an IOException.

URLConnection
URLConnection is a general-purpose class for accessing the attributes of a remote resource.
Once you make a connection to a remote server, you can use URLConnection to inspect
the properties of the remote object before actually transporting it locally. These attributes

22-ch22.indd 736 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 737

Pa
rt

 II

are exposed by the HTTP protocol specification and, as such, only make sense for URL
objects that are using the HTTP protocol.

URLConnection defines several methods. Here is a sampling:

int getContentLength() Returns the size in bytes of the content
associated with the resource. If the length is
unavailable, –1 is returned.

long getContentLengthLong() Returns the size in bytes of the content
associated with the resource. If the length is
unavailable, –1 is returned.

String getContentType() Returns the type of content found in the resource.
This is the value of the content-type header field.
Returns null if the content type is not available.

long getDate() Returns the time and date of the response
represented in terms of milliseconds since
January 1, 1970 GMT.

long getExpiration() Returns the expiration time and date of the
resource represented in terms of milliseconds
since January 1, 1970 GMT. Zero is returned if
the expiration date is unavailable.

String getHeaderField(int idx) Returns the value of the header field at index idx.
(Header field indexes begin at 0.) Returns null if
the value of idx exceeds the number of fields.

String getHeaderField(String fieldName) Returns the value of header field whose name
is specified by fieldName. Returns null if the
specified name is not found.

String getHeaderFieldKey(int idx) Returns the header field key at index idx.
(Header field indexes begin at 0.) Returns null
if the value of idx exceeds the number of fields.

Map<String, List<String>>
 getHeaderFields()

Returns a map that contains all of the header
fields and values.

long getLastModified() Returns the time and date, represented in terms
of milliseconds since January 1, 1970 GMT, of
the last modification of the resource. Zero is
returned if the last-modified date is unavailable.

InputStream getInputStream()
 throws IOException

Returns an InputStream that is linked to the
resource. This stream can be used to obtain the
content of the resource.

Notice that URLConnection defines several methods that handle header information. A
header consists of pairs of keys and values represented as strings. By using getHeaderField(),
you can obtain the value associated with a header key. By calling getHeaderFields(), you can
obtain a map that contains all of the headers. Several standard header fields are available
directly through methods such as getDate() and getContentType().

22-ch22.indd 737 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

738 PART II The Java Library

The following example creates a URLConnection using the openConnection() method
of a URL object and then uses it to examine the document’s properties and content:

// Demonstrate URLConnection.
import java.net.*;
import java.io.*;
import java.util.Date;

class UCDemo
{
 public static void main(String args[]) throws Exception {
 int c;
 URL hp = new URL(http://www.internic.net");
 URLConnection hpCon = hp.openConnection();

 // get date
 long d = hpCon.getDate();
 if(d==0)
 System.out.println("No date information.");
 else
 System.out.println("Date: " + new Date(d));

 // get content type
 System.out.println("Content-Type: " + hpCon.getContentType());

 // get expiration date
 d = hpCon.getExpiration();
 if(d==0)
 System.out.println("No expiration information.");
 else
 System.out.println("Expires: " + new Date(d));

 // get last-modified date
 d = hpCon.getLastModified();
 if(d==0)
 System.out.println("No last-modified information.");
 else
 System.out.println("Last-Modified: " + new Date(d));

 // get content length
 long len = hpCon.getContentLengthLong();
 if(len == -1)
 System.out.println("Content length unavailable.");
 else
 System.out.println("Content-Length: " + len);

 if(len != 0) {
 System.out.println("=== Content ===");
 InputStream input = hpCon.getInputStream();
 while (((c = input.read()) != -1)) {
 System.out.print((char) c);
 }
 input.close();

22-ch22.indd 738 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 739

Pa
rt

 II

 } else {
 System.out.println("No content available.");
 }
 }
}

The program establishes an HTTP connection to www.internic.net over port 80. It then
displays several header values and retrieves the content. You might find it interesting to try
this example, observing the results, and then for comparison purposes try a different web
site of your own choosing.

HttpURLConnection
Java provides a subclass of URLConnection that provides support for HTTP connections.
This class is called HttpURLConnection. You obtain an HttpURLConnection in the same
way just shown, by calling openConnection() on a URL object, but you must cast the result
to HttpURLConnection. (Of course, you must make sure that you are actually opening an
HTTP connection.) Once you have obtained a reference to an HttpURLConnection object,
you can use any of the methods inherited from URLConnection. You can also use any of
the several methods defined by HttpURLConnection. Here is a sampling:

static boolean getFollowRedirects() Returns true if redirects are automatically followed
and false otherwise. This feature is on by default.

String getRequestMethod() Returns a string representing how URL requests
are made. The default is GET. Other options, such
as POST, are available.

int getResponseCode()
 throws IOException

Returns the HTTP response code. –1 is returned
if no response code can be obtained. An
IOException is thrown if the connection fails.

String getResponseMessage()
 throws IOException

Returns the response message associated with
the response code. Returns null if no message
is available. An IOException is thrown if the
connection fails.

static void setFollowRedirects(boolean how) If how is true, then redirects are automatically
followed. If how is false, redirects are not
automatically followed. By default, redirects
are automatically followed.

void setRequestMethod(String how)
 throws ProtocolException

Sets the method by which HTTP requests are
made to that specified by how. The default method
is GET, but other options, such as POST, are
available. If how is invalid, a ProtocolException
is thrown.

22-ch22.indd 739 14/02/14 5:11 PM

http://www.internic.net

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

740 PART II The Java Library

The following program demonstrates HttpURLConnection. It first establishes a
connection to www.google.com. Then it displays the request method, the response code,
and the response message. Finally, it displays the keys and values in the response header.

// Demonstrate HttpURLConnection.
import java.net.*;
import java.io.*;
import java.util.*;

class HttpURLDemo
{

public static void main(String args[]) throws Exception {
 URL hp = new URL(http://www.google.com");

 HttpURLConnection hpCon = (HttpURLConnection) hp.openConnection();

 // Display request method.
 System.out.println("Request method is " +
 hpCon.getRequestMethod());

 // Display response code.
 System.out.println("Response code is " +
 hpCon.getResponseCode());

 // Display response message.
 System.out.println("Response Message is " +
 hpCon.getResponseMessage());

 // Get a list of the header fields and a set
 // of the header keys.
 Map<String, List<String>> hdrMap = hpCon.getHeaderFields();
 Set<String> hdrField = hdrMap.keySet();

 System.out.println("\nHere is the header:");

 // Display all header keys and values.
 for(String k : hdrField) {
 System.out.println("Key: " + k +
 " Value: " + hdrMap.get(k));
 }
 }
}

The output produced by the program is shown here. (Of course, the exact response
returned by www.google.com will vary over time.)

Request method is GET
Response code is 200
Response Message is OK

Here is the header:
Key: Transfer-Encoding Value: [chunked]

22-ch22.indd 740 14/02/14 5:11 PM

http://www.google.com
http://www.google.com

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 741

Pa
rt

 II

Key: X-Frame-Options Value: [SAMEORIGIN]
Key: null Value: [HTTP/1.1 200 OK]
Key: Server Value: [gws]
Key: Cache-Control Value: [private, max-age=0]
Key: Set-Cookie Value:
[NID=67=rMTQWvn5eVIYA2d8F5Iu_8L-68wiMACyaXYqeSe1bvR8SzQQ_PaDCy5mNbxuw5XtdcjY
KIwmy3oVJM1Y0qZdibBOkQfJmtHpAtO61GVwumQ1ApgSXWjZ67yHxQX3g3-h; expires=Wed,
23-Apr-2014 18:31:09 GMT; path=/; domain=.google.com; HttpOnly,
PREF=ID=463b5df7b9ced9d8:FF=0:TM=1382466669:LM=1382466669:S=3LI-oT-Dzi46U1On
; expires=Thu, 22-Oct-2015 18:31:09 GMT; path=/; domain=.google.com]
Key: Expires Value: [-1]
Key: X-XSS-Protection Value: [1; mode=block]
Key: P3P Value: [CP=”This is not a P3P policy! See
http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=151657 for
more info.”]
Key: Date Value: [Tue, 22 Oct 2013 18:31:09 GMT]
Key: Content-Type Value: [text/html;charset=ISO-8859-1]

Notice how the header keys and values are displayed. First, a map of the header keys and
values is obtained by calling getHeaderFields() (which is inherited from URLConnection).
Next, a set of the header keys is retrieved by calling keySet() on the map. Then, the key set
is cycled through by using a for-each style for loop. The value associated with each key is
obtained by calling get() on the map.

The URI Class
The URI class encapsulates a Uniform Resource Identifier (URI). URIs are similar to URLs. In
fact, URLs constitute a subset of URIs. A URI represents a standard way to identify a resource.
A URL also describes how to access the resource.

Cookies
The java.net package includes classes and interfaces that help manage cookies and can be
used to create a stateful (as opposed to stateless) HTTP session. The classes are CookieHandler,
CookieManager, and HttpCookie. The interfaces are CookiePolicy and CookieStore. The
creation of a stateful HTTP session is beyond the scope of this book.

NOTE For information about using cookies with servlets, see Chapter 38.

TCP/IP Server Sockets
As mentioned earlier, Java has a different socket class that must be used for creating server
applications. The ServerSocket class is used to create servers that listen for either local or
remote client programs to connect to them on published ports. ServerSockets are quite
different from normal Sockets. When you create a ServerSocket, it will register itself with
the system as having an interest in client connections. The constructors for ServerSocket
reflect the port number that you want to accept connections on and, optionally, how long
you want the queue for said port to be. The queue length tells the system how many client
connections it can leave pending before it should simply refuse connections. The default

22-ch22.indd 741 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

742 PART II The Java Library

is 50. The constructors might throw an IOException under adverse conditions. Here are
three of its constructors:

ServerSocket(int port) throws IOException Creates server socket on the specified port
with a queue length of 50.

ServerSocket(int port, int maxQueue)
 throws IOException

Creates a server socket on the specified port
with a maximum queue length of maxQueue.

ServerSocket(int port, int maxQueue,
 InetAddress localAddress)
 throws IOException

Creates a server socket on the specified port
with a maximum queue length of maxQueue.
On a multihomed host, localAddress specifies
the IP address to which this socket binds.

ServerSocket has a method called accept(), which is a blocking call that will wait for a
client to initiate communications and then return with a normal Socket that is then used
for communication with the client.

Datagrams
TCP/IP-style networking is appropriate for most networking needs. It provides a serialized,
predictable, reliable stream of packet data. This is not without its cost, however. TCP
includes many complicated algorithms for dealing with congestion control on crowded
networks, as well as pessimistic expectations about packet loss. This leads to a somewhat
inefficient way to transport data. Datagrams provide an alternative.

Datagrams are bundles of information passed between machines. They are somewhat
like a hard throw from a well-trained but blindfolded catcher to the third baseman. Once
the datagram has been released to its intended target, there is no assurance that it will
arrive or even that someone will be there to catch it. Likewise, when the datagram is received,
there is no assurance that it hasn’t been damaged in transit or that whoever sent it is still
there to receive a response.

Java implements datagrams on top of the UDP protocol by using two classes: the
DatagramPacket object is the data container, while the DatagramSocket is the mechanism
used to send or receive the DatagramPackets. Each is examined here.

DatagramSocket
DatagramSocket defines four public constructors. They are shown here:

DatagramSocket() throws SocketException

DatagramSocket(int port) throws SocketException

DatagramSocket(int port, InetAddress ipAddress) throws SocketException

DatagramSocket(SocketAddress address) throws SocketException

The first creates a DatagramSocket bound to any unused port on the local computer. The
second creates a DatagramSocket bound to the port specified by port. The third constructs
a DatagramSocket bound to the specified port and InetAddress. The fourth constructs a
DatagramSocket bound to the specified SocketAddress. SocketAddress is an abstract

22-ch22.indd 742 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 743

Pa
rt

 II

class that is implemented by the concrete class InetSocketAddress. InetSocketAddress
encapsulates an IP address with a port number. All can throw a SocketException if an
error occurs while creating the socket.

DatagramSocket defines many methods. Two of the most important are send() and
receive(), which are shown here:

void send(DatagramPacket packet) throws IOException

void receive(DatagramPacket packet) throws IOException

The send() method sends a packet to the port specified by packet. The receive() method
waits for a packet to be received and returns the result.

DatagramSocket also defines the close()method, which closes the socket. Beginning
with JDK 7, DatagramSocket implements AutoCloseable, which means that a DatagramSocket
can be managed by a try-with-resources block.

Other methods give you access to various attributes associated with a DatagramSocket.
Here is a sampling:

InetAddress getInetAddress() If the socket is connected, then the address is returned.
Otherwise, null is returned.

int getLocalPort() Returns the number of the local port.

int getPort() Returns the number of the port to which the socket is
connected. It returns –1 if the socket is not connected to
a port.

boolean isBound() Returns true if the socket is bound to an address. Returns
false otherwise.

boolean isConnected() Returns true if the socket is connected to a server. Returns
false otherwise.

void setSoTimeout(int millis)
 throws SocketException

Sets the time-out period to the number of milliseconds
passed in millis.

DatagramPacket
DatagramPacket defines several constructors. Four are shown here:

DatagramPacket(byte data [], int size)
DatagramPacket(byte data [], int offset, int size)
DatagramPacket(byte data [], int size, InetAddress ipAddress, int port)
DatagramPacket(byte data [], int offset, int size, InetAddress ipAddress, int port)

The first constructor specifies a buffer that will receive data and the size of a packet. It
is used for receiving data over a DatagramSocket. The second form allows you to specify an
offset into the buffer at which data will be stored. The third form specifies a target address
and port, which are used by a DatagramSocket to determine where the data in the packet
will be sent. The fourth form transmits packets beginning at the specified offset into the
data. Think of the first two forms as building an "in box," and the second two forms as
stuffing and addressing an envelope.

22-ch22.indd 743 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

744 PART II The Java Library

DatagramPacket defines several methods, including those shown here, that give access
to the address and port number of a packet, as well as the raw data and its length.

InetAddress getAddress() Returns the address of the source (for datagrams
being received) or destination (for datagrams
being sent).

byte[] getData() Returns the byte array of data contained in the
datagram. Mostly used to retrieve data from
the datagram after it has been received.

int getLength() Returns the length of the valid data contained
in the byte array that would be returned from
the getData() method. This may not equal the
length of the whole byte array.

int getOffset() Returns the starting index of the data.

int getPort() Returns the port number.

void setAddress(InetAddress ipAddress) Sets the address to which a packet will be sent.
The address is specified by ipAddress.

void setData(byte[] data) Sets the data to data, the offset to zero, and the
length to number of bytes in data.

void setData(byte[] data, int idx, int size) Sets the data to data, the offset to idx, and the
length to size.

void setLength(int size) Sets the length of the packet to size.

void setPort(int port) Sets the port to port.

A Datagram Example
The following example implements a very simple networked communications client and
server. Messages are typed into the window at the server and written across the network to
the client side, where they are displayed.

// Demonstrate datagrams.
import java.net.*;

class WriteServer {
 public static int serverPort = 998;
 public static int clientPort = 999;
 public static int buffer_size = 1024;
 public static DatagramSocket ds;
 public static byte buffer[] = new byte[buffer_size];

 public static void TheServer() throws Exception {
 int pos=0;
 while (true) {
 int c = System.in.read();
 switch (c) {
 case -1:
 System.out.println("Server Quits.");

22-ch22.indd 744 14/02/14 5:11 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 22 Networking 745

Pa
rt

 II

 ds.close();
 return;
 case '\r':
 break;
 case '\n':
 ds.send(new DatagramPacket(buffer,pos,
 InetAddress.getLocalHost(),clientPort));
 pos=0;
 break;
 default:
 buffer[pos++] = (byte) c;
 }
 }
 }

 public static void TheClient() throws Exception {
 while(true) {
 DatagramPacket p = new DatagramPacket(buffer, buffer.length);
 ds.receive(p);
 System.out.println(new String(p.getData(), 0, p.getLength()));
 }
 }

 public static void main(String args[]) throws Exception {
 if(args.length == 1) {
 ds = new DatagramSocket(serverPort);
 TheServer();
 } else {
 ds = new DatagramSocket(clientPort);
 TheClient();
 }
 }
}

This sample program is restricted by the DatagramSocket constructor to running between
two ports on the local machine. To use the program, run

java WriteServer

in one window; this will be the client. Then run

java WriteServer 1

This will be the server. Anything that is typed in the server window will be sent to the client
window after a newline is received.

NOTE The use of datagrams may not be allowed on your computer. (For example, a firewall may prevent
their use.) If this is the case, the preceding example cannot be used. Also, the port numbers used in
the program work on the author's system, but may have to be adjusted for your environment.

22-ch22.indd 745 14/02/14 5:11 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

23
CHAPTER

 747

This chapter examines the Applet class, which provides the foundation for applets. The
Applet class is contained in the java.applet package. Applet contains several methods that
give you detailed control over the execution of your applet. In addition, java.applet also
defines three interfaces: AppletContext, AudioClip, and AppletStub.

Two Types of Applets
It is important to state at the outset that there are two varieties of applets based on Applet.
The first are those based directly on the Applet class described in this chapter. These applets
use the Abstract Window Toolkit (AWT) to provide the graphical user interface (or use no
GUI at all). This style of applet has been available since Java was first created.

The second type of applets are those based on the Swing class JApplet, which inherits
Applet. Swing applets use the Swing classes to provide the GUI. Swing offers a richer and
often easier-to-use user interface than does the AWT. Thus, Swing-based applets are now the
most popular. However, traditional AWT-based applets are still used, especially when only a
very simple user interface is required. Thus, both AWT- and Swing-based applets are valid.

This chapter describes AWT-based applets. However, because JApplet inherits Applet, all
the features of Applet are also available in JApplet, and much of the information in this
chapter applies to both types of applets. Therefore, even if you are interested in only Swing
applets, the information in this chapter is still relevant and necessary. Understand, however,
that when creating Swing-based applets, some additional constraints apply and these are
described later in this book, when Swing is covered.

NOTE For information on building applets when using Swing, see Chapter 31.

Applet Basics
Chapter 13 introduced the general form of an applet and the steps necessary to compile
and run one. Let’s begin by reviewing this information.

AWT-based applets are subclasses of Applet. Applets are not stand-alone programs. Instead,
they run within either a web browser or an applet viewer. The illustrations shown in this chapter
were created with the standard applet viewer, called appletviewer, provided by the JDK.

The Applet Class

23-ch23.indd 747 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

748 PART II The Java Library

Execution of an applet does not begin at main(). Actually, few applets even have main()
methods. Instead, execution of an applet is started and controlled with an entirely different
mechanism, which will be explained shortly. Output to your applet’s window is not performed
by System.out.println(). Rather, in an AWT-based applet, output is handled with various AWT
methods, such as drawString(), which outputs a string to a specified X,Y location. Input is
also handled differently than in a console application.

Before an applet can be used, a deployment strategy must be chosen. There are two basic
approaches. The first is to use the Java Network Launch Protocol (JNLP). This approach
offers the most flexibility, especially as it relates to rich Internet applications. For real-world
applets that you create, JNLP will often be the best choice. However, a detailed discussion
of JNLP is beyond the scope of this book. (See the JDK documentation for the latest details
on JNLP.) Fortunately, JNLP is not required for the example applets shown here.

The second basic approach to deploying an applet is to specify the applet directly in
an HTML file, without the use of JNLP. This is the original way that applets were launched
when Java was created, and it is still used today—especially for simple applets. Furthermore,
because of its inherent simplicity, it is the appropriate method for the applet examples
described in this book. At the time of this writing, Oracle recommends the APPLET tag for
this purpose. Therefore, the APPLET tag is used in this book. (Be aware that the APPLET
tag is currently deprecated by the HTML specification. The alternative is the OBJECT tag.
You should check the JDK documentation in this regard for the latest recommendations.)
When an APPLET tag is encountered in the HTML file, the specified applet will be
executed by a Java-enabled web browser.

The use of the APPLET tag offers a secondary advantage when developing applets because
it enables you to easily view and test the applet. To do so, simply include a comment at the
head of your Java source code file that contains the APPLET tag. This way, your code is
documented with the necessary HTML statements needed by your applet, and you can test the
compiled applet by starting the applet viewer with your Java source code file specified as
the target. Here is an example of such a comment:

/*
<applet code="MyApplet" width=200 height=60>
</applet>
*/

This comment contains an APPLET tag that will run an applet called MyApplet in a
window that is 200 pixels wide and 60 pixels high. Because the inclusion of an APPLET
command makes testing applets easier, all of the applets shown in this book will contain
the appropriate APPLET tag embedded in a comment.

NOTE As noted in Chapter 13, beginning with the release of Java 7, update 21, Java applets must be
signed to prevent security warnings when run in a browser. In fact, in some cases, the applet may be
prevented from running. Applets stored in the local file system, such as you would create when
compiling the examples in this book, are especially sensitive to this change. You may need to adjust
the security settings in the Java Control Panel to run a local applet in a browser. At the time of this
writing, Oracle recommends against the use of local applets, recommending instead that applets be
executed through a web server. Furthermore, unsigned local applets may be blocked from execution
in the future. In general, for applets that will be distributed via the Internet, such as commercial

23-ch23.indd 748 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 749

Pa
rt

 II

Table 23-1 The Methods Defined by Applet

Method Description
void destroy() Called by the browser just before an applet is

terminated. Your applet will override this method
if it needs to perform any cleanup prior to its
destruction.

AccessibleContext
 getAccessibleContext()

Returns the accessibility context for the invoking
object.

AppletContext getAppletContext() Returns the context associated with the applet.

String getAppletInfo() Overrides of this method should return a
string that describes the applet. The default
implementation returns null.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the
audio clip found at the location specified by url.

AudioClip getAudioClip(URL url,
 String clipName)

Returns an AudioClip object that encapsulates the
audio clip found at the location specified by url and
having the name specified by clipName.

URL getCodeBase() Returns the URL associated with the invoking applet.

URL getDocumentBase() Returns the URL of the HTML document that
invokes the applet.

Image getImage(URL url) Returns an Image object that encapsulates the
image found at the location specified by url.

Image getImage(URL url,
 String imageName)

Returns an Image object that encapsulates the
image found at the location specified by url and
having the name specified by imageName.

Locale getLocale() Returns a Locale object that is used by various
locale-sensitive classes and methods.

String getParameter(String paramName) Returns the parameter associated with paramName.
null is returned if the specified parameter is not
found.

applications, signing is a virtual necessity. The concepts and techniques required to sign applets
(and other types of Java programs) are beyond the scope of this book. However, extensive information
is found on Oracle’s website. Finally, as mentioned, the easiest way to try the applet examples is to
use appletviewer.

The Applet Class
The Applet class defines the methods shown in Table 23-1. Applet provides all necessary
support for applet execution, such as starting and stopping. It also provides methods that
load and display images, and methods that load and play audio clips. Applet extends the
AWT class Panel. In turn, Panel extends Container, which extends Component. These classes
provide support for Java’s window-based, graphical interface. Thus, Applet provides all of
the necessary support for window-based activities. (An overview of the AWT is presented in
subsequent chapters.)

23-ch23.indd 749 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

750 PART II The Java Library

Method Description
String[] [] getParameterInfo() Overrides of this method should return a String

table that describes the parameters recognized by
the applet. Each entry in the table must consist
of three strings that contain the name of the
parameter, a description of its type and/or range,
and an explanation of its purpose. The default
implementation returns null.

void init() Called when an applet begins execution. It is the
first method called for any applet.

boolean isActive() Returns true if the applet has been started. It
returns false if the applet has been stopped.

boolean isValidateRoot() Returns true, which indicates that an applet is a
validate root.

static final AudioClip
 newAudioClip(URL url)

Returns an AudioClip object that encapsulates the
audio clip found at the location specified by url.
This method is similar to getAudioClip() except
that it is static and can be executed without the
need for an Applet object.

void play(URL url) If an audio clip is found at the location specified by
url, the clip is played.

void play(URL url, String clipName) If an audio clip is found at the location specified by
url with the name specified by clipName, the clip is
played.

void resize(Dimension dim) Resizes the applet according to the dimensions
specified by dim. Dimension is a class stored inside
java.awt. It contains two integer fields: width and
height.

void resize(int width, int height) Resizes the applet according to the dimensions
specified by width and height.

final void setStub(AppletStub stubObj) Makes stubObj the stub for the applet. This method
is used by the run-time system and is not usually
called by your applet. A stub is a small piece of code
that provides the linkage between your applet and
the browser.

void showStatus(String str) Displays str in the status window of the browser or
applet viewer. If the browser does not support a
status window, then no action takes place.

void start() Called by the browser when an applet should start
(or resume) execution. It is automatically called
after init() when an applet first begins.

void stop() Called by the browser to suspend execution of the
applet. Once stopped, an applet is restarted when
the browser calls start().

Table 23-1 The Methods Defined by Applet (continued)

23-ch23.indd 750 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 751

Pa
rt

 II

Applet Architecture
As a general rule, an applet is a GUI-based program. As such, its architecture is different
from the console-based programs shown in the first part of this book. If you are already
familiar with GUI programming, you will be right at home writing applets. If not, then
there are a few key concepts you must understand.

First, applets are event driven. Although we won’t examine event handling until the
following chapter, it is important to understand in a general way how the event-driven
architecture impacts the design of an applet. An applet resembles a set of interrupt service
routines. Here is how the process works. An applet waits until an event occurs. The run-
time system notifies the applet about an event by calling an event handler that has been
provided by the applet. Once this happens, the applet must take appropriate action and
then quickly return. This is a crucial point. For the most part, your applet should not enter
a "mode" of operation in which it maintains control for an extended period. Instead, it
must perform specific actions in response to events and then return control to the run-time
system. In those situations in which your applet needs to perform a repetitive task on its
own (for example, displaying a scrolling message across its window), you must start an
additional thread of execution. (You will see an example later in this chapter.)

Second, the user initiates interaction with an applet—not the other way around. As you
know, in a console-based program, when the program needs input, it will prompt the user
and then call some input method, such as readLine(). This is not the way it works in an
applet. Instead, the user interacts with the applet as he or she wants, when he or she wants.
These interactions are sent to the applet as events to which the applet must respond. For
example, when the user clicks the mouse inside the applet’s window, a mouse-clicked event
is generated. If the user presses a key while the applet’s window has input focus, a keypress
event is generated. As you will see in later chapters, applets can contain various controls,
such as push buttons and check boxes. When the user interacts with one of these controls,
an event is generated.

While the architecture of an applet is not as easy to understand as that of a console-
based program, Java makes it as simple as possible. If you have written programs for
Windows (or other GUI-based operating systems), you know how intimidating that
environment can be. Fortunately, Java provides a much cleaner approach that is more
quickly mastered.

An Applet Skeleton
All but the most trivial applets override a set of methods that provides the basic mechanism
by which the browser or applet viewer interfaces to the applet and controls its execution.
Four of these methods, init(), start(), stop(), and destroy(), apply to all applets and are
defined by Applet. Default implementations for all of these methods are provided. Applets
do not need to override those methods they do not use. However, only very simple applets
will not need to define all of them.

AWT-based applets (such as those discussed in this chapter) will also often override the
paint() method, which is defined by the AWT Component class. This method is called when

23-ch23.indd 751 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

752 PART II The Java Library

the applet’s output must be redisplayed. (Swing-based applets use a different mechanism to
accomplish this task.) These five methods can be assembled into the skeleton shown here:

// An Applet skeleton.
import java.awt.*;
import java.applet.*;
/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/

public class AppletSkel extends Applet {
 // Called first.
 public void init() {
 // initialization
 }

 /* Called second, after init(). Also called whenever
 the applet is restarted. */
 public void start() {
 // start or resume execution
 }

 // Called when the applet is stopped.
 public void stop() {
 // suspends execution
 }

 /* Called when applet is terminated. This is the last
 method executed. */
 public void destroy() {
 // perform shutdown activities
 }

 // Called when an applet’s window must be restored.
 public void paint(Graphics g) {
 // redisplay contents of window
 }
}

Although this skeleton does not do anything, it can be compiled and run. When run, it
generates the following empty window when viewed with appletviewer. Of course, in this
and all subsequent examples, the precise look of the appletviewer frame may differ based
on your execution environment. To help illustrate this fact, a variety of environments were
used to generate the screen captures shown throughout this book.

23-ch23.indd 752 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 753

Pa
rt

 II

Applet Initialization and Termination
It is important to understand the order in which the various methods shown in the skeleton
are called. When an applet begins, the following methods are called, in this sequence:

 1. init()

 2. start()

 3. paint()

When an applet is terminated, the following sequence of method calls takes place:

 1. stop()

 2. destroy()

Let’s look more closely at these methods.

init()
The init() method is the first method to be called. This is where you should initialize
variables. This method is called only once during the run time of your applet.

start()
The start() method is called after init(). It is also called to restart an applet after it has
been stopped. Whereas init() is called once—the first time an applet is loaded—start() is
called each time an applet’s HTML document is displayed onscreen. So, if a user leaves a
web page and comes back, the applet resumes execution at start().

paint()
The paint() method is called each time an AWT-based applet’s output must be redrawn.
This situation can occur for several reasons. For example, the window in which the applet is
running may be overwritten by another window and then uncovered. Or the applet window
may be minimized and then restored. paint() is also called when the applet begins execution.
Whatever the cause, whenever the applet must redraw its output, paint() is called. The
paint() method has one parameter of type Graphics. This parameter will contain the graphics
context, which describes the graphics environment in which the applet is running. This
context is used whenever output to the applet is required.

stop()
The stop() method is called when a web browser leaves the HTML document containing
the applet—when it goes to another page, for example. When stop() is called, the applet
is probably running. You should use stop() to suspend threads that don’t need to run when
the applet is not visible. You can restart them when start() is called if the user returns to
the page.

destroy()
The destroy() method is called when the environment determines that your applet needs
to be removed completely from memory. At this point, you should free up any resources
the applet may be using. The stop() method is always called before destroy().

23-ch23.indd 753 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

754 PART II The Java Library

Overriding update()
In some situations, an AWT-based applet may need to override another method defined by
the AWT, called update(). This method is called when your applet has requested that a
portion of its window be redrawn. The default version of update() simply calls paint().
However, you can override the update() method so that it performs more subtle repainting.
In general, overriding update() is a specialized technique that is not applicable to all
applets, and the examples in this chapter do not override update().

Simple Applet Display Methods
As we’ve mentioned, applets are displayed in a window, and AWT-based applets use the
AWT to perform input and output. Although we will examine the methods, procedures,
and techniques related to the AWT in subsequent chapters, a few are described here,
because we will use them to write sample applets. (Remember, Swing-based applets are
described later in this book.)

As described in Chapter 13, to output a string to an applet, use drawString(), which is a
member of the Graphics class. Typically, it is called from within either update() or paint().
It has the following general form:

void drawString(String message, int x, int y)

Here, message is the string to be output beginning at x,y. In a Java window, the upper-left
corner is location 0,0. The drawString() method will not recognize newline characters. If
you want to start a line of text on another line, you must do so manually, specifying the
precise X,Y location where you want the line to begin. (As you will see in later chapters,
there are techniques that make this process easy.)

To set the background color of an applet’s window, use setBackground(). To set the
foreground color (the color in which text is shown, for example), use setForeground().
These methods are defined by Component, and they have the following general forms:

void setBackground(Color newColor)
void setForeground(Color newColor)

Here, newColor specifies the new color. The class Color defines the constants shown here
that can be used to specify colors:

Color.black Color.magenta

Color.blue Color.orange

Color.cyan Color.pink

Color.darkGray Color.red

Color.gray Color.white

Color.green Color.yellow

Color.lightGray

Uppercase versions of the constants are also defined.

23-ch23.indd 754 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 755

Pa
rt

 II

The following example sets the background color to green and the text color to red:

setBackground(Color.green);
setForeground(Color.red);

A good place to set the foreground and background colors is in the init() method.
Of course, you can change these colors as often as necessary during the execution of your
applet.

You can obtain the current settings for the background and foreground colors by
calling getBackground() and getForeground(), respectively. They are also defined
by Component and are shown here:

Color getBackground()
Color getForeground()

Here is a very simple applet that sets the background color to cyan, the foreground
color to red, and displays a message that illustrates the order in which the init(), start(),
and paint() methods are called when an applet starts up:

/* A simple applet that sets the foreground and
 background colors and outputs a string. */
import java.awt.*;
import java.applet.*;
/*
<applet code="Sample" width=300 height=50>
</applet>
*/

public class Sample extends Applet{
 String msg;

 // set the foreground and background colors.
 public void init() {
 setBackground(Color.cyan);
 setForeground(Color.red);
 msg = "Inside init() --";
 }

 // Initialize the string to be displayed.
 public void start() {
 msg += " Inside start() --";
 }

 // Display msg in applet window.
 public void paint(Graphics g) {
 msg += " Inside paint().";
 g.drawString(msg, 10, 30);
 }
}

23-ch23.indd 755 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

756 PART II The Java Library

Sample output is shown here:

The methods stop() and destroy() are not overridden, because they are not needed by
this simple applet.

Requesting Repainting
As a general rule, an applet writes to its window only when its paint() method is called by
the AWT. This raises an interesting question: How can the applet itself cause its window to
be updated when its information changes? For example, if an applet is displaying a moving
banner, what mechanism does the applet use to update the window each time this banner
scrolls? Remember, one of the fundamental architectural constraints imposed on an applet
is that it must quickly return control to the run-time system. It cannot create a loop inside
paint() that repeatedly scrolls the banner, for example. This would prevent control from
passing back to the AWT. Given this constraint, it may seem that output to your applet’s
window will be difficult at best. Fortunately, this is not the case. Whenever your applet needs
to update the information displayed in its window, it simply calls repaint().

The repaint() method is defined by the AWT. It causes the AWT run-time system to
execute a call to your applet’s update() method, which, in its default implementation, calls
paint(). Thus, for another part of your applet to output to its window, simply store the
output and then call repaint(). The AWT will then execute a call to paint(), which can
display the stored information. For example, if part of your applet needs to output a string,
it can store this string in a String variable and then call repaint(). Inside paint(), you will
output the string using drawString().

The repaint() method has four forms. Let’s look at each one, in turn. The simplest
version of repaint() is shown here:

void repaint()

This version causes the entire window to be repainted. The following version specifies a
region that will be repainted:

void repaint(int left, int top, int width, int height)

Here, the coordinates of the upper-left corner of the region are specified by left and top,
and the width and height of the region are passed in width and height. These dimensions
are specified in pixels. You save time by specifying a region to repaint. Window updates are
costly in terms of time. If you need to update only a small portion of the window, it is more
efficient to repaint only that region.

23-ch23.indd 756 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 757

Pa
rt

 II

Calling repaint() is essentially a request that your applet be repainted sometime soon.
However, if your system is slow or busy, update() might not be called immediately. Multiple
requests for repainting that occur within a short time can be collapsed by the AWT in a
manner such that update() is only called sporadically. This can be a problem in many
situations, including animation, in which a consistent update time is necessary. One
solution to this problem is to use the following forms of repaint():

void repaint(long maxDelay)
void repaint(long maxDelay, int x, int y, int width, int height)

Here, maxDelay specifies the maximum number of milliseconds that can elapse before
update() is called. Beware, though. If the time elapses before update() can be called, it
isn’t called. There’s no return value or exception thrown, so you must be careful.

NOTE It is possible for a method other than paint() or update() to output to an applet’s window. To do
so, it must obtain a graphics context by calling getGraphics() (defined by Component) and then
use this context to output to the window. However, for most applications, it is better and easier to
route window output through paint() and to call repaint() when the contents of the window change.

A Simple Banner Applet
To demonstrate repaint(), a simple banner applet is developed. This applet scrolls a
message, from right to left, across the applet’s window. Since the scrolling of the message
is a repetitive task, it is performed by a separate thread, created by the applet when it is
initialized. The banner applet is shown here:

/* A simple banner applet.

 This applet creates a thread that scrolls
 the message contained in msg right to left
 across the applet’s window.
*/
import java.awt.*;
import java.applet.*;
/*
<applet code="SimpleBanner" width=300 height=50>
</applet>
*/

public class SimpleBanner extends Applet implements Runnable {
 String msg = " A Simple Moving Banner.";
 Thread t = null;
 int state;
 volatile boolean stopFlag;

 // Set colors and initialize thread.
 public void init() {
 setBackground(Color.cyan);
 setForeground(Color.red);
 }

23-ch23.indd 757 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

758 PART II The Java Library

 // Start thread
 public void start() {
 t = new Thread(this);
 stopFlag = false;
 t.start();
 }

 // Entry point for the thread that runs the banner.
 public void run() {

 // Redisplay banner
 for(; ;) {
 try {
 repaint();
 Thread.sleep(250);
 if(stopFlag)
 break;
 } catch(InterruptedException e) {}
 }
 }

 // Pause the banner.
 public void stop() {
 stopFlag = true;
 t = null;
 }

 // Display the banner.
 public void paint(Graphics g) {
 char ch;

 ch = msg.charAt(0);
 msg = msg.substring(1, msg.length());
 msg += ch;

 g.drawString(msg, 50, 30);
 }
}

Following is sample output:

Let’s take a close look at how this applet operates. First, notice that SimpleBanner
extends Applet, as expected, but it also implements Runnable. This is necessary, since the

23-ch23.indd 758 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 759

Pa
rt

 II

applet will be creating a second thread of execution that will be used to scroll the banner.
Inside init(), the foreground and background colors of the applet are set.

After initialization, the run-time system calls start() to start the applet running. Inside
start(), a new thread of execution is created and assigned to the Thread variable t. Then,
the boolean variable stopFlag, which controls the execution of the applet, is set to false.
Next, the thread is started by a call to t.start(). Remember that t.start() calls a method
defined by Thread, which causes run() to begin executing. It does not cause a call to the
version of start() defined by Applet. These are two separate methods.

Inside run(), a call to repaint() is made. This eventually causes the paint() method to
be called, and the rotated contents of msg are displayed. Between each iteration, run()
sleeps for a quarter of a second. The net effect is that the contents of msg are scrolled right
to left in a constantly moving display. The stopFlag variable is checked on each iteration.
When it is true, the run() method terminates.

If a browser is displaying the applet when a new page is viewed, the stop() method is
called, which sets stopFlag to true, causing run() to terminate. This is the mechanism used
to stop the thread when its page is no longer in view. When the applet is brought back into
view, start() is once again called, which starts a new thread to execute the banner.

Using the Status Window
In addition to displaying information in its window, an applet can also output a message
to the status window of the browser or applet viewer on which it is running. To do so, call
showStatus() with the string that you want displayed. The status window is a good place to
give the user feedback about what is occurring in the applet, suggest options, or possibly
report some types of errors. The status window also makes an excellent debugging aid,
because it gives you an easy way to output information about your applet.

The following applet demonstrates showStatus():

// Using the Status Window.
import java.awt.*;
import java.applet.*;
/*

<applet code="StatusWindow" width=300 height=50>
</applet>
*/

public class StatusWindow extends Applet {
 public void init() {
 setBackground(Color.cyan);
 }

 // Display msg in applet window.
 public void paint(Graphics g) {
 g.drawString("This is in the applet window.", 10, 20);
 showStatus("This is shown in the status window.");
 }
}

23-ch23.indd 759 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

760 PART II The Java Library

Sample output from this program is shown here:

The HTML APPLET Tag
As mentioned earlier, at the time of this writing, Oracle recommends that the APPLET tag
be used to manually start an applet when JNLP is not used. An applet viewer will execute
each APPLET tag that it finds in a separate window, while web browsers will allow many
applets on a single page. So far, we have been using only a simplified form of the APPLET
tag. Now it is time to take a closer look at it.

The syntax for a fuller form of the APPLET tag is shown here. Bracketed items are
optional.

 < APPLET
 [CODEBASE = codebaseURL]
 CODE = appletFile
 [ALT = alternateText]
 [NAME = appletInstanceName]
 WIDTH = pixels HEIGHT = pixels
 [ALIGN = alignment]
 [VSPACE = pixels] [HSPACE = pixels]
 >
 [< PARAM NAME = AttributeName VALUE = AttributeValue>]
 [< PARAM NAME = AttributeName2 VALUE = AttributeValue>]
 . . .
 [HTML Displayed in the absence of Java]
 </APPLET>

Let’s take a look at each part now.

CODEBASE CODEBASE is an optional attribute that specifies the base URL of the
applet code, which is the directory that will be searched for the applet’s executable class
file (specified by the CODE tag). The HTML document’s URL directory is used as the
CODEBASE if this attribute is not specified.

CODE CODE is a required attribute that gives the name of the file containing your
applet’s compiled .class file. This file is relative to the code base URL of the applet, which
is the directory that the HTML file was in or the directory indicated by CODEBASE if set.

23-ch23.indd 760 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 761

Pa
rt

 II

ALT The ALT tag is an optional attribute used to specify a short text message that should
be displayed if the browser recognizes the APPLET tag but can’t currently run Java applets.
This is distinct from the alternate HTML you provide for browsers that don’t support applets.

NAME NAME is an optional attribute used to specify a name for the applet instance.
Applets must be named in order for other applets on the same page to find them by name
and communicate with them. To obtain an applet by name, use getApplet(), which is
defined by the AppletContext interface.

WIDTH and HEIGHT WIDTH and HEIGHT are required attributes that give the size (in
pixels) of the applet display area.

ALIGN ALIGN is an optional attribute that specifies the alignment of the applet. This
attribute is treated the same as the HTML IMG tag with these possible values: LEFT, RIGHT,
TOP, BOTTOM, MIDDLE, BASELINE, TEXTTOP, ABSMIDDLE, and ABSBOTTOM.

VSPACE and HSPACE These attributes are optional. VSPACE specifies the space, in
pixels, above and below the applet. HSPACE specifies the space, in pixels, on each side of
the applet. They’re treated the same as the IMG tag’s VSPACE and HSPACE attributes.

PARAM NAME and VALUE The PARAM tag allows you to specify applet-specific
arguments. Applets access their attributes with the getParameter() method.

Other valid APPLET attributes include ARCHIVE, which lets you specify one or more
archive files, and OBJECT, which specifies a saved version of the applet. In general, an
APPLET tag should include only a CODE or an OBJECT attribute, but not both.

Passing Parameters to Applets
As just discussed, the APPLET tag allows you to pass parameters to your applet. To retrieve
a parameter, use the getParameter() method. It returns the value of the specified parameter
in the form of a String object. Thus, for numeric and boolean values, you will need to
convert their string representations into their internal formats. Here is an example that
demonstrates passing parameters:

// Use Parameters
import java.awt.*;
import java.applet.*;
/*
<applet code="ParamDemo" width=300 height=80>
<param name=fontName value=Courier>
<param name=fontSize value=14>
<param name=leading value=2>
<param name=accountEnabled value=true>
</applet>
*/

public class ParamDemo extends Applet {
 String fontName;

23-ch23.indd 761 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

762 PART II The Java Library

 int fontSize;
 float leading;
 boolean active;

 // Initialize the string to be displayed.
 public void start() {
 String param;

 fontName = getParameter("fontName");
 if(fontName == null)
 fontName = "Not Found";

 param = getParameter("fontSize");
 try {
 if(param != null)
 fontSize = Integer.parseInt(param);
 else
 fontSize = 0;
 } catch(NumberFormatException e) {
 fontSize = -1;
 }

 param = getParameter("leading");
 try {
 if(param != null)
 leading = Float.valueOf(param).floatValue();
 else
 leading = 0;
 } catch(NumberFormatException e) {
 leading = -1;
 }

 param = getParameter("accountEnabled");
 if(param != null)
 active = Boolean.valueOf(param).booleanValue();
 }

 // Display parameters.
 public void paint(Graphics g) {
 g.drawString("Font name: " + fontName, 0, 10);
 g.drawString("Font size: " + fontSize, 0, 26);
 g.drawString("Leading: " + leading, 0, 42);
 g.drawString("Account Active: " + active, 0, 58);
 }
}

Sample output from this program is shown here:
As the program shows, you should test the return

values from getParameter(). If a parameter isn’t available,
getParameter() will return null. Also, conversions to
numeric types must be attempted in a try statement that
catches NumberFormatException. Uncaught exceptions
should never occur within an applet.

23-ch23.indd 762 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 763

Pa
rt

 II

Improving the Banner Applet
It is possible to use a parameter to enhance the banner applet shown earlier. In the previous
version, the message being scrolled was hard-coded into the applet. However, passing the
message as a parameter allows the banner applet to display a different message each time it
is executed. This improved version is shown here. Notice that the APPLET tag at the top of
the file now specifies a parameter called message that is linked to a quoted string.

// A parameterized banner
import java.awt.*;
import java.applet.*;
/*
<applet code="ParamBanner" width=300 height=50>
<param name=message value="Java makes the Web move!">
</applet>
*/

public class ParamBanner extends Applet implements Runnable {
 String msg;
 Thread t = null;
 int state;
 volatile boolean stopFlag;

 // Set colors and initialize thread.
 public void init() {
 setBackground(Color.cyan);
 setForeground(Color.red);
 }

 // Start thread
 public void start() {
 msg = getParameter("message");
 if(msg == null) msg = "Message not found.";
 msg = " " + msg;
 t = new Thread(this);
 stopFlag = false;
 t.start();
 }

 // Entry point for the thread that runs the banner.
 public void run() {

 // Redisplay banner
 for(; ;) {
 try {
 repaint();
 Thread.sleep(250);
 if(stopFlag)
 break;
 } catch(InterruptedException e) {}
 }
 }

23-ch23.indd 763 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

764 PART II The Java Library

 // Pause the banner.
 public void stop() {
 stopFlag = true;
 t = null;
 }

 // Display the banner.
 public void paint(Graphics g) {
 char ch;

 ch = msg.charAt(0);
 msg = msg.substring(1, msg.length());
 msg += ch;

 g.drawString(msg, 50, 30);
 }
}

getDocumentBase() and getCodeBase()
Often, you will create applets that will need to explicitly load media and text. Java will allow
the applet to load data from the directory holding the HTML file that started the applet
(the document base) and the directory from which the applet’s class file was loaded (the
code base). These directories are returned as URL objects (described in Chapter 22) by
getDocumentBase() and getCodeBase(). They can be concatenated with a string that
names the file you want to load. To actually load another file, you will use the
showDocument() method defined by the AppletContext interface, discussed in
the next section.

The following applet illustrates these methods:

// Display code and document bases.
import java.awt.*;
import java.applet.*;
import java.net.*;
/*
<applet code="Bases" width=300 height=50>
</applet>
*/

public class Bases extends Applet {
 // Display code and document bases.
 public void paint(Graphics g) {
 String msg;

 URL url = getCodeBase(); // get code base
 msg = "Code base: " + url.toString();
 g.drawString(msg, 10, 20);

 url = getDocumentBase(); // get document base
 msg = "Document base: " + url.toString();
 g.drawString(msg, 10, 40);
 }
}

23-ch23.indd 764 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 765

Pa
rt

 II

Sample output from this program is shown here:

AppletContext and showDocument()
One application of Java is to use active images and animation to provide a graphical means
of navigating the Web that is more interesting than simple text-based links. To allow your
applet to transfer control to another URL, you must use the showDocument() method
defined by the AppletContext interface. AppletContext is an interface that lets you
get information from the applet’s execution environment. The methods defined by
AppletContext are shown in Table 23-2. The context of the currently executing applet
is obtained by a call to the getAppletContext() method defined by Applet.

Table 23-2 The Methods Defined by the AppletContext Interface

Method Description
Applet getApplet(String appletName) Returns the applet specified by appletName if it is within

the current applet context. Otherwise, null is returned.

Enumeration<Applet> getApplets() Returns an enumeration that contains all of the
applets within the current applet context.

AudioClip getAudioClip(URL url) Returns an AudioClip object that encapsulates the
audio clip found at the location specified by url.

Image getImage(URL url) Returns an Image object that encapsulates the image
found at the location specified by url.

InputStream getStream(String key) Returns the stream linked to key. Keys are linked to
streams by using the setStream() method. A null
reference is returned if no stream is linked to key.

Iterator<String> getStreamKeys() Returns an iterator for the keys associated with the
invoking object. The keys are linked to streams. See
getStream() and setStream().

void setStream(String key,
 InputStream strm)
 throws IOException

Links the stream specified by strm to the key passed in
key. The key is deleted from the invoking object if strm
is null.

void showDocument(URL url) Brings the document at the URL specified by url into
view. This method may not be supported by applet
viewers.

23-ch23.indd 765 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

766 PART II The Java Library

Within an applet, once you have obtained the applet’s context, you can bring another
document into view by calling showDocument(). This method has no return value and
throws no exception if it fails, so use it carefully. There are two showDocument() methods.
The method showDocument(URL) displays the document at the specified URL. The
method showDocument(URL, String) displays the specified document at the specified
location within the browser window. Valid arguments for where are "_self" (show in current
frame), "_parent" (show in parent frame), "_top" (show in topmost frame), and "_blank"
(show in new browser window). You can also specify a name, which causes the document
to be shown in a new browser window by that name.

The following applet demonstrates AppletContext and showDocument(). Upon
execution, it obtains the current applet context and uses that context to transfer control
to a file called Test.html. This file must be in the same directory as the applet. Test.html
can contain any valid hypertext that you like.

/* Using an applet context, getCodeBase(),
 and showDocument() to display an HTML file.
*/

import java.awt.*;
import java.applet.*;
import java.net.*;
/*
<applet code="ACDemo" width=300 height=50>
</applet>
*/

public class ACDemo extends Applet {
 public void start() {
 AppletContext ac = getAppletContext();
 URL url = getCodeBase(); // get url of this applet

 try {
 ac.showDocument(new URL(url+"Test.html"));
 } catch(MalformedURLException e) {
 showStatus("URL not found");
 }
 }
}

Method Description
void showDocument(URL url,
 String where)

Brings the document at the URL specified by url into
view. This method may not be supported by applet
viewers. The placement of the document is specified
by where as described in the text.

void showStatus(String str) Displays str in the status window.

Table 23-2 The Methods Defined by the AppletContext Interface (continued)

23-ch23.indd 766 14/02/14 5:12 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 23 The Applet Class 767

Pa
rt

 II

The AudioClip Interface
The AudioClip interface defines these methods: play() (play a clip from the beginning),
stop() (stop playing the clip), and loop() (play the loop continuously). After you have
loaded an audio clip using getAudioClip(), you can use these methods to play it.

The AppletStub Interface
The AppletStub interface provides the means by which an applet and the browser (or
applet viewer) communicate. Your code will not typically implement this interface.

Outputting to the Console
Although output to an applet’s window must be accomplished through GUI-based methods,
such as drawString(), it is still possible to use console output in your applet—especially for
debugging purposes. In an applet, when you call a method such as System.out.println(),
the output is not sent to your applet’s window. Instead, it appears either in the console
session in which you launched the applet viewer or in the Java console that is available in
some browsers. Use of console output for purposes other than debugging is discouraged,
since it violates the design principles of the graphical interface most users will expect.

23-ch23.indd 767 14/02/14 5:12 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

24
CHAPTER

 769

Event Handling

This chapter examines an important aspect of Java: the event. Event handling is fundamental
to Java programming because it is integral to the creation of many kinds of applications,
including applets and other types of GUI-based programs. As explained in Chapter 23, applets
are event-driven programs that use a graphical user interface to interact with the user.
Furthermore, any program that uses a graphical user interface, such as a Java application
written for Windows, is event driven. Thus, you cannot write these types of programs without
a solid command of event handling. Events are supported by a number of packages, including
java.util, java.awt, and java.awt.event.

Most events to which your program will respond are generated when the user interacts
with a GUI-based program. These are the types of events examined in this chapter. They are
passed to your program in a variety of ways, with the specific method dependent upon the
actual event. There are several types of events, including those generated by the mouse, the
keyboard, and various GUI controls, such as a push button, scroll bar, or check box.

This chapter begins with an overview of Java’s event handling mechanism. It then
examines the main event classes and interfaces used by the AWT and develops several
examples that demonstrate the fundamentals of event processing. This chapter also explains
how to use adapter classes, inner classes, and anonymous inner classes to streamline event
handling code. The examples provided in the remainder of this book make frequent use of
these techniques.

NOTE This chapter focuses on events related to GUI-based programs. However, events are also
occasionally used for purposes not directly related to GUI-based programs. In all cases, the same
basic event handling techniques apply.

Two Event Handling Mechanisms
Before beginning our discussion of event handling, an important historical point must be
made: The way in which events are handled changed significantly between the original
version of Java (1.0) and all subsequent versions of Java, beginning with version 1.1.

24-ch24.indd 769 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

770 PART II The Java Library

Although the 1.0 method of event handling is still supported, it is not recommended for
new programs. Also, many of the methods that support the old 1.0 event model have
been deprecated. The modern approach is the way that events should be handled by all
new programs and thus is the method employed by programs in this book.

The Delegation Event Model
The modern approach to handling events is based on the delegation event model, which defines
standard and consistent mechanisms to generate and process events. Its concept is quite
simple: a source generates an event and sends it to one or more listeners. In this scheme, the
listener simply waits until it receives an event. Once an event is received, the listener
processes the event and then returns. The advantage of this design is that the application
logic that processes events is cleanly separated from the user interface logic that generates
those events. A user interface element is able to “delegate” the processing of an event to a
separate piece of code.

In the delegation event model, listeners must register with a source in order to receive
an event notification. This provides an important benefit: notifications are sent only to
listeners that want to receive them. This is a more efficient way to handle events than the
design used by the original Java 1.0 approach. Previously, an event was propagated up the
containment hierarchy until it was handled by a component. This required components
to receive events that they did not process, and it wasted valuable time. The delegation
event model eliminates this overhead.

The following sections define events and describe the roles of sources and listeners.

Events
In the delegation model, an event is an object that describes a state change in a source.
Among other causes, an event can be generated as a consequence of a person interacting
with the elements in a graphical user interface. Some of the activities that cause events to be
generated are pressing a button, entering a character via the keyboard, selecting an item in
a list, and clicking the mouse. Many other user operations could also be cited as examples.

Events may also occur that are not directly caused by interactions with a user interface.
For example, an event may be generated when a timer expires, a counter exceeds a value,
a software or hardware failure occurs, or an operation is completed. You are free to define
events that are appropriate for your application.

Event Sources
A source is an object that generates an event. This occurs when the internal state of that
object changes in some way. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications about
a specific type of event. Each type of event has its own registration method. Here is the
general form:

public void addTypeListener (TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example,
the method that registers a keyboard event listener is called addKeyListener(). The method
that registers a mouse motion listener is called addMouseMotionListener(). When an event

24-ch24.indd 770 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 771

Pa
rt

 II

occurs, all registered listeners are notified and receive a copy of the event object. This is
known as multicasting the event. In all cases, notifications are sent only to listeners that
register to receive them.

Some sources may allow only one listener to register. The general form of such a
method is this:

public void addTypeListener(TypeListener el)
 throws java.util.TooManyListenersException

Here, Type is the name of the event, and el is a reference to the event listener. When such an
event occurs, the registered listener is notified. This is known as unicasting the event.

A source must also provide a method that allows a listener to unregister an interest in a
specific type of event. The general form of such a method is this:

public void removeTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example,
to remove a keyboard listener, you would call removeKeyListener().

The methods that add or remove listeners are provided by the source that generates
events. For example, the Component class provides methods to add and remove keyboard
and mouse event listeners.

Event Listeners
A listener is an object that is notified when an event occurs. It has two major requirements.
First, it must have been registered with one or more sources to receive notifications about
specific types of events. Second, it must implement methods to receive and process these
notifications.

The methods that receive and process events are defined in a set of interfaces, such as
those found in java.awt.event. For example, the MouseMotionListener interface defines two
methods to receive notifications when the mouse is dragged or moved. Any object may receive
and process one or both of these events if it provides an implementation of this interface.
Other listener interfaces are discussed later in this and other chapters.

Event Classes
The classes that represent events are at the core of Java’s event handling mechanism. Thus,
a discussion of event handling must begin with the event classes. It is important to understand,
however, that Java defines several types of events and that not all event classes can be discussed
in this chapter. Arguably, the most widely used events at the time of this writing are those
defined by the AWT and those defined by Swing. This chapter focuses on the AWT events.
(Most of these events also apply to Swing.) Several Swing-specific events are described in
Chapter 31, when Swing is covered.

At the root of the Java event class hierarchy is EventObject, which is in java.util. It is the
superclass for all events. Its one constructor is shown here:

EventObject(Object src)

Here, src is the object that generates this event.

24-ch24.indd 771 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

772 PART II The Java Library

EventObject defines two methods: getSource() and toString(). The getSource()
method returns the source of the event. Its general form is shown here:

Object getSource()

As expected, toString() returns the string equivalent of the event.
The class AWTEvent, defined within the java.awt package, is a subclass of EventObject.

It is the superclass (either directly or indirectly) of all AWT-based events used by the
delegation event model. Its getID() method can be used to determine the type of the
event. The signature of this method is shown here:

int getID()

Additional details about AWTEvent are provided at the end of Chapter 26. At this point, it
is important to know only that all of the other classes discussed in this section are subclasses
of AWTEvent.

To summarize:

•	 EventObject is a superclass of all events.

•	 AWTEvent is a superclass of all AWT events that are handled by the delegation
event model.

The package java.awt.event defines many types of events that are generated by various
user interface elements. Table 24-1 shows several commonly used event classes and provides
a brief description of when they are generated. Commonly used constructors and methods
in each class are described in the following sections.

Table 24-1 Commonly Used Event Classes in java.awt.event

Event Class Description
ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu

item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.

ComponentEvent Generated when a component is hidden, moved, resized, or becomes visible.

ContainerEvent Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract superclass for all component input event classes.

ItemEvent Generated when a check box or list item is clicked; also occurs when
a choice selection is made or a checkable menu item is selected or
deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked, pressed, or released;
also generated when the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved.

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent Generated when a window is activated, closed, deactivated, deiconified,
iconified, opened, or quit.

24-ch24.indd 772 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 773

Pa
rt

 II

The ActionEvent Class
An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a
menu item is selected. The ActionEvent class defines four integer constants that can be
used to identify any modifiers associated with an action event: ALT_MASK, CTRL_MASK,
META_MASK, and SHIFT_MASK. In addition, there is an integer constant,
ACTION_PERFORMED, which can be used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)
ActionEvent(Object src, int type, String cmd, int modifiers)
ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type, and its command string is cmd. The argument modifiers indicates which
modifier keys (alt, ctrl, meta, and/or shift) were pressed when the event was generated.
The when parameter specifies when the event occurred.

You can obtain the command name for the invoking ActionEvent object by using the
getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command
name equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys
(alt, ctrl, meta, and/or shift) were pressed when the event was generated. Its form
is shown here:

int getModifiers()

The method getWhen() returns the time at which the event took place. This is called the
event’s timestamp. The getWhen() method is shown here:

long getWhen()

The AdjustmentEvent Class
An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events.
The AdjustmentEvent class defines integer constants that can be used to identify them. The
constants and their meanings are shown here:

BLOCK_DECREMENT The user clicked inside the scroll bar to decrease its value.

BLOCK_INCREMENT The user clicked inside the scroll bar to increase its value.

TRACK The slider was dragged.

UNIT_DECREMENT The button at the end of the scroll bar was clicked to decrease
its value.

UNIT_INCREMENT The button at the end of the scroll bar was clicked to increase
its value.

In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED, that
indicates that a change has occurred.

24-ch24.indd 773 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

774 PART II The Java Library

Here is one AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int val)

Here, src is a reference to the object that generated this event. The id specifies the event.
The type of the adjustment is specified by type, and its associated value is val.

The getAdjustable() method returns the object that generated the event. Its form is
shown here:

Adjustable getAdjustable()

The type of the adjustment event may be obtained by the getAdjustmentType() method. It
returns one of the constants defined by AdjustmentEvent. The general form is shown here:

int getAdjustmentType()

The amount of the adjustment can be obtained from the getValue() method, shown here:

int getValue()

For example, when a scroll bar is manipulated, this method returns the value represented
by that change.

The ComponentEvent Class
A ComponentEvent is generated when the size, position, or visibility of a component is
changed. There are four types of component events. The ComponentEvent class defines
integer constants that can be used to identify them. The constants and their meanings are
shown here:

COMPONENT_HIDDEN The component was hidden.

COMPONENT_MOVED The component was moved.

COMPONENT_RESIZED The component was resized.

COMPONENT_SHOWN The component became visible.

ComponentEvent has this constructor:

ComponentEvent(Component src, int type)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type.

ComponentEvent is the superclass either directly or indirectly of ContainerEvent,
FocusEvent, KeyEvent, MouseEvent, and WindowEvent, among others.

The getComponent() method returns the component that generated the event. It is
shown here:

Component getComponent()

The ContainerEvent Class
A ContainerEvent is generated when a component is added to or removed from a
container. There are two types of container events. The ContainerEvent class defines
int constants that can be used to identify them: COMPONENT_ADDED and

24-ch24.indd 774 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 775

Pa
rt

 II

COMPONENT_REMOVED. They indicate that a component has been added to or
removed from the container.

ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event
is specified by type, and the component that has been added to or removed from the
container is comp.

You can obtain a reference to the container that generated this event by using the
getContainer () method, shown here:

Container getContainer()

The getChild() method returns a reference to the component that was added to or
removed from the container. Its general form is shown here:

Component getChild()

The FocusEvent Class
A FocusEvent is generated when a component gains or loses input focus. These events are
identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)
FocusEvent(Component src, int type, boolean temporaryFlag)
FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event
is specified by type. The argument temporaryFlag is set to true if the focus event is temporary.
Otherwise, it is set to false. (A temporary focus event occurs as a result of another user
interface operation. For example, assume that the focus is in a text field. If the user moves
the mouse to adjust a scroll bar, the focus is temporarily lost.)

The other component involved in the focus change, called the opposite component, is
passed in other. Therefore, if a FOCUS_GAINED event occurred, other will refer to the
component that lost focus. Conversely, if a FOCUS_LOST event occurred, other will refer
to the component that gains focus.

You can determine the other component by calling getOppositeComponent(), shown here:

Component getOppositeComponent()

The opposite component is returned.
The isTemporary() method indicates if this focus change is temporary. Its form is

shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

The InputEvent Class
The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for
component input events. Its subclasses are KeyEvent and MouseEvent.

24-ch24.indd 775 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

776 PART II The Java Library

InputEvent defines several integer constants that represent any modifiers, such as the
control key being pressed, that might be associated with the event. Originally, the
InputEvent class defined the following eight values to represent the modifiers:

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

However, because of possible conflicts between the modifiers used by keyboard events and
mouse events, and other issues, the following extended modifier values were added:

ALT_DOWN_MASK BUTTON2_DOWN_MASK META_DOWN_MASK

ALT_GRAPH_DOWN_MASK BUTTON3_DOWN_MASK SHIFT_DOWN_MASK

BUTTON1_DOWN_MASK CTRL_DOWN_MASK

When writing new code, it is recommended that you use the new, extended modifiers
rather than the original modifiers.

To test if a modifier was pressed at the time an event is generated, use the isAltDown(),
isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown() methods. The
forms of these methods are shown here:

boolean isAltDown()
boolean isAltGraphDown()
boolean isControlDown()
boolean isMetaDown()
boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling the
getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by calling getModifiersEx(), which is shown here:

int getModifiersEx()

The ItemEvent Class
An ItemEvent is generated when a check box or a list item is clicked or when a checkable
menu item is selected or deselected. (Check boxes and list boxes are described later in this
book.) There are two types of item events, which are identified by the following integer
constants:

DESELECTED The user deselected an item.

SELECTED The user selected an item.

24-ch24.indd 776 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 777

Pa
rt

 II

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that
signifies a change of state.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this
might be a list or choice element. The type of the event is specified by type. The specific
item that generated the item event is passed in entry. The current state of that item is
in state.

The getItem() method can be used to obtain a reference to the item that changed. Its
signature is shown here:

Object getItem()

The getItemSelectable() method can be used to obtain a reference to the ItemSelectable
object that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the
ItemSelectable interface.

The getStateChange() method returns the state change (that is, SELECTED or
DESELECTED) for the event. It is shown here:

int getStateChange()

The KeyEvent Class
A KeyEvent is generated when keyboard input occurs. There are three types of key events,
which are identified by these integer constants: KEY_PRESSED, KEY_RELEASED, and
KEY_TYPED. The first two events are generated when any key is pressed or released. The
last event occurs only when a character is generated. Remember, not all keypresses result in
characters. For example, pressing shift does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example,
VK_0 through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers
and letters. Here are some others:

VK_ALT VK_DOWN VK_LEFT VK_RIGHT

VK_CANCEL VK_ENTER VK_PAGE_DOWN VK_SHIFT

VK_CONTROL VK_ESCAPE VK_PAGE_UP VK_UP

The VK constants specify virtual key codes and are independent of any modifiers, such as
control, shift, or alt.

KeyEvent is a subclass of InputEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

Here, src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the key was pressed is passed in when. The

24-ch24.indd 777 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

778 PART II The Java Library

modifiers argument indicates which modifiers were pressed when this key event occurred.
The virtual key code, such as VK_UP, VK_A, and so forth, is passed in code. The character
equivalent (if one exists) is passed in ch. If no valid character exists, then ch contains
CHAR_UNDEFINED. For KEY_TYPED events, code will contain VK_UNDEFINED.

The KeyEvent class defines several methods, but probably the most commonly used
ones are getKeyChar(), which returns the character that was entered, and getKeyCode(),
which returns the key code. Their general forms are shown here:

char getKeyChar()
int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED. When a
KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

The MouseEvent Class
There are eight types of mouse events. The MouseEvent class defines the following integer
constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers,
 int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event is
specified by type. The system time at which the mouse event occurred is passed in when. The
modifiers argument indicates which modifiers were pressed when a mouse event occurred.
The coordinates of the mouse are passed in x and y. The click count is passed in clicks. The
triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.

Two commonly used methods in this class are getX() and getY(). These return the X
and Y coordinates of the mouse within the component when the event occurred. Their
forms are shown here:

int getX()
int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the
mouse. It is shown here:

Point getPoint()

It returns a Point object that contains the X,Y coordinates in its integer members: x and y.

24-ch24.indd 778 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 779

Pa
rt

 II

The translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.
The getClickCount() method obtains the number of mouse clicks for this event. Its

signature is shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to appear on
this platform. Its form is shown here:

boolean isPopupTrigger()

Also available is the getButton() method, shown here:

int getButton()

It returns a value that represents the button that caused the event. For most cases, the return
value will be one of these constants defined by MouseEvent:

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released.
Also available are three methods that obtain the coordinates of the mouse relative to

the screen rather than the component. They are shown here:

Point getLocationOnScreen()

int getXOnScreen()

int getYOnScreen()

The getLocationOnScreen() method returns a Point object that contains both the X and Y
coordinate. The other two methods return the indicated coordinate.

The MouseWheelEvent Class
The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of
MouseEvent. Not all mice have wheels. If a mouse has a wheel, it is typically located
between the left and right buttons. Mouse wheels are used for scrolling. MouseWheelEvent
defines these two integer constants:

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

Here is one of the constructors defined by MouseWheelEvent:

MouseWheelEvent(Component src, int type, long when, int modifiers,
 int x, int y, int clicks, boolean triggersPopup,
 int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event is
specified by type. The system time at which the mouse event occurred is passed in when.

24-ch24.indd 779 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

780 PART II The Java Library

The modifiers argument indicates which modifiers were pressed when the event occurred. The
coordinates of the mouse are passed in x and y. The number of clicks is passed in clicks. The
triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform.
The scrollHow value must be either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_ SCROLL.
The number of units to scroll is passed in amount. The count parameter indicates the
number of rotational units that the wheel moved.

MouseWheelEvent defines methods that give you access to the wheel event. To obtain
the number of rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved
counterclockwise. If the value is negative, the wheel moved clockwise. JDK 7 added a
method called getPreciseWheelRotation(), which supports high-resolution wheels. It works
like getWheelRotation(), but returns a double.

To obtain the type of scroll, call getScrollType(), shown next:

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.
If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units to

scroll by calling getScrollAmount(). It is shown here:

int getScrollAmount()

The TextEvent Class
Instances of this class describe text events. These are generated by text fields and text areas
when characters are entered by a user or program. TextEvent defines the integer constant
TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is
specified by type.

The TextEvent object does not include the characters currently in the text component
that generated the event. Instead, your program must use other methods associated with
the text component to retrieve that information. This operation differs from other event
objects discussed in this section. Think of a text event notification as a signal to a listener
that it should retrieve information from a specific text component.

The WindowEvent Class
There are ten types of window events. The WindowEvent class defines integer constants that
can be used to identify them. The constants and their meanings are shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

24-ch24.indd 780 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 781

Pa
rt

 II

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

WindowEvent is a subclass of ComponentEvent. It defines several constructors. The first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.
The next three constructors offer more detailed control:

WindowEvent(Window src, int type, Window other)
WindowEvent(Window src, int type, int fromState, int toState)
WindowEvent(Window src, int type, Window other, int fromState, int toState)

Here, other specifies the opposite window when a focus or activation event occurs. The
fromState specifies the prior state of the window, and toState specifies the new state that the
window will have when a window state change occurs.

A commonly used method in this class is getWindow(). It returns the Window object
that generated the event. Its general form is shown here:

Window getWindow()

WindowEvent also defines methods that return the opposite window (when a focus or
activation event has occurred), the previous window state, and the current window state.
These methods are shown here:

Window getOppositeWindow()
int getOldState()
int getNewState()

Sources of Events
Table 24-2 lists some of the user interface components that can generate the events described
in the previous section. In addition to these graphical user interface elements, any class
derived from Component, such as Applet, can generate events. For example, you can receive
key and mouse events from an applet. (You may also build your own components that
generate events.) In this chapter, we will be handling only mouse and keyboard events, but
the following two chapters will be handling events from the sources shown in Table 24-2.

24-ch24.indd 781 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

782 PART II The Java Library

Event Listener Interfaces
As explained, the delegation event model has two parts: sources and listeners. As it relates
to this chapter, listeners are created by implementing one or more of the interfaces defined
by the java.awt.event package. When an event occurs, the event source invokes the appropriate
method defined by the listener and provides an event object as its argument. Table 24-3 lists

Table 24-2 Event Source Examples

Event Source Description
Button Generates action events when the button is pressed.

Check box Generates item events when the check box is selected or deselected.

Choice Generates item events when the choice is changed.

List Generates action events when an item is double-clicked; generates item
events when an item is selected or deselected.

Menu item Generates action events when a menu item is selected; generates item
events when a checkable menu item is selected or deselected.

Scroll bar Generates adjustment events when the scroll bar is manipulated.

Text components Generates text events when the user enters a character.

Window Generates window events when a window is activated, closed, deactivated,
deiconified, iconified, opened, or quit.

Table 24-3 Commonly Used Event Listener Interfaces

Interface Description
ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is hidden, moved,
resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to or
removed from a container.

FocusListener Defines two methods to recognize when a component gains or loses
keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.

KeyListener Defines three methods to recognize when a key is pressed, released, or typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters a
component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is moved.

TextListener Defines one method to recognize when a text value changes.

WindowFocusListener Defines two methods to recognize when a window gains or loses input focus.

WindowListener Defines seven methods to recognize when a window is activated, closed,
deactivated, deiconified, iconified, opened, or quit.

24-ch24.indd 782 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 783

Pa
rt

 II

several commonly used listener interfaces and provides a brief description of the methods
that they define. The following sections examine the specific methods that are contained in
each interface.

The ActionListener Interface
This interface defines the actionPerformed() method that is invoked when an action event
occurs. Its general form is shown here:

void actionPerformed(ActionEvent ae)

The AdjustmentListener Interface
This interface defines the adjustmentValueChanged() method that is invoked when an
adjustment event occurs. Its general form is shown here:

void adjustmentValueChanged(AdjustmentEvent ae)

The ComponentListener Interface
This interface defines four methods that are invoked when a component is resized, moved,
shown, or hidden. Their general forms are shown here:

void componentResized(ComponentEvent ce)
void componentMoved(ComponentEvent ce)
void componentShown(ComponentEvent ce)
void componentHidden(ComponentEvent ce)

The ContainerListener Interface
This interface contains two methods. When a component is added to a container,
componentAdded() is invoked. When a component is removed from a container,
componentRemoved() is invoked. Their general forms are shown here:

void componentAdded(ContainerEvent ce)
void componentRemoved(ContainerEvent ce)

The FocusListener Interface
This interface defines two methods. When a component obtains keyboard focus,
focusGained() is invoked. When a component loses keyboard focus, focusLost()
is called. Their general forms are shown here:

void focusGained(FocusEvent fe)
void focusLost(FocusEvent fe)

The ItemListener Interface
This interface defines the itemStateChanged() method that is invoked when the state of an
item changes. Its general form is shown here:

void itemStateChanged(ItemEvent ie)

24-ch24.indd 783 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

784 PART II The Java Library

The KeyListener Interface
This interface defines three methods. The keyPressed() and keyReleased() methods are
invoked when a key is pressed and released, respectively. The keyTyped() method is invoked
when a character has been entered.

For example, if a user presses and releases the a key, three events are generated in
sequence: key pressed, typed, and released. If a user presses and releases the home key,
two key events are generated in sequence: key pressed and released.

The general forms of these methods are shown here:

void keyPressed(KeyEvent ke)
void keyReleased(KeyEvent ke)
void keyTyped(KeyEvent ke)

The MouseListener Interface
This interface defines five methods. If the mouse is pressed and released at the same point,
mouseClicked() is invoked. When the mouse enters a component, the mouseEntered()
method is called. When it leaves, mouseExited() is called. The mousePressed() and
mouseReleased() methods are invoked when the mouse is pressed and released, respectively.

The general forms of these methods are shown here:

void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
This interface defines two methods. The mouseDragged() method is called multiple times
as the mouse is dragged. The mouseMoved() method is called multiple times as the mouse
is moved. Their general forms are shown here:

void mouseDragged(MouseEvent me)
void mouseMoved(MouseEvent me)

The MouseWheelListener Interface
This interface defines the mouseWheelMoved() method that is invoked when the mouse
wheel is moved. Its general form is shown here:

void mouseWheelMoved(MouseWheelEvent mwe)

The TextListener Interface
This interface defines the textValueChanged() method that is invoked when a change
occurs in a text area or text field. Its general form is shown here:

void textValueChanged(TextEvent te)

24-ch24.indd 784 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 785

Pa
rt

 II

The WindowFocusListener Interface
This interface defines two methods: windowGainedFocus() and windowLostFocus(). These
are called when a window gains or loses input focus. Their general forms are shown here:

void windowGainedFocus(WindowEvent we)
void windowLostFocus(WindowEvent we)

The WindowListener Interface
This interface defines seven methods. The windowActivated() and windowDeactivated()
methods are invoked when a window is activated or deactivated, respectively. If a window
is iconified, the windowIconified() method is called. When a window is deiconified,
the windowDeiconified() method is called. When a window is opened or closed, the
windowOpened() or windowClosed() methods are called, respectively. The windowClosing()
method is called when a window is being closed. The general forms of these methods are

void windowActivated(WindowEvent we)
void windowClosed(WindowEvent we)
void windowClosing(WindowEvent we)
void windowDeactivated(WindowEvent we)
void windowDeiconified(WindowEvent we)
void windowIconified(WindowEvent we)
void windowOpened(WindowEvent we)

Using the Delegation Event Model
Now that you have learned the theory behind the delegation event model and have had
an overview of its various components, it is time to see it in practice. Using the delegation
event model is actually quite easy. Just follow these two steps:

 1. Implement the appropriate interface in the listener so that it can receive the type
of event desired.

 2. Implement code to register and unregister (if necessary) the listener as a recipient
for the event notifications.

Remember that a source may generate several types of events. Each event must be
registered separately. Also, an object may register to receive several types of events, but
it must implement all of the interfaces that are required to receive these events.

To see how the delegation model works in practice, we will look at examples that
handle two commonly used event generators: the mouse and keyboard.

Handling Mouse Events
To handle mouse events, you must implement the MouseListener and the
MouseMotionListener interfaces. (You may also want to implement MouseWheelListener,
but we won’t be doing so, here.) The following applet demonstrates the process. It displays
the current coordinates of the mouse in the applet’s status window. Each time a button is

24-ch24.indd 785 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

786 PART II The Java Library

pressed, the word "Down" is displayed at the location of the mouse pointer. Each time the
button is released, the word "Up" is shown. If a button is clicked, the message "Mouse
clicked" is displayed in the upper-left corner of the applet display area.

As the mouse enters or exits the applet window, a message is displayed in the upper-left
corner of the applet display area. When dragging the mouse, a * is shown, which tracks with
the mouse pointer as it is dragged. Notice that the two variables, mouseX and mouseY, store
the location of the mouse when a mouse pressed, released, or dragged event occurs. These
coordinates are then used by paint() to display output at the point of these occurrences.

// Demonstrate the mouse event handlers.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="MouseEvents" width=300 height=100>
 </applet>
*/

public class MouseEvents extends Applet
 implements MouseListener, MouseMotionListener {

 String msg = "";
 int mouseX = 0, mouseY = 0; // coordinates of mouse

 public void init() {
 addMouseListener(this);
 addMouseMotionListener(this);
 }

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 10;
 msg = "Mouse clicked.";
 repaint();
 }

 // Handle mouse entered.
 public void mouseEntered(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 10;
 msg = "Mouse entered.";
 repaint();
 }

 // Handle mouse exited.

24-ch24.indd 786 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 787

Pa
rt

 II

 public void mouseExited(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 10;
 msg = "Mouse exited.";
 repaint();
 }

 // Handle button pressed.
 public void mousePressed(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Down";
 repaint();
 }

 // Handle button released.
 public void mouseReleased(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Up";
 repaint();
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "*";
 showStatus("Dragging mouse at " + mouseX + ", " + mouseY);
 repaint();
 }

 // Handle mouse moved.
 public void mouseMoved(MouseEvent me) {
 // show status
 showStatus("Moving mouse at " + me.getX() + ", " + me.getY());
 }

 // Display msg in applet window at current X,Y location.
 public void paint(Graphics g) {
 g.drawString(msg, mouseX, mouseY);
 }
}

24-ch24.indd 787 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

788 PART II The Java Library

Sample output from this program is shown here:

Let's look closely at this example. The MouseEvents class extends Applet and implements
both the MouseListener and MouseMotionListener interfaces. These two interfaces contain
methods that receive and process the various types of mouse events. Notice that the applet
is both the source and the listener for these events. This works because Component, which
supplies the addMouseListener() and addMouseMotionListener() methods, is a superclass
of Applet. Being both the source and the listener for events is a common situation for applets.

Inside init(), the applet registers itself as a listener for mouse events. This is done by
using addMouseListener() and addMouseMotionListener(), which, as mentioned, are
members of Component. They are shown here:

void addMouseListener(MouseListener ml)
void addMouseMotionListener(MouseMotionListener mml)

Here, ml is a reference to the object receiving mouse events, and mml is a reference to the
object receiving mouse motion events. In this program, the same object is used for both.

The applet then implements all of the methods defined by the MouseListener and
MouseMotionListener interfaces. These are the event handlers for the various mouse
events. Each method handles its event and then returns.

Handling Keyboard Events
To handle keyboard events, you use the same general architecture as that shown in the
mouse event example in the preceding section. The difference, of course, is that you will
be implementing the KeyListener interface.

Before looking at an example, it is useful to review how key events are generated. When a
key is pressed, a KEY_PRESSED event is generated. This results in a call to the keyPressed()
event handler. When the key is released, a KEY_RELEASED event is generated and the
keyReleased() handler is executed. If a character is generated by the keystroke, then a
KEY_TYPED event is sent and the keyTyped() handler is invoked. Thus, each time the user
presses a key, at least two and often three events are generated. If all you care about are
actual characters, then you can ignore the information passed by the key press and release
events. However, if your program needs to handle special keys, such as the arrow or function
keys, then it must watch for them through the keyPressed() handler.

The following program demonstrates keyboard input. It echoes keystrokes to the applet
window and shows the pressed/released status of each key in the status window.

// Demonstrate the key event handlers.
import java.awt.*;
import java.awt.event.*;

24-ch24.indd 788 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 789

Pa
rt

 II

import java.applet.*;
/*
 <applet code="SimpleKey" width=300 height=100>
 </applet>
*/

public class SimpleKey extends Applet
 implements KeyListener {

 String msg = "";
 int X = 10, Y = 20; // output coordinates

 public void init() {
 addKeyListener(this);
 }

 public void keyPressed(KeyEvent ke) {
 showStatus("Key Down");
 }

 public void keyReleased(KeyEvent ke) {
 showStatus("Key Up");
 }

 public void keyTyped(KeyEvent ke) {
 msg += ke.getKeyChar();
 repaint();
 }

 // Display keystrokes.
 public void paint(Graphics g) {
 g.drawString(msg, X, Y);
 }
}

Sample output is shown here:

If you want to handle the special keys, such as the arrow or function keys, you need to
respond to them within the keyPressed() handler. They are not available through keyTyped().

24-ch24.indd 789 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

790 PART II The Java Library

To identify the keys, you use their virtual key codes. For example, the next applet outputs the
name of a few of the special keys:

// Demonstrate some virtual key codes.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="KeyEvents" width=300 height=100>
 </applet>
*/

public class KeyEvents extends Applet
 implements KeyListener {

 String msg = "";
 int X = 10, Y = 20; // output coordinates

 public void init() {
 addKeyListener(this);
 }

 public void keyPressed(KeyEvent ke) {
 showStatus("Key Down");

 int key = ke.getKeyCode();
 switch(key) {
 case KeyEvent.VK_F1:
 msg += "<F1>";
 break;
 case KeyEvent.VK_F2:
 msg += "<F2>";
 break;
 case KeyEvent.VK_F3:
 msg += "<F3>";
 break;
 case KeyEvent.VK_PAGE_DOWN:
 msg += "<PgDn>";
 break;
 case KeyEvent.VK_PAGE_UP:
 msg += "<PgUp>";
 break;
 case KeyEvent.VK_LEFT:
 msg += "<Left Arrow>";
 break;
 case KeyEvent.VK_RIGHT:
 msg += "<Right Arrow>";
 break;
 }

 repaint();
 }

24-ch24.indd 790 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 791

Pa
rt

 II

 public void keyReleased(KeyEvent ke) {
 showStatus("Key Up");
 }

 public void keyTyped(KeyEvent ke) {
 msg += ke.getKeyChar();
 repaint();
 }

 // Display keystrokes.
 public void paint(Graphics g) {
 g.drawString(msg, X, Y);
 }
}

Sample output is shown here:

The procedures shown in the preceding keyboard and mouse event examples can be
generalized to any type of event handling, including those events generated by controls. In
later chapters, you will see many examples that handle other types of events, but they will
all follow the same basic structure as the programs just described.

Adapter Classes
Java provides a special feature, called an adapter class, that can simplify the creation of event
handlers in certain situations. An adapter class provides an empty implementation of all
methods in an event listener interface. Adapter classes are useful when you want to receive
and process only some of the events that are handled by a particular event listener interface.
You can define a new class to act as an event listener by extending one of the adapter classes
and implementing only those events in which you are interested.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and
mouseMoved(), which are the methods defined by the MouseMotionListener interface. If you
were interested in only mouse drag events, then you could simply extend MouseMotionAdapter
and override mouseDragged(). The empty implementation of mouseMoved() would handle
the mouse motion events for you.

Table 24-4 lists several commonly used adapter classes in java.awt.event and notes the
interface that each implements.

24-ch24.indd 791 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

792 PART II The Java Library

The following example demonstrates an adapter. It displays a message in the status bar
of an applet viewer or browser when the mouse is clicked or dragged. However, all other
mouse events are silently ignored. The program has three classes. AdapterDemo extends
Applet. Its init() method creates an instance of MyMouseAdapter and registers that object to
receive notifications of mouse events. It also creates an instance of MyMouseMotionAdapter
and registers that object to receive notifications of mouse motion events. Both of the
constructors take a reference to the applet as an argument.

MyMouseAdapter extends MouseAdapter and overrides the mouseClicked() method.
The other mouse events are silently ignored by code inherited from the MouseAdapter
class. MyMouseMotionAdapter extends MouseMotionAdapter and overrides the
mouseDragged() method. The other mouse motion event is silently ignored by code
inherited from the MouseMotionAdapter class. (MouseAdaptor also provides an empty
implementation for MouseMotionListener. However, for the sake of illustration, this
example handles each separately.)

Note that both of the event listener classes save a reference to the applet. This
information is provided as an argument to their constructors and is used later to invoke
the showStatus() method.

// Demonstrate an adapter.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="AdapterDemo" width=300 height=100>
 </applet>
*/

public class AdapterDemo extends Applet {
 public void init() {
 addMouseListener(new MyMouseAdapter(this));
 addMouseMotionListener(new MyMouseMotionAdapter(this));
 }
}

Table 24-4 Commonly Used Listener Interfaces Implemented by Adapter Classes

Adapter Class Listener Interface
ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener and (as of JDK 6)
MouseMotionListener and MouseWheelListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener, WindowFocusListener, and
WindowStateListener

24-ch24.indd 792 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 793

Pa
rt

 II

class MyMouseAdapter extends MouseAdapter {

 AdapterDemo adapterDemo;
 public MyMouseAdapter(AdapterDemo adapterDemo) {
 this.adapterDemo = adapterDemo;
 }

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 adapterDemo.showStatus("Mouse clicked");
 }
}

class MyMouseMotionAdapter extends MouseMotionAdapter {
 AdapterDemo adapterDemo;
 public MyMouseMotionAdapter(AdapterDemo adapterDemo) {
 this.adapterDemo = adapterDemo;
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 adapterDemo.showStatus("Mouse dragged");
 }
}

As you can see by looking at the program, not having to implement all of the methods
defined by the MouseMotionListener and MouseListener interfaces saves you a considerable
amount of effort and prevents your code from becoming cluttered with empty methods. As
an exercise, you might want to try rewriting one of the keyboard input examples shown
earlier so that it uses a KeyAdapter.

Inner Classes
In Chapter 7, the basics of inner classes were explained. Here, you will see why they are
important. Recall that an inner class is a class defined within another class, or even within an
expression. This section illustrates how inner classes can be used to simplify the code when
using event adapter classes.

To understand the benefit provided by inner classes, consider the applet shown in the
following listing. It does not use an inner class. Its goal is to display the string "Mouse Pressed"
in the status bar of the applet viewer or browser when the mouse is pressed. There are two
top-level classes in this program. MousePressedDemo extends Applet, and MyMouseAdapter
extends MouseAdapter. The init() method of MousePressedDemo instantiates
MyMouseAdapter and provides this object as an argument to the addMouseListener()
method.

Notice that a reference to the applet is supplied as an argument to the MyMouseAdapter
constructor. This reference is stored in an instance variable for later use by the mousePressed()
method. When the mouse is pressed, it invokes the showStatus() method of the applet

24-ch24.indd 793 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

794 PART II The Java Library

through the stored applet reference. In other words, showStatus() is invoked relative to
the applet reference stored by MyMouseAdapter.

// This applet does NOT use an inner class.
import java.applet.*;
import java.awt.event.*;
/*
 <applet code="MousePressedDemo" width=200 height=100>
 </applet>
*/

public class MousePressedDemo extends Applet {
 public void init() {
 addMouseListener(new MyMouseAdapter(this));
 }
}

class MyMouseAdapter extends MouseAdapter {
 MousePressedDemo mousePressedDemo;
 public MyMouseAdapter(MousePressedDemo mousePressedDemo) {
 this.mousePressedDemo = mousePressedDemo;
 }
 public void mousePressed(MouseEvent me) {
 mousePressedDemo.showStatus("Mouse Pressed.");
 }
}

The following listing shows how the preceding program can be improved by using an
inner class. Here, InnerClassDemo is a top-level class that extends Applet. MyMouseAdapter
is an inner class that extends MouseAdapter. Because MyMouseAdapter is defined within
the scope of InnerClassDemo, it has access to all of the variables and methods within the
scope of that class. Therefore, the mousePressed() method can call the showStatus()
method directly. It no longer needs to do this via a stored reference to the applet. Thus, it
is no longer necessary to pass MyMouseAdapter() a reference to the invoking object.

// Inner class demo.
import java.applet.*;
import java.awt.event.*;
/*
 <applet code="InnerClassDemo" width=200 height=100>
 </applet>
*/

public class InnerClassDemo extends Applet {
 public void init() {
 addMouseListener(new MyMouseAdapter());
 }
 class MyMouseAdapter extends MouseAdapter {
 public void mousePressed(MouseEvent me) {
 showStatus("Mouse Pressed");
 }
 }
}

24-ch24.indd 794 14/02/14 5:13 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 24 Event Handling 795

Pa
rt

 II

Anonymous Inner Classes
An anonymous inner class is one that is not assigned a name. This section illustrates how
an anonymous inner class can facilitate the writing of event handlers. Consider the applet
shown in the following listing. As before, its goal is to display the string "Mouse Pressed" in
the status bar of the applet viewer or browser when the mouse is pressed.

// Anonymous inner class demo.
import java.applet.*;
import java.awt.event.*;
/*
 <applet code="AnonymousInnerClassDemo" width=200 height=100>
 </applet>
*/

public class AnonymousInnerClassDemo extends Applet {
 public void init() {
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 showStatus("Mouse Pressed");
 }
 });
 }
}

There is one top-level class in this program: AnonymousInnerClassDemo. The init()
method calls the addMouseListener() method. Its argument is an expression that defines
and instantiates an anonymous inner class. Let’s analyze this expression carefully.

The syntax new MouseAdapter(){...} indicates to the compiler that the code between
the braces defines an anonymous inner class. Furthermore, that class extends MouseAdapter.
This new class is not named, but it is automatically instantiated when this expression is
executed.

Because this anonymous inner class is defined within the scope of
AnonymousInnerClassDemo, it has access to all of the variables and methods within
the scope of that class. Therefore, it can call the showStatus() method directly.

As just illustrated, both named and anonymous inner classes solve some annoying
problems in a simple yet effective way. They also allow you to create more efficient code.

24-ch24.indd 795 14/02/14 5:13 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

25
CHAPTER

 797

Introducing the AWT:
Working with Windows,
Graphics, and Text

The Abstract Window Toolkit (AWT) was Java’s first GUI framework, and it has been part of
Java since version 1.0. It contains numerous classes and methods that allow you to create
windows and simple controls. The AWT was introduced in Chapter 23, where it was used in
several short, example applets. This chapter begins a more detailed examination. Here, you
will learn how to create and manage windows, manage fonts, output text, and utilize graphics.
Chapter 26 describes various AWT controls, such as scroll bars and push buttons. It also
explains further aspects of Java’s event handling mechanism. Chapter 27 introduces the
AWT’s imaging subsystem.

It is important to state at the outset that you will seldom create GUIs based solely on the
AWT because more powerful GUI frameworks (Swing and JavaFX) have been developed for
Java. Despite this fact, the AWT remains an important part of Java. To understand why,
consider the following.

At the time of this writing, the framework that is most widely used is Swing. Because
Swing provides a richer, more flexible GUI framework than does the AWT, it is easy to jump
to the conclusion that the AWT is no longer relevant—that it has been fully superseded by
Swing. This assumption is, however, false. Instead, an understanding of the AWT is still
important because the AWT underpins Swing, with many AWT classes being used either
directly or indirectly by Swing. As a result, a solid knowledge of the AWT is still required to
use Swing effectively.

Java’s newest GUI framework is JavaFX. It is anticipated that, at some point in the future,
JavaFX will replace Swing as Java’s most popular GUI. Even when this occurs, however, much
legacy code that relies on Swing (and thus, the AWT) will still need to be maintained for
some time to come. Finally, for some types of small programs (especially small applets) that
make only minimal use of a GUI, using the AWT may still be appropriate. Therefore, even
though the AWT constitutes Java’s oldest GUI framework, a basic working knowledge of its
fundamentals is still important today.

Although a common use of the AWT is in applets, it is also used to create stand-alone
windows that run in a GUI environment, such as Windows. For the sake of convenience,
most of the examples in this chapter are contained in applets. The easiest way to run them

25-ch25.indd 797 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

798 PART II The Java Library

is with the applet viewer. A few examples demonstrate the creation of stand-alone,
windowed programs, which can be executed directly.

One last point before beginning: The AWT is quite large and a full description would
easily fill an entire book. Therefore, it is not possible to describe in detail every AWT class,
method, or instance variable. However, this and the following chapters explain the basic
techniques needed to use the AWT. From there, you will be able to explore other parts of
the AWT on your own. You will also be ready to move on to Swing.

NOTE If you have not yet read Chapter 24, please do so now. It provides an overview of event handling,
which is used by many of the examples in this chapter.

AWT Classes
The AWT classes are contained in the java.awt package. It is one of Java’s largest packages.
Fortunately, because it is logically organized in a top-down, hierarchical fashion, it is easier
to understand and use than you might at first believe. Table 25-1 lists some of the many
AWT classes.

Table 25-1 A Sampling of AWT Classes

Class Description
AWTEvent Encapsulates AWT events.

AWTEventMulticaster Dispatches events to multiple listeners.

BorderLayout The border layout manager. Border layouts use five components:
North, South, East, West, and Center.

Button Creates a push button control.

Canvas A blank, semantics-free window.

CardLayout The card layout manager. Card layouts emulate index cards. Only the
one on top is showing.

Checkbox Creates a check box control.

CheckboxGroup Creates a group of check box controls.

CheckboxMenuItem Creates an on/off menu item.

Choice Creates a pop-up list.

Color Manages colors in a portable, platform-independent fashion.

Component An abstract superclass for various AWT components.

Container A subclass of Component that can hold other components.

Cursor Encapsulates a bitmapped cursor.

Dialog Creates a dialog window.

Dimension Specifies the dimensions of an object. The width is stored in width,
and the height is stored in height.

EventQueue Queues events.

FileDialog Creates a window from which a file can be selected.

25-ch25.indd 798 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 799

Pa
rt

 II

Class Description
FlowLayout The flow layout manager. Flow layout positions components left to

right, top to bottom.

Font Encapsulates a type font.

FontMetrics Encapsulates various information related to a font. This information
helps you display text in a window.

Frame Creates a standard window that has a title bar, resize corners, and a
menu bar.

Graphics Encapsulates the graphics context. This context is used by the various
output methods to display output in a window.

GraphicsDevice Describes a graphics device such as a screen or printer.

GraphicsEnvironment Describes the collection of available Font and GraphicsDevice objects.

GridBagConstraints Defines various constraints relating to the GridBagLayout class.

GridBagLayout The grid bag layout manager. Grid bag layout displays components
subject to the constraints specified by GridBagConstraints.

GridLayout The grid layout manager. Grid layout displays components in a two-
dimensional grid.

Image Encapsulates graphical images.

Insets Encapsulates the borders of a container.

Label Creates a label that displays a string.

List Creates a list from which the user can choose. Similar to the standard
Windows list box.

MediaTracker Manages media objects.

Menu Creates a pull-down menu.

MenuBar Creates a menu bar.

MenuComponent An abstract class implemented by various menu classes.

MenuItem Creates a menu item.

MenuShortcut Encapsulates a keyboard shortcut for a menu item.

Panel The simplest concrete subclass of Container.

Point Encapsulates a Cartesian coordinate pair, stored in x and y.

Polygon Encapsulates a polygon.

PopupMenu Encapsulates a pop-up menu.

PrintJob An abstract class that represents a print job.

Rectangle Encapsulates a rectangle.

Robot Supports automated testing of AWT-based applications.

Scrollbar Creates a scroll bar control.

ScrollPane A container that provides horizontal and/or vertical scroll bars for
another component.

Table 25-1 A Sampling of AWT Classes (continued)

25-ch25.indd 799 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

800 PART II The Java Library

Figure 25-1 The class hierarchy for Panel and Frame

Class Description
SystemColor Contains the colors of GUI widgets such as windows, scroll bars, text,

and others.

TextArea Creates a multiline edit control.

TextComponent A superclass for TextArea and TextField.

TextField Creates a single-line edit control.

Toolkit Abstract class implemented by the AWT.

Window Creates a window with no frame, no menu bar, and no title.

Table 25-1 A Sampling of AWT Classes (continued)

Although the basic structure of the AWT has been the same since Java 1.0, some of the
original methods were deprecated and replaced by new ones. For backward-compatibility,
Java still supports all the original 1.0 methods. However, because these methods are not for
use with new code, this book does not describe them.

Window Fundamentals
The AWT defines windows according to a class hierarchy that adds functionality and
specificity with each level. The two most common windows are those derived from Panel,
which is used by applets, and those derived from Frame, which creates a standard application
window. Much of the functionality of these windows is derived from their parent classes.
Thus, a description of the class hierarchies relating to these two classes is fundamental to
their understanding. Figure 25-1 shows the class hierarchy for Panel and Frame. Let’s look
at each of these classes now.

Component
At the top of the AWT hierarchy is the Component class. Component is an abstract class
that encapsulates all of the attributes of a visual component. Except for menus, all user
interface elements that are displayed on the screen and that interact with the user are

25-ch25.indd 800 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 801

Pa
rt

 II

subclasses of Component. It defines over a hundred public methods that are responsible
for managing events, such as mouse and keyboard input, positioning and sizing the window,
and repainting. (You already used many of these methods when you created applets in
Chapters 23 and 24.) A Component object is responsible for remembering the current
foreground and background colors and the currently selected text font.

Container
The Container class is a subclass of Component. It has additional methods that allow other
Component objects to be nested within it. Other Container objects can be stored inside of a
Container (since they are themselves instances of Component). This makes for a multileveled
containment system. A container is responsible for laying out (that is, positioning) any
components that it contains. It does this through the use of various layout managers, which
you will learn about in Chapter 26.

Panel
The Panel class is a concrete subclass of Container. A Panel may be thought of as a
recursively nestable, concrete screen component. Panel is the superclass for Applet. When
screen output is directed to an applet, it is drawn on the surface of a Panel object. In
essence, a Panel is a window that does not contain a title bar, menu bar, or border. This is
why you don’t see these items when an applet is run inside a browser. When you run an
applet using an applet viewer, the applet viewer provides the title and border.

Other components can be added to a Panel object by its add() method (inherited from
Container). Once these components have been added, you can position and resize them
manually using the setLocation(), setSize(), setPreferredSize(), or setBounds() methods
defined by Component.

Window
The Window class creates a top-level window. A top-level window is not contained within any
other object; it sits directly on the desktop. Generally, you won’t create Window objects
directly. Instead, you will use a subclass of Window called Frame, described next.

Frame
Frame encapsulates what is commonly thought of as a “window.” It is a subclass of Window
and has a title bar, menu bar, borders, and resizing corners. The precise look of a Frame
will differ among environments. A number of environments are reflected in the screen
captures shown throughout this book.

Canvas
Although it is not part of the hierarchy for applet or frame windows, there is one other
type of window that you will find valuable: Canvas. Derived from Component, Canvas
encapsulates a blank window upon which you can draw. You will see an example of Canvas
later in this book.

25-ch25.indd 801 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

802 PART II The Java Library

Working with Frame Windows
In addition to the applet, the type of AWT-based window you will most often create is
derived from Frame. You will use it to create child windows within applets, and top-level or
child windows for stand-alone applications. As mentioned, it creates a standard-style window.

Here are two of Frame’s constructors:

Frame() throws HeadlessException
Frame(String title) throws HeadlessException

The first form creates a standard window that does not contain a title. The second form
creates a window with the title specified by title. Notice that you cannot specify the
dimensions of the window. Instead, you must set the size of the window after it has been
created. A HeadlessException is thrown if an attempt is made to create a Frame instance
in an environment that does not support user interaction.

There are several key methods you will use when working with Frame windows. They
are examined here.

Setting the Window’s Dimensions
The setSize() method is used to set the dimensions of the window. Its signature is shown
here:

void setSize(int newWidth, int newHeight)
void setSize(Dimension newSize)

The new size of the window is specified by newWidth and newHeight, or by the width and
height fields of the Dimension object passed in newSize. The dimensions are specified in
terms of pixels.

The getSize() method is used to obtain the current size of a window. One of its forms is
shown here:

Dimension getSize()

This method returns the current size of the window contained within the width and height
fields of a Dimension object.

Hiding and Showing a Window
After a frame window has been created, it will not be visible until you call setVisible(). Its
signature is shown here:

void setVisible(boolean visibleFlag)

The component is visible if the argument to this method is true. Otherwise, it is hidden.

Setting a Window’s Title
You can change the title in a frame window using setTitle(), which has this general form:

void setTitle(String newTitle)

Here, newTitle is the new title for the window.

25-ch25.indd 802 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 803

Pa
rt

 II

Closing a Frame Window
When using a frame window, your program must remove that window from the screen
when it is closed, by calling setVisible(false). To intercept a window-close event, you must
implement the windowClosing() method of the WindowListener interface. Inside
windowClosing(), you must remove the window from the screen. The example in the
next section illustrates this technique.

Creating a Frame Window in an AWT-Based Applet
While it is possible to simply create a window by creating an instance of Frame, you will
seldom do so, because you will not be able to do much with it. For example, you will not be
able to receive or process events that occur within it or easily output information to it. Most
of the time, you will create a subclass of Frame. Doing so lets you override Frame’s methods
and provide event handling.

Creating a new frame window from within an AWT-based applet is actually quite easy.
First, create a subclass of Frame. Next, override any of the standard applet methods, such as
init(), start(), and stop(), to show or hide the frame as needed. Finally, implement the
windowClosing() method of the WindowListener interface, calling setVisible(false) when
the window is closed.

Once you have defined a Frame subclass, you can create an object of that class. This
causes a frame window to come into existence, but it will not be initially visible. You make it
visible by calling setVisible(). When created, the window is given a default height and width.
You can set the size of the window explicitly by calling the setSize() method.

The following applet creates a subclass of Frame called SampleFrame. A window of this
subclass is instantiated within the init() method of AppletFrame. Notice that SampleFrame
calls Frame’s constructor. This causes a standard frame window to be created with the title
passed in title. This example overrides the applet’s start() and stop() methods so that
they show and hide the child window, respectively. This causes the window to be removed
automatically when you terminate the applet, when you close the window, or, if using a
browser, when you move to another page. It also causes the child window to be shown
when the browser returns to the applet.

// Create a child frame window from within an applet.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="AppletFrame" width=300 height=50>
 </applet>
*/

// Create a subclass of Frame.
class SampleFrame extends Frame {
 SampleFrame(String title) {
 super(title);

 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);

25-ch25.indd 803 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

804 PART II The Java Library

 // register it to receive those events
 addWindowListener(adapter);
 }
 public void paint(Graphics g) {
 g.drawString("This is in frame window", 10, 40);
 }
}

class MyWindowAdapter extends WindowAdapter {
 SampleFrame sampleFrame;

 public MyWindowAdapter(SampleFrame sampleFrame) {
 this.sampleFrame = sampleFrame;
 }

 public void windowClosing(WindowEvent we) {
 sampleFrame.setVisible(false);
 }
}

// Create frame window.
public class AppletFrame extends Applet {
 Frame f;
 public void init() {
 f = new SampleFrame("A Frame Window");

 f.setSize(250, 250);
 f.setVisible(true);
 }

 public void start() {
 f.setVisible(true);
 }

 public void stop() {
 f.setVisible(false);
 }

 public void paint(Graphics g) {
 g.drawString("This is in applet window", 10, 20);
 }
}

Sample output from this program is shown here:

25-ch25.indd 804 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 805

Pa
rt

 II

Handling Events in a Frame Window
Since Frame is a subclass of Component, it inherits all the capabilities defined by Component.
This means that you can use and manage a frame window just like you manage an applet’s
main window, as described earlier in this book. For example, you can override paint() to
display output, call repaint() when you need to restore the window, and add event handlers.
Whenever an event occurs in a window, the event handlers defined by that window will be
called. Each window handles its own events. For example, the following program creates a
window that responds to mouse events. The main applet window also responds to mouse
events. When you experiment with this program, you will see that mouse events are sent to
the window in which the event occurs.

// Handle mouse events in both child and applet windows.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="WindowEvents" width=300 height=50>
 </applet>
*/

// Create a subclass of Frame.
class SampleFrame extends Frame
 implements MouseListener, MouseMotionListener {

 String msg = "";
 int mouseX=10, mouseY=40;
 int movX=0, movY=0;

 SampleFrame(String title) {
 super(title);
 // register this object to receive its own mouse events
 addMouseListener(this);
 addMouseMotionListener(this);
 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);
 // register it to receive those events
 addWindowListener(adapter);
 }

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 }

 // Handle mouse entered.
 public void mouseEntered(MouseEvent evtObj) {
 // save coordinates
 mouseX = 10;
 mouseY = 54;
 msg = "Mouse just entered child.";
 repaint();
 }

25-ch25.indd 805 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

806 PART II The Java Library

 // Handle mouse exited.
 public void mouseExited(MouseEvent evtObj) {
 // save coordinates
 mouseX = 10;
 mouseY = 54;
 msg = "Mouse just left child window.";
 repaint();
 }

 // Handle mouse pressed.
 public void mousePressed(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Down";
 repaint();
 }

 // Handle mouse released.
 public void mouseReleased(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Up";
 repaint();
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 movX = me.getX();
 movY = me.getY();
 msg = "*";
 repaint();
 }

 // Handle mouse moved.
 public void mouseMoved(MouseEvent me) {
 // save coordinates
 movX = me.getX();
 movY = me.getY();
 repaint(0, 0, 100, 60);
 }

 public void paint(Graphics g) {
 g.drawString(msg, mouseX, mouseY);
 g.drawString("Mouse at " + movX + ", " + movY, 10, 40);
 }
}

class MyWindowAdapter extends WindowAdapter {
 SampleFrame sampleFrame;

25-ch25.indd 806 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 807

Pa
rt

 II

 public MyWindowAdapter(SampleFrame sampleFrame) {
 this.sampleFrame = sampleFrame;
 }

 public void windowClosing(WindowEvent we) {
 sampleFrame.setVisible(false);
 }
}

// Applet window.
public class WindowEvents extends Applet
 implements MouseListener, MouseMotionListener {

 SampleFrame f;
 String msg = "";
 int mouseX=0, mouseY=10;
 int movX=0, movY=0;

 // Create a frame window.
 public void init() {
 f = new SampleFrame("Handle Mouse Events");
 f.setSize(300, 200);
 f.setVisible(true);

 // register this object to receive its own mouse events
 addMouseListener(this);
 addMouseMotionListener(this);
 }

 // Remove frame window when stopping applet.
 public void stop() {
 f.setVisible(false);
 }

 // Show frame window when starting applet.
 public void start() {
 f.setVisible(true);
 }

 // Handle mouse clicked.
 public void mouseClicked(MouseEvent me) {
 }

 // Handle mouse entered.
 public void mouseEntered(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 24;
 msg = "Mouse just entered applet window.";
 repaint();
 }

25-ch25.indd 807 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

808 PART II The Java Library

 // Handle mouse exited.
 public void mouseExited(MouseEvent me) {
 // save coordinates
 mouseX = 0;
 mouseY = 24;
 msg = "Mouse just left applet window.";
 repaint();
 }

 // Handle button pressed.
 public void mousePressed(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Down";
 repaint();
 }

 // Handle button released.
 public void mouseReleased(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 msg = "Up";
 repaint();
 }

 // Handle mouse dragged.
 public void mouseDragged(MouseEvent me) {
 // save coordinates
 mouseX = me.getX();
 mouseY = me.getY();
 movX = me.getX();
 movY = me.getY();
 msg = "*";
 repaint();
 }

 // Handle mouse moved.
 public void mouseMoved(MouseEvent me) {
 // save coordinates
 movX = me.getX();
 movY = me.getY();
 repaint(0, 0, 100, 20);
 }

 // Display msg in applet window.
 public void paint(Graphics g) {
 g.drawString(msg, mouseX, mouseY);
 g.drawString("Mouse at " + movX + ", " + movY, 0, 10);
 }
}

25-ch25.indd 808 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 809

Pa
rt

 II

Sample output from this program is shown here:

Creating a Windowed Program
Although creating applets is a common use for Java’s AWT, it is also possible to create stand-
alone AWT-based applications. To do this, simply create an instance of the window or windows
you need inside main(). For example, the following program creates a frame window that
responds to mouse clicks and keystrokes:

// Create an AWT-based application.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;

// Create a frame window.
public class AppWindow extends Frame {
 String keymsg = "This is a test.";
 String mousemsg = "";
 int mouseX=30, mouseY=30;

 public AppWindow() {
 addKeyListener(new MyKeyAdapter(this));
 addMouseListener(new MyMouseAdapter(this));
 addWindowListener(new MyWindowAdapter());
 }

 public void paint(Graphics g) {
 g.drawString(keymsg, 10, 40);
 g.drawString(mousemsg, mouseX, mouseY);
 }

 // Create the window.
 public static void main(String args[]) {
 AppWindow appwin = new AppWindow();

 appwin.setSize(new Dimension(300, 200));
 appwin.setTitle("An AWT-Based Application");
 appwin.setVisible(true);
 }
}

25-ch25.indd 809 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

810 PART II The Java Library

class MyKeyAdapter extends KeyAdapter {
 AppWindow appWindow;

 public MyKeyAdapter(AppWindow appWindow) {
 this.appWindow = appWindow;
 }

 public void keyTyped(KeyEvent ke) {
 appWindow.keymsg += ke.getKeyChar();
 appWindow.repaint();
 };
}

class MyMouseAdapter extends MouseAdapter {
 AppWindow appWindow;

 public MyMouseAdapter(AppWindow appWindow) {
 this.appWindow = appWindow;
 }

 public void mousePressed(MouseEvent me) {
 appWindow.mouseX = me.getX();
 appWindow.mouseY = me.getY();
 appWindow.mousemsg = "Mouse Down at " + appWindow.mouseX +
 ", " + appWindow.mouseY;
 appWindow.repaint();
 }
}

class MyWindowAdapter extends WindowAdapter {
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
}

Sample output from this program is shown here:

Once created, a frame window takes on a life of its own. Notice that main() ends with
the call to appwin.setVisible(true). However, the program keeps running until you close the
window. In essence, when creating a windowed application, you will use main() to launch
its top-level window. After that, your program will function as a GUI-based application, not
like the console-based programs used earlier.

25-ch25.indd 810 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 811

Pa
rt

 II

Displaying Information Within a Window
In the most general sense, a window is a container for information. Although we have already
output small amounts of text to a window in the preceding examples, we have not begun to
take advantage of a window’s ability to present high-quality text and graphics. Indeed, much of
the power of the AWT comes from its support for these items. For this reason, the remainder
of this chapter introduces the AWT’s text-, graphics-, and font-handling capabilities. As you will
see, they are both powerful and flexible.

Introducing Graphics
The AWT includes several methods that support graphics. All graphics are drawn relative to
a window. This can be the main window of an applet, a child window of an applet, or a stand-
alone application window. (These methods are also supported by Swing-based windows.)
The origin of each window is at the top-left corner and is 0,0. Coordinates are specified in
pixels. All output to a window takes place through a graphics context.

A graphics context is encapsulated by the Graphics class. Here are two ways in which a
graphics context can be obtained:

•	 It is passed to a method, such as paint() or update(), as an argument.

•	 It is returned by the getGraphics() method of Component.

Among other things, the Graphics class defines a number of methods that draw various
types of objects, such as lines, rectangles, and arcs. In several cases, objects can be drawn
edge-only or filled. Objects are drawn and filled in the currently selected color, which is
black by default. When a graphics object is drawn that exceeds the dimensions of the
window, output is automatically clipped. A sampling of the drawing methods supported by
Graphics is presented here.

NOTE With the release of version 1.2, the graphics capabilities of Java were expanded by the inclusion of
several new classes. One of these is Graphics2D, which extends Graphics. Graphics2D supports
several powerful enhancements to the basic capabilities provided by Graphics. To gain access to this
extended functionality, you must cast the graphics context obtained from a method such as paint(),
to Graphics2D. Although the basic graphics functions supported by Graphics are adequate for the
purposes of this book, Graphics2D is a class that you will want to explore fully on your own if you will
be programming sophisticated graphics applications.

Drawing Lines
Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY)

drawLine() displays a line in the current drawing color that begins at startX, startY and ends
at endX, endY.

25-ch25.indd 811 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

812 PART II The Java Library

Drawing Rectangles
The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively.
They are shown here:

void drawRect(int left, int top, int width, int height)
void fillRect(int left, int top, int width, int height)

The upper-left corner of the rectangle is at left, top. The dimensions of the rectangle are
specified by width and height.

To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both shown
here:

void drawRoundRect(int left, int top, int width, int height,
 int xDiam, int yDiam)

void fillRoundRect(int left, int top, int width, int height,
 int xDiam, int yDiam)

A rounded rectangle has rounded corners. The upper-left corner of the rectangle is at left,
top. The dimensions of the rectangle are specified by width and height. The diameter of the
rounding arc along the X axis is specified by xDiam. The diameter of the rounding arc
along the Y axis is specified by yDiam.

Drawing Ellipses and Circles
To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). These methods are
shown here:

void drawOval(int left, int top, int width, int height)
void fillOval(int left, int top, int width, int height)

The ellipse is drawn within a bounding rectangle whose upper-left corner is specified by left,
top and whose width and height are specified by width and height. To draw a circle, specify a
square as the bounding rectangle.

Drawing Arcs
Arcs can be drawn with drawArc() and fillArc(), shown here:

void drawArc(int left, int top, int width, int height, int startAngle,
 int sweepAngle)

void fillArc(int left, int top, int width, int height, int startAngle,
 int sweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by left, top and
whose width and height are specified by width and height. The arc is drawn from startAngle
through the angular distance specified by sweepAngle. Angles are specified in degrees. Zero
degrees is on the horizontal, at the three o’clock position. The arc is drawn counterclockwise
if sweepAngle is positive, and clockwise if sweepAngle is negative. Therefore, to draw an arc
from twelve o’clock to six o’clock, the start angle would be 90 and the sweep angle 180.

25-ch25.indd 812 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 813

Pa
rt

 II

Drawing Polygons
It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(),
shown here:

void drawPolygon(int x[], int y[], int numPoints)
void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and y
arrays. The number of points defined by these arrays is specified by numPoints. There are
alternative forms of these methods in which the polygon is specified by a Polygon object.

Demonstrating the Drawing Methods
The following program demonstrates the drawing methods just described.

// Draw graphics elements.
import java.awt.*;
import java.applet.*;
/*
<applet code="GraphicsDemo" width=350 height=700>
</applet>
*/
public class GraphicsDemo extends Applet {
 public void paint(Graphics g) {

 // Draw lines.
 g.drawLine(0, 0, 100, 90);
 g.drawLine(0, 90, 100, 10);
 g.drawLine(40, 25, 250, 80);

 // Draw rectangles.
 g.drawRect(10, 150, 60, 50);
 g.fillRect(100, 150, 60, 50);
 g.drawRoundRect(190, 150, 60, 50, 15, 15);
 g.fillRoundRect(280, 150, 60, 50, 30, 40);

 // Draw Ellipses and Circles
 g.drawOval(10, 250, 50, 50);
 g.fillOval(90, 250, 75, 50);
 g.drawOval(190, 260, 100, 40);

 // Draw Arcs
 g.drawArc(10, 350, 70, 70, 0, 180);
 g.fillArc(60, 350, 70, 70, 0, 75);

 // Draw a polygon
 int xpoints[] = {10, 200, 10, 200, 10};
 int ypoints[] = {450, 450, 650, 650, 450};
 int num = 5;

 g.drawPolygon(xpoints, ypoints, num);
 }
}

Sample output is shown in Figure 25-2.

25-ch25.indd 813 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

814 PART II The Java Library

Sizing Graphics
Often, you will want to size a graphics object to fit the current size of the window in which
it is drawn. To do so, first obtain the current dimensions of the window by calling getSize()
on the window object. It returns the dimensions of the window encapsulated within a
Dimension object. Once you have the current size of the window, you can scale your
graphical output accordingly.

To demonstrate this technique, here is an applet that will start as a 200´200-pixel square
and grow by 25 pixels in width and height with each mouse click until the applet gets
larger than 500´500. At that point, the next click will return it to 200´200, and the process
starts over.

Within the window, a rectangle is drawn around the inner border of the window; within
that rectangle, an X is drawn so that it fills the window. This applet works in appletviewer,
but it may not work in a browser window.

// Resizing output to fit the current size of a window.
import java.applet.*;

Figure 25-2 Sample output from the GraphicsDemo program

25-ch25.indd 814 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 815

Pa
rt

 II

import java.awt.*;
import java.awt.event.*;
/*
 <applet code="ResizeMe" width=200 height=200>
 </applet>
*/

public class ResizeMe extends Applet {
 final int inc = 25;
 int max = 500;
 int min = 200;
 Dimension d;

 public ResizeMe() {
 addMouseListener(new MouseAdapter() {
 public void mouseReleased(MouseEvent me) {
 int w = (d.width + inc) > max?min :(d.width + inc);
 int h = (d.height + inc) > max?min :(d.height + inc);
 setSize(new Dimension(w, h));
 }
 });
 }

 public void paint(Graphics g) {
 d = getSize();

 g.drawLine(0, 0, d.width-1, d.height-1);
 g.drawLine(0, d.height-1, d.width-1, 0);
 g.drawRect(0, 0, d.width-1, d.height-1);
 }
}

Working with Color
Java supports color in a portable, device-independent fashion. The AWT color system allows
you to specify any color you want. It then finds the best match for that color, given the limits
of the display hardware currently executing your program or applet. Thus, your code does
not need to be concerned with the differences in the way color is supported by various
hardware devices. Color is encapsulated by the Color class.

As you saw in Chapter 23, Color defines several constants (for example, Color.black) to
specify a number of common colors. You can also create your own colors, using one of the
color constructors. Three commonly used forms are shown here:

Color(int red, int green, int blue)
Color(int rgbValue)
Color(float red, float green, float blue)

The first constructor takes three integers that specify the color as a mix of red, green, and
blue. These values must be between 0 and 255, as in this example:

new Color(255, 100, 100); // light red

25-ch25.indd 815 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

816 PART II The Java Library

The second color constructor takes a single integer that contains the mix of red, green, and
blue packed into an integer. The integer is organized with red in bits 16 to 23, green in bits
8 to 15, and blue in bits 0 to 7. Here is an example of this constructor:

int newRed = (0xff000000 | (0xc0 << 16) | (0x00 << 8) | 0x00);
Color darkRed = new Color(newRed);

The final constructor, Color(float, float, float), takes three float values (between 0.0 and
1.0) that specify the relative mix of red, green, and blue.

Once you have created a color, you can use it to set the foreground and/or background
color by using the setForeground() and setBackground() methods described in Chapter 23.
You can also select it as the current drawing color.

Color Methods
The Color class defines several methods that help manipulate colors. Several are
examined here.

Using Hue, Saturation, and Brightness
The hue-saturation-brightness (HSB) color model is an alternative to red-green-blue (RGB)
for specifying particular colors. Figuratively, hue is a wheel of color. The hue can be
specified with a number between 0.0 and 1.0, which is used to obtain an angle into the
color wheel. (The principal colors are approximately red, orange, yellow, green, blue, indigo,
and violet.) Saturation is another scale ranging from 0.0 to 1.0, representing light pastels to
intense hues. Brightness values also range from 0.0 to 1.0, where 1 is bright white and 0 is
black. Color supplies two methods that let you convert between RGB and HSB. They are
shown here:

static int HSBtoRGB(float hue, float saturation, float brightness)
static float[] RGBtoHSB(int red, int green, int blue, float values[])

HSBtoRGB() returns a packed RGB value compatible with the Color(int) constructor.
RGBtoHSB() returns a float array of HSB values corresponding to RGB integers. If values
is not null, then this array is given the HSB values and returned. Otherwise, a new array is
created and the HSB values are returned in it. In either case, the array contains the hue at
index 0, saturation at index 1, and brightness at index 2.

getRed(), getGreen(), getBlue()
You can obtain the red, green, and blue components of a color independently using
getRed(), getGreen(), and getBlue(), shown here:

int getRed()
int getGreen()
int getBlue()

Each of these methods returns the RGB color component found in the invoking Color
object in the lower 8 bits of an integer.

25-ch25.indd 816 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 817

Pa
rt

 II

getRGB()
To obtain a packed, RGB representation of a color, use getRGB(), shown here:

int getRGB()

The return value is organized as described earlier.

Setting the Current Graphics Color
By default, graphics objects are drawn in the current foreground color. You can change this
color by calling the Graphics method setColor() :

void setColor(Color newColor)

Here, newColor specifies the new drawing color.
You can obtain the current color by calling getColor(), shown here:

Color getColor()

A Color Demonstration Applet
The following applet constructs several colors and draws various objects using these colors:

// Demonstrate color.
import java.awt.*;
import java.applet.*;
/*
<applet code="ColorDemo" width=300 height=200>
</applet>
*/

public class ColorDemo extends Applet {
 // draw lines
 public void paint(Graphics g) {
 Color c1 = new Color(255, 100, 100);
 Color c2 = new Color(100, 255, 100);
 Color c3 = new Color(100, 100, 255);

 g.setColor(c1);
 g.drawLine(0, 0, 100, 100);
 g.drawLine(0, 100, 100, 0);

 g.setColor(c2);
 g.drawLine(40, 25, 250, 180);
 g.drawLine(75, 90, 400, 400);

 g.setColor(c3);
 g.drawLine(20, 150, 400, 40);
 g.drawLine(5, 290, 80, 19);

 g.setColor(Color.red);
 g.drawOval(10, 10, 50, 50);
 g.fillOval(70, 90, 140, 100);

25-ch25.indd 817 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

818 PART II The Java Library

 g.setColor(Color.blue);
 g.drawOval(190, 10, 90, 30);
 g.drawRect(10, 10, 60, 50);

 g.setColor(Color.cyan);
 g.fillRect(100, 10, 60, 50);
 g.drawRoundRect(190, 10, 60, 50, 15, 15);
 }
}

Setting the Paint Mode
The paint mode determines how objects are drawn in a window. By default, new output to
a window overwrites any preexisting contents. However, it is possible to have new objects
XORed onto the window by using setXORMode(), as follows:

void setXORMode(Color xorColor)

Here, xorColor specifies the color that will be XORed to the window when an object is drawn.
The advantage of XOR mode is that the new object is always guaranteed to be visible no
matter what color the object is drawn over.

To return to overwrite mode, call setPaintMode(), shown here:

void setPaintMode()

In general, you will want to use overwrite mode for normal output, and XOR mode for
special purposes. For example, the following program displays cross hairs that track the
mouse pointer. The cross hairs are XORed onto the window and are always visible, no
matter what the underlying color is.

// Demonstrate XOR mode.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="XOR" width=400 height=200>
 </applet>
*/

public class XOR extends Applet {
 int chsX=100, chsY=100;

 public XOR() {
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseMoved(MouseEvent me) {
 int x = me.getX();
 int y = me.getY();
 chsX = x-10;
 chsY = y-10;
 repaint();
 }
 });
 }

25-ch25.indd 818 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 819

Pa
rt

 II

 public void paint(Graphics g) {
 g.drawLine(0, 0, 100, 100);
 g.drawLine(0, 100, 100, 0);
 g.setColor(Color.blue);
 g.drawLine(40, 25, 250, 180);
 g.drawLine(75, 90, 400, 400);
 g.setColor(Color.green);
 g.drawRect(10, 10, 60, 50);
 g.fillRect(100, 10, 60, 50);
 g.setColor(Color.red);
 g.drawRoundRect(190, 10, 60, 50, 15, 15);
 g.fillRoundRect(70, 90, 140, 100, 30, 40);
 g.setColor(Color.cyan);
 g.drawLine(20, 150, 400, 40);
 g.drawLine(5, 290, 80, 19);

 // xor cross hairs
 g.setXORMode(Color.black);
 g.drawLine(chsX-10, chsY, chsX+10, chsY);
 g.drawLine(chsX, chsY-10, chsX, chsY+10);
 g.setPaintMode();
 }
}

Sample output from this program is shown here:

Working with Fonts
The AWT supports multiple type fonts. Years ago, fonts emerged from the domain of
traditional typesetting to become an important part of computer-generated documents
and displays. The AWT provides flexibility by abstracting font-manipulation operations and
allowing for dynamic selection of fonts.

Fonts have a family name, a logical font name, and a face name. The family name is the
general name of the font, such as Courier. The logical name specifies a name, such as
Monospaced, that is linked to an actual font at runtime. The face name specifies a specific
font, such as Courier Italic.

25-ch25.indd 819 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

820 PART II The Java Library

Fonts are encapsulated by the Font class. Several of the methods defined by Font are
listed in Table 25-2.

The Font class defines these protected variables:

Variable Meaning
String name Name of the font

float pointSize Size of the font in points

int size Size of the font in points

int style Font style

Several static fields are also defined.

Table 25-2 A Sampling of Methods Defined by Font

Method Description
static Font decode(String str) Returns a font given its name.

boolean equals(Object FontObj) Returns true if the invoking object contains the
same font as that specified by FontObj. Otherwise, it
returns false.

String getFamily() Returns the name of the font family to which the
invoking font belongs.

static Font getFont(String property) Returns the font associated with the system property
specified by property. null is returned if property does
not exist.

static Font getFont(String property,
 Font defaultFont)

Returns the font associated with the system property
specified by property. The font specified by defaultFont
is returned if property does not exist.

String getFontName() Returns the face name of the invoking font.

String getName() Returns the logical name of the invoking font.

int getSize() Returns the size, in points, of the invoking font.

int getStyle() Returns the style values of the invoking font.

int hashCode() Returns the hash code associated with the invoking
object.

boolean isBold() Returns true if the font includes the BOLD style
value. Otherwise, false is returned.

boolean isItalic() Returns true if the font includes the ITALIC style
value. Otherwise, false is returned.

boolean isPlain() Returns true if the font includes the PLAIN style
value. Otherwise, false is returned.

String toString() Returns the string equivalent of the invoking font.

25-ch25.indd 820 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 821

Pa
rt

 II

Determining the Available Fonts
When working with fonts, often you need to know which fonts are available on your machine.
To obtain this information, you can use the getAvailableFontFamilyNames() method defined
by the GraphicsEnvironment class. It is shown here:

String[] getAvailableFontFamilyNames()

This method returns an array of strings that contains the names of the available font
families.

In addition, the getAllFonts() method is defined by the GraphicsEnvironment class.
It is shown here:

Font[] getAllFonts()

This method returns an array of Font objects for all of the available fonts.
Since these methods are members of GraphicsEnvironment, you need a

GraphicsEnvironment reference to call them. You can obtain this reference by
using the getLocalGraphicsEnvironment() static method, which is defined by
GraphicsEnvironment. It is shown here:

static GraphicsEnvironment getLocalGraphicsEnvironment()

Here is an applet that shows how to obtain the names of the available font families:

// Display Fonts
/*
<applet code="ShowFonts" width=550 height=60>
</applet>
*/
import java.applet.*;
import java.awt.*;

public class ShowFonts extends Applet {
 public void paint(Graphics g) {
 String msg = "";
 String FontList[];

 GraphicsEnvironment ge =
 GraphicsEnvironment.getLocalGraphicsEnvironment();
 FontList = ge.getAvailableFontFamilyNames();
 for(int i = 0; i < FontList.length; i++)
 msg += FontList[i] + " ";

 g.drawString(msg, 4, 16);
 }
}

25-ch25.indd 821 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

822 PART II The Java Library

Sample output from this program is shown next. However, when you run this program, you
may see a different list of fonts than the one shown in this illustration.

Creating and Selecting a Font
To create a new font, construct a Font object that describes that font. One Font constructor
has this general form:

Font(String fontName, int fontStyle, int pointSize)

Here, fontName specifies the name of the desired font. The name can be specified using
either the logical or face name. All Java environments will support the following fonts:
Dialog, DialogInput, SansSerif, Serif, and Monospaced. Dialog is the font used by your
system’s dialog boxes. Dialog is also the default if you don’t explicitly set a font. You can
also use any other fonts supported by your particular environment, but be careful—these
other fonts may not be universally available.

The style of the font is specified by fontStyle. It may consist of one or more of these three
constants: Font.PLAIN, Font.BOLD, and Font.ITALIC. To combine styles, OR them
together. For example, Font.BOLD | Font.ITALIC specifies a bold, italics style.

The size, in points, of the font is specified by pointSize.
To use a font that you have created, you must select it using setFont(), which is defined

by Component. It has this general form:

void setFont(Font fontObj)

Here, fontObj is the object that contains the desired font.
The following program outputs a sample of each standard font. Each time you click the

mouse within its window, a new font is selected and its name is displayed.

// Show fonts.
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
/*
 <applet code="SampleFonts" width=200 height=100>
 </applet>
*/

public class SampleFonts extends Applet {
 int next = 0;
 Font f;
 String msg;

25-ch25.indd 822 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 823

Pa
rt

 II

 public void init() {
 f = new Font("Dialog", Font.PLAIN, 12);
 msg = "Dialog";
 setFont(f);
 addMouseListener(new MyMouseAdapter(this));
 }

 public void paint(Graphics g) {
 g.drawString(msg, 4, 20);
 }
}

class MyMouseAdapter extends MouseAdapter {
 SampleFonts sampleFonts;

 public MyMouseAdapter(SampleFonts sampleFonts) {
 this.sampleFonts = sampleFonts;
 }

 public void mousePressed(MouseEvent me) {
 // Switch fonts with each mouse click.
 sampleFonts.next++;
 switch(sampleFonts.next) {
 case 0:
 sampleFonts.f = new Font("Dialog", Font.PLAIN, 12);
 sampleFonts.msg = "Dialog";
 break;
 case 1:
 sampleFonts.f = new Font("DialogInput", Font.PLAIN, 12);
 sampleFonts.msg = "DialogInput";
 break;
 case 2:
 sampleFonts.f = new Font("SansSerif", Font.PLAIN, 12);
 sampleFonts.msg = "SansSerif";
 break;
 case 3:
 sampleFonts.f = new Font("Serif", Font.PLAIN, 12);
 sampleFonts.msg = "Serif";
 break;
 case 4:
 sampleFonts.f = new Font("Monospaced", Font.PLAIN, 12);
 sampleFonts.msg = "Monospaced";
 break;
 }

 if(sampleFonts.next == 4) sampleFonts.next = -1;

 sampleFonts.setFont(sampleFonts.f);
 sampleFonts.repaint();
 }
}

25-ch25.indd 823 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

824 PART II The Java Library

Sample output from this program is shown here:

Obtaining Font Information
Suppose you want to obtain information about the currently selected font. To do this, you
must first get the current font by calling getFont(). This method is defined by the Graphics
class, as shown here:

Font getFont()

Once you have obtained the currently selected font, you can retrieve information about it
using various methods defined by Font. For example, this applet displays the name, family,
size, and style of the currently selected font:

// Display font info.
import java.applet.*;
import java.awt.*;
/*
<applet code="FontInfo" width=350 height=60>
</applet>
*/

public class FontInfo extends Applet {
 public void paint(Graphics g) {
 Font f = g.getFont();
 String fontName = f.getName();
 String fontFamily = f.getFamily();
 int fontSize = f.getSize();
 int fontStyle = f.getStyle();

 String msg = "Family: " + fontName;
 msg += ", Font: " + fontFamily;
 msg += ", Size: " + fontSize + ", Style: ";
 if((fontStyle & Font.BOLD) == Font.BOLD)
 msg += "Bold ";
 if((fontStyle & Font.ITALIC) == Font.ITALIC)
 msg += "Italic ";
 if((fontStyle & Font.PLAIN) == Font.PLAIN)
 msg += "Plain ";

 g.drawString(msg, 4, 16);
 }
}

25-ch25.indd 824 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 825

Pa
rt

 II

Managing Text Output Using FontMetrics
As just explained, Java supports a number of fonts. For most fonts, characters are not all the
same dimension—most fonts are proportional. Also, the height of each character, the length
of descenders (the hanging parts of letters, such as y), and the amount of space between
horizontal lines vary from font to font. Further, the point size of a font can be changed. That
these (and other) attributes are variable would not be of too much consequence except that
Java demands that you, the programmer, manually manage virtually all text output.

Given that the size of each font may differ and that fonts may be changed while your
program is executing, there must be some way to determine the dimensions and various
other attributes of the currently selected font. For example, to write one line of text after
another implies that you have some way of knowing how tall the font is and how many
pixels are needed between lines. To fill this need, the AWT includes the FontMetrics class,
which encapsulates various information about a font. Let’s begin by defining the common
terminology used when describing fonts:

Height The top-to-bottom size of a line of text

Baseline The line that the bottoms of characters are aligned to (not counting descent)

Ascent The distance from the baseline to the top of a character

Descent The distance from the baseline to the bottom of a character

Leading The distance between the bottom of one line of text and the top of the next

As you know, we have used the drawString() method in many of the previous examples.
It paints a string in the current font and color, beginning at a specified location. However,
this location is at the left edge of the baseline of the characters, not at the upper-left corner
as is usual with other drawing methods. It is a common error to draw a string at the same
coordinate that you would draw a box. For example, if you were to draw a rectangle at
coordinate 0,0, you would see a full rectangle. If you were to draw the string “Typesetting”
at 0,0, you would only see the tails (or descenders) of the y, p, and g. As you will see, by
using font metrics, you can determine the proper placement of each string that you display.

FontMetrics defines several methods that help you manage text output. Several commonly
used ones are listed in Table 25-3. These methods help you properly display text in a window.
Let’s look at some examples.

Displaying Multiple Lines of Text
Perhaps the most common use of FontMetrics is to determine the spacing between lines of
text. The second most common use is to determine the length of a string that is being
displayed. Here, you will see how to accomplish these tasks.

In general, to display multiple lines of text, your program must manually keep track of
the current output position. Each time a newline is desired, the Y coordinate must be
advanced to the beginning of the next line. Each time a string is displayed, the X coordinate
must be set to the point at which the string ends. This allows the next string to be written so
that it begins at the end of the preceding one.

25-ch25.indd 825 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

826 PART II The Java Library

To determine the spacing between lines, you can use the value returned by getLeading().
To determine the total height of the font, add the value returned by getAscent() to the
value returned by getDescent(). You can then use these values to position each line of text
you output. However, in many cases, you will not need to use these individual values. Often,
all that you will need to know is the total height of a line, which is the sum of the leading
space and the font’s ascent and descent values. The easiest way to obtain this value is to call
getHeight(). Simply increment the Y coordinate by this value each time you want to advance
to the next line when outputting text.

To start output at the end of previous output on the same line, you must know the
length, in pixels, of each string that you display. To obtain this value, call stringWidth().
You can use this value to advance the X coordinate each time you display a line.

The following applet shows how to output multiple lines of text in a window. It also
displays multiple sentences on the same line. Notice the variables curX and curY. They
keep track of the current text output position.

// Demonstrate multiline output.
import java.applet.*;
import java.awt.*;
/*
<applet code="MultiLine" width=300 height=100>
</applet>
*/

Method Description
int bytesWidth(byte b[], int start,
 int numBytes)

Returns the width of numBytes characters held in array
b, beginning at start.

int charWidth(char c[], int start,
 int numChars)

Returns the width of numChars characters held in array
c, beginning at start.

int charWidth(char c) Returns the width of c.

int charWidth(int c) Returns the width of c.

int getAscent() Returns the ascent of the font.

int getDescent() Returns the descent of the font.

Font getFont() Returns the font.

int getHeight() Returns the height of a line of text. This value can be
used to output multiple lines of text in a window.

int getLeading() Returns the space between lines of text.

int getMaxAdvance() Returns the width of the widest character. –1 is
returned if this value is not available.

int getMaxAscent() Returns the maximum ascent.

int getMaxDescent() Returns the maximum descent.

int[] getWidths() Returns the widths of the first 256 characters.

int stringWidth(String str) Returns the width of the string specified by str.

String toString() Returns the string equivalent of the invoking object.

Table 25-3 A Sampling of Methods Defined by FontMetrics

25-ch25.indd 826 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 827

Pa
rt

 II

public class MultiLine extends Applet {
 int curX=0, curY=0; // current position

 public void init() {
 Font f = new Font("SansSerif", Font.PLAIN, 12);
 setFont(f);
 }

 public void paint(Graphics g) {
 FontMetrics fm = g.getFontMetrics();

 nextLine("This is on line one.", g);
 nextLine("This is on line two.", g);
 sameLine(" This is on same line.", g);
 sameLine(" This, too.", g);
 nextLine("This is on line three.", g);
 curX = curY = 0; // Reset coordinates for each repaint.
 }

 // Advance to next line.
 void nextLine(String s, Graphics g) {
 FontMetrics fm = g.getFontMetrics();

 curY += fm.getHeight(); // advance to next line
 curX = 0;
 g.drawString(s, curX, curY);
 curX = fm.stringWidth(s); // advance to end of line
 }

 // Display on same line.
 void sameLine(String s, Graphics g) {
 FontMetrics fm = g.getFontMetrics();

 g.drawString(s, curX, curY);
 curX += fm.stringWidth(s); // advance to end of line
 }
}

Sample output from this program is shown here:

25-ch25.indd 827 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

828 PART II The Java Library

Centering Text
Here is an example that centers text, left to right, top to bottom, in a window. It obtains the
ascent, descent, and width of the string and computes the position at which it must be
displayed to be centered.

// Center text.
import java.applet.*;
import java.awt.*;
/*
 <applet code="CenterText" width=200 height=100>
 </applet>
*/

public class CenterText extends Applet {
 final Font f = new Font("SansSerif", Font.BOLD, 18);

 public void paint(Graphics g) {
 Dimension d = this.getSize();

 g.setColor(Color.white);
 g.fillRect(0, 0, d.width,d.height);
 g.setColor(Color.black);
 g.setFont(f);
 drawCenteredString("This is centered.", d.width, d.height, g);
 g.drawRect(0, 0, d.width-1, d.height-1);
 }

 public void drawCenteredString(String s, int w, int h,
 Graphics g) {
 FontMetrics fm = g.getFontMetrics();
 int x = (w - fm.stringWidth(s)) / 2;
 int y = (fm.getAscent() + (h - (fm.getAscent()
 + fm.getDescent()))/2);
 g.drawString(s, x, y);
 }
}

Following is a sample output from this program:

25-ch25.indd 828 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 829

Pa
rt

 II

Multiline Text Alignment
When using a word processor, it is common for text to be aligned so that one or more of
the edges of the text make a straight line. For example, most word processors can left-justify
and/or right-justify text. Most can also center text. In the following program, you will see
how to accomplish these actions.

In the program, the string to be justified is broken into individual words. For each
word, the program keeps track of its length in the current font and automatically advances
to the next line if the word will not fit on the current line. Each completed line is displayed
in the window in the currently selected alignment style. Each time you click the mouse in
the applet’s window, the alignment style is changed. Sample output from this program is
shown here:

// Demonstrate text alignment.
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;
/* <title>Text Layout</title>
 <applet code="TextLayout" width=200 height=200>
 <param name="text" value="Output to a Java window is actually
 quite easy.
 As you have seen, the AWT provides support for
 fonts, colors, text, and graphics. <P> Of course,
 you must effectively utilize these items
 if you are to achieve professional results.">
 <param name="fontname" value="Serif">
 <param name="fontSize" value="14">
 </applet>
*/

public class TextLayout extends Applet {
 final int LEFT = 0;
 final int RIGHT = 1;
 final int CENTER = 2;
 final int LEFTRIGHT =3;
 int align;

25-ch25.indd 829 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

830 PART II The Java Library

 Dimension d;
 Font f;
 FontMetrics fm;
 int fontSize;
 int fh, bl;
 int space;
 String text;

 public void init() {
 setBackground(Color.white);
 text = getParameter("text");
 try {
 fontSize = Integer.parseInt(getParameter("fontSize"));}
 catch (NumberFormatException e) {
 fontSize=14;
 }
 align = LEFT;
 addMouseListener(new MyMouseAdapter(this));
 }

 public void paint(Graphics g) {
 update(g);
 }

 public void update(Graphics g) {
 d = getSize();
 g.setColor(getBackground());
 g.fillRect(0,0,d.width, d.height);
 if(f==null) f = new Font(getParameter("fontname"),
 Font.PLAIN, fontSize);
 g.setFont(f);
 if(fm == null) {
 fm = g.getFontMetrics();
 bl = fm.getAscent();
 fh = bl + fm.getDescent();
 space = fm.stringWidth(" ");
 }

 g.setColor(Color.black);
 StringTokenizer st = new StringTokenizer(text);
 int x = 0;
 int nextx;
 int y = 0;
 String word, sp;
 int wordCount = 0;
 String line = "";
 while (st.hasMoreTokens()) {
 word = st.nextToken();
 if(word.equals("<P>")) {
 drawString(g, line, wordCount,
 fm.stringWidth(line), y+bl);
 line = "";
 wordCount = 0;

25-ch25.indd 830 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 25 Introducing the AWT: Working with Windows, Graphics, and Text 831

Pa
rt

 II

 x = 0;
 y = y + (fh * 2);
 }
 else {
 int w = fm.stringWidth(word);
 if((nextx = (x+space+w)) > d.width) {
 drawString(g, line, wordCount,
 fm.stringWidth(line), y+bl);
 line = "";
 wordCount = 0;
 x = 0;
 y = y + fh;
 }
 if(x!=0) {sp = " ";} else {sp = "";}
 line = line + sp + word;
 x = x + space + w;
 wordCount++;
 }
 }
 drawString(g, line, wordCount, fm.stringWidth(line), y+bl);
 }

 public void drawString(Graphics g, String line,
 int wc, int lineW, int y) {
 switch(align) {
 case LEFT: g.drawString(line, 0, y);
 break;
 case RIGHT: g.drawString(line, d.width-lineW,y);
 break;
 case CENTER: g.drawString(line, (d.width-lineW)/2, y);
 break;
 case LEFTRIGHT:
 if(lineW < (int)(d.width*.75)) {
 g.drawString(line, 0, y);
 }
 else {
 int toFill = (d.width - lineW)/wc;
 int nudge = d.width - lineW - (toFill*wc);
 int s = fm.stringWidth(" ");
 StringTokenizer st = new StringTokenizer(line);
 int x = 0;
 while(st.hasMoreTokens()) {
 String word = st.nextToken();
 g.drawString(word, x, y);
 if(nudge>0) {
 x = x + fm.stringWidth(word) + space + toFill + 1;
 nudge--;
 } else {
 x = x + fm.stringWidth(word) + space + toFill;
 }
 }
 }
 break;

25-ch25.indd 831 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

832 PART II The Java Library

 }
 }
}

class MyMouseAdapter extends MouseAdapter {
 TextLayout tl;

 public MyMouseAdapter(TextLayout tl) {
 this.tl = tl;
 }

 public void mouseClicked(MouseEvent me) {
 tl.align = (tl.align + 1) % 4;
 tl.repaint();
 }
}

Let’s take a closer look at how this applet works. The applet first creates several
constants that will be used to determine the alignment style, and then declares several
variables. The init() method obtains the text that will be displayed. It then initializes the
font size in a try-catch block, which will set the font size to 14 if the fontSize parameter is
missing from the HTML. The text parameter is a long string of text, with the HTML tag
<P> as a paragraph separator.

The update() method is the engine for this example. It sets the font and gets the
baseline and font height from a font metrics object. Next, it creates a StringTokenizer
and uses it to retrieve the next token (a string separated by whitespace) from the string
specified by text. If the next token is <P>, it advances the vertical spacing. Otherwise,
update() checks to see if the length of this token in the current font will go beyond the
width of the column. If the line is full of text or if there are no more tokens, the line is
output by a custom version of drawString().

The first three cases in drawString() are simple. Each aligns the string that is passed in
line to the left or right edge or to the center of the column, depending upon the alignment
style. The LEFTRIGHT case aligns both the left and right sides of the string. This means
that we need to calculate the remaining whitespace (the difference between the width of
the string and the width of the column) and distribute that space between each of the words.
The last method in this class advances the alignment style each time you click the mouse on
the applet’s window.

25-ch25.indd 832 14/02/14 5:18 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

26
CHAPTER

 833

Using AWT Controls,
Layout Managers, and Menus

This chapter continues our overview of the Abstract Window Toolkit (AWT). It begins with
a look at several of the AWT’s controls and layout managers. It then discusses menus and
the menu bar. The chapter also includes a discussion of two high-level components: the
dialog box and the file dialog box. It concludes with another look at event handling.

Controls are components that allow a user to interact with your application in various
ways—for example, a commonly used control is the push button. A layout manager automatically
positions components within a container. Thus, the appearance of a window is determined by
a combination of the controls that it contains and the layout manager used to position them.

In addition to the controls, a frame window can also include a standard-style menu bar.
Each entry in a menu bar activates a drop-down menu of options from which the user can
choose. This constitutes the main menu of an application. As a general rule, a menu bar is
positioned at the top of a window. Although different in appearance, menu bars are
handled in much the same way as are the other controls.

While it is possible to manually position components within a window, doing so is quite
tedious. The layout manager automates this task. For the first part of this chapter, which
introduces various controls, the default layout manager will be used. This displays
components in a container using left-to-right, top-to-bottom organization. Once the
controls have been covered, several layout managers will be examined. There, you will see
ways to better manage the positioning of controls.

Before continuing, it is important to emphasize that today you will seldom create GUIs
based solely on the AWT because more powerful GUI frameworks (Swing and JavaFX) have
been developed for Java. However, the material presented here remains important for the
following reasons. First, much of the information and many of the techniques related to
controls and event handling are generalizable to the other Java GUI frameworks. (As
mentioned in the previous chapter, Swing is built upon the AWT.) Second, the layout
managers described here can also be used by Swing. Third, for some small applications, the
AWT components might be the appropriate choice. Finally, and perhaps most importantly,
you may need to maintain or upgrade legacy code that uses the AWT. Therefore, a basic
understanding of the AWT is important for all Java programmers.

26-ch26.indd 833 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

834 PART II The Java Library

AWT Control Fundamentals
The AWT supports the following types of controls:

•	 Labels

•	 Push buttons

•	 Check boxes

•	 Choice lists

•	 Lists

•	 Scroll bars

•	 Text Editing

These controls are subclasses of Component. Although this is not a particularly rich set of
controls, it is sufficient for simple applications. (Note that both Swing and JavaFX provide a
substantially larger, more sophisticated set of controls.)

Adding and Removing Controls
To include a control in a window, you must add it to the window. To do this, you must first
create an instance of the desired control and then add it to a window by calling add(),
which is defined by Container. The add() method has several forms. The following form
is the one that is used for the first part of this chapter:

Component add(Component compRef)

Here, compRef is a reference to an instance of the control that you want to add. A reference
to the object is returned. Once a control has been added, it will automatically be visible
whenever its parent window is displayed.

Sometimes you will want to remove a control from a window when the control is no
longer needed. To do this, call remove(). This method is also defined by Container. Here
is one of its forms:

void remove(Component compRef)

Here, compRef is a reference to the control you want to remove. You can remove all controls
by calling removeAll().

Responding to Controls
Except for labels, which are passive, all other controls generate events when they are
accessed by the user. For example, when the user clicks on a push button, an event is sent
that identifies the push button. In general, your program simply implements the appropriate
interface and then registers an event listener for each control that you need to monitor. As
explained in Chapter 24, once a listener has been installed, events are automatically sent to
it. In the sections that follow, the appropriate interface for each control is specified.

26-ch26.indd 834 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 835

Pa
rt

 II

The HeadlessException
Most of the AWT controls described in this chapter have constructors that can throw a
HeadlessException when an attempt is made to instantiate a GUI component in a non-
interactive environment (such as one in which no display, mouse, or keyboard is present).
You can use this exception to write code that can adapt to non-interactive environments.
(Of course, this is not always possible.) This exception is not handled by the programs in this
chapter because an interactive environment is required to demonstrate the AWT controls.

Labels
The easiest control to use is a label. A label is an object of type Label, and it contains a
string, which it displays. Labels are passive controls that do not support any interaction
with the user. Label defines the following constructors:

Label() throws HeadlessException
Label(String str) throws HeadlessException
Label(String str, int how) throws HeadlessException

The first version creates a blank label. The second version creates a label that contains
the string specified by str. This string is left-justified. The third version creates a label that
contains the string specified by str using the alignment specified by how. The value of how
must be one of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER.

You can set or change the text in a label by using the setText() method. You can obtain
the current label by calling getText(). These methods are shown here:

void setText(String str)
String getText()

For setText(), str specifies the new label. For getText(), the current label is returned.
You can set the alignment of the string within the label by calling setAlignment(). To

obtain the current alignment, call getAlignment(). The methods are as follows:

void setAlignment(int how)
int getAlignment()

Here, how must be one of the alignment constants shown earlier.
The following example creates three labels and adds them to an applet window:

// Demonstrate Labels
import java.awt.*;
import java.applet.*;
/*
<applet code="LabelDemo" width=300 height=200>
</applet>
*/

public class LabelDemo extends Applet {
 public void init() {
 Label one = new Label("One");
 Label two = new Label("Two");
 Label three = new Label("Three");

26-ch26.indd 835 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

836 PART II The Java Library

 // add labels to applet window
 add(one);
 add(two);
 add(three);
 }
}

Here is sample output from the LabelDemo applet. Notice that the labels are organized in
the window by the default layout manager. Later, you will see how to control more precisely
the placement of the labels.

Using Buttons
Perhaps the most widely used control is the push button. A push button is a component that
contains a label and that generates an event when it is pressed. Push buttons are objects of
type Button. Button defines these two constructors:

Button() throws HeadlessException
Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a button that contains str as
a label.

After a button has been created, you can set its label by calling setLabel(). You can
retrieve its label by calling getLabel(). These methods are as follows:

void setLabel(String str)
String getLabel()

Here, str becomes the new label for the button.

Handling Buttons
Each time a button is pressed, an action event is generated. This is sent to any listeners that
previously registered an interest in receiving action event notifications from that component.
Each listener implements the ActionListener interface. That interface defines the
actionPerformed() method, which is called when an event occurs. An ActionEvent object
is supplied as the argument to this method. It contains both a reference to the button that
generated the event and a reference to the action command string associated with the button.
By default, the action command string is the label of the button. Either the button reference
or the action command string can be used to identify the button. (You will soon see examples
of each approach.)

26-ch26.indd 836 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 837

Pa
rt

 II

Here is an example that creates three buttons labeled "Yes", "No", and "Undecided".
Each time one is pressed, a message is displayed that reports which button has been
pressed. In this version, the action command of the button (which, by default, is its label)
is used to determine which button has been pressed. The label is obtained by calling the
getActionCommand() method on the ActionEvent object passed to actionPerformed().

// Demonstrate Buttons
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="ButtonDemo" width=250 height=150>
 </applet>
*/

public class ButtonDemo extends Applet implements ActionListener {
 String msg = "";
 Button yes, no, maybe;

 public void init() {
 yes = new Button("Yes");
 no = new Button("No");
 maybe = new Button("Undecided");

 add(yes);
 add(no);
 add(maybe);

 yes.addActionListener(this);
 no.addActionListener(this);
 maybe.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae) {
 String str = ae.getActionCommand();

 if(str.equals("Yes")) {
 msg = "You pressed Yes.";
 }
 else if(str.equals("No")) {
 msg = "You pressed No.";
 }
 else {
 msg = "You pressed Undecided.";
 }

 repaint();
 }

 public void paint(Graphics g) {
 g.drawString(msg, 6, 100);
 }
}

26-ch26.indd 837 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

838 PART II The Java Library

Sample output from the ButtonDemo program is shown in Figure 26-1.
As mentioned, in addition to comparing button action command strings, you can also

determine which button has been pressed by comparing the object obtained from the
getSource() method to the button objects that you added to the window. To do this, you
must keep a list of the objects when they are added. The following applet shows this
approach:

// Recognize Button objects.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="ButtonList" width=250 height=150>
 </applet>
*/

public class ButtonList extends Applet implements ActionListener {
 String msg = "";
 Button bList[] = new Button[3];

 public void init() {
 Button yes = new Button("Yes");
 Button no = new Button("No");
 Button maybe = new Button("Undecided");

 // store references to buttons as added
 bList[0] = (Button) add(yes);
 bList[1] = (Button) add(no);
 bList[2] = (Button) add(maybe);

 // register to receive action events
 for(int i = 0; i < 3; i++) {
 bList[i].addActionListener(this);
 }
 }

Figure 26-1 Sample output from the ButtonDemo applet

26-ch26.indd 838 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 839

Pa
rt

 II

 public void actionPerformed(ActionEvent ae) {
 for(int i = 0; i < 3; i++) {
 if(ae.getSource() == bList[i]) {
 msg = "You pressed " + bList[i].getLabel();
 }
 }
 repaint();
 }

 public void paint(Graphics g) {
 g.drawString(msg, 6, 100);
 }
}

In this version, the program stores each button reference in an array when the buttons
are added to the applet window. (Recall that the add() method returns a reference to the
button when it is added.) Inside actionPerformed(), this array is then used to determine
which button has been pressed.

For simple programs, it is usually easier to recognize buttons by their labels. However,
in situations in which you will be changing the label inside a button during the execution
of your program, or using buttons that have the same label, it may be easier to determine
which button has been pushed by using its object reference. It is also possible to set the
action command string associated with a button to something other than its label by calling
setActionCommand(). This method changes the action command string, but does not
affect the string used to label the button. Thus, setting the action command enables the
action command and the label of a button to differ.

In some cases, you can handle the action events generated by a button (or some other
type of control) by use of an anonymous inner class (as described in Chapter 24) or a
lambda expression (discussed in Chapter 15). For example, assuming the previous programs,
here is a set of action event handlers that use lambda expressions:

// Use lambda expressions to handle action events.
yes.addActionListener((ae) -> {
 msg = "You pressed " + ae.getActionCommand();
 repaint();
});

no.addActionListener((ae) -> {
 msg = "You pressed " + ae.getActionCommand();
 repaint();
});

maybe.addActionListener((ae) -> {
 msg = "You pressed " + ae.getActionCommand();
 repaint();
});

This code works because ActionListener defines a functional interface, which is an
interface with exactly one abstract method. Thus, it can be used by a lambda expression. In
general, you can use a lambda expression to handle an AWT event when its listener defines a
functional interface. For example, ItemListener is also a functional interface. Of course,

26-ch26.indd 839 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

840 PART II The Java Library

whether you use the traditional approach, an anonymous inner class, or a lambda expression
will be determined by the precise nature of your application. The remaining examples in
this chapter use the traditional approach to event handling so that they can be compiled by
nearly any version of Java. However, you might find it interesting to try converting the event
handlers to lambda expressions or anonymous inner classes, where appropriate.

Applying Check Boxes
A check box is a control that is used to turn an option on or off. It consists of a small box that
can either contain a check mark or not. There is a label associated with each check box that
describes what option the box represents. You change the state of a check box by clicking
on it. Check boxes can be used individually or as part of a group. Check boxes are objects
of the Checkbox class.

Checkbox supports these constructors:

Checkbox() throws HeadlessException
Checkbox(String str) throws HeadlessException
Checkbox(String str, boolean on) throws HeadlessException
Checkbox(String str, boolean on, CheckboxGroup cbGroup) throws HeadlessException
Checkbox(String str, CheckboxGroup cbGroup, boolean on) throws HeadlessException

The first form creates a check box whose label is initially blank. The state of the check box
is unchecked. The second form creates a check box whose label is specified by str. The state
of the check box is unchecked. The third form allows you to set the initial state of the check
box. If on is true, the check box is initially checked; otherwise, it is cleared. The fourth and
fifth forms create a check box whose label is specified by str and whose group is specified by
cbGroup. If this check box is not part of a group, then cbGroup must be null. (Check box
groups are described in the next section.) The value of on determines the initial state of the
check box.

To retrieve the current state of a check box, call getState(). To set its state, call setState().
You can obtain the current label associated with a check box by calling getLabel(). To set
the label, call setLabel(). These methods are as follows:

boolean getState()
void setState(boolean on)
String getLabel()
void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is cleared. The string passed in
str becomes the new label associated with the invoking check box.

Handling Check Boxes
Each time a check box is selected or deselected, an item event is generated. This is sent to any
listeners that previously registered an interest in receiving item event notifications from that
component. Each listener implements the ItemListener interface. That interface defines the
itemStateChanged() method. An ItemEvent object is supplied as the argument to this
method. It contains information about the event (for example, whether it was a selection or
deselection).

26-ch26.indd 840 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 841

Pa
rt

 II

The following program creates four check boxes. The initial state of the first box is
checked. The status of each check box is displayed. Each time you change the state of a
check box, the status display is updated.

// Demonstrate check boxes.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="CheckboxDemo" width=240 height=200>
 </applet>
*/

public class CheckboxDemo extends Applet implements ItemListener {
 String msg = "";
 Checkbox windows, android, solaris, mac;

 public void init() {
 windows = new Checkbox("Windows", null, true);
 android = new Checkbox("Android");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 add(windows);
 add(android);
 add(solaris);
 add(mac);

 windows.addItemListener(this);
 android.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {
 msg = "Current state: ";
 g.drawString(msg, 6, 80);
 msg = " Windows: " + windows.getState();
 g.drawString(msg, 6, 100);
 msg = " Android: " + android.getState();
 g.drawString(msg, 6, 120);
 msg = " Solaris: " + solaris.getState();
 g.drawString(msg, 6, 140);
 msg = " Mac OS: " + mac.getState();
 g.drawString(msg, 6, 160);
 }
}

Sample output is shown in Figure 26-2.

26-ch26.indd 841 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

842 PART II The Java Library

CheckboxGroup
It is possible to create a set of mutually exclusive check boxes in which one and only one
check box in the group can be checked at any one time. These check boxes are often called
radio buttons, because they act like the station selector on a car radio—only one station can
be selected at any one time. To create a set of mutually exclusive check boxes, you must first
define the group to which they will belong and then specify that group when you construct
the check boxes. Check box groups are objects of type CheckboxGroup. Only the default
constructor is defined, which creates an empty group.

You can determine which check box in a group is currently selected by calling
getSelectedCheckbox(). You can set a check box by calling setSelectedCheckbox().
These methods are as follows:

Checkbox getSelectedCheckbox()
void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected. The previously selected check
box will be turned off.

Here is a program that uses check boxes that are part of a group:

// Demonstrate check box group.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="CBGroup" width=240 height=200>
 </applet>
*/

public class CBGroup extends Applet implements ItemListener {
 String msg = "";
 Checkbox windows, android, solaris, mac;
 CheckboxGroup cbg;

Figure 26-2 Sample output from the CheckboxDemo applet

26-ch26.indd 842 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 843

Pa
rt

 II

 public void init() {
 cbg = new CheckboxGroup();
 windows = new Checkbox("Windows", cbg, true);
 android = new Checkbox("Android", cbg, false);
 solaris = new Checkbox("Solaris", cbg, false);
 mac = new Checkbox("Mac OS", cbg, false);

 add(windows);
 add(android);
 add(solaris);
 add(mac);

 windows.addItemListener(this);
 android.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {
 msg = "Current selection: ";
 msg += cbg.getSelectedCheckbox().getLabel();
 g.drawString(msg, 6, 100);
 }
}

Sample output generated by the CBGroup applet is shown in Figure 26-3. Notice that
the check boxes are now circular in shape.

Figure 26-3 Sample output from the CBGroup applet

26-ch26.indd 843 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

844 PART II The Java Library

Choice Controls
The Choice class is used to create a pop-up list of items from which the user may choose.
Thus, a Choice control is a form of menu. When inactive, a Choice component takes up
only enough space to show the currently selected item. When the user clicks on it, the
whole list of choices pops up, and a new selection can be made. Each item in the list is
a string that appears as a left-justified label in the order it is added to the Choice object.
Choice defines only the default constructor, which creates an empty list.

To add a selection to the list, call add(). It has this general form:

void add(String name)

Here, name is the name of the item being added. Items are added to the list in the order in
which calls to add() occur.

To determine which item is currently selected, you may call either getSelectedItem() or
getSelectedIndex(). These methods are shown here:

String getSelectedItem()
int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item.
getSelectedIndex() returns the index of the item. The first item is at index 0. By default,
the first item added to the list is selected.

To obtain the number of items in the list, call getItemCount(). You can set the
currently selected item using the select() method with either a zero-based integer index or
a string that will match a name in the list. These methods are shown here:

int getItemCount()
void select(int index)
void select(String name)

Given an index, you can obtain the name associated with the item at that index by
calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Choice Lists
Each time a choice is selected, an item event is generated. This is sent to any listeners
that previously registered an interest in receiving item event notifications from that
component. Each listener implements the ItemListener interface. That interface defines
the itemStateChanged() method. An ItemEvent object is supplied as the argument to this
method.

Here is an example that creates two Choice menus. One selects the operating system.
The other selects the browser.

// Demonstrate Choice lists.
import java.awt.*;
import java.awt.event.*;

26-ch26.indd 844 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 845

Pa
rt

 II

import java.applet.*;
/*
 <applet code="ChoiceDemo" width=300 height=180>
 </applet>
*/

public class ChoiceDemo extends Applet implements ItemListener {
 Choice os, browser;
 String msg = "";

 public void init() {
 os = new Choice();
 browser = new Choice();

 // add items to os list
 os.add("Windows");
 os.add("Android");
 os.add("Solaris");
 os.add("Mac OS");

 // add items to browser list
 browser.add("Internet Explorer");
 browser.add("Firefox");
 browser.add("Chrome");

 // add choice lists to window
 add(os);
 add(browser);

 // register to receive item events
 os.addItemListener(this);
 browser.addItemListener(this);
 }

 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current selections.
 public void paint(Graphics g) {
 msg = "Current OS: ";
 msg += os.getSelectedItem();
 g.drawString(msg, 6, 120);
 msg = "Current Browser: ";
 msg += browser.getSelectedItem();
 g.drawString(msg, 6, 140);
 }
}

Sample output is shown in Figure 26-4.

26-ch26.indd 845 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

846 PART II The Java Library

Using Lists
The List class provides a compact, multiple-choice, scrolling selection list. Unlike the
Choice object, which shows only the single selected item in the menu, a List object can be
constructed to show any number of choices in the visible window. It can also be created to
allow multiple selections. List provides these constructors:

List() throws HeadlessException
List(int numRows) throws HeadlessException
List(int numRows, boolean multipleSelect) throws HeadlessException

The first version creates a List control that allows only one item to be selected at any one
time. In the second form, the value of numRows specifies the number of entries in the list
that will always be visible (others can be scrolled into view as needed). In the third form, if
multipleSelect is true, then the user may select two or more items at a time. If it is false, then
only one item may be selected.

To add a selection to the list, call add(). It has the following two forms:

void add(String name)
void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds items to the end of
the list. The second form adds the item at the index specified by index. Indexing begins at
zero. You can specify –1 to add the item to the end of the list.

For lists that allow only single selection, you can determine which item is currently
selected by calling either getSelectedItem() or getSelectedIndex(). These methods are
shown here:

String getSelectedItem()
int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item. If more than
one item is selected, or if no selection has yet been made, null is returned. getSelectedIndex()
returns the index of the item. The first item is at index 0. If more than one item is selected, or
if no selection has yet been made, –1 is returned.

Figure 26-4 Sample output from the ChoiceDemo applet

26-ch26.indd 846 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 847

Pa
rt

 II

For lists that allow multiple selection, you must use either getSelectedItems() or
getSelectedIndexes(), shown here, to determine the current selections:

String[] getSelectedItems()
int[] getSelectedIndexes()

getSelectedItems() returns an array containing the names of the currently selected
items. getSelectedIndexes() returns an array containing the indexes of the currently
selected items.

To obtain the number of items in the list, call getItemCount(). You can set the
currently selected item by using the select() method with a zero-based integer index.
These methods are shown here:

int getItemCount()
void select(int index)

Given an index, you can obtain the name associated with the item at that index by
calling getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Lists
To process list events, you will need to implement the ActionListener interface. Each time a
List item is double-clicked, an ActionEvent object is generated. Its getActionCommand()
method can be used to retrieve the name of the newly selected item. Also, each time an item
is selected or deselected with a single click, an ItemEvent object is generated. Its
getStateChange() method can be used to determine whether a selection or deselection
triggered this event. getItemSelectable() returns a reference to the object that triggered
this event.

Here is an example that converts the Choice controls in the preceding section into List
components, one multiple choice and the other single choice:

// Demonstrate Lists.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="ListDemo" width=300 height=180>
 </applet>
*/

public class ListDemo extends Applet implements ActionListener {
 List os, browser;
 String msg = "";

 public void init() {
 os = new List(4, true);
 browser = new List(4, false);

 // add items to os list
 os.add("Windows");

26-ch26.indd 847 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

848 PART II The Java Library

 os.add("Android");
 os.add("Solaris");
 os.add("Mac OS");

 // add items to browser list
 browser.add("Internet Explorer");
 browser.add("Firefox");
 browser.add("Chrome");

 browser.select(1);

 // add lists to window
 add(os);
 add(browser);

 // register to receive action events
 os.addActionListener(this);
 browser.addActionListener(this);
 }

 public void actionPerformed(ActionEvent ae) {
 repaint();
 }

 // Display current selections.
 public void paint(Graphics g) {
 int idx[];

 msg = "Current OS: ";
 idx = os.getSelectedIndexes();
 for(int i=0; i<idx.length; i++)
 msg += os.getItem(idx[i]) + " ";
 g.drawString(msg, 6, 120);
 msg = "Current Browser: ";
 msg += browser.getSelectedItem();
 g.drawString(msg, 6, 140);
 }
}

Sample output generated by the ListDemo applet is shown in Figure 26-5.

Figure 26-5 Sample output from the ListDemo applet

26-ch26.indd 848 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 849

Pa
rt

 II

Managing Scroll Bars
Scroll bars are used to select continuous values between a specified minimum and maximum.
Scroll bars may be oriented horizontally or vertically. A scroll bar is actually a composite of
several individual parts. Each end has an arrow that you can click to move the current value
of the scroll bar one unit in the direction of the arrow. The current value of the scroll bar
relative to its minimum and maximum values is indicated by the slider box (or thumb) for the
scroll bar. The slider box can be dragged by the user to a new position. The scroll bar will
then reflect this value. In the background space on either side of the thumb, the user can
click to cause the thumb to jump in that direction by some increment larger than 1.
Typically, this action translates into some form of page up and page down. Scroll bars
are encapsulated by the Scrollbar class.

Scrollbar defines the following constructors:

Scrollbar() throws HeadlessException
Scrollbar(int style) throws HeadlessException
Scrollbar(int style, int initialValue, int thumbSize, int min, int max)
 throws HeadlessException

The first form creates a vertical scroll bar. The second and third forms allow you to specify
the orientation of the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll bar is created.
If style is Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the third form of the
constructor, the initial value of the scroll bar is passed in initialValue. The number of units
represented by the height of the thumb is passed in thumbSize. The minimum and maximum
values for the scroll bar are specified by min and max.

If you construct a scroll bar by using one of the first two constructors, then you need to
set its parameters by using setValues(), shown here, before it can be used:

void setValues(int initialValue, int thumbSize, int min, int max)

The parameters have the same meaning as they have in the third constructor just described.
To obtain the current value of the scroll bar, call getValue(). It returns the current

setting. To set the current value, call setValue(). These methods are as follows:

int getValue()
void setValue(int newValue)

Here, newValue specifies the new value for the scroll bar. When you set a value, the slider
box inside the scroll bar will be positioned to reflect the new value.

You can also retrieve the minimum and maximum values via getMinimum() and
getMaximum(), shown here:

int getMinimum()
int getMaximum()

They return the requested quantity.
By default, 1 is the increment added to or subtracted from the scroll bar each time it is

scrolled up or down one line. You can change this increment by calling setUnitIncrement().
By default, page-up and page-down increments are 10. You can change this value by calling
setBlockIncrement(). These methods are shown here:

void setUnitIncrement(int newIncr)
void setBlockIncrement(int newIncr)

26-ch26.indd 849 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

850 PART II The Java Library

Handling Scroll Bars
To process scroll bar events, you need to implement the AdjustmentListener interface.
Each time a user interacts with a scroll bar, an AdjustmentEvent object is generated. Its
getAdjustmentType() method can be used to determine the type of the adjustment. The
types of adjustment events are as follows:

BLOCK_DECREMENT A page-down event has been generated.

BLOCK_INCREMENT A page-up event has been generated.

TRACK An absolute tracking event has been generated.

UNIT_DECREMENT The line-down button in a scroll bar has been pressed.

UNIT_INCREMENT The line-up button in a scroll bar has been pressed.

The following example creates both a vertical and a horizontal scroll bar. The current
settings of the scroll bars are displayed. If you drag the mouse while inside the window, the
coordinates of each drag event are used to update the scroll bars. An asterisk is displayed
at the current drag position. Notice the use of setPreferredSize() to set the size of the
scrollbars.

// Demonstrate scroll bars.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="SBDemo" width=300 height=200>
 </applet>
*/

public class SBDemo extends Applet
 implements AdjustmentListener, MouseMotionListener {
 String msg = "";
 Scrollbar vertSB, horzSB;

 public void init() {
 int width = Integer.parseInt(getParameter("width"));
 int height = Integer.parseInt(getParameter("height"));

 vertSB = new Scrollbar(Scrollbar.VERTICAL,
 0, 1, 0, height);
 vertSB.setPreferredSize(new Dimension(20, 100));

 horzSB = new Scrollbar(Scrollbar.HORIZONTAL,
 0, 1, 0, width);
 horzSB.setPreferredSize(new Dimension(100, 20));

 add(vertSB);
 add(horzSB);

 // register to receive adjustment events

26-ch26.indd 850 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 851

Pa
rt

 II

 vertSB.addAdjustmentListener(this);
 horzSB.addAdjustmentListener(this);

 addMouseMotionListener(this);
 }

 public void adjustmentValueChanged(AdjustmentEvent ae) {
 repaint();
 }

 // Update scroll bars to reflect mouse dragging.
 public void mouseDragged(MouseEvent me) {
 int x = me.getX();
 int y = me.getY();
 vertSB.setValue(y);
 horzSB.setValue(x);
 repaint();
 }

 // Necessary for MouseMotionListener
 public void mouseMoved(MouseEvent me) {
 }

 // Display current value of scroll bars.
 public void paint(Graphics g) {
 msg = "Vertical: " + vertSB.getValue();
 msg += ", Horizontal: " + horzSB.getValue();
 g.drawString(msg, 6, 160);

 // show current mouse drag position
 g.drawString("*", horzSB.getValue(),
 vertSB.getValue());
 }
}

Sample output from the SBDemo applet is shown in Figure 26-6.

Figure 26-6 Sample output from the SBDemo applet

26-ch26.indd 851 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

852 PART II The Java Library

Using a TextField
The TextField class implements a single-line text-entry area, usually called an edit control.
Text fields allow the user to enter strings and to edit the text using the arrow keys, cut and
paste keys, and mouse selections. TextField is a subclass of TextComponent. TextField
defines the following constructors:

TextField() throws HeadlessException
TextField(int numChars) throws HeadlessException
TextField(String str) throws HeadlessException
TextField(String str, int numChars) throws HeadlessException

The first version creates a default text field. The second form creates a text field that is
numChars characters wide. The third form initializes the text field with the string contained
in str. The fourth form initializes a text field and sets its width.

TextField (and its superclass TextComponent) provides several methods that allow you
to utilize a text field. To obtain the string currently contained in the text field, call getText().
To set the text, call setText(). These methods are as follows:

String getText()
void setText(String str)

Here, str is the new string.
The user can select a portion of the text in a text field. Also, you can select a portion

of text under program control by using select(). Your program can obtain the currently
selected text by calling getSelectedText(). These methods are shown here:

String getSelectedText()
void select(int startIndex, int endIndex)

getSelectedText() returns the selected text. The select() method selects the characters
beginning at startIndex and ending at endIndex –1.

You can control whether the contents of a text field may be modified by the user by
calling setEditable(). You can determine editability by calling isEditable(). These methods
are shown here:

boolean isEditable()
void setEditable(boolean canEdit)

isEditable() returns true if the text may be changed and false if not. In setEditable(),
if canEdit is true, the text may be changed. If it is false, the text cannot be altered.

There may be times when you will want the user to enter text that is not displayed, such
as a password. You can disable the echoing of the characters as they are typed by calling
setEchoChar(). This method specifies a single character that the TextField will display when
characters are entered (thus, the actual characters typed will not be shown). You can check a
text field to see if it is in this mode with the echoCharIsSet() method. You can retrieve the
echo character by calling the getEchoChar() method. These methods are as follows:

void setEchoChar(char ch)
boolean echoCharIsSet()
char getEchoChar()

Here, ch specifies the character to be echoed. If ch is zero, then normal echoing is restored.

26-ch26.indd 852 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 853

Pa
rt

 II

Handling a TextField
Since text fields perform their own editing functions, your program generally will not
respond to individual key events that occur within a text field. However, you may want to
respond when the user presses enter. When this occurs, an action event is generated.

Here is an example that creates the classic user name and password screen:

// Demonstrate text field.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="TextFieldDemo" width=380 height=150>
 </applet>
*/

public class TextFieldDemo extends Applet
 implements ActionListener {

 TextField name, pass;

 public void init() {
 Label namep = new Label("Name: ", Label.RIGHT);
 Label passp = new Label("Password: ", Label.RIGHT);
 name = new TextField(12);
 pass = new TextField(8);
 pass.setEchoChar('?');

 add(namep);
 add(name);
 add(passp);
 add(pass);

 // register to receive action events
 name.addActionListener(this);
 pass.addActionListener(this);
 }

 // User pressed Enter.
 public void actionPerformed(ActionEvent ae) {
 repaint();
 }

 public void paint(Graphics g) {
 g.drawString("Name: " + name.getText(), 6, 60);
 g.drawString("Selected text in name: "
 + name.getSelectedText(), 6, 80);
 g.drawString("Password: " + pass.getText(), 6, 100);
 }
}

Sample output from the TextFieldDemo applet is shown in Figure 26-7.

26-ch26.indd 853 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

854 PART II The Java Library

Using a TextArea
Sometimes a single line of text input is not enough for a given task. To handle these
situations, the AWT includes a simple multiline editor called TextArea. Following are
the constructors for TextArea:

TextArea() throws HeadlessException
TextArea(int numLines, int numChars) throws HeadlessException
TextArea(String str) throws HeadlessException
TextArea(String str, int numLines, int numChars) throws HeadlessException
TextArea(String str, int numLines, int numChars, int sBars) throws HeadlessException

Here, numLines specifies the height, in lines, of the text area, and numChars specifies its
width, in characters. Initial text can be specified by str. In the fifth form, you can specify
the scroll bars that you want the control to have. sBars must be one of these values:

SCROLLBARS_BOTH SCROLLBARS_NONE

SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the getText(), setText(),
getSelectedText(), select(), isEditable(), and setEditable() methods described in the
preceding section.

TextArea adds the following editing methods:

void append(String str)
void insert(String str, int index)
void replaceRange(String str, int startIndex, int endIndex)

The append() method appends the string specified by str to the end of the current
text. insert() inserts the string passed in str at the specified index. To replace text, call
replaceRange(). It replaces the characters from startIndex to endIndex–1, with the
replacement text passed in str.

Text areas are almost self-contained controls. Your program incurs virtually no
management overhead. Normally, your program simply obtains the current text when
it is needed. You can, however, listen for TextEvents, if you choose.

Figure 26-7 Sample output from the TextFieldDemo applet

26-ch26.indd 854 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 855

Pa
rt

 II

The following program creates a TextArea control:

// Demonstrate TextArea.
import java.awt.*;
import java.applet.*;
/*
<applet code="TextAreaDemo" width=300 height=250>
</applet>
*/

public class TextAreaDemo extends Applet {
 public void init() {
 String val =
 "Java 8 is the latest version of the most\n" +
 "widely-used computer language for Internet programming.\n" +
 "Building on a rich heritage, Java has advanced both\n" +
 "the art and science of computer language design.\n\n" +
 "One of the reasons for Java's ongoing success is its\n" +
 "constant, steady rate of evolution. Java has never stood\n" +
 "still. Instead, Java has consistently adapted to the\n" +
 "rapidly changing landscape of the networked world.\n" +
 "Moreover, Java has often led the way, charting the\n" +
 "course for others to follow.";

 TextArea text = new TextArea(val, 10, 30);
 add(text);
 }
}

Here is sample output from the TextAreaDemo applet:

Understanding Layout Managers
All of the components that we have shown so far have been positioned by the default layout
manager. As we mentioned at the beginning of this chapter, a layout manager automatically
arranges your controls within a window by using some type of algorithm. If you have

26-ch26.indd 855 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

856 PART II The Java Library

programmed for other GUI environments, such as Windows, then you may have laid out
your controls by hand. While it is possible to lay out Java controls by hand, too, you generally
won’t want to, for two main reasons. First, it is very tedious to manually lay out a large
number of components. Second, sometimes the width and height information is not yet
available when you need to arrange some control, because the native toolkit components
haven’t been realized. This is a chicken-and-egg situation; it is pretty confusing to figure
out when it is okay to use the size of a given component to position it relative to another.

Each Container object has a layout manager associated with it. A layout manager is an
instance of any class that implements the LayoutManager interface. The layout manager is
set by the setLayout() method. If no call to setLayout() is made, then the default layout
manager is used. Whenever a container is resized (or sized for the first time), the layout
manager is used to position each of the components within it.

The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. If you wish to disable the layout
manager and position components manually, pass null for layoutObj. If you do this, you will
need to determine the shape and position of each component manually, using the setBounds()
method defined by Component. Normally, you will want to use a layout manager.

Each layout manager keeps track of a list of components that are stored by their names.
The layout manager is notified each time you add a component to a container. Whenever the
container needs to be resized, the layout manager is consulted via its minimumLayoutSize()
and preferredLayoutSize() methods. Each component that is being managed by a layout
manager contains the getPreferredSize() and getMinimumSize() methods. These return the
preferred and minimum size required to display each component. The layout manager will
honor these requests if at all possible, while maintaining the integrity of the layout policy.
You may override these methods for controls that you subclass. Default values are provided
otherwise.

Java has several predefined LayoutManager classes, several of which are described next.
You can use the layout manager that best fits your application.

FlowLayout
FlowLayout is the default layout manager. This is the layout manager that the preceding
examples have used. FlowLayout implements a simple layout style, which is similar to how
words flow in a text editor. The direction of the layout is governed by the container’s
component orientation property, which, by default, is left to right, top to bottom.
Therefore, by default, components are laid out line-by-line beginning at the upper-left
corner. In all cases, when a line is filled, layout advances to the next line. A small space
is left between each component, above and below, as well as left and right. Here are the
constructors for FlowLayout:

FlowLayout()
FlowLayout(int how)
FlowLayout(int how, int horz, int vert)

26-ch26.indd 856 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 857

Pa
rt

 II

The first form creates the default layout, which centers components and leaves five pixels of
space between each component. The second form lets you specify how each line is aligned.
Valid values for how are as follows:

FlowLayout.LEFT
FlowLayout.CENTER
FlowLayout.RIGHT
FlowLayout.LEADING
FlowLayout.TRAILING

These values specify left, center, right, leading edge, and trailing edge alignment, respectively.
The third constructor allows you to specify the horizontal and vertical space left between
components in horz and vert, respectively.

Here is a version of the CheckboxDemo applet shown earlier in this chapter, modified
so that it uses left-aligned flow layout:

// Use left-aligned flow layout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="FlowLayoutDemo" width=240 height=200>
 </applet>
*/

public class FlowLayoutDemo extends Applet
 implements ItemListener {

 String msg = "";
 Checkbox windows, android, solaris, mac;

 public void init() {
 // set left-aligned flow layout
 setLayout(new FlowLayout(FlowLayout.LEFT));

 windows = new Checkbox("Windows", null, true);
 android = new Checkbox("Android");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 add(windows);
 add(android);
 add(solaris);
 add(mac);

 // register to receive item events
 windows.addItemListener(this);
 android.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

26-ch26.indd 857 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

858 PART II The Java Library

 // Repaint when status of a check box changes.
 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {

 msg = "Current state: ";
 g.drawString(msg, 6, 80);
 msg = " Windows: " + windows.getState();
 g.drawString(msg, 6, 100);
 msg = " Android: " + android.getState();
 g.drawString(msg, 6, 120);
 msg = " Solaris: " + solaris.getState();
 g.drawString(msg, 6, 140);
 msg = " Mac: " + mac.getState();
 g.drawString(msg, 6, 160);
 }
}

Here is sample output generated by the FlowLayoutDemo
applet. Compare this with the output from the
CheckboxDemo applet, shown earlier in Figure 26-2.

BorderLayout
The BorderLayout class implements a common layout style
for top-level windows. It has four narrow, fixed-width
components at the edges and one large area in the center.
The four sides are referred to as north, south, east, and
west. The middle area is called the center. Here are the
constructors defined by BorderLayout:

BorderLayout()
BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify the
horizontal and vertical space left between components in horz and vert, respectively.

BorderLayout defines the following constants that specify the regions:

BorderLayout.CENTER BorderLayout.SOUTH

BorderLayout.EAST BorderLayout.WEST

BorderLayout.NORTH

When adding components, you will use these constants with the following form of add(),
which is defined by Container:

void add(Component compRef, Object region)

Here, compRef is a reference to the component to be added, and region specifies where the
component will be added.

26-ch26.indd 858 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 859

Pa
rt

 II

Here is an example of a BorderLayout with a component in each layout area:

// Demonstrate BorderLayout.
import java.awt.*;
import java.applet.*;
import java.util.*;
/*
<applet code="BorderLayoutDemo" width=400 height=200>
</applet>
*/

public class BorderLayoutDemo extends Applet {
 public void init() {
 setLayout(new BorderLayout());

 add(new Button("This is across the top."),
 BorderLayout.NORTH);
 add(new Label("The footer message might go here."),
 BorderLayout.SOUTH);
 add(new Button("Right"), BorderLayout.EAST);
 add(new Button("Left"), BorderLayout.WEST);

 String msg = "The reasonable man adapts " +
 "himself to the world;\n" +
 "the unreasonable one persists in " +
 "trying to adapt the world to himself.\n" +
 "Therefore all progress depends " +
 "on the unreasonable man.\n\n" +
 " - George Bernard Shaw\n\n";

 add(new TextArea(msg), BorderLayout.CENTER);
 }
}

Sample output from the BorderLayoutDemo applet is shown here:

26-ch26.indd 859 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

860 PART II The Java Library

Using Insets
Sometimes you will want to leave a small amount of space between the container that holds
your components and the window that contains it. To do this, override the getInsets()
method that is defined by Container. This method returns an Insets object that contains
the top, bottom, left, and right inset to be used when the container is displayed. These
values are used by the layout manager to inset the components when it lays out the window.
The constructor for Insets is shown here:

Insets(int top, int left, int bottom, int right)

The values passed in top, left, bottom, and right specify the amount of space between the
container and its enclosing window.

The getInsets() method has this general form:

Insets getInsets()

When overriding this method, you must return a new Insets object that contains the inset
spacing you desire.

Here is the preceding BorderLayout example modified so that it insets its components
ten pixels from each border. The background color has been set to cyan to help make the
insets more visible.

// Demonstrate BorderLayout with insets.
import java.awt.*;
import java.applet.*;
import java.util.*;
/*
<applet code="InsetsDemo" width=400 height=200>
</applet>
*/

public class InsetsDemo extends Applet {
 public void init() {
 // set background color so insets can be easily seen
 setBackground(Color.cyan);

 setLayout(new BorderLayout());

 add(new Button("This is across the top."),
 BorderLayout.NORTH);
 add(new Label("The footer message might go here."),
 BorderLayout.SOUTH);
 add(new Button("Right"), BorderLayout.EAST);
 add(new Button("Left"), BorderLayout.WEST);

 String msg = "The reasonable man adapts " +
 "himself to the world;\n" +
 "the unreasonable one persists in " +
 "trying to adapt the world to himself.\n" +
 "Therefore all progress depends " +
 "on the unreasonable man.\n\n" +
 " - George Bernard Shaw\n\n";

26-ch26.indd 860 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 861

Pa
rt

 II

 add(new TextArea(msg), BorderLayout.CENTER);
 }

 // add insets
 public Insets getInsets() {
 return new Insets(10, 10, 10, 10);
 }
}

Sample output from the InsetsDemo applet is shown here:

GridLayout
GridLayout lays out components in a two-dimensional grid. When you instantiate a
GridLayout, you define the number of rows and columns. The constructors supported by
GridLayout are shown here:

GridLayout()
GridLayout(int numRows, int numColumns)
GridLayout(int numRows, int numColumns, int horz, int vert)

The first form creates a single-column grid layout. The second form creates a grid layout
with the specified number of rows and columns. The third form allows you to specify the
horizontal and vertical space left between components in horz and vert, respectively. Either
numRows or numColumns can be zero. Specifying numRows as zero allows for unlimited-
length columns. Specifying numColumns as zero allows for unlimited-length rows.

Here is a sample program that creates a 4×4 grid and fills it in with 15 buttons, each
labeled with its index:

// Demonstrate GridLayout
import java.awt.*;
import java.applet.*;
/*
<applet code="GridLayoutDemo" width=300 height=200>
</applet>
*/

26-ch26.indd 861 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

862 PART II The Java Library

public class GridLayoutDemo extends Applet {
 static final int n = 4;
 public void init() {
 setLayout(new GridLayout(n, n));

 setFont(new Font("SansSerif", Font.BOLD, 24));

 for(int i = 0; i < n; i++) {
 for(int j = 0; j < n; j++) {
 int k = i * n + j;
 if(k > 0)
 add(new Button("" + k));
 }
 }
 }
}

Following is sample output generated by the GridLayoutDemo applet:

TIP You might try using this example as the starting point for a 15-square puzzle.

CardLayout
The CardLayout class is unique among the other layout managers in that it stores several
different layouts. Each layout can be thought of as being on a separate index card in a deck
that can be shuffled so that any card is on top at a given time. This can be useful for user
interfaces with optional components that can be dynamically enabled and disabled upon
user input. You can prepare the other layouts and have them hidden, ready to be activated
when needed.

CardLayout provides these two constructors:

CardLayout()
CardLayout(int horz, int vert)

26-ch26.indd 862 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 863

Pa
rt

 II

The first form creates a default card layout. The second form allows you to specify the
horizontal and vertical space left between components in horz and vert, respectively.

Use of a card layout requires a bit more work than the other layouts. The cards are
typically held in an object of type Panel. This panel must have CardLayout selected as its
layout manager. The cards that form the deck are also typically objects of type Panel. Thus,
you must create a panel that contains the deck and a panel for each card in the deck. Next,
you add to the appropriate panel the components that form each card. You then add these
panels to the panel for which CardLayout is the layout manager. Finally, you add this panel
to the window. Once these steps are complete, you must provide some way for the user to
select between cards. One common approach is to include one push button for each card
in the deck.

When card panels are added to a panel, they are usually given a name. Thus, most of
the time, you will use this form of add() when adding cards to a panel:

void add(Component panelRef, Object name)

Here, name is a string that specifies the name of the card whose panel is specified by
panelRef.

After you have created a deck, your program activates a card by calling one of the
following methods defined by CardLayout:

void first(Container deck)
void last(Container deck)
void next(Container deck)
void previous(Container deck)
void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards, and
cardName is the name of a card. Calling first() causes the first card in the deck to be shown.
To show the last card, call last(). To show the next card, call next(). To show the previous
card, call previous(). Both next() and previous() automatically cycle back to the top or
bottom of the deck, respectively. The show() method displays the card whose name is
passed in cardName.

The following example creates a two-level card deck that allows the user to select an
operating system. Windows-based operating systems are displayed in one card. Mac OS and
Solaris are displayed in the other card.

// Demonstrate CardLayout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="CardLayoutDemo" width=300 height=100>
 </applet>
*/

public class CardLayoutDemo extends Applet
 implements ActionListener, MouseListener {

26-ch26.indd 863 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

864 PART II The Java Library

 Checkbox windowsXP, windows7, windows8, android, solaris, mac;
 Panel osCards;
 CardLayout cardLO;
 Button Win, Other;

 public void init() {
 Win = new Button("Windows");
 Other = new Button("Other");
 add(Win);
 add(Other);

 cardLO = new CardLayout();
 osCards = new Panel();
 osCards.setLayout(cardLO); // set panel layout to card layout

 windowsXP = new Checkbox("Windows XP", null, true);
 windows7 = new Checkbox("Windows 7", null, false);
 windows8 = new Checkbox("Windows 8", null, false);
 android = new Checkbox("Android");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 // add Windows check boxes to a panel
 Panel winPan = new Panel();
 winPan.add(windowsXP);
 winPan.add(windows7);
 winPan.add(windows8);

 // Add other OS check boxes to a panel
 Panel otherPan = new Panel();
 otherPan.add(android);
 otherPan.add(solaris);
 otherPan.add(mac);

 // add panels to card deck panel
 osCards.add(winPan, "Windows");
 osCards.add(otherPan, "Other");

 // add cards to main applet panel
 add(osCards);

 // register to receive action events
 Win.addActionListener(this);
 Other.addActionListener(this);

 // register mouse events
 addMouseListener(this);
 }

 // Cycle through panels.
 public void mousePressed(MouseEvent me) {
 cardLO.next(osCards);
 }

26-ch26.indd 864 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 865

Pa
rt

 II

 // Provide empty implementations for the other MouseListener methods.
 public void mouseClicked(MouseEvent me) {
 }
 public void mouseEntered(MouseEvent me) {
 }
 public void mouseExited(MouseEvent me) {
 }
 public void mouseReleased(MouseEvent me) {
 }

 public void actionPerformed(ActionEvent ae) {
 if(ae.getSource() == Win) {

 cardLO.show(osCards, "Windows");
 }
 else {
 cardLO.show(osCards, "Other");
 }
 }
}

Here is sample output generated by the CardLayoutDemo applet. Each card is activated by
pushing its button. You can also cycle through the cards by clicking the mouse.

GridBagLayout
Although the preceding layouts are perfectly acceptable for many uses, some situations will
require that you take a bit more control over how the components are arranged. A good
way to do this is to use a grid bag layout, which is specified by the GridBagLayout class.
What makes the grid bag useful is that you can specify the relative placement of components
by specifying their positions within cells inside a grid. The key to the grid bag is that each
component can be a different size, and each row in the grid can have a different number

26-ch26.indd 865 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

866 PART II The Java Library

of columns. This is why the layout is called a grid bag. It’s a collection of small grids joined
together.

The location and size of each component in a grid bag are determined by a set of
constraints linked to it. The constraints are contained in an object of type GridBagConstraints.
Constraints include the height and width of a cell, and the placement of a component, its
alignment, and its anchor point within the cell.

The general procedure for using a grid bag is to first create a new GridBagLayout
object and to make it the current layout manager. Then, set the constraints that apply to
each component that will be added to the grid bag. Finally, add the components to the
layout manager. Although GridBagLayout is a bit more complicated than the other layout
managers, it is still quite easy to use once you understand how it works.

GridBagLayout defines only one constructor, which is shown here:

GridBagLayout()

GridBagLayout defines several methods, of which many are protected and not for general
use. There is one method, however, that you must use: setConstraints(). It is shown here:

void setConstraints(Component comp, GridBagConstraints cons)

Here, comp is the component for which the constraints specified by cons apply. This method
sets the constraints that apply to each component in the grid bag.

The key to successfully using GridBagLayout is the proper setting of the constraints,
which are stored in a GridBagConstraints object. GridBagConstraints defines several fields
that you can set to govern the size, placement, and spacing of a component. These are
shown in Table 26-1. Several are described in greater detail in the following discussion.

Table 26-1 Constraint Fields Defined by GridBagConstraints

Field Purpose
int anchor Specifies the location of a component within a cell. The default is

GridBagConstraints.CENTER.

int fill Specifies how a component is resized if the component is smaller than
its cell. Valid values are GridBagConstraints.NONE (the default),
GridBagConstraints.HORIZONTAL, GridBagConstraints.VERTICAL,
GridBagConstraints.BOTH.

int gridheight Specifies the height of component in terms of cells. The default is 1.

int gridwidth Specifies the width of component in terms of cells. The default is 1.

int gridx Specifies the X coordinate of the cell to which the component will be added.
The default value is GridBagConstraints.RELATIVE.

int gridy Specifies the Y coordinate of the cell to which the component will be added.
The default value is GridBagConstraints.RELATIVE.

Insets insets Specifies the insets. Default insets are all zero.

int ipadx Specifies extra horizontal space that surrounds a component within a cell.
The default is 0.

int ipady Specifies extra vertical space that surrounds a component within a cell. The
default is 0.

26-ch26.indd 866 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 867

Pa
rt

 II

GridBagConstraints also defines several static fields that contain standard constraint
values, such as GridBagConstraints.CENTER and GridBagConstraints.VERTICAL.

When a component is smaller than its cell, you can use the anchor field to specify where
within the cell the component’s top-left corner will be located. There are three types of
values that you can give to anchor. The first are absolute:

GridBagConstraints.CENTER GridBagConstraints.SOUTH

GridBagConstraints.EAST GridBagConstraints.SOUTHEAST

GridBagConstraints.NORTH GridBagConstraints.SOUTHWEST

GridBagConstraints.NORTHEAST GridBagConstraints.WEST

GridBagConstraints.NORTHWEST

As their names imply, these values cause the component to be placed at the specific locations.
The second type of values that can be given to anchor is relative, which means the

values are relative to the container’s orientation, which might differ for non-Western
languages. The relative values are shown here:

GridBagConstraints.FIRST_LINE_END GridBagConstraints.LINE_END

GridBagConstraints.FIRST_LINE_START GridBagConstraints.LINE_START

GridBagConstraints.LAST_LINE_END GridBagConstraints.PAGE_END

GridBagConstraints.LAST_LINE_START GridBagConstraints.PAGE_START

Their names describe the placement.
The third type of values that can be given to anchor allows you to position components

relative to the baseline of the row. These values are shown here:

GridBagConstraints.BASELINE GridBagConstraints.BASELINE_LEADING

GridBagConstraints.BASELINE_TRAILING GridBagConstraints.ABOVE_BASELINE

GridBagConstraints.ABOVE_BASELINE_LEADING GridBagConstraints.ABOVE_BASELINE_
TRAILING

GridBagConstraints.BELOW_BASELINE GridBagConstraints.BELOW_BASELINE_
LEADING

GridBagConstraints. BELOW_BASELINE_TRAILING

Field Purpose
double weightx Specifies a weight value that determines the horizontal spacing between cells

and the edges of the container that holds them. The default value is 0.0. The
greater the weight, the more space that is allocated. If all values are 0.0, extra
space is distributed evenly between the edges of the window.

double weighty Specifies a weight value that determines the vertical spacing between cells
and the edges of the container that holds them. The default value is 0.0. The
greater the weight, the more space that is allocated. If all values are 0.0, extra
space is distributed evenly between the edges of the window.

Table 26-1 Constraint Fields Defined by GridBagConstraints (continued)

26-ch26.indd 867 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

868 PART II The Java Library

The horizontal position can be either centered, against the leading edge (LEADING), or
against the trailing edge (TRAILING).

The weightx and weighty fields are both quite important and quite confusing at first
glance. In general, their values determine how much of the extra space within a container
is allocated to each row and column. By default, both these values are zero. When all values
within a row or a column are zero, extra space is distributed evenly between the edges of
the window. By increasing the weight, you increase that row or column’s allocation of space
proportional to the other rows or columns. The best way to understand how these values
work is to experiment with them a bit.

The gridwidth variable lets you specify the width of a cell in terms of cell units.
The default is 1. To specify that a component use the remaining space in a row, use
GridBagConstraints.REMAINDER. To specify that a component use the next-to-last cell
in a row, use GridBagConstraints.RELATIVE. The gridheight constraint works the same
way, but in the vertical direction.

You can specify a padding value that will be used to increase the minimum size of a
cell. To pad horizontally, assign a value to ipadx. To pad vertically, assign a value to ipady.

Here is an example that uses GridBagLayout to demonstrate several of the points just
discussed:

// Use GridBagLayout.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="GridBagDemo" width=250 height=200>
 </applet>
*/

public class GridBagDemo extends Applet
 implements ItemListener {

 String msg = "";
 Checkbox windows, android, solaris, mac;

 public void init() {
 GridBagLayout gbag = new GridBagLayout();
 GridBagConstraints gbc = new GridBagConstraints();
 setLayout(gbag);

 // Define check boxes.
 windows = new Checkbox("Windows ", null, true);
 android = new Checkbox("Android");
 solaris = new Checkbox("Solaris");
 mac = new Checkbox("Mac OS");

 // Define the grid bag.

 // Use default row weight of 0 for first row.
 gbc.weightx = 1.0; // use a column weight of 1

26-ch26.indd 868 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 869

Pa
rt

 II

 gbc.ipadx = 200; // pad by 200 units
 gbc.insets = new Insets(4, 4, 0, 0); // inset slightly from top left

 gbc.anchor = GridBagConstraints.NORTHEAST;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(windows, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(android, gbc);

 // Give second row a weight of 1.
 gbc.weighty = 1.0;

 gbc.gridwidth = GridBagConstraints.RELATIVE;
 gbag.setConstraints(solaris, gbc);

 gbc.gridwidth = GridBagConstraints.REMAINDER;
 gbag.setConstraints(mac, gbc);

 // Add the components.
 add(windows);
 add(android);
 add(solaris);
 add(mac);

 // Register to receive item events.
 windows.addItemListener(this);
 android.addItemListener(this);
 solaris.addItemListener(this);
 mac.addItemListener(this);
 }

 // Repaint when status of a check box changes.
 public void itemStateChanged(ItemEvent ie) {
 repaint();
 }

 // Display current state of the check boxes.
 public void paint(Graphics g) {
 msg = "Current state: ";
 g.drawString(msg, 6, 80);
 msg = " Windows: " + windows.getState();
 g.drawString(msg, 6, 100);
 msg = " Android: " + android.getState();
 g.drawString(msg, 6, 120);
 msg = " Solaris: " + solaris.getState();
 g.drawString(msg, 6, 140);
 msg = " Mac: " + mac.getState();
 g.drawString(msg, 6, 160);
 }
}

26-ch26.indd 869 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

870 PART II The Java Library

Sample output produced by the program is shown here.

In this layout, the operating system check boxes are positioned in a 2×2 grid. Each cell
has a horizontal padding of 200. Each component is inset slightly (by 4 units) from the top
left. The column weight is set to 1, which causes any extra horizontal space to be distributed
evenly between the columns. The first row uses a default weight of 0; the second has a
weight of 1. This means that any extra vertical space is added to the second row.

GridBagLayout is a powerful layout manager. It is worth taking some time to
experiment with and explore. Once you understand what the various settings do, you
can use GridBagLayout to position components with a high degree of precision.

Menu Bars and Menus
A top-level window can have a menu bar associated with it. A menu bar displays a list of
top-level menu choices. Each choice is associated with a drop-down menu. This concept
is implemented in the AWT by the following classes: MenuBar, Menu, and MenuItem. In
general, a menu bar contains one or more Menu objects. Each Menu object contains a list
of MenuItem objects. Each MenuItem object represents something that can be selected by
the user. Since Menu is a subclass of MenuItem, a hierarchy of nested submenus can be
created. It is also possible to include checkable menu items. These are menu options of
type CheckboxMenuItem and will have a check mark next to them when they are selected.

To create a menu bar, first create an instance of MenuBar. This class defines only the
default constructor. Next, create instances of Menu that will define the selections displayed
on the bar. Following are the constructors for Menu:

Menu() throws HeadlessException
Menu(String optionName) throws HeadlessException
Menu(String optionName, boolean removable) throws HeadlessException

Here, optionName specifies the name of the menu selection. If removable is true, the menu can
be removed and allowed to float free. Otherwise, it will remain attached to the menu bar.
(Removable menus are implementation-dependent.) The first form creates an empty menu.

Individual menu items are of type MenuItem. It defines these constructors:

MenuItem() throws HeadlessException
MenuItem(String itemName) throws HeadlessException
MenuItem(String itemName, MenuShortcut keyAccel) throws HeadlessException

26-ch26.indd 870 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 871

Pa
rt

 II

Here, itemName is the name shown in the menu, and keyAccel is the menu shortcut for
this item.

You can disable or enable a menu item by using the setEnabled() method. Its form is
shown here:

void setEnabled(boolean enabledFlag)

If the argument enabledFlag is true, the menu item is enabled. If false, the menu item is
disabled.

You can determine an item’s status by calling isEnabled(). This method is shown here:

boolean isEnabled()

isEnabled() returns true if the menu item on which it is called is enabled. Otherwise, it
returns false.

You can change the name of a menu item by calling setLabel(). You can retrieve the
current name by using getLabel(). These methods are as follows:

void setLabel(String newName)
String getLabel()

Here, newName becomes the new name of the invoking menu item. getLabel() returns the
current name.

You can create a checkable menu item by using a subclass of MenuItem called
CheckboxMenuItem. It has these constructors:

CheckboxMenuItem() throws HeadlessException
CheckboxMenuItem(String itemName) throws HeadlessException
CheckboxMenuItem(String itemName, boolean on) throws HeadlessException

Here, itemName is the name shown in the menu. Checkable items operate as toggles.
Each time one is selected, its state changes. In the first two forms, the checkable entry
is unchecked. In the third form, if on is true, the checkable entry is initially checked.
Otherwise, it is cleared.

You can obtain the status of a checkable item by calling getState(). You can set it to a
known state by using setState(). These methods are shown here:

boolean getState()
void setState(boolean checked)

If the item is checked, getState() returns true. Otherwise, it returns false. To check an
item, pass true to setState(). To clear an item, pass false.

Once you have created a menu item, you must add the item to a Menu object by using
add(), which has the following general form:

MenuItem add(MenuItem item)

Here, item is the item being added. Items are added to a menu in the order in which the
calls to add() take place. The item is returned.

Once you have added all items to a Menu object, you can add that object to the menu
bar by using this version of add() defined by MenuBar:

Menu add(Menu menu)

Here, menu is the menu being added. The menu is returned.

26-ch26.indd 871 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

872 PART II The Java Library

Menus generate events only when an item of type MenuItem or CheckboxMenuItem is
selected. They do not generate events when a menu bar is accessed to display a drop-down
menu, for example. Each time a menu item is selected, an ActionEvent object is generated.
By default, the action command string is the name of the menu item. However, you can
specify a different action command string by calling setActionCommand() on the menu
item. Each time a check box menu item is checked or unchecked, an ItemEvent object is
generated. Thus, you must implement the ActionListener and/or ItemListener interfaces
in order to handle these menu events.

The getItem() method of ItemEvent returns a reference to the item that generated this
event. The general form of this method is shown here:

Object getItem()

Following is an example that adds a series of nested menus to a pop-up window. The
item selected is displayed in the window. The state of the two check box menu items is also
displayed.

// Illustrate menus.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="MenuDemo" width=250 height=250>
 </applet>
*/

// Create a subclass of Frame.
class MenuFrame extends Frame {
 String msg = "";
 CheckboxMenuItem debug, test;

 MenuFrame(String title) {
 super(title);

 // create menu bar and add it to frame
 MenuBar mbar = new MenuBar();
 setMenuBar(mbar);

 // create the menu items
 Menu file = new Menu("File");
 MenuItem item1, item2, item3, item4, item5;
 file.add(item1 = new MenuItem("New..."));
 file.add(item2 = new MenuItem("Open..."));
 file.add(item3 = new MenuItem("Close"));
 file.add(item4 = new MenuItem("-"));
 file.add(item5 = new MenuItem("Quit..."));
 mbar.add(file);

 Menu edit = new Menu("Edit");
 MenuItem item6, item7, item8, item9;
 edit.add(item6 = new MenuItem("Cut"));
 edit.add(item7 = new MenuItem("Copy"));

26-ch26.indd 872 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 873

Pa
rt

 II

 edit.add(item8 = new MenuItem("Paste"));
 edit.add(item9 = new MenuItem("-"));

 Menu sub = new Menu("Special");
 MenuItem item10, item11, item12;
 sub.add(item10 = new MenuItem("First"));
 sub.add(item11 = new MenuItem("Second"));
 sub.add(item12 = new MenuItem("Third"));
 edit.add(sub);

 // these are checkable menu items
 debug = new CheckboxMenuItem("Debug");
 edit.add(debug);
 test = new CheckboxMenuItem("Testing");
 edit.add(test);

 mbar.add(edit);

 // create an object to handle action and item events
 MyMenuHandler handler = new MyMenuHandler(this);
 // register it to receive those events
 item1.addActionListener(handler);
 item2.addActionListener(handler);
 item3.addActionListener(handler);
 item4.addActionListener(handler);
 item5.addActionListener(handler);
 item6.addActionListener(handler);
 item7.addActionListener(handler);
 item8.addActionListener(handler);
 item9.addActionListener(handler);
 item10.addActionListener(handler);
 item11.addActionListener(handler);
 item12.addActionListener(handler);
 debug.addItemListener(handler);
 test.addItemListener(handler);

 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);
 // register it to receive those events
 addWindowListener(adapter);
 }

 public void paint(Graphics g) {
 g.drawString(msg, 10, 200);

 if(debug.getState())
 g.drawString("Debug is on.", 10, 220);
 else
 g.drawString("Debug is off.", 10, 220);

 if(test.getState())
 g.drawString("Testing is on.", 10, 240);
 else

26-ch26.indd 873 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

874 PART II The Java Library

 g.drawString("Testing is off.", 10, 240);
 }
}

class MyWindowAdapter extends WindowAdapter {
 MenuFrame menuFrame;

 public MyWindowAdapter(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 public void windowClosing(WindowEvent we) {
 menuFrame.setVisible(false);
 }
}

class MyMenuHandler implements ActionListener, ItemListener {
 MenuFrame menuFrame;

 public MyMenuHandler(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 // Handle action events.
 public void actionPerformed(ActionEvent ae) {
 String msg = "You selected ";
 String arg = ae.getActionCommand();
 if(arg.equals("New..."))
 msg += "New.";
 else if(arg.equals("Open..."))
 msg += "Open.";
 else if(arg.equals("Close"))
 msg += "Close.";
 else if(arg.equals("Quit..."))
 msg += "Quit.";
 else if(arg.equals("Edit"))
 msg += "Edit.";
 else if(arg.equals("Cut"))
 msg += "Cut.";
 else if(arg.equals("Copy"))
 msg += "Copy.";
 else if(arg.equals("Paste"))
 msg += "Paste.";
 else if(arg.equals("First"))
 msg += "First.";
 else if(arg.equals("Second"))
 msg += "Second.";
 else if(arg.equals("Third"))
 msg += "Third.";
 else if(arg.equals("Debug"))
 msg += "Debug.";
 else if(arg.equals("Testing"))
 msg += "Testing.";

26-ch26.indd 874 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 875

Pa
rt

 II

 menuFrame.msg = msg;
 menuFrame.repaint();
 }

 // Handle item events.
 public void itemStateChanged(ItemEvent ie) {
 menuFrame.repaint();
 }
}

// Create frame window.
public class MenuDemo extends Applet {
 Frame f;

 public void init() {
 f = new MenuFrame("Menu Demo");
 int width = Integer.parseInt(getParameter("width"));
 int height = Integer.parseInt(getParameter("height"));

 setSize(new Dimension(width, height));

 f.setSize(width, height);
 f.setVisible(true);
 }

 public void start() {
 f.setVisible(true);
 }

 public void stop() {
 f.setVisible(false);
 }
}

Sample output from the MenuDemo applet is shown in Figure 26-8.

Figure 26-8 Sample output from the MenuDemo applet

26-ch26.indd 875 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

876 PART II The Java Library

There is one other menu-related class that you might find interesting: PopupMenu.
It works just like Menu, but produces a menu that can be displayed at a specific location.
PopupMenu provides a flexible, useful alternative for some types of menuing situations.

Dialog Boxes
Often, you will want to use a dialog box to hold a set of related controls. Dialog boxes are
primarily used to obtain user input and are often child windows of a top-level window.
Dialog boxes don’t have menu bars, but in other respects, they function like frame
windows. (You can add controls to them, for example, in the same way that you add
controls to a frame window.) Dialog boxes may be modal or modeless. When a modal dialog
box is active, all input is directed to it until it is closed. This means that you cannot access
other parts of your program until you have closed the dialog box. When a modeless dialog
box is active, input focus can be directed to another window in your program. Thus, other
parts of your program remain active and accessible. In the AWT, dialog boxes are of type
Dialog. Two commonly used constructors are shown here:

Dialog(Frame parentWindow, boolean mode)
Dialog(Frame parentWindow, String title, boolean mode)

Here, parentWindow is the owner of the dialog box. If mode is true, the dialog box is modal.
Otherwise, it is modeless. The title of the dialog box can be passed in title. Generally, you
will subclass Dialog, adding the functionality required by your application.

Following is a modified version of the preceding menu program that displays a
modeless dialog box when the New option is chosen. Notice that when the dialog box
is closed, dispose() is called. This method is defined by Window, and it frees all system
resources associated with the dialog box window.

// Demonstrate Dialog box.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
 <applet code="DialogDemo" width=250 height=250>
 </applet>
*/

// Create a subclass of Dialog.
class SampleDialog extends Dialog implements ActionListener {
 SampleDialog(Frame parent, String title) {
 super(parent, title, false);
 setLayout(new FlowLayout());
 setSize(300, 200);

 add(new Label("Press this button:"));
 Button b;
 add(b = new Button("Cancel"));
 b.addActionListener(this);
 }

26-ch26.indd 876 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 877

Pa
rt

 II

 public void actionPerformed(ActionEvent ae) {
 dispose();
 }

 public void paint(Graphics g) {
 g.drawString("This is in the dialog box", 10, 70);
 }
}

// Create a subclass of Frame.
class MenuFrame extends Frame {
 String msg = "";
 CheckboxMenuItem debug, test;

 MenuFrame(String title) {
 super(title);

 // create menu bar and add it to frame
 MenuBar mbar = new MenuBar();
 setMenuBar(mbar);

 // create the menu items
 Menu file = new Menu("File");
 MenuItem item1, item2, item3, item4;
 file.add(item1 = new MenuItem("New..."));
 file.add(item2 = new MenuItem("Open..."));
 file.add(item3 = new MenuItem("Close"));
 file.add(new MenuItem("-"));
 file.add(item4 = new MenuItem("Quit..."));
 mbar.add(file);

 Menu edit = new Menu("Edit");
 MenuItem item5, item6, item7;
 edit.add(item5 = new MenuItem("Cut"));
 edit.add(item6 = new MenuItem("Copy"));
 edit.add(item7 = new MenuItem("Paste"));
 edit.add(new MenuItem("-"));

 Menu sub = new Menu("Special", true);
 MenuItem item8, item9, item10;
 sub.add(item8 = new MenuItem("First"));
 sub.add(item9 = new MenuItem("Second"));
 sub.add(item10 = new MenuItem("Third"));
 edit.add(sub);

 // these are checkable menu items
 debug = new CheckboxMenuItem("Debug");
 edit.add(debug);
 test = new CheckboxMenuItem("Testing");
 edit.add(test);

 mbar.add(edit);

26-ch26.indd 877 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

878 PART II The Java Library

 // create an object to handle action and item events
 MyMenuHandler handler = new MyMenuHandler(this);
 // register it to receive those events
 item1.addActionListener(handler);
 item2.addActionListener(handler);
 item3.addActionListener(handler);
 item4.addActionListener(handler);
 item5.addActionListener(handler);
 item6.addActionListener(handler);
 item7.addActionListener(handler);
 item8.addActionListener(handler);
 item9.addActionListener(handler);
 item10.addActionListener(handler);
 debug.addItemListener(handler);
 test.addItemListener(handler);

 // create an object to handle window events
 MyWindowAdapter adapter = new MyWindowAdapter(this);

 // register it to receive those events
 addWindowListener(adapter);
 }

 public void paint(Graphics g) {
 g.drawString(msg, 10, 200);

 if(debug.getState())
 g.drawString("Debug is on.", 10, 220);
 else
 g.drawString("Debug is off.", 10, 220);

 if(test.getState())
 g.drawString("Testing is on.", 10, 240);
 else
 g.drawString("Testing is off.", 10, 240);
 }
}

class MyWindowAdapter extends WindowAdapter {
 MenuFrame menuFrame;

 public MyWindowAdapter(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 public void windowClosing(WindowEvent we) {
 menuFrame.dispose();
 }
}

class MyMenuHandler implements ActionListener, ItemListener {
 MenuFrame menuFrame;

26-ch26.indd 878 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 879

Pa
rt

 II

 public MyMenuHandler(MenuFrame menuFrame) {
 this.menuFrame = menuFrame;
 }

 // Handle action events.
 public void actionPerformed(ActionEvent ae) {
 String msg = "You selected ";
 String arg = ae.getActionCommand();
 // Activate a dialog box when New is selected.
 if(arg.equals("New...")) {
 msg += "New.";
 SampleDialog d = new
 SampleDialog(menuFrame, "New Dialog Box");
 d.setVisible(true);
 }
 // Try defining other dialog boxes for these options.
 else if(arg.equals("Open..."))
 msg += "Open.";
 else if(arg.equals("Close"))
 msg += "Close.";
 else if(arg.equals("Quit..."))
 msg += "Quit.";
 else if(arg.equals("Edit"))
 msg += "Edit.";
 else if(arg.equals("Cut"))
 msg += "Cut.";
 else if(arg.equals("Copy"))
 msg += "Copy.";
 else if(arg.equals("Paste"))
 msg += "Paste.";
 else if(arg.equals("First"))
 msg += "First.";
 else if(arg.equals("Second"))
 msg += "Second.";
 else if(arg.equals("Third"))
 msg += "Third.";
 else if(arg.equals("Debug"))
 msg += "Debug.";
 else if(arg.equals("Testing"))
 msg += "Testing.";
 menuFrame.msg = msg;
 menuFrame.repaint();
 }

 public void itemStateChanged(ItemEvent ie) {
 menuFrame.repaint();
 }
}

// Create frame window.
public class DialogDemo extends Applet {
 Frame f;

26-ch26.indd 879 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

880 PART II The Java Library

 public void init() {
 f = new MenuFrame("Menu Demo");
 int width = Integer.parseInt(getParameter("width"));
 int height = Integer.parseInt(getParameter("height"));

 setSize(width, height);

 f.setSize(width, height);
 f.setVisible(true);
 }

 public void start() {
 f.setVisible(true);
 }

 public void stop() {
 f.setVisible(false);
 }
}

Here is sample output from the DialogDemo applet:

TIP On your own, try defining dialog boxes for the other options presented by the menus.

FileDialog
Java provides a built-in dialog box that lets the user specify a file. To create a file dialog
box, instantiate an object of type FileDialog. This causes a file dialog box to be displayed.

26-ch26.indd 880 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 881

Pa
rt

 II

Usually, this is the standard file dialog box provided by the operating system. Here are
three FileDialog constructors:

FileDialog(Frame parent)
FileDialog(Frame parent, String boxName)
FileDialog(Frame parent, String boxName, int how)

Here, parent is the owner of the dialog box. The boxName parameter specifies the
name displayed in the box’s title bar. If boxName is omitted, the title of the dialog box
is empty. If how is FileDialog.LOAD, then the box is selecting a file for reading. If how is
FileDialog.SAVE, the box is selecting a file for writing. If how is omitted, the box is selecting
a file for reading.

FileDialog provides methods that allow you to determine the name of the file and its
path as selected by the user. Here are two examples:

String getDirectory()
String getFile()

These methods return the directory and the filename, respectively.
The following program activates the standard file dialog box:

/* Demonstrate File Dialog box.

 This is an application, not an applet.
*/
import java.awt.*;
import java.awt.event.*;

// Create a subclass of Frame.
class SampleFrame extends Frame {
 SampleFrame(String title) {
 super(title);

 // remove the window when closed
 addWindowListener(new WindowAdapter() {
 public void windowClosing(WindowEvent we) {
 System.exit(0);
 }
 });
 }
}

// Demonstrate FileDialog.
class FileDialogDemo {
 public static void main(String args[]) {
 // create a frame that owns the dialog
 Frame f = new SampleFrame("File Dialog Demo");
 f.setVisible(true);
 f.setSize(100, 100);

 FileDialog fd = new FileDialog(f, "File Dialog");

 fd.setVisible(true);
 }
}

26-ch26.indd 881 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

882 PART II The Java Library

The output generated by this program is shown here. (The precise configuration of the
dialog box may vary.)

One last point: Beginning with JDK 7, you can use FileDialog to select a list of files. This
functionality is supported by the setMultipleMode(), isMultipleMode(), and getFiles()
methods.

A Word About Overriding paint()
Before concluding our examination of AWT controls, a short word about overriding paint()
is in order. Although not relevant to the simple AWT examples shown in this book, when
overriding paint(), there are times when it is necessary to call the superclass implementation
of paint(). Therefore, for some programs, you will need to use this paint() skeleton:

public void paint(Graphics g) {

 // code to repaint this window

 // Call superclass paint()
 super.paint(g);
}

26-ch26.indd 882 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 26 Using AWT Controls, Layout Managers, and Menus 883

Pa
rt

 II

In Java, there are two general types of components: heavyweight and lightweight. A
heavyweight component has its own native window, which is called its peer. A lightweight
component is implemented completely in Java code and uses the window provided by an
ancestor. The AWT controls described and used in this chapter are all heavyweight.
However, if a container holds any lightweight components (that is, has lightweight child
components), your override of paint() for that container must call super.paint(). By calling
super.paint(), you ensure that any lightweight child components, such as lightweight
controls, get properly painted. If you are unsure of a child component’s type, you can call
isLightweight(), defined by Component, to find out. It returns true if the component is
lightweight, and false otherwise.

26-ch26.indd 883 14/02/14 5:19 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

27
CHAPTER

 885

Images

This chapter examines the Image class and the java.awt.image package. Together, they
provide support for imaging (the display and manipulation of graphical images). An image is
simply a rectangular graphical object. Images are a key component of web design. In fact,
the inclusion of the tag in the Mosaic browser at NCSA (National Center for
Supercomputer Applications) is what caused the Web to begin to grow explosively in 1993.
This tag was used to include an image inline with the flow of hypertext. Java expands upon
this basic concept, allowing images to be managed under program control. Because of its
importance, Java provides extensive support for imaging.

Images are objects of the Image class, which is part of the java.awt package. Images are
manipulated using the classes found in the java.awt.image package. There are a large number
of imaging classes and interfaces defined by java.awt.image, and it is not possible to examine
them all. Instead, we will focus on those that form the foundation of imaging. Here are the
java.awt.image classes discussed in this chapter:

CropImageFilter MemoryImageSource

FilteredImageSource PixelGrabber

ImageFilter RGBImageFilter

These are the interfaces that we will use:

ImageConsumer ImageObserver ImageProducer

Also examined is the MediaTracker class, which is part of java.awt.

File Formats
Originally, web images could only be in GIF format. The GIF image format was created by
CompuServe in 1987 to make it possible for images to be viewed while online, so it was well
suited to the Internet. GIF images can have only up to 256 colors each. This limitation

27-ch27.indd 885 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

886 PART II The Java Library

caused the major browser vendors to add support for JPEG images in 1995. The JPEG
format was created by a group of photographic experts to store full-color-spectrum,
continuous-tone images. These images, when properly created, can be of much higher
fidelity as well as more highly compressed than a GIF encoding of the same source image.
Another file format is PNG. It too is an alternative to GIF. In almost all cases, you will never
care or notice which format is being used in your programs. The Java image classes abstract
the differences behind a clean interface.

Image Fundamentals: Creating, Loading, and Displaying
There are three common operations that occur when you work with images: creating an
image, loading an image, and displaying an image. In Java, the Image class is used to refer
to images in memory and to images that must be loaded from external sources. Thus, Java
provides ways for you to create a new image object and ways to load one. It also provides a
means by which an image can be displayed. Let’s look at each.

Creating an Image Object
You might expect that you create a memory image using something like the following:

Image test = new Image(200, 100); // Error -- won’t work

Not so. Because images must eventually be painted on a window to be seen, the Image class
doesn’t have enough information about its environment to create the proper data format
for the screen. Therefore, the Component class in java.awt has a factory method called
createImage() that is used to create Image objects. (Remember that all of the AWT
components are subclasses of Component, so all support this method.)

The createImage() method has the following two forms:

Image createImage(ImageProducer imgProd)
Image createImage(int width, int height)

The first form returns an image produced by imgProd, which is an object of a class that
implements the ImageProducer interface. (We will look at image producers later.) The
second form returns a blank (that is, empty) image that has the specified width and height.
Here is an example:

Canvas c = new Canvas();
Image test = c.createImage(200, 100);

This creates an instance of Canvas and then calls the createImage() method to actually
make an Image object. At this point, the image is blank. Later, you will see how to write
data to it.

Loading an Image
The other way to obtain an image is to load one. One way to do this is to use the getImage()
method defined by the Applet class. It has the following forms:

Image getImage(URL url)
Image getImage(URL url, String imageName)

27-ch27.indd 886 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 887

Pa
rt

 II

The first version returns an Image object that encapsulates the image found at the location
specified by url. The second version returns an Image object that encapsulates the image
found at the location specified by url and having the name specified by imageName.

Displaying an Image
Once you have an image, you can display it by using drawImage(), which is a member of
the Graphics class. It has several forms. The one we will be using is shown here:

boolean drawImage(Image imgObj, int left, int top, ImageObserver imgOb)

This displays the image passed in imgObj with its upper-left corner specified by left and top.
imgOb is a reference to a class that implements the ImageObserver interface. This interface
is implemented by all AWT (and Swing) components. An image observer is an object that can
monitor an image while it loads. ImageObserver is described in the next section.

With getImage() and drawImage(), it is actually quite easy to load and display an image.
Here is a sample applet that loads and displays a single image. The file Lilies.jpg is loaded,
but you can substitute any GIF, JPG, or PNG file you like (just make sure it is available in
the same directory with the HTML file that contains the applet).

/*
 * <applet code="SimpleImageLoad" width=400 height=345>
 * <param name="img" value="Lilies.jpg">
 * </applet>
 */
import java.awt.*;
import java.applet.*;

public class SimpleImageLoad extends Applet
{
 Image img;

 public void init() {
 img = getImage(getDocumentBase(), getParameter("img"));
 }

 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, this);
 }
}

In the init() method, the img variable is assigned to the image returned by getImage().
The getImage() method uses the string returned by getParameter("img") as the filename for
the image. This image is loaded from a URL that is relative to the result of getDocumentBase(),
which is the URL of the HTML page this applet tag was in. The filename returned by
getParameter("img") comes from the applet tag <param name= "img" value="Lilies.jpg">.
This is the equivalent, if a little slower, of using the HTML tag <img src="Lilies.jpg"
width=400 height=345>. Figure 27-1 shows what it looks like when you run the program.

When this applet runs, it starts loading img in the init() method. Onscreen you can see
the image as it loads from the network, because Applet’s implementation of the ImageObserver
interface calls paint() every time more image data arrives.

27-ch27.indd 887 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

888 PART II The Java Library

Seeing the image load is somewhat informative, but it might be better if you use the
time it takes to load the image to do other things in parallel. That way, the fully formed
image can simply appear on the screen in an instant, once it is fully loaded. You can use
ImageObserver, described next, to monitor loading an image while you paint the screen
with other information.

ImageObserver
ImageObserver is an interface used to receive notification as an image is being generated,
and it defines only one method: imageUpdate(). Using an image observer allows you to
perform other actions, such as show a progress indicator or an attract screen, as you are
informed of the progress of the download. This kind of notification is very useful when an
image is being loaded over a slow network.

The imageUpdate() method has this general form:

boolean imageUpdate(Image imgObj, int flags, int left, int top,
 int width, int height)

Here, imgObj is the image being loaded, and flags is an integer that communicates the status
of the update report. The four integers left, top, width, and height represent a rectangle that
contains different values depending on the values passed in flags. imageUpdate() should
return false if it has completed loading, and true if there is more image to process.

The flags parameter contains one or more bit flags defined as static variables inside the
ImageObserver interface. These flags and the information they provide are listed in Table 27-1.

Figure 27-1 Sample output from SimpleImageLoad

27-ch27.indd 888 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 889

Pa
rt

 II

The Applet class has an implementation of the imageUpdate() method for the
ImageObserver interface that is used to repaint images as they are loaded. You can
override this method in your class to change that behavior.

Here is a simple example of an imageUpdate() method:

public boolean imageUpdate(Image img, int flags,
 int x, int y, int w, int h) {
 if ((flags & ALLBITS) == 0) {
 System.out.println("Still processing the image.");
 return true;
 } else {
 System.out.println("Done processing the image.");
 return false;
 }
}

Double Buffering
Not only are images useful for storing pictures, as we’ve just shown, but you can also use
them as offscreen drawing surfaces. This allows you to render any image, including text and
graphics, to an offscreen buffer that you can display at a later time. The advantage to doing
this is that the image is seen only when it is complete. Drawing a complicated image could
take several milliseconds or more, which can be seen by the user as flashing or flickering.
This flashing is distracting and causes the user to perceive your rendering as slower than it
actually is. Use of an offscreen image to reduce flicker is called double buffering, because the

Table 27-1 Bit Flags of the imageUpdate() flags Parameter

Flag Meaning
WIDTH The width parameter is valid and contains the width of the image.

HEIGHT The height parameter is valid and contains the height of the image.

PROPERTIES The properties associated with the image can now be obtained using
imgObj.getProperty().

SOMEBITS More pixels needed to draw the image have been received. The parameters
left, top, width, and height define the rectangle containing the new pixels.

FRAMEBITS A complete frame that is part of a multiframe image, which was previously
drawn, has been received. This frame can be displayed. The left, top, width, and
height parameters are not used.

ALLBITS The image is now complete. The left, top, width, and height parameters are
not used.

ERROR An error has occurred to an image that was being tracked asynchronously. The
image is incomplete and cannot be displayed. No further image information
will be received. The ABORT flag will also be set to indicate that the image
production was aborted.

ABORT An image that was being tracked asynchronously was aborted before it was
complete. However, if an error has not occurred, accessing any part of the
image’s data will restart the production of the image.

27-ch27.indd 889 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

890 PART II The Java Library

screen is considered a buffer for pixels, and the offscreen image is the second buffer, where
you can prepare pixels for display.

Earlier in this chapter, you saw how to create a blank Image object. Now you will see
how to draw on that image rather than the screen. As you recall from earlier chapters, you
need a Graphics object in order to use any of Java’s rendering methods. Conveniently, the
Graphics object that you can use to draw on an Image is available via the getGraphics()
method. Here is a code fragment that creates a new image, obtains its graphics context,
and fills the entire image with red pixels:

Canvas c = new Canvas();
Image test = c.createImage(200, 100);
Graphics gc = test.getGraphics();
gc.setColor(Color.red);
gc.fillRect(0, 0, 200, 100);

Once you have constructed and filled an offscreen image, it will still not be visible.
To actually display the image, call drawImage(). Here is an example that draws a time-
consuming image to demonstrate the difference that double buffering can make in
perceived drawing time:

/*
 * <applet code=DoubleBuffer width=250 height=250>
 * </applet>
 */
 import java.awt.*;
 import java.awt.event.*;
 import java.applet.*;

 public class DoubleBuffer extends Applet {
 int gap = 3;
 int mx, my;
 boolean flicker = true;
 Image buffer = null;
 int w, h;

 public void init() {
 Dimension d = getSize();
 w = d.width;
 h = d.height;
 buffer = createImage(w, h);
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent me) {
 mx = me.getX();
 my = me.getY();
 flicker = false;
 repaint();
 }
 public void mouseMoved(MouseEvent me) {
 mx = me.getX();
 my = me.getY();
 flicker = true;

27-ch27.indd 890 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 891

Pa
rt

 II

 repaint();
 }
 });
 }

 public void paint(Graphics g) {
 Graphics screengc = null;

 if (!flicker) {
 screengc = g;
 g = buffer.getGraphics();
 }

 g.setColor(Color.blue);
 g.fillRect(0, 0, w, h);

 g.setColor(Color.red);
 for (int i=0; i<w; i+=gap)
 g.drawLine(i, 0, w-i, h);
 for (int i=0; i<h; i+=gap)
 g.drawLine(0, i, w, h-i);

 g.setColor(Color.black);
 g.drawString("Press mouse button to double buffer", 10, h/2);

 g.setColor(Color.yellow);
 g.fillOval(mx - gap, my - gap, gap*2+1, gap*2+1);

 if (!flicker) {
 screengc.drawImage(buffer, 0, 0, null);
 }
 }

 public void update(Graphics g) {
 paint(g);
 }
}

This simple applet has a complicated paint() method. It fills the background with blue
and then draws a red moiré pattern on top of that. It paints some black text on top of
that and then paints a yellow circle centered at the coordinates mx, my. The mouseMoved()
and mouseDragged() methods are overridden to track the mouse position. These methods
are identical, except for the setting of the flicker Boolean variable. mouseMoved() sets
flicker to true, and mouseDragged() sets it to false. This has the effect of calling repaint()
with flicker set to true when the mouse is moved (but no button is pressed) and set to false
when the mouse is dragged with any button pressed.

When paint() gets called with flicker set to true, we see each drawing operation as it is
executed on the screen. In the case where a mouse button is pressed and paint() is called
with flicker set to false, we see quite a different picture. The paint() method swaps the
Graphics reference g with the graphics context that refers to the offscreen canvas, buffer,
which we created in init(). Then all of the drawing operations are invisible. At the end of
paint(), we simply call drawImage() to show the results of these drawing methods all at once.

27-ch27.indd 891 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

892 PART II The Java Library

Notice that it is okay to pass in a null as the fourth parameter to drawImage(). This is
the parameter used to pass an ImageObserver object that receives notification of image
events. Since this is an image that is not being produced from a network stream, we have no
need for notification. The left snapshot in Figure 27-2 is what the applet looks like with the
mouse button not pressed. As you can see, the image was in the middle of repainting when
this snapshot was taken. The right snapshot shows how, when a mouse button is pressed,
the image is always complete and clean due to double buffering.

MediaTracker
A MediaTracker is an object that will check the status of an arbitrary number of images in
parallel. To use MediaTracker, you create a new instance and use its addImage() method to
track the loading status of an image. addImage() has the following general forms:

void addImage(Image imgObj, int imgID)
void addImage(Image imgObj, int imgID, int width, int height)

Here, imgObj is the image being tracked. Its identification number is passed in imgID. ID
numbers do not need to be unique. You can use the same number with several images as a
means of identifying them as part of a group. Furthermore, images with lower IDs are given
priority over those with higher IDs when loading. In the second form, width and height
specify the dimensions of the object when it is displayed.

Once you’ve registered an image, you can check whether it’s loaded, or you can wait for
it to completely load. To check the status of an image, call checkID(). The version used in
this chapter is shown here:

boolean checkID(int imgID)

Here, imgID specifies the ID of the image you want to check. The method returns true if
all images that have the specified ID have been loaded (or if an error or user-abort has
terminated loading). Otherwise, it returns false. You can use the checkAll() method to
see if all images being tracked have been loaded.

Figure 27-2 Output from DoubleBuffer without (left) and with (right) double buffering

27-ch27.indd 892 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 893

Pa
rt

 II

You should use MediaTracker when loading a group of images. If all of the images that
you’re interested in aren’t downloaded, you can display something else to entertain the
user until they all arrive.

CAUTION If you use MediaTracker once you’ve called addImage() on an image, a reference in
MediaTracker will prevent the system from garbage collecting it. If you want the system to be
able to garbage collect images that were being tracked, make sure it can collect the MediaTracker
instance as well.

Here’s an example that loads a three-image slide show and displays a nice bar chart of
the loading progress:

/*
 * <applet code="TrackedImageLoad" width=400 height=345>
 * <param name="img"
 * value="Lilies+SunFlower+ConeFlowers">
 * </applet>
 */
import java.util.*;
import java.applet.*;
import java.awt.*;

public class TrackedImageLoad extends Applet implements Runnable {
 MediaTracker tracker;
 int tracked;
 int frame_rate = 5;
 int current_img = 0;
 Thread motor;
 static final int MAXIMAGES = 10;
 Image img[] = new Image[MAXIMAGES];
 String name[] = new String[MAXIMAGES];
 volatile boolean stopFlag;

 public void init() {
 tracker = new MediaTracker(this);
 StringTokenizer st = new StringTokenizer(getParameter("img"),
 "+");

 while(st.hasMoreTokens() && tracked <= MAXIMAGES) {
 name[tracked] = st.nextToken();
 img[tracked] = getImage(getDocumentBase(),
 name[tracked] + ".jpg");
 tracker.addImage(img[tracked], tracked);
 tracked++;
 }
 }

 public void paint(Graphics g) {
 String loaded = "";
 int donecount = 0;

 for(int i=0; i<tracked; i++) {
 if (tracker.checkID(i, true)) {

27-ch27.indd 893 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

894 PART II The Java Library

 donecount++;
 loaded += name[i] + " ";
 }
 }

 Dimension d = getSize();
 int w = d.width;
 int h = d.height;

 if (donecount == tracked) {
 frame_rate = 1;
 Image i = img[current_img++];
 int iw = i.getWidth(null);
 int ih = i.getHeight(null);
 g.drawImage(i, (w - iw)/2, (h - ih)/2, null);
 if (current_img >= tracked)
 current_img = 0;
 } else {
 int x = w * donecount / tracked;
 g.setColor(Color.black);
 g.fillRect(0, h/3, x, 16);
 g.setColor(Color.white);
 g.fillRect(x, h/3, w-x, 16);
 g.setColor(Color.black);
 g.drawString(loaded, 10, h/2);
 }
 }

 public void start() {
 motor = new Thread(this);
 stopFlag = false;
 motor.start();
 }

 public void stop() {
 stopFlag = true;
 }

 public void run() {
 motor.setPriority(Thread.MIN_PRIORITY);
 while (true) {
 repaint();
 try {
 Thread.sleep(1000/frame_rate);
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 return;
 }
 if(stopFlag)
 return;
 }
 }
}

27-ch27.indd 894 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 895

Pa
rt

 II

This example creates a new MediaTracker in the init() method and then adds each of
the named images as a tracked image with addImage(). In the paint() method, it calls
checkID() on each of the images that we’re tracking. If all of the images are loaded, they
are displayed. If not, a simple bar chart of the number of images loaded is shown, with the
names of the fully loaded images displayed underneath the bar.

ImageProducer
ImageProducer is an interface for objects that want to produce data for images. An object
that implements the ImageProducer interface will supply integer or byte arrays that represent
image data and produce Image objects. As you saw earlier, one form of the createImage()
method takes an ImageProducer object as its argument. There are two image producers
contained in java.awt.image: MemoryImageSource and FilteredImageSource. Here, we
will examine MemoryImageSource and create a new Image object from data generated
in an applet.

MemoryImageSource
MemoryImageSource is a class that creates a new Image from an array of data. It defines
several constructors. Here is the one we will be using:

MemoryImageSource(int width, int height, int pixel[], int offset,
 int scanLineWidth)

The MemoryImageSource object is constructed out of the array of integers specified by
pixel, in the default RGB color model to produce data for an Image object. In the default
color model, a pixel is an integer with Alpha, Red, Green, and Blue (0xAARRGGBB). The
Alpha value represents a degree of transparency for the pixel. Fully transparent is 0 and
fully opaque is 255. The width and height of the resulting image are passed in width and
height. The starting point in the pixel array to begin reading data is passed in offset. The
width of a scan line (which is often the same as the width of the image) is passed in
scanLineWidth.

The following short example generates a MemoryImageSource object using a variation
on a simple algorithm (a bitwise-exclusive-OR of the x and y address of each pixel) from the
book Beyond Photography, The Digital Darkroom by Gerard J. Holzmann (Prentice Hall, 1988).

/*
 * <applet code="MemoryImageGenerator" width=256 height=256>
 * </applet>
 */
import java.applet.*;
import java.awt.*;
import java.awt.image.*;

public class MemoryImageGenerator extends Applet {
 Image img;
 public void init() {
 Dimension d = getSize();
 int w = d.width;

27-ch27.indd 895 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

896 PART II The Java Library

 int h = d.height;
 int pixels[] = new int[w * h];
 int i = 0;

 for(int y=0; y<h; y++) {
 for(int x=0; x<w; x++) {
 int r = (x^y)&0xff;
 int g = (x*2^y*2)&0xff;
 int b = (x*4^y*4)&0xff;
 pixels[i++] = (255 << 24) | (r << 16) | (g << 8) | b;
 }
 }
 img = createImage(new MemoryImageSource(w, h, pixels, 0, w));
 }

 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, this);
 }
}

The data for the new MemoryImageSource is created in the init() method. An array
of integers is created to hold the pixel values; the data is generated in the nested for loops
where the r, g, and b values get shifted into a pixel in the pixels array. Finally, createImage()
is called with a new instance of a MemoryImageSource created from the raw pixel data as
its parameter. Figure 27-3 shows the image when we run the applet. (It looks much nicer
in color.)

Figure 27-3 Sample output from MemoryImageGenerator

27-ch27.indd 896 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 897

Pa
rt

 II

ImageConsumer
ImageConsumer is an interface for objects that want to take pixel data from images and
supply it as another kind of data. This, obviously, is the opposite of ImageProducer,
described earlier. An object that implements the ImageConsumer interface is going to
create int or byte arrays that represent pixels from an Image object. We will examine the
PixelGrabber class, which is a simple implementation of the ImageConsumer interface.

PixelGrabber
The PixelGrabber class is defined within java.lang.image. It is the inverse of the
MemoryImageSource class. Rather than constructing an image from an array of pixel
values, it takes an existing image and grabs the pixel array from it. To use PixelGrabber,
you first create an array of ints big enough to hold the pixel data, and then you create a
PixelGrabber instance passing in the rectangle that you want to grab. Finally, you call
grabPixels() on that instance.

The PixelGrabber constructor that is used in this chapter is shown here:

PixelGrabber(Image imgObj, int left, int top, int width, int height, int pixel [],
 int offset, int scanLineWidth)

Here, imgObj is the object whose pixels are being grabbed. The values of left and top specify
the upper-left corner of the rectangle, and width and height specify the dimensions of the
rectangle from which the pixels will be obtained. The pixels will be stored in pixel
beginning at offset. The width of a scan line (which is often the same as the width of
the image) is passed in scanLineWidth.

grabPixels() is defined like this:

boolean grabPixels()
 throws InterruptedException

boolean grabPixels(long milliseconds)
 throws InterruptedException

Both methods return true if successful and false otherwise. In the second form, milliseconds
specifies how long the method will wait for the pixels. Both throw InterruptedException if
execution is interrupted by another thread.

Here is an example that grabs the pixels from an image and then creates a histogram
of pixel brightness. The histogram is simply a count of pixels that are a certain brightness for
all brightness settings between 0 and 255. After the applet paints the image, it draws the
histogram over the top.

/*
 * <applet code=HistoGrab width=400 height=345>
 * <param name=img value=Lilies.jpg>
 * </applet> */
import java.applet.*;
import java.awt.* ;
import java.awt.image.* ;

27-ch27.indd 897 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

898 PART II The Java Library

public class HistoGrab extends Applet {
 Dimension d;
 Image img;
 int iw, ih;
 int pixels[];
 int w, h;
 int hist[] = new int[256];
 int max_hist = 0;

 public void init() {
 d = getSize();
 w = d.width;
 h = d.height;

 try {
 img = getImage(getDocumentBase(), getParameter("img"));
 MediaTracker t = new MediaTracker(this);

 t.addImage(img, 0);
 t.waitForID(0);
 iw = img.getWidth(null);
 ih = img.getHeight(null);
 pixels = new int[iw * ih];
 PixelGrabber pg = new PixelGrabber(img, 0, 0, iw, ih,
 pixels, 0, iw);
 pg.grabPixels();
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 return;
 }

 for (int i=0; i<iw*ih; i++) {
 int p = pixels[i];
 int r = 0xff & (p >> 16);
 int g = 0xff & (p >> 8);
 int b = 0xff & (p);
 int y = (int) (.33 * r + .56 * g + .11 * b);
 hist[y]++;
 }
 for (int i=0; i<256; i++) {
 if (hist[i] > max_hist)
 max_hist = hist[i];
 }
 }

 public void update() {}

 public void paint(Graphics g) {
 g.drawImage(img, 0, 0, null);
 int x = (w - 256) / 2;
 int lasty = h - h * hist[0] / max_hist;

27-ch27.indd 898 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 899

Pa
rt

 II

 for (int i=0; i<256; i++, x++) {
 int y = h - h * hist[i] / max_hist;
 g.setColor(new Color(i, i, i));
 g.fillRect(x, y, 1, h);
 g.setColor(Color.red);
 g.drawLine(x-1,lasty,x,y);
 lasty = y;
 }
 }
}

Figure 27-4 shows an example image and its histogram.

ImageFilter
Given the ImageProducer and ImageConsumer interface pair—and their concrete classes
MemoryImageSource and PixelGrabber—you can create an arbitrary set of translation filters
that takes a source of pixels, modifies them, and passes them on to an arbitrary consumer. This
mechanism is analogous to the way concrete classes are created from the abstract I/O classes
InputStream, OutputStream, Reader, and Writer (described in Chapter 20). This stream
model for images is completed by the introduction of the ImageFilter class. Some subclasses
of ImageFilter in the java.awt.image package are AreaAveragingScaleFilter, CropImageFilter,
ReplicateScaleFilter, and RGBImageFilter. There is also an implementation of ImageProducer
called FilteredImageSource, which takes an arbitrary ImageFilter and wraps it around
an ImageProducer to filter the pixels it produces. An instance of FilteredImageSource

Figure 27-4 Sample output from HistoGrab

27-ch27.indd 899 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

900 PART II The Java Library

can be used as an ImageProducer in calls to createImage(), in much the same way that
BufferedInputStreams can be passed off as InputStreams.

In this chapter, we examine two filters: CropImageFilter and RGBImageFilter.

CropImageFilter
CropImageFilter filters an image source to extract a rectangular region. One situation in
which this filter is valuable is where you want to use several small images from a single,
larger source image. Loading twenty 2K images takes much longer than loading a single
40K image that has many frames of an animation tiled into it. If every subimage is the same
size, then you can easily extract these images by using CropImageFilter to disassemble the
block once your program starts. Here is an example that creates 16 images taken from a
single image. The tiles are then scrambled by swapping a random pair from the 16 images
32 times.

/*
 * <applet code=TileImage width=400 height=345>
 * <param name=img value=Lilies.jpg>
 * </applet>
 */
import java.applet.*;
import java.awt.*;
import java.awt.image.*;

public class TileImage extends Applet {
 Image img;
 Image cell[] = new Image[4*4];
 int iw, ih;
 int tw, th;

 public void init() {
 try {
 img = getImage(getDocumentBase(), getParameter("img"));
 MediaTracker t = new MediaTracker(this);
 t.addImage(img, 0);
 t.waitForID(0);
 iw = img.getWidth(null);
 ih = img.getHeight(null);
 tw = iw / 4;
 th = ih / 4;
 CropImageFilter f;
 FilteredImageSource fis;
 t = new MediaTracker(this);
 for (int y=0; y<4; y++) {
 for (int x=0; x<4; x++) {
 f = new CropImageFilter(tw*x, th*y, tw, th);
 fis = new FilteredImageSource(img.getSource(), f);
 int i = y*4+x;
 cell[i] = createImage(fis);
 t.addImage(cell[i], i);
 }

27-ch27.indd 900 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 901

Pa
rt

 II

 }
 t.waitForAll();
 for (int i=0; i<32; i++) {
 int si = (int)(Math.random() * 16);
 int di = (int)(Math.random() * 16);
 Image tmp = cell[si];
 cell[si] = cell[di];
 cell[di] = tmp;
 }
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 }
 }

 public void update(Graphics g) {
 paint(g);
 }

 public void paint(Graphics g) {
 for (int y=0; y<4; y++) {
 for (int x=0; x<4; x++) {
 g.drawImage(cell[y*4+x], x * tw, y * th, null);
 }
 }
 }
}

Figure 27-5 shows the flowers image scrambled by the TileImage applet.

Figure 27-5 Sample output from TileImage

27-ch27.indd 901 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

902 PART II The Java Library

RGBImageFilter
The RGBImageFilter is used to convert one image to another, pixel by pixel, transforming
the colors along the way. This filter could be used to brighten an image, to increase its
contrast, or even to convert it to grayscale.

To demonstrate RGBImageFilter, we have developed a somewhat complicated example
that employs a dynamic plug-in strategy for image-processing filters. We’ve created an
interface for generalized image filtering so that an applet can simply load these filters based
on <param> tags without having to know about all of the ImageFilters in advance. This
example consists of the main applet class called ImageFilterDemo, the interface called
PlugInFilter, and a utility class called LoadedImage, which encapsulates some of the
MediaTracker methods we’ve been using in this chapter. Also included are three filters—
Grayscale, Invert, and Contrast—which simply manipulate the color space of the source
image using RGBImageFilters, and two more classes—Blur and Sharpen—which do more
complicated "convolution" filters that change pixel data based on the pixels surrounding
each pixel of source data. Blur and Sharpen are subclasses of an abstract helper class called
Convolver. Let’s look at each part of our example.

ImageFilterDemo.java
The ImageFilterDemo class is the applet framework for our sample image filters. It employs
a simple BorderLayout, with a Panel at the South position to hold the buttons that will
represent each filter. A Label object occupies the North slot for informational messages
about filter progress. The Center is where the image (which is encapsulated in the
LoadedImage Canvas subclass, described later) is put. We parse the buttons/filters
out of the filters <param> tag, separating them with +’s using a StringTokenizer.

The actionPerformed() method is interesting because it uses the label from a button as the
name of a filter class that it tries to load with (PlugInFilter) Class.forName(a).newInstance().
This method is robust and takes appropriate action if the button does not correspond to
a proper class that implements PlugInFilter.

/*
 * <applet code=ImageFilterDemo width=400 height=345>
 * <param name=img value=Lilies.jpg>
 * <param name=filters value="Grayscale+Invert+Contrast+Blur+Sharpen">
 * </applet>
 */
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class ImageFilterDemo extends Applet implements ActionListener {
 Image img;
 PlugInFilter pif;
 Image fimg;
 Image curImg;
 LoadedImage lim;
 Label lab;
 Button reset;

27-ch27.indd 902 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 903

Pa
rt

 II

 public void init() {
 setLayout(new BorderLayout());
 Panel p = new Panel();

 add(p, BorderLayout.SOUTH);
 reset = new Button("Reset");
 reset.addActionListener(this);
 p.add(reset);
 StringTokenizer st = new StringTokenizer(getParameter("filters"), "+");

 while(st.hasMoreTokens()) {
 Button b = new Button(st.nextToken());
 b.addActionListener(this);
 p.add(b);
 }

 lab = new Label("");
 add(lab, BorderLayout.NORTH);

 img = getImage(getDocumentBase(), getParameter("img"));
 lim = new LoadedImage(img);
 add(lim, BorderLayout.CENTER);
 }

 public void actionPerformed(ActionEvent ae) {
 String a = "";

 try {
 a = ae.getActionCommand();
 if (a.equals("Reset")) {
 lim.set(img);
 lab.setText("Normal");
 }
 else {
 pif = (PlugInFilter) Class.forName(a).newInstance();
 fimg = pif.filter(this, img);
 lim.set(fimg);
 lab.setText("Filtered: " + a);
 }
 repaint();
 } catch (ClassNotFoundException e) {
 lab.setText(a + " not found");
 lim.set(img);
 repaint();
 } catch (InstantiationException e) {
 lab.setText("couldn’t new " + a);
 } catch (IllegalAccessException e) {
 lab.setText("no access: " + a);
 }
 }
}

Figure 27-6 shows what the applet looks like when it is first loaded using the applet tag
shown at the top of this source file.

27-ch27.indd 903 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

904 PART II The Java Library

PlugInFilter.java
PlugInFilter is a simple interface used to abstract image filtering. It has only one method,
filter(), which takes the applet and the source image and returns a new image that has
been filtered in some way.

interface PlugInFilter {
 java.awt.Image filter(java.applet.Applet a, java.awt.Image in);
}

LoadedImage.java
LoadedImage is a convenient subclass of Canvas, which takes an image at construction time
and synchronously loads it using MediaTracker. LoadedImage then behaves properly inside of
LayoutManager control, because it overrides the getPreferredSize() and getMinimumSize()
methods. Also, it has a method called set() that can be used to set a new Image to be displayed
in this Canvas. That is how the filtered image is displayed after the plug-in is finished.

import java.awt.*;

public class LoadedImage extends Canvas {
 Image img;

 public LoadedImage(Image i) {
 set(i);
 }

 void set(Image i) {
 MediaTracker mt = new MediaTracker(this);

Figure 27-6 Sample normal output from ImageFilterDemo

27-ch27.indd 904 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 905

Pa
rt

 II

 mt.addImage(i, 0);
 try {
 mt.waitForAll();
 } catch (InterruptedException e) {
 System.out.println("Interrupted");
 return;
 }
 img = i;
 repaint();
 }

 public void paint(Graphics g) {
 if (img == null) {
 g.drawString("no image", 10, 30);
 } else {
 g.drawImage(img, 0, 0, this);
 }
 }

 public Dimension getPreferredSize() {
 return new Dimension(img.getWidth(this), img.getHeight(this));
 }

 public Dimension getMinimumSize() {
 return getPreferredSize();
 }
}

Grayscale.java
The Grayscale filter is a subclass of RGBImageFilter, which means that Grayscale can use
itself as the ImageFilter parameter to FilteredImageSource’s constructor. Then all it needs
to do is override filterRGB() to change the incoming color values. It takes the red, green,
and blue values and computes the brightness of the pixel, using the NTSC (National
Television Standards Committee) color-to-brightness conversion factor. It then simply
returns a gray pixel that is the same brightness as the color source.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

class Grayscale extends RGBImageFilter implements PlugInFilter {
 public Image filter(Applet a, Image in) {
 return a.createImage(new FilteredImageSource(in.getSource(), this));
 }

 public int filterRGB(int x, int y, int rgb) {
 int r = (rgb >> 16) & 0xff;
 int g = (rgb >> 8) & 0xff;
 int b = rgb & 0xff;
 int k = (int) (.56 * g + .33 * r + .11 * b);
 return (0xff000000 | k << 16 | k << 8 | k);
 }
}

27-ch27.indd 905 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

906 PART II The Java Library

Invert.java
The Invert filter is also quite simple. It takes apart the red, green, and blue channels and
then inverts them by subtracting them from 255. These inverted values are packed back
into a pixel value and returned.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

class Invert extends RGBImageFilter implements PlugInFilter {
 public Image filter(Applet a, Image in) {
 return a.createImage(new FilteredImageSource(in.getSource(), this));
 }

 public int filterRGB(int x, int y, int rgb) {
 int r = 0xff - (rgb >> 16) & 0xff;
 int g = 0xff - (rgb >> 8) & 0xff;
 int b = 0xff - rgb & 0xff;
 return (0xff000000 | r << 16 | g << 8 | b);
 }
}

Figure 27-7 shows the image after it has been run through the Invert filter.

Figure 27-7 Using the Invert filter with ImageFilterDemo

27-ch27.indd 906 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 907

Pa
rt

 II

Contrast.java
The Contrast filter is very similar to Grayscale, except its override of filterRGB() is slightly
more complicated. The algorithm it uses for contrast enhancement takes the red, green,
and blue values separately and boosts them by 1.2 times if they are already brighter than
128. If they are below 128, then they are divided by 1.2. The boosted values are properly
clamped at 255 by the multclamp() method.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

public class Contrast extends RGBImageFilter implements PlugInFilter {

 public Image filter(Applet a, Image in) {
 return a.createImage(new FilteredImageSource(in.getSource(), this));
 }

 private int multclamp(int in, double factor) {
 in = (int) (in * factor);
 return in > 255 ? 255 : in;
 }

 double gain = 1.2;
 private int cont(int in) {
 return (in < 128) ? (int)(in/gain) : multclamp(in, gain);
 }

 public int filterRGB(int x, int y, int rgb) {
 int r = cont((rgb >> 16) & 0xff);
 int g = cont((rgb >> 8) & 0xff);
 int b = cont(rgb & 0xff);
 return (0xff000000 | r << 16 | g << 8 | b);
 }
}

Figure 27-8 shows the image after Contrast is pressed.

Convolver.java
The abstract class Convolver handles the basics of a convolution filter by implementing the
ImageConsumer interface to move the source pixels into an array called imgpixels. It also
creates a second array called newimgpixels for the filtered data. Convolution filters sample
a small rectangle of pixels around each pixel in an image, called the convolution kernel. This
area, 3 x 3 pixels in this demo, is used to decide how to change the center pixel in the area.

NOTE The reason that the filter can’t modify the imgpixels array in place is that the next pixel on a scan
line would try to use the original value for the previous pixel, which would have just been filtered away.

27-ch27.indd 907 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

908 PART II The Java Library

The two concrete subclasses, shown in the next section, simply implement the convolve()
method, using imgpixels for source data and newimgpixels to store the result.

import java.applet.*;
import java.awt.*;
import java.awt.image.*;

abstract class Convolver implements ImageConsumer, PlugInFilter {
 int width, height;
 int imgpixels[], newimgpixels[];
 boolean imageReady = false;

 abstract void convolve(); // filter goes here...

 public Image filter(Applet a, Image in) {
 imageReady = false;
 in.getSource().startProduction(this);

 waitForImage();
 newimgpixels = new int[width*height];

 try {
 convolve();
 } catch (Exception e) {
 System.out.println("Convolver failed: " + e);
 e.printStackTrace();
 }

Figure 27-8 Using the Contrast filter with ImageFilterDemo

27-ch27.indd 908 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 909

Pa
rt

 II

 return a.createImage(
 new MemoryImageSource(width, height, newimgpixels, 0, width));
 }

 synchronized void waitForImage() {
 try {
 while(!imageReady) wait();
 } catch (Exception e) {
 System.out.println("Interrupted");
 }
 }

 public void setProperties(java.util.Hashtable<?,?> dummy) { }
 public void setColorModel(ColorModel dummy) { }
 public void setHints(int dummy) { }

 public synchronized void imageComplete(int dummy) {
 imageReady = true;
 notifyAll();
 }

 public void setDimensions(int x, int y) {
 width = x;
 height = y;
 imgpixels = new int[x*y];
 }

 public void setPixels(int x1, int y1, int w, int h,
 ColorModel model, byte pixels[], int off, int scansize) {
 int pix, x, y, x2, y2, sx, sy;

 x2 = x1+w;
 y2 = y1+h;
 sy = off;
 for(y=y1; y<y2; y++) {
 sx = sy;
 for(x=x1; x<x2; x++) {
 pix = model.getRGB(pixels[sx++]);
 if((pix & 0xff000000) == 0)
 pix = 0x00ffffff;
 imgpixels[y*width+x] = pix;
 }
 sy += scansize;
 }
 }

 public void setPixels(int x1, int y1, int w, int h,
 ColorModel model, int pixels[], int off, int scansize) {
 int pix, x, y, x2, y2, sx, sy;

 x2 = x1+w;
 y2 = y1+h;
 sy = off;

27-ch27.indd 909 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

910 PART II The Java Library

 for(y=y1; y<y2; y++) {
 sx = sy;
 for(x=x1; x<x2; x++) {
 pix = model.getRGB(pixels[sx++]);
 if((pix & 0xff000000) == 0)
 pix = 0x00ffffff;
 imgpixels[y*width+x] = pix;
 }
 sy += scansize;
 }
 }
}

NOTE A built-in convolution filter called ConvolveOp is provided by java.awt.image. You may want to
explore its capabilities on your own.

Blur.java
The Blur filter is a subclass of Convolver and simply runs through every pixel in the source
image array, imgpixels, and computes the average of the 3 x 3 box surrounding it. The
corresponding output pixel in newimgpixels is that average value.

public class Blur extends Convolver {
 public void convolve() {
 for(int y=1; y<height-1; y++) {
 for(int x=1; x<width-1; x++) {
 int rs = 0;
 int gs = 0;
 int bs = 0;

 for(int k=-1; k<=1; k++) {
 for(int j=-1; j<=1; j++) {
 int rgb = imgpixels[(y+k)*width+x+j];
 int r = (rgb >> 16) & 0xff;
 int g = (rgb >> 8) & 0xff;
 int b = rgb & 0xff;
 rs += r;
 gs += g;
 bs += b;
 }
 }

 rs /= 9;
 gs /= 9;
 bs /= 9;

 newimgpixels[y*width+x] = (0xff000000 |
 rs << 16 | gs << 8 | bs);
 }
 }
 }
}

Figure 27-9 shows the applet after Blur.

27-ch27.indd 910 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 911

Pa
rt

 II

Sharpen.java
The Sharpen filter is also a subclass of Convolver and is (more or less) the inverse of Blur.
It runs through every pixel in the source image array, imgpixels, and computes the average
of the 3 x 3 box surrounding it, not counting the center. The corresponding output pixel in
newimgpixels has the difference between the center pixel and the surrounding average
added to it. This basically says that if a pixel is 30 brighter than its surroundings, make it
another 30 brighter. If, however, it is 10 darker, then make it another 10 darker. This tends
to accentuate edges while leaving smooth areas unchanged.

public class Sharpen extends Convolver {

 private final int clamp(int c) {
 return (c > 255 ? 255 : (c < 0 ? 0 : c));
 }

 public void convolve() {
 int r0=0, g0=0, b0=0;

 for(int y=1; y<height-1; y++) {
 for(int x=1; x<width-1; x++) {
 int rs = 0;
 int gs = 0;
 int bs = 0;

 for(int k=-1; k<=1; k++) {
 for(int j=-1; j<=1; j++) {

Figure 27-9 Using the Blur filter with ImageFilterDemo

27-ch27.indd 911 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

912 PART II The Java Library

 int rgb = imgpixels[(y+k)*width+x+j];
 int r = (rgb >> 16) & 0xff;
 int g = (rgb >> 8) & 0xff;
 int b = rgb & 0xff;
 if (j == 0 && k == 0) {
 r0 = r;
 g0 = g;
 b0 = b;
 } else {
 rs += r;
 gs += g;
 bs += b;
 }
 }
 }

 rs >>= 3;
 gs >>= 3;
 bs >>= 3;
 newimgpixels[y*width+x] = (0xff000000 |
 clamp(r0+r0-rs) << 16 |
 clamp(g0+g0-gs) << 8 |
 clamp(b0+b0-bs));
 }
 }
 }
}

Figure 27-10 shows the applet after Sharpen.

Figure 27-10 Using the Sharpen filter with ImageFilterDemo

27-ch27.indd 912 14/02/14 5:19 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 27 Images 913

Pa
rt

 II

Additional Imaging Classes
In addition to the imaging classes described in this chapter, java.awt.image supplies several
others that offer enhanced control over the imaging process and that support advanced
imaging techniques. Also available is the imaging package called javax.imageio. This
package supports plug-ins that handle various image formats. If sophisticated graphical
output is of special interest to you, then you will want to explore the additional classes
found in java.awt.image and javax.imageio.

27-ch27.indd 913 14/02/14 5:19 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

28
CHAPTER

 915

The Concurrency Utilities

From the start, Java has provided built-in support for multithreading and synchronization.
For example, new threads can be created by implementing Runnable or by extending
Thread; synchronization is available by use of the synchronized keyword; and interthread
communication is supported by the wait() and notify() methods that are defined by Object.
In general, this built-in support for multithreading was one of Java’s most important
innovations and is still one of its major strengths.

However, as conceptually pure as Java’s original support for multithreading is, it is not
ideal for all applications—especially those that make intensive use of multiple threads. For
example, the original multithreading support does not provide several high-level features,
such as semaphores, thread pools, and execution managers, that facilitate the creation of
intensively concurrent programs.

It is important to explain at the outset that many Java programs make use of
multithreading and are, therefore, “concurrent.” For example, many applets and servlets
use multithreading. However, as it is used in this chapter, the term concurrent program refers
to a program that makes extensive, integral use of concurrently executing threads. An example
of such a program is one that uses separate threads to simultaneously compute the partial
results of a larger computation. Another example is a program that coordinates the activities
of several threads, each of which seeks access to information in a database. In this case, read-
only accesses might be handled differently from those that require read/write capabilities.

To begin to handle the needs of a concurrent program, JDK 5 added the concurrency
utilities, also commonly referred to as the concurrent API. The original set of concurrency
utilities supplied many features that had long been wanted by programmers who develop
concurrent applications. For example, it offered synchronizers (such as the semaphore),
thread pools, execution managers, locks, several concurrent collections, and a streamlined
way to use threads to obtain computational results.

Although the original concurrent API was impressive in its own right, it was significantly
expanded by JDK 7. The most important addition was the Fork/Join Framework. The Fork/Join
Framework facilitates the creation of programs that make use of multiple processors (such
as those found in multicore systems). Thus, it streamlines the development of programs in

28-ch28.indd 915 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

916 PART II The Java Library

which two or more pieces execute with true simultaneity (that is, true parallel execution),
not just time-slicing. As you can easily imagine, parallel execution can dramatically increase
the speed of certain operations. Because multicore systems are now commonplace, the
inclusion of the Fork/Join Framework was as timely as it was powerful. With the release of
JDK 8, the Fork/Join Framework was further enhanced.

In addition, JDK 8 included some new features related to other parts of the concurrent
API. Thus, the concurrent API continues to evolve and expand to meet the needs of the
contemporary computing environment.

The original concurrent API was quite large, and the additions made by JDK 7 and JDK 8
have increased its size substantially. As you might expect, many of the issues surrounding
the concurrency utilities are quite complex. It is beyond the scope of this book to discuss all
of its facets. The preceding notwithstanding, it is important for all programmers to have a
general, working knowledge of key aspects of the concurrent API. Even in programs that are
not intensively parallel, features such as synchronizers, callable threads, and executors, are
applicable to a wide variety of situations. Perhaps most importantly, because of the rise of
multicore computers, solutions involving the Fork/Join Framework are becomming more
common. For these reasons, this chapter presents an overview of several core features
defined by the concurrency utilities and shows a number of examples that demonstrate
their use. It concludes with an introduction to the Fork/Join Framework.

The Concurrent API Packages
The concurrency utilities are contained in the java.util.concurrent package and in its two
subpackages: java.util.concurrent.atomic and java.util.concurrent.locks. A brief overview of
their contents is given here.

java.util.concurrent
java.util.concurrent defines the core features that support alternatives to the built-in
approaches to synchronization and interthread communication. It defines the following
key features:

•	 Synchronizers

•	 Executors

•	 Concurrent collections

•	 The Fork/Join Framework

Synchronizers offer high-level ways of synchronizing the interactions between multiple
threads. The synchronizer classes defined by java.util.concurrent are

Semaphore Implements the classic semaphore.

CountDownLatch Waits until a specified number of events have occurred.

CyclicBarrier Enables a group of threads to wait at a predefined execution point.

Exchanger Exchanges data between two threads.

Phaser Synchronizes threads that advance through multiple phases of an
operation.

28-ch28.indd 916 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 917

Pa
rt

 II

Notice that each synchronizer provides a solution to a specific type of synchronization
problem. This enables each synchronizer to be optimized for its intended use. In the past,
these types of synchronization objects had to be crafted by hand. The concurrent API
standardizes them and makes them available to all Java programmers.

Executors manage thread execution. At the top of the executor hierarchy is the Executor
interface, which is used to initiate a thread. ExecutorService extends Executor and provides
methods that manage execution. There are three implementations of ExecutorService:
ThreadPoolExecutor, ScheduledThreadPoolExecutor, and ForkJoinPool. java.util.concurrent
also defines the Executors utility class, which includes a number of static methods that
simplify the creation of various executors.

Related to executors are the Future and Callable interfaces. A Future contains a value
that is returned by a thread after it executes. Thus, its value becomes defined “in the
future,” when the thread terminates. Callable defines a thread that returns a value.

java.util.concurrent defines several concurrent collection classes, including
ConcurrentHashMap, ConcurrentLinkedQueue, and CopyOnWriteArrayList. These offer
concurrent alternatives to their related classes defined by the Collections Framework.

The Fork/Join Framework supports parallel programming. Its main classes are ForkJoinTask,
ForkJoinPool, RecursiveTask, and RecursiveAction.

Finally, to better handle thread timing, java.util.concurrent defines the TimeUnit
enumeration.

java.util.concurrent.atomic
java.util.concurrent.atomic facilitates the use of variables in a concurrent environment.
It provides a means of efficiently updating the value of a variable without the use of locks.
This is accomplished through the use of classes, such as AtomicInteger and AtomicLong,
and methods, such as compareAndSet(), decrementAndGet(), and getAndSet(). These
methods execute as a single, non-interruptible operation.

java.util.concurrent.locks
java.util.concurrent.locks provides an alternative to the use of synchronized methods. At
the core of this alternative is the Lock interface, which defines the basic mechanism used
to acquire and relinquish access to an object. The key methods are lock(), tryLock(), and
unlock(). The advantage to using these methods is greater control over synchronization.

The remainder of this chapter takes a closer look at the constituents of the concurrent API.

Using Synchronization Objects
Synchronization objects are supported by the Semaphore, CountDownLatch, CyclicBarrier,
Exchanger, and Phaser classes. Collectively, they enable you to handle several formerly
difficult synchronization situations with ease. They are also applicable to a wide range of
programs—even those that contain only limited concurrency. Because the synchronization
objects will be of interest to nearly all Java programs, each is examined here in some detail.

28-ch28.indd 917 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

918 PART II The Java Library

Semaphore
The synchronization object that many readers will immediately recognize is Semaphore,
which implements a classic semaphore. A semaphore controls access to a shared resource
through the use of a counter. If the counter is greater than zero, then access is allowed. If
it is zero, then access is denied. What the counter is counting are permits that allow access to
the shared resource. Thus, to access the resource, a thread must be granted a permit from
the semaphore.

In general, to use a semaphore, the thread that wants access to the shared resource tries
to acquire a permit. If the semaphore’s count is greater than zero, then the thread acquires
a permit, which causes the semaphore’s count to be decremented. Otherwise, the thread
will be blocked until a permit can be acquired. When the thread no longer needs access
to the shared resource, it releases the permit, which causes the semaphore’s count to be
incremented. If there is another thread waiting for a permit, then that thread will acquire
a permit at that time. Java’s Semaphore class implements this mechanism.

Semaphore has the two constructors shown here:

Semaphore(int num)
Semaphore(int num, boolean how)

Here, num specifies the initial permit count. Thus, num specifies the number of threads
that can access a shared resource at any one time. If num is one, then only one thread can
access the resource at any one time. By default, waiting threads are granted a permit in an
undefined order. By setting how to true, you can ensure that waiting threads are granted a
permit in the order in which they requested access.

To acquire a permit, call the acquire() method, which has these two forms:

void acquire() throws InterruptedException
void acquire(int num) throws InterruptedException

The first form acquires one permit. The second form acquires num permits. Most often, the
first form is used. If the permit cannot be granted at the time of the call, then the invoking
thread suspends until the permit is available.

To release a permit, call release(), which has these two forms:

void release()
void release(int num)

The first form releases one permit. The second form releases the number of permits
specified by num.

To use a semaphore to control access to a resource, each thread that wants to use that
resource must first call acquire() before accessing the resource. When the thread is done
with the resource, it must call release(). Here is an example that illustrates the use of a
semaphore:

// A simple semaphore example.

import java.util.concurrent.*;

class SemDemo {

28-ch28.indd 918 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 919

Pa
rt

 II

 public static void main(String args[]) {
 Semaphore sem = new Semaphore(1);

 new IncThread(sem, "A");
 new DecThread(sem, "B");

 }
}

// A shared resource.
class Shared {
 static int count = 0;
}

// A thread of execution that increments count.
class IncThread implements Runnable {
 String name;
 Semaphore sem;

 IncThread(Semaphore s, String n) {
 sem = s;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println("Starting " + name);

 try {
 // First, get a permit.
 System.out.println(name + " is waiting for a permit.");
 sem.acquire();
 System.out.println(name + " gets a permit.");

 // Now, access shared resource.
 for(int i=0; i < 5; i++) {
 Shared.count++;
 System.out.println(name + ": " + Shared.count);

 // Now, allow a context switch -- if possible.
 Thread.sleep(10);
 }
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 // Release the permit.
 System.out.println(name + " releases the permit.");
 sem.release();
 }
}

28-ch28.indd 919 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

920 PART II The Java Library

// A thread of execution that decrements count.
class DecThread implements Runnable {
 String name;
 Semaphore sem;

 DecThread(Semaphore s, String n) {
 sem = s;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println("Starting " + name);

 try {
 // First, get a permit.
 System.out.println(name + " is waiting for a permit.");
 sem.acquire();
 System.out.println(name + " gets a permit.");

 // Now, access shared resource.
 for(int i=0; i < 5; i++) {
 Shared.count--;
 System.out.println(name + ": " + Shared.count);

 // Now, allow a context switch -- if possible.
 Thread.sleep(10);
 }
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 // Release the permit.
 System.out.println(name + " releases the permit.");
 sem.release();
 }
}

The output from the program is shown here. (The precise order in which the threads
execute may vary.)

 Starting A
 A is waiting for a permit.
 A gets a permit.
 A: 1
 Starting B
 B is waiting for a permit.
 A: 2
 A: 3
 A: 4
 A: 5
 A releases the permit.
 B gets a permit.

28-ch28.indd 920 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 921

Pa
rt

 II

 B: 4
 B: 3
 B: 2
 B: 1
 B: 0
 B releases the permit.

The program uses a semaphore to control access to the count variable, which is a static
variable within the Shared class. Shared.count is incremented five times by the run() method
of IncThread and decremented five times by DecThread. To prevent these two threads from
accessing Shared.count at the same time, access is allowed only after a permit is acquired
from the controlling semaphore. After access is complete, the permit is released. In this
way, only one thread at a time will access Shared.count, as the output shows.

In both IncThread and DecThread, notice the call to sleep() within run(). It is used to
“prove” that accesses to Shared.count are synchronized by the semaphore. In run(), the call
to sleep() causes the invoking thread to pause between each access to Shared.count. This
would normally enable the second thread to run. However, because of the semaphore, the
second thread must wait until the first has released the permit, which happens only after
all accesses by the first thread are complete. Thus, Shared.count is first incremented five
times by IncThread and then decremented five times by DecThread. The increments and
decrements are not intermixed.

Without the use of the semaphore, accesses to Shared.count by both threads would
have occurred simultaneously, and the increments and decrements would be intermixed.
To confirm this, try commenting out the calls to acquire() and release(). When you run
the program, you will see that access to Shared.count is no longer synchronized, and each
thread accesses it as soon as it gets a timeslice.

Although many uses of a semaphore are as straightforward as that shown in the
preceding program, more intriguing uses are also possible. Here is an example. The
following program reworks the producer/consumer program shown in Chapter 11 so that
it uses two semaphores to regulate the producer and consumer threads, ensuring that each
call to put() is followed by a corresponding call to get():

// An implementation of a producer and consumer
// that use semaphores to control synchronization.

import java.util.concurrent.Semaphore;

class Q {
 int n;

 // Start with consumer semaphore unavailable.
 static Semaphore semCon = new Semaphore(0);
 static Semaphore semProd = new Semaphore(1);

 void get() {
 try {
 semCon.acquire();
 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

28-ch28.indd 921 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

922 PART II The Java Library

 System.out.println("Got: " + n);
 semProd.release();
 }

 void put(int n) {
 try {
 semProd.acquire();
 } catch(InterruptedException e) {
 System.out.println("InterruptedException caught");
 }

 this.n = n;
 System.out.println("Put: " + n);
 semCon.release();
 }
}

class Producer implements Runnable {
 Q q;

 Producer(Q q) {
 this.q = q;
 new Thread(this, "Producer").start();
 }

 public void run() {
 for(int i=0; i < 20; i++) q.put(i);
 }
}

class Consumer implements Runnable {
 Q q;

 Consumer(Q q) {
 this.q = q;
 new Thread(this, "Consumer").start();
 }

 public void run() {
 for(int i=0; i < 20; i++) q.get();
 }
}

class ProdCon {
 public static void main(String args[]) {
 Q q = new Q();
 new Consumer(q);
 new Producer(q);
 }
}

28-ch28.indd 922 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 923

Pa
rt

 II

A portion of the output is shown here:

 Put: 0
 Got: 0
 Put: 1
 Got: 1
 Put: 2
 Got: 2
 Put: 3
 Got: 3
 Put: 4
 Got: 4
 Put: 5
 Got: 5
 .
 .
 .

As you can see, the calls to put() and get() are synchronized. That is, each call to put()
is followed by a call to get() and no values are missed. Without the semaphores, multiple
calls to put() would have occurred without matching calls to get(), resulting in values
being missed. (To prove this, remove the semaphore code and observe the results.)

The sequencing of put() and get() calls is handled by two semaphores: semProd and
semCon. Before put() can produce a value, it must acquire a permit from semProd. After
it has set the value, it releases semCon. Before get() can consume a value, it must acquire a
permit from semCon. After it consumes the value, it releases semProd. This “give and take”
mechanism ensures that each call to put() must be followed by a call to get().

Notice that semCon is initialized with no available permits. This ensures that put()
executes first. The ability to set the initial synchronization state is one of the more powerful
aspects of a semaphore.

CountDownLatch
Sometimes you will want a thread to wait until one or more events have occurred. To handle
such a situation, the concurrent API supplies CountDownLatch. A CountDownLatch is
initially created with a count of the number of events that must occur before the latch is
released. Each time an event happens, the count is decremented. When the count reaches
zero, the latch opens.

CountDownLatch has the following constructor:

CountDownLatch(int num)

Here, num specifies the number of events that must occur in order for the latch to open.
To wait on the latch, a thread calls await(), which has the forms shown here:

void await() throws InterruptedException
boolean await(long wait, TimeUnit tu) throws InterruptedException

The first form waits until the count associated with the invoking CountDownLatch reaches
zero. The second form waits only for the period of time specified by wait. The units
represented by wait are specified by tu, which is an object the TimeUnit enumeration.

28-ch28.indd 923 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

924 PART II The Java Library

(TimeUnit is described later in this chapter.) It returns false if the time limit is reached and
true if the countdown reaches zero

To signal an event, call the countDown() method, shown next:

void countDown()

Each call to countDown() decrements the count associated with the invoking object.
The following program demonstrates CountDownLatch. It creates a latch that requires

five events to occur before it opens.

// An example of CountDownLatch.

import java.util.concurrent.CountDownLatch;

class CDLDemo {
 public static void main(String args[]) {
 CountDownLatch cdl = new CountDownLatch(5);

 System.out.println("Starting");

 new MyThread(cdl);

 try {
 cdl.await();
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 System.out.println("Done");
 }
}

class MyThread implements Runnable {
 CountDownLatch latch;

 MyThread(CountDownLatch c) {
 latch = c;
 new Thread(this).start();
 }

 public void run() {
 for(int i = 0; i<5; i++) {
 System.out.println(i);
 latch.countDown(); // decrement count
 }
 }
}

The output produced by the program is shown here:

 Starting
 0
 1

28-ch28.indd 924 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 925

Pa
rt

 II

 2
 3
 4
 Done

Inside main(), a CountDownLatch called cdl is created with an initial count of five.
Next, an instance of MyThread is created, which begins execution of a new thread. Notice
that cdl is passed as a parameter to MyThread’s constructor and stored in the latch instance
variable. Then, the main thread calls await() on cdl, which causes execution of the main
thread to pause until cdl’s count has been decremented five times.

Inside the run() method of MyThread, a loop is created that iterates five times. With
each iteration, the countDown() method is called on latch, which refers to cdl in main().
After the fifth iteration, the latch opens, which allows the main thread to resume.

CountDownLatch is a powerful yet easy-to-use synchronization object that is appropriate
whenever a thread must wait for one or more events to occur.

CyclicBarrier
A situation not uncommon in concurrent programming occurs when a set of two or more
threads must wait at a predetermined execution point until all threads in the set have
reached that point. To handle such a situation, the concurrent API supplies the CyclicBarrier
class. It enables you to define a synchronization object that suspends until the specified
number of threads has reached the barrier point.

CyclicBarrier has the following two constructors:

CyclicBarrier(int numThreads)
CyclicBarrier(int numThreads, Runnable action)

Here, numThreads specifies the number of threads that must reach the barrier before
execution continues. In the second form, action specifies a thread that will be executed
when the barrier is reached.

Here is the general procedure that you will follow to use CyclicBarrier. First, create a
CyclicBarrier object, specifying the number of threads that you will be waiting for. Next,
when each thread reaches the barrier, have it call await() on that object. This will pause
execution of the thread until all of the other threads also call await(). Once the specified
number of threads has reached the barrier, await() will return and execution will resume.
Also, if you have specified an action, then that thread is executed.

The await() method has the following two forms:

int await() throws InterruptedException, BrokenBarrierException

int await(long wait, TimeUnit tu)
 throws InterruptedException, BrokenBarrierException, TimeoutException

The first form waits until all the threads have reached the barrier point. The second form
waits only for the period of time specified by wait. The units represented by wait are
specified by tu. Both forms return a value that indicates the order that the threads arrive
at the barrier point. The first thread returns a value equal to the number of threads waited
upon minus one. The last thread returns zero.

28-ch28.indd 925 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

926 PART II The Java Library

Here is an example that illustrates CyclicBarrier. It waits until a set of three threads has
reached the barrier. When that occurs, the thread specified by BarAction executes.

// An example of CyclicBarrier.

import java.util.concurrent.*;

class BarDemo {
 public static void main(String args[]) {
 CyclicBarrier cb = new CyclicBarrier(3, new BarAction());

 System.out.println("Starting");

 new MyThread(cb, "A");
 new MyThread(cb, "B");
 new MyThread(cb, "C");

 }
}

// A thread of execution that uses a CyclicBarrier.

class MyThread implements Runnable {
 CyclicBarrier cbar;
 String name;

 MyThread(CyclicBarrier c, String n) {
 cbar = c;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println(name);

 try {
 cbar.await();
 } catch (BrokenBarrierException exc) {
 System.out.println(exc);
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }
 }
}

// An object of this class is called when the
// CyclicBarrier ends.
class BarAction implements Runnable {
 public void run() {
 System.out.println("Barrier Reached!");
 }
}

28-ch28.indd 926 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 927

Pa
rt

 II

The output is shown here. (The precise order in which the threads execute may vary.)

 Starting
 A
 B
 C
 Barrier Reached!

A CyclicBarrier can be reused because it will release waiting threads each time the
specified number of threads calls await(). For example, if you change main() in the
preceding program so that it looks like this:

public static void main(String args[]) {
CyclicBarrier cb = new CyclicBarrier(3, new BarAction());

 System.out.println("Starting");

 new MyThread(cb, "A");
 new MyThread(cb, "B");
 new MyThread(cb, "C");
 new MyThread(cb, "X");
 new MyThread(cb, "Y");
 new MyThread(cb, "Z");

}

the following output will be produced. (The precise order in which the threads execute
may vary.)

 Starting
 A
 B
 C
 Barrier Reached!
 X
 Y
 Z
 Barrier Reached!

As the preceding example shows, the CyclicBarrier offers a streamlined solution to what
was previously a complicated problem.

Exchanger
Perhaps the most interesting of the synchronization classes is Exchanger. It is designed
to simplify the exchange of data between two threads. The operation of an Exchanger is
astoundingly simple: it simply waits until two separate threads call its exchange() method.
When that occurs, it exchanges the data supplied by the threads. This mechanism is both
elegant and easy to use. Uses for Exchanger are easy to imagine. For example, one thread
might prepare a buffer for receiving information over a network connection. Another
thread might fill that buffer with the information from the connection. The two threads
work together so that each time a new buffer is needed, an exchange is made.

28-ch28.indd 927 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

928 PART II The Java Library

Exchanger is a generic class that is declared as shown here:

Exchanger<V>

Here, V specifies the type of the data being exchanged.
The only method defined by Exchanger is exchange(), which has the two forms

shown here:

V exchange(V objRef) throws InterruptedException

V exchange(V objRef, long wait, TimeUnit tu)
 throws InterruptedException, TimeoutException

Here, objRef is a reference to the data to exchange. The data received from the other thread
is returned. The second form of exchange() allows a time-out period to be specified. The
key point about exchange() is that it won’t succeed until it has been called on the same
Exchanger object by two separate threads. Thus, exchange() synchronizes the exchange
of the data.

Here is an example that demonstrates Exchanger. It creates two threads. One thread
creates an empty buffer that will receive the data put into it by the second thread. In this
case, the data is a string. Thus, the first thread exchanges an empty string for a full one.

// An example of Exchanger.

import java.util.concurrent.Exchanger;

class ExgrDemo {
 public static void main(String args[]) {
 Exchanger<String> exgr = new Exchanger<String>();

 new UseString(exgr);
 new MakeString(exgr);
 }
}

// A Thread that constructs a string.
class MakeString implements Runnable {
 Exchanger<String> ex;
 String str;

 MakeString(Exchanger<String> c) {
 ex = c;
 str = new String();

 new Thread(this).start();
 }

 public void run() {
 char ch = 'A';

 for(int i = 0; i < 3; i++) {

 // Fill Buffer
 for(int j = 0; j < 5; j++)

28-ch28.indd 928 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 929

Pa
rt

 II

 str += ch++;

 try {
 // Exchange a full buffer for an empty one.
 str = ex.exchange(str);
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 }
 }
}

// A Thread that uses a string.
class UseString implements Runnable {
 Exchanger<String> ex;
 String str;
 UseString(Exchanger<String> c) {
 ex = c;
 new Thread(this).start();
 }

 public void run() {

 for(int i=0; i < 3; i++) {
 try {
 // Exchange an empty buffer for a full one.
 str = ex.exchange(new String());
 System.out.println("Got: " + str);
 } catch(InterruptedException exc) {
 System.out.println(exc);
 }
 }
 }
}

Here is the output produced by the program:

 Got: ABCDE
 Got: FGHIJ
 Got: KLMNO

In the program, the main() method creates an Exchanger for strings. This object is
then used to synchronize the exchange of strings between the MakeString and UseString
classes. The MakeString class fills a string with data. The UseString exchanges an empty
string for a full one. It then displays the contents of the newly constructed string. The
exchange of empty and full buffers is synchronized by the exchange() method, which is
called by both classes’ run() method.

28-ch28.indd 929 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

930 PART II The Java Library

Phaser
Another synchronization class is called Phaser. Its primary purpose is to enable the
synchronization of threads that represent one or more phases of activity. For example, you
might have a set of threads that implement three phases of an order-processing application.
In the first phase, separate threads are used to validate customer information, check
inventory, and confirm pricing. When that phase is complete, the second phase has two
threads that compute shipping costs and all applicable tax. After that, a final phase confirms
payment and determines estimated shipping time. In the past, to synchronize the multiple
threads that comprise this scenario would require a bit of work on your part. With the
inclusion of Phaser, the process is now much easier.

To begin, it helps to know that a Phaser works a bit like a CyclicBarrier, described
earlier, except that it supports multiple phases. As a result, Phaser lets you define a
synchronization object that waits until a specific phase has completed. It then advances
to the next phase, again waiting until that phase concludes. It is important to understand
that Phaser can also be used to synchronize only a single phase. In this regard, it acts much
like a CyclicBarrier. However, its primary use is to synchronize multiple phases.

Phaser defines four constructors. Here are the two used in this section:

Phaser()

Phaser(int numParties)

The first creates a phaser that has a registration count of zero. The second sets the
registration count to numParties. The term party is often applied to the objects that register
with a phaser. Although often there is a one-to-correspondence between the number of
registrants and the number of threads being synchronized, this is not required. In both
cases, the current phase is zero. That is, when a Phaser is created, it is initially at phase zero.

In general, here is how you use Phaser. First, create a new instance of Phaser. Next,
register one or more parties with the phaser, either by calling register() or by specifying the
number of parties in the constructor. For each registered party, have the phaser wait until
all registered parties complete a phase. A party signals this by calling one of a variety of
methods supplied by Phaser, such as arrive() or arriveAndAwaitAdvance(). After all parties
have arrived, the phase is complete, and the phaser can move on to the next phase (if there
is one), or terminate. The following sections explain the process in detail.

To register parties after a Phaser has been constructed, call register(). It is shown here:

int register()

It returns the phase number of the phase to which it is registered.
To signal that a party has completed a phase, it must call arrive() or some variation of

arrive(). When the number of arrivals equals the number of registered parties, the phase is
completed and the Phaser moves on to the next phase (if there is one). The arrive() method
has this general form:

int arrive()

This method signals that a party (normally a thread of execution) has completed some
task (or portion of a task). It returns the current phase number. If the phaser has been
terminated, then it returns a negative value. The arrive() method does not suspend

28-ch28.indd 930 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 931

Pa
rt

 II

execution of the calling thread. This means that it does not wait for the phase to be
completed. This method should be called only by a registered party.

If you want to indicate the completion of a phase and then wait until all other registrants
have also completed that phase, use arriveAndAwaitAdvance(). It is shown here:

int arriveAndAwaitAdvance()

It waits until all parties have arrived. It returns the next phase number or a negative value if
the phaser has been terminated. This method should be called only by a registered party.

A thread can arrive and then deregister itself by calling arriveAndDeregister(). It is
shown here:

int arriveAndDeregister()

It returns the current phase number or a negative value if the phaser has been terminated. It
does not wait until the phase is complete. This method should be called only by a registered
party.

To obtain the current phase number, call getPhase(), which is shown here:

final int getPhase()

When a Phaser is created, the first phase will be 0, the second phase 1, the third phase 2,
and so on. A negative value is returned if the invoking Phaser has been terminated.

Here is an example that shows Phaser in action. It creates three threads, each of which
have three phases. It uses a Phaser to synchronize each phase.

// An example of Phaser.

import java.util.concurrent.*;

class PhaserDemo {
 public static void main(String args[]) {
 Phaser phsr = new Phaser(1);
 int curPhase;

 System.out.println("Starting");

 new MyThread(phsr, "A");
 new MyThread(phsr, "B");
 new MyThread(phsr, "C");

 // Wait for all threads to complete phase one.
 curPhase = phsr.getPhase();
 phsr.arriveAndAwaitAdvance();
 System.out.println("Phase " + curPhase + " Complete");

 // Wait for all threads to complete phase two.
 curPhase = phsr.getPhase();
 phsr.arriveAndAwaitAdvance();
 System.out.println("Phase " + curPhase + " Complete");

 curPhase = phsr.getPhase();
 phsr.arriveAndAwaitAdvance();
 System.out.println("Phase " + curPhase + " Complete");

28-ch28.indd 931 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

932 PART II The Java Library

 // Deregister the main thread.
 phsr.arriveAndDeregister();

 if(phsr.isTerminated())
 System.out.println("The Phaser is terminated");
 }
}

// A thread of execution that uses a Phaser.
class MyThread implements Runnable {
 Phaser phsr;
 String name;

 MyThread(Phaser p, String n) {
 phsr = p;
 name = n;
 phsr.register();
 new Thread(this).start();
 }

 public void run() {

 System.out.println("Thread " + name + " Beginning Phase One");
 phsr.arriveAndAwaitAdvance(); // Signal arrival.

 // Pause a bit to prevent jumbled output. This is for illustration
 // only. It is not required for the proper operation of the phaser.
 try {
 Thread.sleep(10);
 } catch(InterruptedException e) {
 System.out.println(e);
 }

 System.out.println("Thread " + name + " Beginning Phase Two");
 phsr.arriveAndAwaitAdvance(); // Signal arrival.

 // Pause a bit to prevent jumbled output. This is for illustration
 // only. It is not required for the proper operation of the phaser.
 try {
 Thread.sleep(10);
 } catch(InterruptedException e) {
 System.out.println(e);
 }

 System.out.println("Thread " + name + " Beginning Phase Three");
 phsr.arriveAndDeregister(); // Signal arrival and deregister.
 }
}

The output is shown here:

 Starting
 Thread A Beginning Phase One
 Thread C Beginning Phase One

28-ch28.indd 932 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 933

Pa
rt

 II

 Thread B Beginning Phase One
 Phase 0 Complete
 Thread B Beginning Phase Two
 Thread C Beginning Phase Two
 Thread A Beginning Phase Two
 Phase 1 Complete
 Thread C Beginning Phase Three
 Thread B Beginning Phase Three
 Thread A Beginning Phase Three
 Phase 2 Complete
 The Phaser is terminated

Let’s look closely at the key sections of the program. First, in main(), a Phaser called
phsr is created with an initial party count of 1 (which corresponds to the main thread).
Then three threads are started by creating three MyThread objects. Notice that MyThread
is passed a reference to phsr (the phaser). The MyThread objects use this phaser to
synchronize their activities. Next, main() calls getPhase() to obtain the current phase
number (which is initially zero) and then calls arriveAndAwaitAdvance(). This causes
main() to suspend until phase zero has completed. This won’t happen until all MyThreads
also call arriveAndAwaitAdvance(). When this occurs, main() will resume execution, at
which point it displays that phase zero has completed, and it moves on to the next phase. This
process repeats until all three phases have finished. Then, main() calls arriveAndDeregister().
At that point, all three MyThreads have also deregistered. Since this results in there being
no registered parties when the phaser advances to the next phase, the phaser is terminated.

Now look at MyThread. First, notice that the constructor is passed a reference to the
phaser that it will use and then registers with the new thread as a party on that phaser.
Thus, each new MyThread becomes a party registered with the passed-in phaser. Also notice
that each thread has three phases. In this example, each phase consists of a placeholder
that simply displays the name of the thread and what it is doing. Obviously, in real-world
code, the thread would be performing more meaningful actions. Between the first two
phases, the thread calls arriveAndAwaitAdvance(). Thus, each thread waits until all threads
have completed the phase (and the main thread is ready). After all threads have arrived
(including the main thread), the phaser moves on to the next phase. After the third phase,
each thread deregisters itself with a call to arriveAndDeregister(). As the comments in
MyThread explain, the calls to sleep() are used for the purposes of illustration to ensure
that the output is not jumbled because of the multithreading. They are not needed to make
the phaser work properly. If you remove them, the output may look a bit jumbled, but the
phases will still be synchronized correctly.

One other point: Although the preceding example used three threads that were all of
the same type, this is not a requirement. Each party that uses a phaser can be unique, with
each performing some separate task.

It is possible to take control of precisely what happens when a phase advance occurs. To
do this, you must override the onAdvance() method. This method is called by the run time
when a Phaser advances from one phase to the next. It is shown here:

protected boolean onAdvance(int phase, int numParties)

Here, phase will contain the current phase number prior to being incremented and
numParties will contain the number of registered parties. To terminate the phaser,
onAdvance() must return true. To keep the phaser alive, onAdvance() must return false.

28-ch28.indd 933 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

934 PART II The Java Library

The default version of onAdvance() returns true (thus terminating the phaser) when there
are no registered parties. As a general rule, your override should also follow this practice.

One reason to override onAdvance() is to enable a phaser to execute a specific number
of phases and then stop. The following example gives you the flavor of this usage. It creates
a class called MyPhaser that extends Phaser so that it will run a specified number of phases.
It does this by overriding the onAdvance() method. The MyPhaser constructor accepts
one argument, which specifies the number of phases to execute. Notice that MyPhaser
automatically registers one party. This behavior is useful in this example, but the needs
of your own applications may differ.

// Extend Phaser and override onAdvance() so that only a specific
// number of phases are executed.

import java.util.concurrent.*;

// Extend MyPhaser to allow only a specific number of phases
// to be executed.
class MyPhaser extends Phaser {
 int numPhases;

 MyPhaser(int parties, int phaseCount) {
 super(parties);
 numPhases = phaseCount - 1;
 }

 // Override onAdvance() to execute the specified
 // number of phases.
 protected boolean onAdvance(int p, int regParties) {
 // This println() statement is for illustration only.
 // Normally, onAdvance() will not display output.
 System.out.println("Phase " + p + " completed.\n");

 // If all phases have completed, return true
 if(p == numPhases || regParties == 0) return true;

 // Otherwise, return false.
 return false;
 }
}

class PhaserDemo2 {
 public static void main(String args[]) {

 MyPhaser phsr = new MyPhaser(1, 4);

 System.out.println("Starting\n");

 new MyThread(phsr, "A");
 new MyThread(phsr, "B");
 new MyThread(phsr, "C");

 // Wait for the specified number of phases to complete.
 while(!phsr.isTerminated()) {

28-ch28.indd 934 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 935

Pa
rt

 II

 phsr.arriveAndAwaitAdvance();
 }

 System.out.println("The Phaser is terminated");
 }
}

// A thread of execution that uses a Phaser.
class MyThread implements Runnable {
 Phaser phsr;
 String name;

 MyThread(Phaser p, String n) {
 phsr = p;
 name = n;
 phsr.register();
 new Thread(this).start();
 }

 public void run() {

 while(!phsr.isTerminated()) {
 System.out.println("Thread " + name + " Beginning Phase " +
 phsr.getPhase());

 phsr.arriveAndAwaitAdvance();

 // Pause a bit to prevent jumbled output. This is for illustration
 // only. It is not required for the proper operation of the phaser.
 try {
 Thread.sleep(10);
 } catch(InterruptedException e) {
 System.out.println(e);
 }
 }
 }
}

The output from the program is shown here:

 Starting

 Thread B Beginning Phase 0
 Thread A Beginning Phase 0
 Thread C Beginning Phase 0
 Phase 0 completed.

 Thread A Beginning Phase 1
 Thread B Beginning Phase 1
 Thread C Beginning Phase 1
 Phase 1 completed.

 Thread C Beginning Phase 2
 Thread B Beginning Phase 2
 Thread A Beginning Phase 2
 Phase 2 completed.

28-ch28.indd 935 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

936 PART II The Java Library

 Thread C Beginning Phase 3
 Thread B Beginning Phase 3
 Thread A Beginning Phase 3
 Phase 3 completed.

 The Phaser is terminated

Inside main(), one instance of Phaser is created. It is passed 4 as an argument, which
means that it will execute four phases and then stop. Next, three threads are created and
then the following loop is entered:

// Wait for the specified number of phases to complete.
while(!phsr.isTerminated()) {
 phsr.arriveAndAwaitAdvance();
}

This loop simply calls arriveAndAwaitAdvance() until the phaser is terminated. The phaser
won’t terminate until the specified number of phases have been executed. In this case, the
loop continues to execute until four phases have run. Next, notice that the threads also call
arriveAndAwaitAdvance() within a loop that runs until the phaser is terminated. This
means that they will execute until the specified number of phases has been completed.

Now, look closely at the code for onAdvance(). Each time onAdvance() is called, it is
passed the current phase and the number of registered parties. If the current phase equals
the specified phase, or if the number of registered parties is zero, onAdvance() returns
true, thus stopping the phaser. This is accomplished with this line of code:

// If all phases have completed, return true
if(p == numPhases || regParties == 0) return true;

As you can see, very little code is needed to accommodate the desired outcome.
Before moving on, it is useful to point out that you don’t necessarily need to explicitly

extend Phaser as the previous example does to simply override onAdvance(). In some
cases, more compact code can be created by using an anonymous inner class to override
onAdvance().

Phaser has additional capabilities that may be of use in your applications. You can wait
for a specific phase by calling awaitAdvance(), which is shown here:

int awaitAdvance(int phase)

Here, phase indicates the phase number on which awaitAdvance() will wait until a transition
to the next phase takes place. It will return immediately if the argument passed to phase is
not equal to the current phase. It will also return immediately if the phaser is terminated.
However, if phase is passed the current phase, then it will wait until the phase increments.
This method should be called only by a registered party. There is also an interruptible
version of this method called awaitAdvanceInterruptibly().

To register more than one party, call bulkRegister(). To obtain the number of registered
parties, call getRegisteredParties(). You can also obtain the number of arrived parties and
unarrived parties by calling getArrivedParties() and getUnarrivedParties(), respectively. To
force the phaser to enter a terminated state, call forceTermination().

Phaser also lets you create a tree of phasers. This is supported by two additional
constructors, which let you specify the parent, and the getParent() method.

28-ch28.indd 936 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 937

Pa
rt

 II

Using an Executor
The concurrent API supplies a feature called an executor that initiates and controls the
execution of threads. As such, an executor offers an alternative to managing threads
through the Thread class.

At the core of an executor is the Executor interface. It defines the following method:

void execute(Runnable thread)

The thread specified by thread is executed. Thus, execute() starts the specified thread.
The ExecutorService interface extends Executor by adding methods that help manage

and control the execution of threads. For example, ExecutorService defines shutdown(),
shown here, which stops the invoking ExecutorService.

void shutdown()

ExecutorService also defines methods that execute threads that return results, that execute
a set of threads, and that determine the shutdown status. We will look at several of these
methods a little later.

Also defined is the interface ScheduledExecutorService, which extends ExecutorService
to support the scheduling of threads.

The concurrent API defines three predefined executor classes: ThreadPoolExecutor
and ScheduledThreadPoolExecutor, and ForkJoinPool. ThreadPoolExecutor implements
the Executor and ExecutorService interfaces and provides support for a managed pool of
threads. ScheduledThreadPoolExecutor also implements the ScheduledExecutorService
interface to allow a pool of threads to be scheduled. ForkJoinPool implements the Executor
and ExecutorService interfaces and is used by the Fork/Join Framework. It is described
later in this chapter.

A thread pool provides a set of threads that is used to execute various tasks. Instead of
each task using its own thread, the threads in the pool are used. This reduces the overhead
associated with creating many separate threads. Although you can use ThreadPoolExecutor
and ScheduledThreadPoolExecutor directly, most often you will want to obtain an executor
by calling one of the following static factory methods defined by the Executors utility class.
Here are some examples:

static ExecutorService newCachedThreadPool()
static ExecutorService newFixedThreadPool(int numThreads)
static ScheduledExecutorService newScheduledThreadPool(int numThreads)

newCachedThreadPool() creates a thread pool that adds threads as needed but reuses
threads if possible. newFixedThreadPool() creates a thread pool that consists of a specified
number of threads. newScheduledThreadPool() creates a thread pool that supports thread
scheduling. Each returns a reference to an ExecutorService that can be used to manage
the pool.

A Simple Executor Example
Before going any further, a simple example that uses an executor will be of value. The
following program creates a fixed thread pool that contains two threads. It then uses that

28-ch28.indd 937 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

938 PART II The Java Library

pool to execute four tasks. Thus, four tasks share the two threads that are in the pool. After
the tasks finish, the pool is shut down and the program ends.

// A simple example that uses an Executor.

import java.util.concurrent.*;

class SimpExec {
 public static void main(String args[]) {
 CountDownLatch cdl = new CountDownLatch(5);
 CountDownLatch cdl2 = new CountDownLatch(5);
 CountDownLatch cdl3 = new CountDownLatch(5);
 CountDownLatch cdl4 = new CountDownLatch(5);
 ExecutorService es = Executors.newFixedThreadPool(2);

 System.out.println("Starting");

 // Start the threads.
 es.execute(new MyThread(cdl, "A"));
 es.execute(new MyThread(cdl2, "B"));
 es.execute(new MyThread(cdl3, "C"));
 es.execute(new MyThread(cdl4, "D"));

 try {
 cdl.await();
 cdl2.await();
 cdl3.await();
 cdl4.await();
 } catch (InterruptedException exc) {
 System.out.println(exc);
 }

 es.shutdown();
 System.out.println("Done");
 }
}

class MyThread implements Runnable {
 String name;
 CountDownLatch latch;

 MyThread(CountDownLatch c, String n) {
 latch = c;
 name = n;

 new Thread(this);
 }

 public void run() {

 for(int i = 0; i < 5; i++) {
 System.out.println(name + ": " + i);
 latch.countDown();
 }
 }
}

28-ch28.indd 938 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 939

Pa
rt

 II

The output from the program is shown here. (The precise order in which the threads
execute may vary.)

 Starting
 A: 0
 A: 1
 A: 2
 A: 3
 A: 4
 C: 0
 C: 1
 C: 2
 C: 3
 C: 4
 D: 0
 D: 1
 D: 2
 D: 3
 D: 4
 B: 0
 B: 1
 B: 2
 B: 3
 B: 4
 Done

As the output shows, even though the thread pool contains only two threads, all four tasks
are still executed. However, only two can run at the same time. The others must wait until
one of the pooled threads is available for use.

The call to shutdown() is important. If it were not present in the program, then the
program would not terminate because the executor would remain active. To try this for
yourself, simply comment out the call to shutdown() and observe the result.

Using Callable and Future
One of the most interesting features of the concurrent API is the Callable interface. This
interface represents a thread that returns a value. An application can use Callable objects to
compute results that are then returned to the invoking thread. This is a powerful mechanism
because it facilitates the coding of many types of numerical computations in which partial
results are computed simultaneously. It can also be used to run a thread that returns a
status code that indicates the successful completion of the thread.

Callable is a generic interface that is defined like this:

interface Callable<V>

Here, V indicates the type of data returned by the task. Callable defines only one method,
call(), which is shown here:

V call() throws Exception

Inside call(), you define the task that you want performed. After that task completes, you
return the result. If the result cannot be computed, call() must throw an exception.

28-ch28.indd 939 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

940 PART II The Java Library

A Callable task is executed by an ExecutorService, by calling its submit() method. There
are three forms of submit(), but only one is used to execute a Callable. It is shown here:

<T> Future<T> submit(Callable<T> task)

Here, task is the Callable object that will be executed in its own thread. The result is
returned through an object of type Future.

Future is a generic interface that represents the value that will be returned by a Callable
object. Because this value is obtained at some future time, the name Future is appropriate.
Future is defined like this:

interface Future<V>

Here, V specifies the type of the result.
To obtain the returned value, you will call Future’s get() method, which has these two

forms:

V get()
 throws InterruptedException, ExecutionException

V get(long wait, TimeUnit tu)
 throws InterruptedException, ExecutionException, TimeoutException

The first form waits for the result indefinitely. The second form allows you to specify a
timeout period in wait. The units of wait are passed in tu, which is an object of the TimeUnit
enumeration, described later in this chapter.

The following program illustrates Callable and Future by creating three tasks that
perform three different computations. The first returns the summation of a value, the
second computes the length of the hypotenuse of a right triangle given the length of its
sides, and the third computes the factorial of a value. All three computations occur
simultaneously.

// An example that uses a Callable.

import java.util.concurrent.*;

class CallableDemo {
 public static void main(String args[]) {
 ExecutorService es = Executors.newFixedThreadPool(3);
 Future<Integer> f;
 Future<Double> f2;
 Future<Integer> f3;

 System.out.println("Starting");

 f = es.submit(new Sum(10));
 f2 = es.submit(new Hypot(3, 4));
 f3 = es.submit(new Factorial(5));

 try {
 System.out.println(f.get());
 System.out.println(f2.get());
 System.out.println(f3.get());

28-ch28.indd 940 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 941

Pa
rt

 II

 } catch (InterruptedException exc) {
 System.out.println(exc);
 }
 catch (ExecutionException exc) {
 System.out.println(exc);
 }

 es.shutdown();
 System.out.println("Done");
 }
}

// Following are three computational threads.

class Sum implements Callable<Integer> {
 int stop;

 Sum(int v) { stop = v; }

 public Integer call() {
 int sum = 0;
 for(int i = 1; i <= stop; i++) {
 sum += i;
 }
 return sum;
 }
}

class Hypot implements Callable<Double> {
 double side1, side2;

 Hypot(double s1, double s2) {
 side1 = s1;
 side2 = s2;
 }

 public Double call() {
 return Math.sqrt((side1*side1) + (side2*side2));
 }
}

class Factorial implements Callable<Integer> {
 int stop;

 Factorial(int v) { stop = v; }

 public Integer call() {
 int fact = 1;
 for(int i = 2; i <= stop; i++) {
 fact *= i;
 }
 return fact;
 }
}

28-ch28.indd 941 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

942 PART II The Java Library

The output is shown here:

 Starting
 55
 5.0
 120
 Done

The TimeUnit Enumeration
The concurrent API defines several methods that take an argument of type TimeUnit,
which indicates a time-out period. TimeUnit is an enumeration that is used to specify the
granularity (or resolution) of the timing. TimeUnit is defined within java.util.concurrent. It
can be one of the following values:

DAYS
HOURS
MINUTES
SECONDS
MICROSECONDS
MILLISECONDS
NANOSECONDS

Although TimeUnit lets you specify any of these values in calls to methods that take a
timing argument, there is no guarantee that the system is capable of the specified
resolution.

Here is an example that uses TimeUnit. The CallableDemo class, shown in the previous
section, is modified as shown next to use the second form of get() that takes a TimeUnit
argument.

try {
 System.out.println(f.get(10, TimeUnit.MILLISECONDS));
 System.out.println(f2.get(10, TimeUnit.MILLISECONDS));
 System.out.println(f3.get(10, TimeUnit.MILLISECONDS));
} catch (InterruptedException exc) {
 System.out.println(exc);
}
catch (ExecutionException exc) {
 System.out.println(exc);
} catch (TimeoutException exc) {
 System.out.println(exc);
}

In this version, no call to get() will wait more than 10 milliseconds.
The TimeUnit enumeration defines various methods that convert between units. These

are shown here:

long convert(long tval, TimeUnit tu)
long toMicros(long tval)
long toMillis(long tval)
long toNanos(long tval)

28-ch28.indd 942 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 943

Pa
rt

 II

long toSeconds(long tval)
long toDays(long tval)
long toHours(long tval)
long toMinutes(long tval)

The convert() method converts tval into the specified unit and returns the result. The to
methods perform the indicated conversion and return the result.

TimeUnit also defines the following timing methods:

void sleep(long delay) throws InterruptedExecution
void timedJoin(Thread thrd, long delay) throws InterruptedExecution
void timedWait(Object obj, long delay) throws InterruptedExecution

Here, sleep() pauses execution for the specified delay period, which is specified in terms of
the invoking enumeration constant. It translates into a call to Thread.sleep(). The timedJoin()
method is a specialized version of Thread.join() in which thrd pauses for the time period
specified by delay, which is described in terms of the invoking time unit. The timedWait()
method is a specialized version of Object.wait() in which obj is waited on for the period of
time specified by delay, which is described in terms of the invoking time unit.

The Concurrent Collections
As explained, the concurrent API defines several collection classes that have been
engineered for concurrent operation. They include:

ArrayBlockingQueue
ConcurrentHashMap
ConcurrentLinkedDeque
ConcurrentLinkedQueue
ConcurrentSkipListMap
ConcurrentSkipListSet
CopyOnWriteArrayList
CopyOnWriteArraySet
DelayQueue
LinkedBlockingDeque
LinkedBlockingQueue
LinkedTransferQueue
PriorityBlockingQueue
SynchronousQueue

These offer concurrent alternatives to their related classes defined by the Collections
Framework. These collections work much like the other collections except that they
provide concurrency support. Programmers familiar with the Collections Framework
will have no trouble using these concurrent collections.

Locks
The java.util.concurrent.locks package provides support for locks, which are objects that
offer an alternative to using synchronized to control access to a shared resource. In general,
here is how a lock works. Before accessing a shared resource, the lock that protects that

28-ch28.indd 943 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

944 PART II The Java Library

resource is acquired. When access to the resource is complete, the lock is released. If a
second thread attempts to acquire the lock when it is in use by another thread, the second
thread will suspend until the lock is released. In this way, conflicting access to a shared
resource is prevented.

Locks are particularly useful when multiple threads need to access the value of shared
data. For example, an inventory application might have a thread that first confirms that an
item is in stock and then decreases the number of items on hand as each sale occurs. If two
or more of these threads are running, then without some form of synchronization, it would
be possible for one thread to be in the middle of a transaction when the second thread begins
its transaction. The result could be that both threads would assume that adequate inventory
exists, even if there is only sufficient inventory on hand to satisfy one sale. In this type of
situation, a lock offers a convenient means of handling the needed synchronization.

The Lock interface defines a lock. The methods defined by Lock are shown in Table 28-1.
In general, to acquire a lock, call lock(). If the lock is unavailable, lock() will wait. To
release a lock, call unlock(). To see if a lock is available, and to acquire it if it is, call tryLock().
This method will not wait for the lock if it is unavailable. Instead, it returns true if the lock
is acquired and false otherwise. The newCondition() method returns a Condition object
associated with the lock. Using a Condition, you gain detailed control of the lock through
methods such as await() and signal(), which provide functionality similar to Object.wait()
and Object.notify().

java.util.concurrent.locks supplies an implementation of Lock called ReentrantLock.
ReentrantLock implements a reentrant lock, which is a lock that can be repeatedly entered
by the thread that currently holds the lock. Of course, in the case of a thread reentering a
lock, all calls to lock() must be offset by an equal number of calls to unlock(). Otherwise,
a thread seeking to acquire the lock will suspend until the lock is not in use.

Table 28-1 The Lock Methods

Method Description
void lock() Waits until the invoking lock can be acquired.

void lockInterruptibly()
 throws InterruptedException

Waits until the invoking lock can be acquired, unless
interrupted.

Condition newCondition() Returns a Condition object that is associated with the
invoking lock.

boolean tryLock() Attempts to acquire the lock. This method will not
wait if the lock is unavailable. Instead, it returns true
if the lock has been acquired and false if the lock is
currently in use by another thread.

boolean tryLock(long wait, TimeUnit tu)
 throws InterruptedException

Attempts to acquire the lock. If the lock is unavailable,
this method will wait no longer than the period
specified by wait, which is in tu units. It returns true
if the lock has been acquired and false if the lock
cannot be acquired within the specified period.

void unlock() Releases the lock.

28-ch28.indd 944 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 945

Pa
rt

 II

The following program demonstrates the use of a lock. It creates two threads that access
a shared resource called Shared.count. Before a thread can access Shared.count, it must
obtain a lock. After obtaining the lock, Shared.count is incremented and then, before
releasing the lock, the thread sleeps. This causes the second thread to attempt to obtain the
lock. However, because the lock is still held by the first thread, the second thread must wait
until the first thread stops sleeping and releases the lock. The output shows that access to
Shared.count is, indeed, synchronized by the lock.

// A simple lock example.

import java.util.concurrent.locks.*;

class LockDemo {

 public static void main(String args[]) {
 ReentrantLock lock = new ReentrantLock();

 new LockThread(lock, "A");
 new LockThread(lock, "B");
 }
}

// A shared resource.
class Shared {
 static int count = 0;
}

// A thread of execution that increments count.
class LockThread implements Runnable {
 String name;
 ReentrantLock lock;

 LockThread(ReentrantLock lk, String n) {
 lock = lk;
 name = n;
 new Thread(this).start();
 }

 public void run() {

 System.out.println("Starting " + name);

 try {
 // First, lock count.
 System.out.println(name + " is waiting to lock count.");
 lock.lock();
 System.out.println(name + " is locking count.");

 Shared.count++;
 System.out.println(name + ": " + Shared.count);

 // Now, allow a context switch -- if possible.
 System.out.println(name + " is sleeping.");

28-ch28.indd 945 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

946 PART II The Java Library

 Thread.sleep(1000);
 } catch (InterruptedException exc) {
 System.out.println(exc);
 } finally {
 // Unlock
 System.out.println(name + " is unlocking count.");
 lock.unlock();
 }
 }
}

The output is shown here. (The precise order in which the threads execute may vary.)

 Starting A
 A is waiting to lock count.
 A is locking count.
 A: 1
 A is sleeping.
 Starting B
 B is waiting to lock count.
 A is unlocking count.
 B is locking count.
 B: 2
 B is sleeping.
 B is unlocking count.

java.util.concurrent.locks also defines the ReadWriteLock interface. This interface
specifies a lock that maintains separate locks for read and write access. This enables
multiple locks to be granted for readers of a resource as long as the resource is not being
written. ReentrantReadWriteLock provides an implementation of ReadWriteLock.

NOTE JDK 8 adds a specialized lock called StampedLock. It does not implement the Lock or
ReadWriteLock interfaces. It does, however, provide a mechanism that enables aspects of it to be
used like a Lock or ReadWriteLock.

Atomic Operations
java.util.concurrent.atomic offers an alternative to the other synchronization features when
reading or writing the value of some types of variables. This package offers methods that
get, set, or compare the value of a variable in one uninterruptible (that is, atomic) operation.
This means that no lock or other synchronization mechanism is required.

Atomic operations are accomplished through the use of classes, such as AtomicInteger
and AtomicLong, and methods such as get(), set(), compareAndSet(), decrementAndGet(),
and getAndSet(), which perform the action indicated by their names.

Here is an example that demonstrates how access to a shared integer can be
synchronized by the use of AtomicInteger:

// A simple example of Atomic.

import java.util.concurrent.atomic.*;

28-ch28.indd 946 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 947

Pa
rt

 II

class AtomicDemo {

 public static void main(String args[]) {
 new AtomThread("A");
 new AtomThread("B");
 new AtomThread("C");
 }
}

class Shared {
 static AtomicInteger ai = new AtomicInteger(0);
}

// A thread of execution that increments count.
class AtomThread implements Runnable {
 String name;

 AtomThread(String n) {
 name = n;
 new Thread(this).start();
 }

public void run() {

 System.out.println("Starting " + name);

 for(int i=1; i <= 3; i++)
 System.out.println(name + " got: " +
 Shared.ai.getAndSet(i));
 }
}

In the program, a static AtomicInteger named ai is created by Shared. Then, three
threads of type AtomThread are created. Inside run(), Shared.ai is modified by calling
getAndSet(). This method returns the previous value and then sets the value to the one
passed as an argument. The use of AtomicInteger prevents two threads from writing to ai
at the same time.

In general, the atomic operations offer a convenient (and possibly more efficient)
alternative to the other synchronization mechanisms when only a single variable is
involved. Beginning with JDK 8, java.util.concurrent.atomic also provides four classes that
support lock-free cumulative operations. These are DoubleAccumulator, DoubleAdder,
LongAccumulator, and LongAdder. The accumulator classes support a series of user-specified
operations. The adder classes maintain a cumulative sum.

Parallel Programming via the Fork/Join Framework
In recent years, an important new trend has emerged in software development: parallel
programming. Parallel programming is the name commonly given to the techniques that
take advantage of computers that contain two or more processors (multicore). As most
readers will know, multicore computers are becoming commonplace. The advantage that
multi-processor environments offer is the ability to significantly increase program
performance. As a result, there has been a growing need for a mechanism that gives Java

28-ch28.indd 947 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

948 PART II The Java Library

programmers a simple, yet effective way to make use of multiple processors in a clean,
scalable manner. To answer this need, JDK 7 added several new classes and interfaces that
support parallel programming. They are commonly referred to as the Fork/Join Framework.
It is one of the more important additions that has recently been made to the Java class
library. The Fork/Join Framework is defined in the java.util.concurrent package.

The Fork/Join Framework enhances multithreaded programming in two important
ways. First, it simplifies the creation and use of multiple threads. Second, it automatically
makes use of multiple processors. In other words, by using the Fork/Join Framework you
enable your applications to automatically scale to make use of the number of available
processors. These two features make the Fork/Join Framework the recommended
approach to multithreading when parallel processing is desired.

Before continuing, it is important to point out the distinction between traditional
multithreading and parallel programming. In the past, most computers had a single CPU
and multithreading was primarily used to take advantage of idle time, such as when a
program is waiting for user input. Using this approach, one thread can execute while
another is waiting. In other words, on a single-CPU system, multithreading is used to allow
two or more tasks to share the CPU. This type of multithreading is typically supported by an
object of type Thread (as described in Chapter 11). Although this type of multithreading
will always remain quite useful, it was not optimized for situations in which two or more
CPUs are available (multicore computers).

When multiple CPUs are present, a second type of multithreading capability that
supports true parallel execution is required. With two or more CPUs, it is possible to
execute portions of a program simultaneously, with each part executing on its own CPU.
This can be used to significantly speed up the execution of some types of operations, such
as sorting, transforming, or searching a large array. In many cases, these types of operations
can be broken down into smaller pieces (each acting on a portion of the array), and each
piece can be run on its own CPU. As you can imagine, the gain in efficiency can be enormous.
Simply put: Parallel programming will be part of nearly every programmer’s future because
it offers a way to dramatically improve program performance.

The Main Fork/Join Classes
The Fork/Join Framework is packaged in java.util.concurrent. At the core of the Fork/Join
Framework are the following four classes:

ForkJoinTask<V> An abstract class that defines a task

ForkJoinPool Manages the execution of ForkJoinTasks

RecursiveAction A subclass of ForkJoinTask<V> for tasks that do not return values

RecursiveTask<V> A subclass of ForkJoinTask<V> for tasks that return values

Here is how they relate. A ForkJoinPool manages the execution of ForkJoinTasks. ForkJoinTask
is an abstract class that is extended by the abstract classes RecursiveAction and RecursiveTask.
Typically, your code will extend these classes to create a task. Before looking at the process in
detail, an overview of the key aspects of each class will be helpful.

NOTE The class CountedCompleter (added by JDK 8) also extends ForkJoinTask. However, a discussion
of CountedCompleter is beyond the scope of this book.

28-ch28.indd 948 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 949

Pa
rt

 II

ForkJoinTask<V>
ForkJoinTask<V> is an abstract class that defines a task that can be managed by a ForkJoinPool.
The type parameter V specifies the result type of the task. ForkJoinTask differs from Thread
in that ForkJoinTask represents lightweight abstraction of a task, rather than a thread of
execution. ForkJoinTasks are executed by threads managed by a thread pool of type
ForkJoinPool. This mechanism allows a large number of tasks to be managed by a small
number of actual threads. Thus, ForkJoinTasks are very efficient when compared to threads.

ForkJoinTask defines many methods. At the core are fork() and join(), shown here:

final ForkJoinTask<V> fork()

final V join()

The fork() method submits the invoking task for asynchronous execution of the invoking
task. This means that the thread that calls fork() continues to run. The fork() method
returns this after the task is scheduled for execution. Prior to JDK 8, fork() could be executed
only from within the computational portion of another ForkJoinTask, which is running
within a ForkJoinPool. (You will see how to create the computational portion of a task
shortly.) However, with the advent of JDK 8, if fork() is not called while executing within
a ForkJoinPool, then a common pool is automatically used. The join() method waits until the
task on which it is called terminates. The result of the task is returned. Thus, through the use
of fork() and join(), you can start one or more new tasks and then wait for them to finish.

Another important ForkJoinTask method is invoke(). It combines the fork and join
operations into a single call because it begins a task and then waits for it to end. It is shown
here:

final V invoke()

The result of the invoking task is returned.
You can invoke more than one task at a time by using invokeAll(). Two of its forms are

shown here:

static void invokeAll(ForkJoinTask<?> taskA, ForkJoinTask<?> taskB)

static void invokeAll(ForkJoinTask<?> ... taskList)

In the first case, taskA and taskB are executed. In the second case, all specified tasks are
executed. In both cases, the calling thread waits until all of the specified tasks have terminated.
Prior to JDK 8, the invokeAll() method could be executed only from within the computational
portion of another ForkJoinTask, which is running within a ForkJoinPool. JDK 8’s inclusion
of the common pool relaxed this requirement.

RecursiveAction
A subclass of ForkJoinTask is RecursiveAction. This class encapsulates a task that does not
return a result. Typically, your code will extend RecursiveAction to create a task that has a
void return type. RecursiveAction specifies four methods, but only one is usually of interest:
the abstract method called compute(). When you extend RecursiveAction to create a concrete
class, you will put the code that defines the task inside compute(). The compute() method
represents the computational portion of the task.

28-ch28.indd 949 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

950 PART II The Java Library

The compute() method is defined by RecursiveAction like this:

protected abstract void compute()

Notice that compute() is protected and abstract. This means that it must be implemented
by a subclass (unless that subclass is also abstract).

In general, RecursiveAction is used to implement a recursive, divide-and-conquer
strategy for tasks that don’t return results. (See “The Divide-and-Conquer Strategy” later
in this chapter.)

RecursiveTask<V>
Another subclass of ForkJoinTask is RecursiveTask<V>. This class encapsulates a task
that returns a result. The result type is specified by V. Typically, your code will extend
RecursiveTask<V> to create a task that returns a value. Like RecursiveAction, it too specifies
four methods, but often only the abstract compute() method is used, which represents the
computational portion of the task. When you extend RecursiveTask<V> to create a concrete
class, put the code that represents the task inside compute(). This code must also return
the result of the task.

The compute() method is defined by RecursiveTask<V> like this:

protected abstract V compute()

Notice that compute() is protected and abstract. This means that it must be implemented
by a subclass. When implemented, it must return the result of the task.

In general, RecursiveTask is used to implement a recursive, divide-and-conquer strategy
for tasks that return results. (See “The Divide-and-Conquer Strategy” later in this chapter.)

ForkJoinPool
The execution of ForkJoinTasks takes place within a ForkJoinPool, which also manages the
execution of the tasks. Therefore, in order to execute a ForkJoinTask, you must first have a
ForkJoinPool. Beginning with JDK 8, there are two ways to acquire a ForkJoinPool. First,
you can explicitly create one by using a ForkJoinPool constructor. Second, you can use what
is referred to as the common pool. The common pool (which was added by JDK 8) is a static
ForkJoinPool that is automatically available for your use. Each method is introduced here,
beginning with manually constructing a pool.

ForkJoinPool defines several constructors. Here are two commonly used ones:

ForkJoinPool()

ForkJoinPool(int pLevel)

The first creates a default pool that supports a level of parallelism equal to the number of
processors available in the system. The second lets you specify the level of parallelism. Its
value must be greater than zero and not more than the limits of the implementation. The
level of parallelism determines the number of threads that can execute concurrently. As a
result, the level of parallelism effectively determines the number of tasks that can be
executed simultaneously. (Of course, the number of tasks that can execute simultaneously
cannot exceed the number of processors.) It is important to understand that the level of
parallelism does not, however, limit the number of tasks that can be managed by the pool.
A ForkJoinPool can manage many more tasks than its level of parallelism. Also, the level
of parallelism is only a target. It is not a guarantee.

28-ch28.indd 950 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 951

Pa
rt

 II

After you have created an instance of ForkJoinPool, you can start a task in a number
of different ways. The first task started is often thought of as the main task. Frequently, the
main task begins subtasks that are also managed by the pool. One common way to begin a
main task is to call invoke() on the ForkJoinPool. It is shown here:

<T> T invoke(ForkJoinTask<T> task)

This method begins the task specified by task, and it returns the result of the task. This
means that the calling code waits until invoke() returns.

To start a task without waiting for its completion, you can use execute(). Here is one
of its forms:

void execute(ForkJoinTask<?> task)

In this case, task is started, but the calling code does not wait for its completion. Rather, the
calling code continues execution asynchronously.

Beginning with JDK 8, it is not necessary to explicitly construct a ForkJoinPool because
a common pool is available for your use. In general, if you are not using a pool that you
explicitly created, then the common pool will automatically be used. Although it won’t always
be necessary, you can obtain a reference to the common pool by calling commonPool(),
which is defined by ForkJoinPool. It is shown here:

static ForkJoinPool commonPool()

A reference to the common pool is returned. The common pool provides a default level of
parallelism. It can be set by use of a system property. (See the API documentation for
details.) Typically, the default common pool is a good choice for many applications. Of
course, you can always construct your own pool.

There are two basic ways to start a task using the common pool. First, you can obtain a
reference to the pool by calling commonPool() and then use that reference to call invoke()
or execute(), as just described. Second, you can call ForkJoinTask methods such as fork()
or invoke() on the task from outside its computational portion. In this case, the common
pool will automatically be used. In other words, fork() and invoke() will start a task using
the common pool if the task is not already running within a ForkJoinPool.

ForkJoinPool manages the execution of its threads using an approach called work-stealing.
Each worker thread maintains a queue of tasks. If one worker thread’s queue is empty, it
will take a task from another worker thread. This adds to overall efficiency and helps
maintain a balanced load. (Because of demands on CPU time by other processes in the system,
even two worker threads with identical tasks in their respective queues may not complete at
the same time.)

One other point: ForkJoinPool uses daemon threads. A daemon thread is automatically
terminated when all user threads have terminated. Thus, there is no need to explicitly shut
down a ForkJoinPool. However, with the exception of the common pool, it is possible to do
so by calling shutdown(). The shutdown() method has no effect on the common pool.

The Divide-and-Conquer Strategy
As a general rule, users of the Fork/Join Framework will employ a divide-and-conquer strategy
that is based on recursion. This is why the two subclasses of ForkJoinTask are called
RecursiveAction and RecursiveTask. It is anticipated that you will extend one of these
classes when creating your own fork/join task.

28-ch28.indd 951 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

952 PART II The Java Library

The divide-and-conquer strategy is based on recursively dividing a task into smaller
subtasks until the size of a subtask is small enough to be handled sequentially. For example,
a task that applies a transform to each element in an array of N integers can be broken
down into two subtasks in which each transforms half the elements in the array. That is,
one subtask transforms the elements 0 to N/2, and the other transforms the elements N/2
to N. In turn, each subtask can be reduced to another set of subtasks, each transforming
half of the remaining elements. This process of dividing the array will continue until a
threshold is reached in which a sequential solution is faster than creating another division.

The advantage of the divide-and-conquer strategy is that the processing can occur in
parallel. Therefore, instead of cycling through an entire array using a single thread, pieces
of the array can be processed simultaneously. Of course, the divide-and-conquer approach
works in many cases in which an array (or collection) is not present, but the most common
uses involve some type of array, collection, or grouping of data.

One of the keys to best employing the divide-and-conquer strategy is correctly selecting
the threshold at which sequential processing (rather than further division) is used. Typically,
an optimal threshold is obtained through profiling the execution characteristics. However,
very significant speed-ups will still occur even when a less-than-optimal threshold is used. It
is, however, best to avoid overly large or overly small thresholds. At the time of this writing,
the Java API documentation for ForkJoinTask<T> states that, as a rule-of-thumb, a task
should perform somewhere between 100 and 10,000 computational steps.

It is also important to understand that the optimal threshold value is also affected by
how much time the computation takes. If each computational step is fairly long, then
smaller thresholds might be better. Conversely, if each computational step is quite short,
then larger thresholds could yield better results. For applications that are to be run on a
known system, with a known number of processors, you can use the number of processors
to make informed decisions about the threshold value. However, for applications that will
be running on a variety of systems, the capabilities of which are not known in advance, you
can make no assumptions about the execution environment.

One other point: Although multiple processors may be available on a system, other
tasks (and the operating system, itself) will be competing with your application for CPU
time. Thus, it is important not to assume that your program will have unrestricted access to
all CPUs. Furthermore, different runs of the same program may display different run time
characteristics because of varying task loads.

A Simple First Fork/Join Example
At this point, a simple example that demonstrates the Fork/Join Framework and the divide-
and-conquer strategy will be helpful. Following is a program that transforms the elements
in an array of double into their square roots. It does so via a subclass of RecursiveAction.
Notice that it creates its own ForkJoinPool.

// A simple example of the basic divide-and-conquer strategy.
// In this case, RecursiveAction is used.
import java.util.concurrent.*;
import java.util.*;

// A ForkJoinTask (via RecursiveAction) that transforms
// the elements in an array of doubles into their square roots.

28-ch28.indd 952 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 953

Pa
rt

 II

class SqrtTransform extends RecursiveAction {
 // The threshold value is arbitrarily set at 1,000 in this example.
 // In real-world code, its optimal value can be determined by
 // profiling and experimentation.
 final int seqThreshold = 1000;

 // Array to be accessed.
 double[] data;

 // Determines what part of data to process.
 int start, end;

 SqrtTransform(double[] vals, int s, int e) {
 data = vals;
 start = s;
 end = e;
 }

 // This is the method in which parallel computation will occur.
 protected void compute() {

 // If number of elements is below the sequential threshold,
 // then process sequentially.
 if((end - start) < seqThreshold) {
 // Transform each element into its square root.
 for(int i = start; i < end; i++) {
 data[i] = Math.sqrt(data[i]);
 }
 }
 else {
 // Otherwise, continue to break the data into smaller pieces.

 // Find the midpoint.
 int middle = (start + end) / 2;

 // Invoke new tasks, using the subdivided data.
 invokeAll(new SqrtTransform(data, start, middle),
 new SqrtTransform(data, middle, end));
 }
 }
}

// Demonstrate parallel execution.
class ForkJoinDemo {
 public static void main(String args[]) {
 // Create a task pool.
 ForkJoinPool fjp = new ForkJoinPool();

 double[] nums = new double[100000];

 // Give nums some values.
 for(int i = 0; i < nums.length; i++)
 nums[i] = (double) i;

28-ch28.indd 953 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

954 PART II The Java Library

 System.out.println("A portion of the original sequence:");

 for(int i=0; i < 10; i++)
 System.out.print(nums[i] + " ");
 System.out.println("\n");

 SqrtTransform task = new SqrtTransform(nums, 0, nums.length);

 // Start the main ForkJoinTask.
 fjp.invoke(task);

 System.out.println("A portion of the transformed sequence" +
 " (to four decimal places):");
 for(int i=0; i < 10; i++)
 System.out.format("%.4f ", nums[i]);
 System.out.println();
 }
}

The output from the program is shown here:

A portion of the original sequence:
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

A portion of the transformed sequence (to four decimal places):
0.0000 1.0000 1.4142 1.7321 2.0000 2.2361 2.4495 2.6458 2.8284 3.0000

As you can see, the values of the array elements have been transformed into their square roots.
Let’s look closely at how this program works. First, notice that SqrtTransform is a class

that extends RecursiveAction. As explained, RecursiveAction extends ForkJoinTask for
tasks that do not return results. Next, notice the final variable seqThreshold. This is the
value that determines when sequential processing will take place. This value is set (somewhat
arbitrarily) to 1,000. Next, notice that a reference to the array to be processed is stored in
data and that the fields start and end are used to indicate the boundaries of the elements
to be accessed.

The main action of the program takes place in compute(). It begins by checking if the
number of elements to be processed is below the sequential processing threshold. If it is,
then those elements are processed (by computing their square root in this example). If the
sequential processing threshold has not been reached, then two new tasks are started by
calling invokeAll(). In this case, each subtask processes half the elements. As explained
earlier, invokeAll() waits until both tasks return. After all of the recursive calls unwind, each
element in the array will have been modified, with much of the action taking place in
parallel (if multiple processors are available).

As mentioned, beginning with JDK 8, it is not necessary to explicitly construct a
ForkJoinPool because a common pool is available for your use. Furthermore, using the
common pool is a simple matter. For example, you can obtain a reference to the common
pool by calling the static commonPool() method defined by ForkJoinPool. Therefore, the
preceding program could be rewritten to use the common pool by replacing the call to the
ForkJoinPool constructor with a call to commonPool(), as shown here:

ForkJoinPool fjp = ForkJoinPool.commonPool();

28-ch28.indd 954 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 955

Pa
rt

 II

Alternatively, there is no need to explicitly obtain a reference to the common pool
because calling the ForkJoinTask methods invoke() or fork() on a task that is not already
part of a pool will cause it to execute within the common pool automatically. For example,
in the preceding program, you can eliminate the fjp variable entirely and start the task
using this line:

task.invoke();

As this discussion shows, the common pool is one of the enhancements JDK 8 made to the
Fork/Join Framework that improves its ease-of-use. Furthermore, in many cases, the common
pool is the preferable approach, assuming that JDK 7 compatibility is not required.

Understanding the Impact of the Level of Parallelism
Before moving on, it is important to understand the impact that the level of parallelism has
on the performance of a fork/join task and how the parallelism and the threshold interact.
The program shown in this section lets you experiment with different degrees of parallelism
and threshold values. Assuming that you are using a multicore computer, you can interactively
observe the effect of these values.

In the preceding example, the default level of parallelism was used. However, you can
specify the level of parallelism that you want. One way is to specify it when you create a
ForkJoinPool using this constructor:

ForkJoinPool(int pLevel)

Here, pLevel specifies the level of parallelism, which must be greater than zero and less than
the implementation defined limit.

The following program creates a fork/join task that transforms an array of doubles. The
transformation is arbitrary, but it is designed to consume several CPU cycles. This was done
to ensure that the effects of changing the threshold or the level of parallelism would be
more clearly displayed. To use the program, specify the threshold value and the level of
parallelism on the command line. The program then runs the tasks. It also displays the
amount of time it takes the tasks to run. To do this, it uses System.nanoTime(), which
returns the value of the JVM’s high-resolution timer.

// A simple program that lets you experiment with the effects of
// changing the threshold and parallelism of a ForkJoinTask.
import java.util.concurrent.*;

// A ForkJoinTask (via RecursiveAction) that performs a
// a transform on the elements of an array of doubles.
class Transform extends RecursiveAction {

 // Sequential threshold, which is set by the constructor.
 int seqThreshold;

 // Array to be accessed.
 double[] data;

 // Determines what part of data to process.
 int start, end;

28-ch28.indd 955 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

956 PART II The Java Library

 Transform(double[] vals, int s, int e, int t) {
 data = vals;
 start = s;
 end = e;
 seqThreshold = t;
 }

 // This is the method in which parallel computation will occur.
 protected void compute() {

 // If number of elements is below the sequential threshold,
 // then process sequentially.
 if((end - start) < seqThreshold) {
 // The following code assigns an element at an even index the
 // square root of its original value. An element at an odd
 // index is assigned its cube root. This code is designed
 // to simply consume CPU time so that the effects of concurrent
 // execution are more readily observable.
 for(int i = start; i < end; i++) {
 if((data[i] % 2) == 0)
 data[i] = Math.sqrt(data[i]);
 else
 data[i] = Math.cbrt(data[i]);
 }
 }
 else {
 // Otherwise, continue to break the data into smaller pieces.

 // Find the midpoint.
 int middle = (start + end) / 2;

 // Invoke new tasks, using the subdivided data.
 invokeAll(new Transform(data, start, middle, seqThreshold),
 new Transform(data, middle, end, seqThreshold));
 }
 }
}

// Demonstrate parallel execution.
class FJExperiment {

 public static void main(String args[]) {
 int pLevel;
 int threshold;

 if(args.length != 2) {
 System.out.println("Usage: FJExperiment parallelism threshold ");
 return;
 }

 pLevel = Integer.parseInt(args[0]);
 threshold = Integer.parseInt(args[1]);

 // These variables are used to time the task.
 long beginT, endT;

28-ch28.indd 956 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 957

Pa
rt

 II

 // Create a task pool. Notice that the parallelism level is set.
 ForkJoinPool fjp = new ForkJoinPool(pLevel);

 double[] nums = new double[1000000];

 for(int i = 0; i < nums.length; i++)
 nums[i] = (double) i;

 Transform task = new Transform(nums, 0, nums.length, threshold);

 // Starting timing.
 beginT = System.nanoTime();

 // Start the main ForkJoinTask.
 fjp.invoke(task);

 // End timing.
 endT = System.nanoTime();

 System.out.println("Level of parallelism: " + pLevel);
 System.out.println("Sequential threshold: " + threshold);
 System.out.println("Elapsed time: " + (endT - beginT) + " ns");
 System.out.println();
 }
}

To use the program, specify the level of parallelism followed by the threshold limit. You
should try experimenting with different values for each, observing the results. Remember,
to be effective, you must run the code on a computer with at least two processors. Also,
understand that two different runs may (almost certainly will) produce different results
because of the effect of other processes in the system consuming CPU time.

To give you an idea of the difference that parallelism makes, try this experiment. First,
execute the program like this:

java FJExperiment 1 1000

This requests 1 level of parallelism (essentially sequential execution) with a threshold of
1,000. Here is a sample run produced on a dual-core computer:

Level of parallelism: 1
Sequential threshold: 1000
Elapsed time: 259677487 ns

Now, specify 2 levels of parallelism like this:

java FJExperiment 2 1000

Here is sample output from this run produced by the same dual-core computer:

Level of parallelism: 2
Sequential threshold: 1000
Elapsed time: 169254472 ns

28-ch28.indd 957 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

958 PART II The Java Library

As is evident, adding parallelism substantially decreases execution time, thus increasing the
speed of the program. You should experiment with varying the threshold and parallelism
on your own computer. The results may surprise you.

Here are two other methods that you might find useful when experimenting with
the execution characteristics of a fork/join program. First, you can obtain the level of
parallelism by calling getParallelism(), which is defined by ForkJoinPool. It is shown here:

int getParallelism()

It returns the parallelism level currently in effect. Recall that for pools that you create, by
default, this value will equal the number of available processors. (To obtain the parallelism
level for the common pool, you can also use getCommonPoolParallelism(), which was
added by JDK 8.) Second, you can obtain the number of processors available in the system
by calling availableProcessors(), which is defined by the Runtime class. It is shown here:

int availableProcessors()

The value returned may change from one call to the next because of other system demands.

An Example that Uses RecursiveTask<V>
The two preceding examples are based on RecursiveAction, which means that they
concurrently execute tasks that do not return results. To create a task that returns a result,
use RecursiveTask. In general, solutions are designed in the same manner as just shown.
The key difference is that the compute() method returns a result. Thus, you must aggregate
the results, so that when the first invocation finishes, it returns the overall result. Another
difference is that you will typically start a subtask by calling fork() and join() explicitly
(rather than implicitly by calling invokeAll(), for example).

The following program demonstrates RecursiveTask. It creates a task called Sum that
returns the summation of the values in an array of double. In this example, the array
consists of 5,000 elements. However, every other value is negative. Thus, the first values
in the array are 0, –1, 2, –3, 4, and so on. (So that this example will work with both JDK 7
and JDK 8, it creates its own pool. You might try changing it to use the common pool as an
exercise.)

// A simple example that uses RecursiveTask<V>.
import java.util.concurrent.*;

// A RecursiveTask that computes the summation of an array of doubles.
class Sum extends RecursiveTask<Double> {

 // The sequential threshold value.
 final int seqThresHold = 500;

 // Array to be accessed.
 double[] data;

 // Determines what part of data to process.
 int start, end;

 Sum(double[] vals, int s, int e) {
 data = vals;

28-ch28.indd 958 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 959

Pa
rt

 II

 start = s;
 end = e;
 }

 // Find the summation of an array of doubles.
 protected Double compute() {
 double sum = 0;

 // If number of elements is below the sequential threshold,
 // then process sequentially.
 if((end - start) < seqThresHold) {
 // Sum the elements.
 for(int i = start; i < end; i++) sum += data[i];
 }
 else {
 // Otherwise, continue to break the data into smaller pieces.

 // Find the midpoint.
 int middle = (start + end) / 2;

 // Invoke new tasks, using the subdivided data.
 Sum subTaskA = new Sum(data, start, middle);
 Sum subTaskB = new Sum(data, middle, end);

 // Start each subtask by forking.
 subTaskA.fork();
 subTaskB.fork();

 // Wait for the subtasks to return, and aggregate the results.
 sum = subTaskA.join() + subTaskB.join();
 }
 // Return the final sum.
 return sum;
 }
}

// Demonstrate parallel execution.
class RecurTaskDemo {
 public static void main(String args[]) {
 // Create a task pool.
 ForkJoinPool fjp = new ForkJoinPool();

 double[] nums = new double[5000];

 // Initialize nums with values that alternate between
 // positive and negative.
 for(int i=0; i < nums.length; i++)
 nums[i] = (double) (((i%2) == 0) ? i : -i) ;

 Sum task = new Sum(nums, 0, nums.length);

 // Start the ForkJoinTasks. Notice that, in this case,
 // invoke() returns a result.
 double summation = fjp.invoke(task);

28-ch28.indd 959 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

960 PART II The Java Library

 System.out.println("Summation " + summation);
 }
}

Here’s the output from the program:

Summation -2500.0

There are a couple of interesting items in this program. First, notice that the two
subtasks are executed by calling fork(), as shown here:

subTaskA.fork();
subTaskB.fork();

In this case, fork() is used because it starts a task but does not wait for it to finish. (Thus,
it asynchronously runs the task.) The result of each task is obtained by calling join(), as
shown here:

sum = subTaskA.join() + subTaskB.join();

This statement waits until each task ends. It then adds the results of each and assigns the
total to sum. Thus, the summation of each subtask is added to the running total. Finally,
compute() ends by returning sum, which will be the final total when the first invocation
returns.

There are other ways to approach the handling of the asynchronous execution of the
subtasks. For example, the following sequence uses fork() to start subTaskA and uses
invoke() to start and wait for subTaskB:

subTaskA.fork();
sum = subTaskB.invoke() + subTaskA.join();

Another alternative is to have subTaskB call compute() directly, as shown here:

subTaskA.fork();
sum = subTaskB.compute() + subTaskA.join();

Executing a Task Asynchronously
The preceding programs have called invoke() on a ForkJoinPool to initiate a task. This
approach is commonly used when the calling thread must wait until the task has completed
(which is often the case) because invoke() does not return until the task has terminated.
However, you can start a task asynchronously. In this approach, the calling thread continues
to execute. Thus, both the calling thread and the task execute simultaneously. To start a
task asynchronously, use execute(), which is also defined by ForkJoinPool. It has the two
forms shown here:

void execute(ForkJoinTask<?> task)

void execute(Runnable task)

28-ch28.indd 960 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 961

Pa
rt

 II

In both forms, task specifies the task to run. Notice that the second form lets you specify a
Runnable rather than a ForkJoinTask task. Thus, it forms a bridge between Java’s traditional
approach to multithreading and the new Fork/Join Framework. It is important to remember
that the threads used by a ForkJoinPool are daemon. Thus, they will end when the main
thread ends. As a result, you may need to keep the main thread alive until the tasks have
finished.

Cancelling a Task
A task can be cancelled by calling cancel(), which is defined by ForkJoinTask. It has this
general form:

boolean cancel(boolean interuptOK)

It returns true if the task on which it was called is cancelled. It returns false if the task has
ended or can’t be cancelled. At this time, the interruptOK parameter is not used by the
default implementation. In general, cancel() is intended to be called from code outside
the task because a task can easily cancel itself by returning.

You can determine if a task has been cancelled by calling isCancelled(), as shown here:

final boolean isCancelled()

It returns true if the invoking task has been cancelled prior to completion and false
otherwise.

Determining a Task’s Completion Status
In addition to isCancelled(), which was just described, ForkJoinTask includes two other
methods that you can use to determine a task’s completion status. The first is
isCompletedNormally(), which is shown here:

final boolean isCompletedNormally()

It returns true if the invoking task completed normally, that is, if it did not throw an
exception and it was not cancelled via a call to cancel(). It returns false otherwise.

The second is isCompletedAbnormally(), which is shown here:

final boolean isCompletedAbnormally()

It returns true if the invoking task completed because it was cancelled or because it threw
an exception. It returns false otherwise.

Restarting a Task
Normally, you cannot rerun a task. In other words, once a task completes, it cannot be
restarted. However, you can reinitialize the state of the task (after it has completed) so it
can be run again. This is done by calling reinitialize(), as shown here:

void reinitialize()

This method resets the state of the invoking task. However, any modification made to any
persistent data that is operated upon by the task will not be undone. For example, if the
task modifies an array, then those modifications are not undone by calling reinitialize().

28-ch28.indd 961 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

962 PART II The Java Library

Things to Explore
The preceding discussion presented the fundamentals of the Fork/Join Framework and
described several commonly used methods. However, Fork/Join is a rich framework that
includes additional capabilities that give you extended control over concurrency. Although
it is far beyond the scope of this book to examine all of the issues and nuances surrounding
parallel programming and the Fork/Join Framework, a sampling of the other features are
mentioned here.

A Sampling of Other ForkJoinTask Features
In some cases, you will want to ensure that methods such as invokeAll() and fork() are called
only from within a ForkJoinTask. (This may be especially important when using JDK 7,
which does not support the common pool.) This is usually a simple matter, but occasionally,
you may have code that can be executed from either inside or outside a task. You can
determine if your code is executing inside a task by calling inForkJoinPool().

You can convert a Runnable or Callable object into a ForkJoinTask by using the adapt()
method defined by ForkJoinTask. It has three forms, one for converting a Callable, one for a
Runnable that does not return a result, and one for a Runnable that does return a result. In the
case of a Callable, the call() method is run. In the case of Runnable, the run() method is run.

You can obtain an approximate count of the number of tasks that are in the queue of the
invoking thread by calling getQueuedTaskCount(). You can obtain an approximate count
of how many tasks the invoking thread has in its queue that are in excess of the number of
other threads in the pool that might “steal” them, by calling getSurplusQueuedTaskCount().
Remember, in the Fork/Join Framework, work-stealing is one way in which a high level of
efficiency is obtained. Although this process is automatic, in some cases, the information
may prove helpful in optimizing through-put.

ForkJoinTask defines the following variants of join() and invoke() that begin with the
prefix quietly. They are shown here:

final void quietlyJoin() Joins a task, but does not return a result or throw an exception

final void quietlyInvoke() Invokes a task, but does not return a result or throw an
exception.

In essence, these methods are similar to their non-quiet counterparts except they don’t
return values or throw exceptions.

You can attempt to “un-invoke” (in other words, unschedule) a task by calling tryUnfork().
JDK 8 adds several methods, such as getForkJoinTaskTag() and setForkJoinTaskTag(),

that support tags. Tags are short integer values that are linked with a task. They may be
useful in specialized applications.

ForkJoinTask implements Serializable. Thus, it can be serialized. However, serialization
is not used during execution.

28-ch28.indd 962 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 28 The Concurrency Utilities 963

Pa
rt

 II

A Sampling of Other ForkJoinPool Features
One method that is quite useful when tuning fork/join applications is ForkJoinPool’s
override of toString(). It displays a “user-friendly” synopsis of the state of the pool. To see it
in action, use this sequence to start and then wait for the task in the FJExperiment class of
the task experimenter program shown earlier:

// Asynchronously start the main ForkJoinTask.
fjp.execute(task);

// Display the state of the pool while waiting.
while(!task.isDone()) {
 System.out.println(fjp);
}

When you run the program, you will see a series of messages on the screen that describe
the state of the pool. Here is an example of one. Of course, your output may vary, based
on the number of processors, threshold values, task load, and so on.

java.util.concurrent.ForkJoinPool@141d683[Running, parallelism = 2,
size = 2, active = 0, running = 2, steals = 0, tasks = 0, submissions = 1]

You can determine if a pool is currently idle by calling isQuiescent(). It returns true if
the pool has no active threads and false otherwise.

You can obtain the number of worker threads currently in the pool by calling
getPoolSize(). You can obtain an approximate count of the active threads in the pool
by calling getActiveThreadCount().

To shut down a pool, call shutdown(). Currently active tasks will still be executed, but
no new tasks can be started. To stop a pool immediately, call shutdownNow(). In this case,
an attempt is made to cancel currently active tasks. (It is important to point out, however,
that neither of these methods affects the common pool.) You can determine if a pool is
shut down by calling isShutdown(). It returns true if the pool has been shut down and false
otherwise. To determine if the pool has been shut down and all tasks have been completed,
call isTerminated().

Some Fork/Join Tips
Here are a few tips to help you avoid some of the more troublesome pitfalls associated with
using the Fork/Join Framework. First, avoid using a sequential threshold that is too low. In
general, erring on the high side is better than erring on the low side. If the threshold is too
low, more time can be consumed generating and switching tasks than in processing the
tasks. Second, usually it is best to use the default level of parallelism. If you specify a smaller
number, it may significantly reduce the benefits of using the Fork/Join Framework.

In general, a ForkJoinTask should not use synchronized methods or synchronized
blocks of code. Also, you will not normally want to have the compute() method use other
types of synchronization, such as a semaphore. (The new Phaser can, however, be used
when appropriate because it is compatible with the fork/join mechanism.) Remember, the
main idea behind a ForkJoinTask is the divide-and-conquer strategy. Such an approach
does not normally lend itself to situations in which outside synchronization is needed. Also,
avoid situations in which substantial blocking will occur through I/O. Therefore, in general,

28-ch28.indd 963 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

964 PART II The Java Library

a ForkJoinTask will not perform I/O. Simply put, to best utilize the Fork/Join Framework, a
task should perform a computation that can run without outside blocking or synchronization.

One last point: Except under unusual circumstances, do not make assumptions about
the execution environment that your code will run in. This means you should not assume
that some specific number of processors will be available, or that the execution characteristics
of your program won’t be affected by other processes running at the same time.

The Concurrency Utilities Versus
Java’s Traditional Approach
Given the power and flexibility found in the concurrency utilities, it is natural to ask the
following question: Do they replace Java’s traditional approach to multithreading and
synchronization? The answer is a resounding no! The original support for multithreading
and the built-in synchronization features are still the mechanism that should be employed
for many, many Java programs, applets, and servlets. For example, synchronized, wait(),
and notify() offer elegant solutions to a wide range of problems. However, when extra
control is needed, the concurrency utilities are available to handle the chore. Furthermore,
the Fork/Join Framework offers a powerful way to integrate parallel programming
techniques into your more sophisticated applications.

28-ch28.indd 964 14/02/14 5:20 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

29
CHAPTER

 965

The Stream API

Of the many new features added by JDK 8, the two that are, arguably, the most important
are lambda expressions and the stream API. Lambda expressions were described in
Chapter 15. The stream API is described here. As you will see, the stream API is designed
with lambda expressions in mind. Moreover, the stream API provides some of the most
significant demonstrations of the power that lambdas bring to Java.

Although its design compatibility with lambda expressions is impressive, the key aspect
of the stream API is its ability to perform very sophisticated operations that search, filter,
map, or otherwise manipulate data. For example, using the stream API, you can construct
sequences of actions that resemble, in concept, the type of database queries for which you
might use SQL. Furthermore, in many cases, such actions can be performed in parallel,
thus providing a high level of efficiency, especially when large data sets are involved. Put
simply, the stream API provides a powerful means of handling data in an efficient, yet easy
to use way.

Before continuing, an important point needs to be made: The stream API uses some of
Java’s most advanced features. To fully understand and utilize it requires a solid understanding
of generics and lambda expressions. The basic concepts of parallel execution and a working
knowledge of the Collections Framework are also needed. (See Chapters 14, 15, 18, and 28.)

Stream Basics
Let’s begin by defining the term stream as it applies to the stream API: a stream is a conduit
for data. Thus, a stream represents a sequence of objects. A stream operates on a data
source, such as an array or a collection. A stream, itself, never provides storage for the data.
It simply moves data, possibly filtering, sorting, or otherwise operating on that data in the
process. As a general rule, however, a stream operation by itself does not modify the data
source. For example, sorting a stream does not change the order of the source. Rather,
sorting a stream results in the creation of a new stream that produces the sorted result.

29-ch29.indd 965 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

966 PART II The Java Library

NOTE It is necessary to state that the term stream as used here differs from the use of stream when
the I/O classes were described earlier in this book. Although an I/O stream can act conceptually
much like one of the streams defined by java.util.stream, they are not the same. Thus, throughout
this chapter, when the term stream is used, it refers to objects based on one of the stream types
described here.

Stream Interfaces
The stream API defines several stream interfaces, which are packaged in java.util.stream. At
the foundation is BaseStream, which defines the basic functionality available in all streams.
BaseStream is a generic interface declared like this:

interface BaseStream<T, S extends BaseStream<T, S>>

Here, T specifies the type of the elements in the stream, and S specifies the type of stream that
extends BaseStream. BaseStream extends the AutoCloseable interface; thus, a stream can
be managed in a try-with-resources statement. In general, however, only those streams whose
data source requires closing (such as those connected to a file) will need to be closed. In most
cases, such as those in which the data source is a collection, there is no need to close the
stream. The methods declared by BaseStream are shown in Table 29-1.

Method Description
void close() Closes the invoking stream, calling any registered close

handlers. (As explained in the text, few streams need to be
closed.)

boolean isParallel() Returns true if the invoking stream is parallel. Returns false if
the stream is sequential.

Iterator<T> iterator() Obtains an iterator to the stream and returns a reference to it.
(Terminal operation.)

S onClose(Runnable handler) Returns a new stream with the close handler specified by
handler. This handler will be called when the stream is closed.
(Intermediate operation.)

S parallel() Returns a parallel stream based on the invoking stream. If
the invoking stream is already parallel, then that stream is
returned. (Intermediate operation.)

S sequential() Returns a sequential stream based on the invoking stream. If
the invoking stream is already sequential, then that stream is
returned. (Intermediate operation.)

Spliterator<T> spliterator() Obtains a spliterator to the stream and returns a reference to
it. (Terminal operation.)

S unordered() Returns an unordered stream based on the invoking stream. If
the invoking stream is already unordered, then that stream is
returned. (Intermediate operation.)

Table 29-1 The Methods Declared by BaseStream

29-ch29.indd 966 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 967

Pa
rt

 II

From BaseStream are derived several types of stream interfaces. The most general of
these is Stream. It is declared as shown here:

interface Stream<T>

Here, T specifies the type of the elements in the stream. Because it is generic, Stream is
used for all reference types. In addition to the methods that it inherits from BaseStream,
the Stream interface adds several of its own, a sampling of which is shown in Table 29-2.

Method Description
<R, A> R collect(Collector<? super T, A, R>
 collectorFunc)

Collects elements into a container, which is
changeable, and returns the container. This is
called a mutable reduction operation. Here, R
specifies the type of the resulting container and
T specifies the element type of the invoking
stream. A specifies the internal accumulated
type. The collectorFunc specifies how the
collection process works. (Terminal operation.)

long count() Counts the number of elements in the stream
and returns the result. (Terminal operation.)

Stream<T> filter(Predicate<? super T> pred) Produces a stream that contains those
elements from the invoking stream that satisfy
the predicate specified by pred. (Intermediate
operation.)

void forEach(Consumer<? super T> action) For each element in the invoking stream, the
code specified by action is executed. (Terminal
operation.)

<R> Stream<R> map(Function<? super T,
 ? extends R> mapFunc)

Applies mapFunc to the elements from the
invoking stream, yielding a new stream that
contains those elements. (Intermediate
operation.)

DoubleStream mapToDouble(
 ToDoubleFunction<? super T> mapFunc)

Applies mapFunc to the elements from the
invoking stream, yielding a new DoubleStream
that contains those elements. (Intermediate
operation.)

IntStream mapToInt(
 ToIntFunction<? super T> mapFunc)

Applies mapFunc to the elements from the
invoking stream, yielding a new IntStream
that contains those elements. (Intermediate
operation.)

LongStream mapToLong(
 ToLongFunction<? super T> mapFunc)

Applies mapFunc to the elements from the
invoking stream, yielding a new LongStream
that contains those elements. (Intermediate
operation.)

Optional<T> max(
 Comparator<? super T> comp)

Using the ordering specified by comp, finds and
returns the maximum element in the invoking
stream. (Terminal operation.)

Table 29-2 A Sampling of Methods Declared by Stream

29-ch29.indd 967 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

968 PART II The Java Library

In both tables, notice that many of the methods are notated as being either terminal or
intermediate. The difference between the two is very important. A terminal operation consumes
the stream. It is used to produce a result, such as finding the minimum value in the stream,
or to execute some action, as is the case with the forEach() method. Once a stream has
been consumed, it cannot be reused. Intermediate operations produce another stream. Thus,
intermediate operations can be used to create a pipeline that performs a sequence of actions.
One other point: intermediate operations do not take place immediately. Instead, the
specified action is performed when a terminal operation is executed on the new stream
created by an intermediate operation. This mechanism is referred to as lazy behavior, and
the intermediate operations are referred to as lazy. The use of lazy behavior enables the
stream API to perform more efficiently.

Another key aspect of streams is that some intermediate operations are stateless and some
are stateful. In a stateless operation, each element is processed independently of the others.
In a stateful operation, the processing of an element may depend on aspects of the other
elements. For example, sorting is a stateful operation because an element’s order depends
on the values of the other elements. Thus, the sorted() method is stateful. However, filtering
elements based on a stateless predicate is stateless because each element is handled
individually. Thus, filter() can (and should be) stateless. The difference between stateless
and stateful operations is especially important when parallel processing of a stream is
desired because a stateful operation may require more than one pass to complete.

Because Stream operates on object references, it can’t operate directly on primitive
types. To handle primitive type streams, the stream API defines the following interfaces:

DoubleStream

IntStream

LongStream

These streams all extend BaseStream and have capabilities similar to Stream except that
they operate on primitive types rather than reference types. They also provide some
convenience methods, such as boxed(), that facilitate their use. Because streams of objects
are the most common, Stream is the primary focus of this chapter, but the primitive type
streams can be used in much the same way.

Method Description
Optional<T> min(Comparator<? super T> comp) Using the ordering specified by comp, finds and

returns the minimum element in the invoking
stream. (Terminal operation.)

T reduce(T identityVal,
 BinaryOperator<T> accumulator)

Returns a result based on the elements in the
invoking stream. This is called a reduction
operation. (Terminal operation.)

Stream<T> sorted() Produces a new stream that contains the
elements of the invoking stream sorted in
natural order. (Intermediate operation.)

Object[] toArray() Creates an array from the elements in the
invoking stream. (Terminal operation.)

Table 29-2 A Sampling of Methods Declared by Stream (continued)

29-ch29.indd 968 14/02/14 5:21 PM

Pitrick
Highlight

Pitrick
Highlight

Pitrick
Highlight

Pitrick
Highlight

Pitrick
Highlight

Pitrick
Underline

Pitrick
Underline

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 969

Pa
rt

 II

How to Obtain a Stream
You can obtain a stream in a number of ways. Perhaps the most common is when a stream is
obtained for a collection. Beginning with JDK 8, the Collection interface has been expanded
to include two methods that obtain a stream from a collection. The first is stream(),
shown here:

default Stream<E> stream()

Its default implementation returns a sequential stream. The second method is
parallelStream(), shown next:

default Stream<E> parallelStream()

Its default implementation returns a parallel stream, if possible. (If a parallel stream can
not be obtained, a sequential stream may be returned instead.) Parallel streams support
parallel execution of stream operations. Because Collection is implemented by every
collection, these methods can be used to obtain a stream from any collection class, such
as ArrayList or HashSet.

A stream can also be obtained from an array by use of the static stream() method,
which was added to the Arrays class by JDK 8. One of its forms is shown here:

static <T> Stream<T> stream(T[] array)

This method returns a sequential stream to the elements in array. For example, given an
array called addresses of type Address, the following obtains a stream to it:

Stream<Address> addrStrm = Arrays.stream(addresses);

Several overloads of the stream() method are also defined, such as those that handle arrays
of the primitive types. They return a stream of type IntStream, DoubleStream, or LongStream.

Streams can be obtained in a variety of other ways. For example, many stream operations
return a new stream, and a stream to an I/O source can be obtained by calling lines() on a
BufferedReader. However a stream is obtained, it can be used in the same way as any other
stream.

A Simple Stream Example
Before going any further, let’s work through an example that uses streams. The following
program creates an ArrayList called myList that holds a collection of integers (which are
automatically boxed into the Integer reference type). Next, it obtains a stream that uses
myList as a source. It then demonstrates various stream operations.

// Demonstrate several stream operations.

import java.util.*;
import java.util.stream.*;

class StreamDemo {

 public static void main(String[] args) {

29-ch29.indd 969 14/02/14 5:21 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

970 PART II The Java Library

 // Create a list of Integer values.
 ArrayList<Integer> myList = new ArrayList<>();
 myList.add(7);
 myList.add(18);
 myList.add(10);
 myList.add(24);
 myList.add(17);
 myList.add(5);

 System.out.println("Original list: " + myList);

 // Obtain a Stream to the array list.
 Stream<Integer> myStream = myList.stream();

 // Obtain the minimum and maximum value by use of min(),
 // max(), isPresent(), and get().
 Optional<Integer> minVal = myStream.min(Integer::compare);
 if(minVal.isPresent()) System.out.println("Minimum value: " +
 minVal.get());

 // Must obtain a new stream because previous call to min()
 // is a terminal operation that consumed the stream.
 myStream = myList.stream();
 Optional<Integer> maxVal = myStream.max(Integer::compare);
 if(maxVal.isPresent()) System.out.println("Maximum value: " +
 maxVal.get());

 // Sort the stream by use of sorted().
 Stream<Integer> sortedStream = myList.stream().sorted();

 // Display the sorted stream by use of forEach().
 System.out.print("Sorted stream: ");
 sortedStream.forEach((n) -> System.out.print(n + " "));
 System.out.println();

 // Display only the odd values by use of filter().
 Stream<Integer> oddVals =
 myList.stream().sorted().filter((n) -> (n % 2) == 1);
 System.out.print("Odd values: ");
 oddVals.forEach((n) -> System.out.print(n + " "));
 System.out.println();

 // Display only the odd values that are greater than 5. Notice that
 // two filter operations are pipelined.
 oddVals = myList.stream().filter((n) -> (n % 2) == 1)
 .filter((n) -> n > 5);
 System.out.print("Odd values greater than 5: ");
 oddVals.forEach((n) -> System.out.print(n + " "));
 System.out.println();
 }
}

29-ch29.indd 970 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 971

Pa
rt

 II

The output is shown here:

Original list: [7, 18, 10, 24, 17, 5]
Minimum value: 5
Maximum value: 24
Sorted stream: 5 7 10 17 18 24
Odd values: 5 7 17
Odd values greater than 5: 7 17

Let’s look closely at each stream operation. After creating an ArrayList, the program
obtains a stream for the list by calling stream(), as shown here:

Stream<Integer> myStream = myList.stream();

As explained, the Collection interface now defines the stream() method, which obtains a
stream from the invoking collection. Because Collection is implemented by every collection
class, stream() can be used to obtain stream for any type of collection, including the
ArrayList used here. In this case, a reference to the stream is assigned to myStream.

Next, the program obtains the minimum value in the stream (which is, of course, also
the minimum value in the data source) and displays it, as shown here:

Optional<Integer> minVal = myStream.min(Integer::compare);
if(minVal.isPresent()) System.out.println("Minimum value: " +
 minVal.get());

Recall from Table 29-2 that min() is declared like this:

Optional<T> min(Comparator<? super T> comp)

First, notice that the type of min()’s parameter is a Comparator. This comparator is used to
compare two elements in the stream. In the example, min() is passed a method reference
to Integer’s compare() method, which is used to implement a Comparator capable of
comparing two Integers. Next, notice that the return type of min() is Optional. The Optional
class is described in Chapter 19, but briefly, here is how it works. Optional is a generic class
packaged in java.util and declared like this:

class Optional<T>

Here, T specifies the element type. An Optional instance can either contain a value of type
T or be empty. You can use isPresent() to determine if a value is present. Assuming that a
value is available, it can be obtained by calling get(). In this example, the object returned
will hold the minimum value of the stream as an Integer object.

One other point about the preceding line: min() is a terminal operation that consumes
the stream. Thus, myStream cannot be used again after min() executes.

The next lines obtain and display the maximum value in the stream:

myStream = myList.stream();
Optional<Integer> maxVal = myStream.max(Integer::compare);
if(maxVal.isPresent()) System.out.println("Maximum value: " +
 maxVal.get());

29-ch29.indd 971 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

972 PART II The Java Library

First, myStream is once again assigned the stream returned by myList.stream(). As just
explained, this is necessary because the previous call to min() consumed the previous
stream. Thus, a new one is needed. Next, the max() method is called to obtain the
maximum value. Like min(), max() returns an Optional object. Its value is obtained by
calling get().

The program then obtains a sorted stream through the use of this line:

Stream<Integer> sortedStream = myList.stream().sorted();

Here, the sorted() method is called on the stream returned by myList.stream(). Because
sorted() is an intermediate operation, its result is a new stream, and this is the stream assigned
to sortedStream. The contents of the sorted stream are displayed by use of forEach():

sortedStream.forEach((n) -> System.out.print(n + " "));

Here, the forEach() method executes an operation on each element in the stream. In this
case, it simply calls System.out.print() for each element in sortedStream. This is accomplished
by use of a lambda expression. The forEach() method has this general form:

void forEach(Consumer<? super T> action)

Consumer is a generic functional interface declared in java.util.function. Its abstract
method is accept(), shown here:

void accept(T objRef)

The lambda expression in the call to forEach() provides the implementation of accept().
The forEach() method is a terminal operation. Thus, after it completes, the stream has
been consumed.

Next, a sorted stream is filtered by filter() so that it contains only odd values:

Stream<Integer> oddVals =
 myList.stream().sorted().filter((n) -> (n % 2) == 1);

The filter() method filters a stream based on a predicate. It returns a new stream that
contains only those elements that satisfy the predicate. It is shown here:

Stream<T> filter(Predicate<? super T> pred)

Predicate is a generic functional interface defined in java.util.function. Its abstract method
is test(), which is shown here:

boolean test(T objRef)

It returns true if the object referred to by objRef satisfies the predicate, and false otherwise.
The lambda expression passed to filter() implements this method. Because filter() is an
intermediate operation, it returns a new stream that contains filtered values, which, in this
case, are the odd numbers. These elements are then displayed via forEach() as before.

29-ch29.indd 972 14/02/14 5:21 PM

Pitrick
Highlight

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 973

Pa
rt

 II

Because filter(), or any other intermediate operation, returns a new stream, it is possible
to filter a filtered stream a second time. This is demonstrated by the following line, which
produces a stream that contains only those odd values greater than 5:

oddVals = myList.stream().filter((n) -> (n % 2) == 1)
 .filter((n) -> n > 5);

Notice that lambda expressions are passed to both filters.

Reduction Operations
Consider the min() and max() methods in the preceding example program. Both are
terminal operations that return a result based on the elements in the stream. In the language
of the stream API, they represent reduction operations because each reduces a stream to a single
value—in this case, the minimum and maximum. The stream API refers to these as special case
reductions because they perform a specific function. In addition to min() and max(), other
special case reductions are also available, such as count(), which counts the number of
elements in a stream. However, the stream API generalizes this concept by providing the
reduce() method. By using reduce(), you can return a value from a stream based on any
arbitrary criteria. By definition, all reduction operations are terminal operations.

Stream defines three versions of reduce(). The two we will use first are shown here:

Optional<T> reduce(BinaryOperator<T> accumulator)

T reduce(T identityVal, BinaryOperator<T> accumulator)

The first form returns an object of type Optional, which contains the result. The second
form returns an object of type T (which is the element type of the stream). In both forms,
accumulator is a function that operates on two values and produces a result. In the second
form, identityVal is a value such that an accumulator operation involving identityVal and any
element of the stream yields that element, unchanged. For example, if the operation is
addition, then the identity value will be 0 because 0 + x is x. For multiplication, the value
will be 1, because 1 * x is x.

BinaryOperator is a functional interface declared in java.util.function that extends the
BiFunction functional interface. BiFunction defines this abstract method:

R apply(T val, U val2)

Here, R specifies the result type, T is the type of the first operand, and U is the type of
second operand. Thus, apply() applies a function to its two operands (val and val2) and
returns the result. When BinaryOperator extends BiFunction, it specifies the same type for
all the type parameters. Thus, as it relates to BinaryOperator, apply() looks like this:

T apply(T val, T val2)

Furthermore, as it relates to reduce(), val will contain the previous result and val2 will
contain the next element. In its first invocation, val will contain either the identity value or
the first element, depending on which version of reduce() is used.

29-ch29.indd 973 14/02/14 5:21 PM

Pitrick
Highlight

Pitrick
Underline

Pitrick
Underline

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

974 PART II The Java Library

It is important to understand that the accumulator operation must satisfy three
constraints. It must be

•	 Stateless

•	 Non-interfering

•	 Associative

As explained earlier, stateless means that the operation does not rely on any state information.
Thus, each element is processed independently. Non-interfering means that the data source
is not modified by the operation. Finally, the operation must be associative. Here, the term
associative is used in its normal, arithmetic sense, which means that, given an associative
operator used in a sequence of operations, it does not matter which pair of operands are
processed first. For example,

(10 * 2) * 7

yields the same result as

10 * (2 * 7)

Associativity is of particular importance to the use of reduction operations on parallel streams,
discussed in the next section.

The following program demonstrates the versions of reduce() just described:

// Demonstrate the reduce() method.

import java.util.*;
import java.util.stream.*;

class StreamDemo2 {

 public static void main(String[] args) {

 // Create a list of Integer values.
 ArrayList<Integer> myList = new ArrayList<>();

 myList.add(7);
 myList.add(18);
 myList.add(10);
 myList.add(24);
 myList.add(17);
 myList.add(5);

 // Two ways to obtain the integer product of the elements
 // in myList by use of reduce().
 Optional<Integer> productObj = myList.stream().reduce((a,b) -> a*b);
 if(productObj.isPresent())
 System.out.println("Product as Optional: " + productObj.get());

 int product = myList.stream().reduce(1, (a,b) -> a*b);
 System.out.println("Product as int: " + product);
 }
}

29-ch29.indd 974 14/02/14 5:21 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 975

Pa
rt

 II

As the output here shows, both uses of reduce() produce the same result:

Product as Optional: 2570400
Product as int: 2570400

In the program, the first version of reduce() uses the lambda expression to produce a
product of two values. In this case, because the stream contains Integer values, the Integer
objects are automatically unboxed for the multiplication and reboxed to return the result.
The two values represent the current value of the running result and the next element in
the stream. The final result is returned in an object of type Optional. The value is obtained
by calling get() on the returned object.

In the second version, the identity value is explicitly specified, which for multiplication
is 1. Notice that the result is returned as an object of the element type, which is Integer in
this case.

Although simple reduction operations such as multiplication are useful for examples,
reductions are not limited in this regard. For example, assuming the preceding program,
the following obtains the product of only the even values:

int evenProduct = myList.stream().reduce(1, (a,b) -> {
 if(b%2 == 0) return a*b; else return a;
 });

Pay special attention to the lambda expression. If b is even, then a * b is returned. Otherwise,
a is returned. This works because a holds the current result and b holds the next element,
as explained earlier.

Using Parallel Streams
Before exploring any more of the stream API, it will be helpful to discuss parallel streams.
As has been pointed out previously in this book, the parallel execution of code via multicore
processors can result in a substantial increase in performance. Because of this, parallel
programming has become an important part of the modern programmer’s job. However,
parallel programming can be complex and error-prone. One of the benefits that the
stream library offers is the ability to easily—and reliably—parallel process certain operations.

Parallel processing of a stream is quite simple to request: just use a parallel stream.
As mentioned earlier, one way to obtain a parallel stream is to use the parallelStream()
method defined by Collection. Another way to obtain a parallel stream is to call the parallel()
method on a sequential stream. The parallel() method is defined by BaseStream, as
shown here:

S parallel()

It returns a parallel stream based on the sequential stream that invokes it. (If it is called on
a stream that is already parallel, then the invoking stream is returned.) Understand, of course,
that even with a parallel stream, parallelism will be achieved only if the environment
supports it.

Once a parallel stream has been obtained, operations on the stream can occur in parallel,
assuming that parallelism is supported by the environment. For example, the first reduce()

29-ch29.indd 975 14/02/14 5:21 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

976 PART II The Java Library

operation in the preceding program can be parallelized by substituting parallelStream()
for the call to stream():

Optional<Integer> productObj = myList.parallelStream().reduce((a,b) -> a*b);

The results will be the same, but the multiplications can occur in different threads.
As a general rule, any operation applied to a parallel stream must be stateless. It should

also be non-interfering and associative. This ensures that the results obtained by executing
operations on a parallel stream are the same as those obtained from executing the same
operations on a sequential stream.

When using parallel streams, you might find the following version of reduce() especially
helpful. It gives you a way to specify how partial results are combined:

<U> U reduce(U identityVal, BiFunction<U, ? super T, U> accumulator
 BinaryOperator<U> combiner)

In this version, combiner defines the function that combines two values that have been
produced by the accumulator function. Assuming the preceding program, the following
statement computes the product of the elements in myList by use of a parallel stream:

int parallelProduct = myList.parallelStream().reduce(1, (a,b) -> a*b,
 (a,b) -> a*b);

As you can see, in this example, both the accumulator and combiner perform the same
function. However, there are cases in which the actions of the accumulator must differ from
those of the combiner. For example, consider the following program. Here, myList contains
a list of double values. It then uses the combiner version of reduce() to compute the
product of the square roots of each element in the list.

// Demonstrate the use of a combiner with reduce()

import java.util.*;
import java.util.stream.*;

class StreamDemo3 {

 public static void main(String[] args) {

 // This is now a list of double values.
 ArrayList<Double> myList = new ArrayList<>();

 myList.add(7.0);
 myList.add(18.0);
 myList.add(10.0);
 myList.add(24.0);
 myList.add(17.0);
 myList.add(5.0);

29-ch29.indd 976 14/02/14 5:21 PM

Pitrick
Highlight

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 977

Pa
rt

 II

 double productOfSqrRoots = myList.parallelStream().reduce(
 1.0,
 (a,b) -> a * Math.sqrt(b),
 (a,b) -> a * b
);

 System.out.println("Product of square roots: " + productOfSqrRoots);
 }
}

Notice that the accumulator function multiplies the square roots of two elements, but the
combiner multiplies the partial results. Thus, the two functions differ. Moreover, for this
computation to work correctly, they must differ. For example, if you tried to obtain the
product of the square roots of the elements by using the following statement, an error
would result:

// This won't work.
double productOfSqrRoots2 = myList.parallelStream().reduce(
 1.0,
 (a,b) -> a * Math.sqrt(b));

In this version of reduce(), the accumulator and the combiner function are one and the
same. This results in an error because when two partial results are combined, their square
roots are multiplied together rather than the partial results, themselves.

As a point of interest, if the stream in the preceding call to reduce() had been changed
to a sequential stream, then the operation would yield the correct answer because there would
have been no need to combine two partial results. The problem occurs when a parallel
stream is used.

You can switch a parallel stream to sequential by calling the sequential() method, which
is specified by BaseStream. It is shown here:

S sequential()

In general, a stream can be switched between parallel and sequential on an as-needed basis.
There is one other aspect of a stream to keep in mind when using parallel execution:

the order of the elements. Streams can be either ordered or unordered. In general, if the
data source is ordered, then the stream will also be ordered. However, when using a parallel
stream, a performance boost can sometimes be obtained by allowing a stream to be
unordered. When a parallel stream is unordered, each partition of the stream can be operated
on independently, without having to coordinate with the others. In cases in which the order
of the operations does not matter, it is possible to specify unordered behavior by calling the
unordered() method, shown here:

S unordered()

One other point: the forEach() method may not preserve the ordering of a parallel stream.
If you want to perform an operation on each element in a parallel stream while preserving
the order, consider using forEachOrdered(). It is used just like forEach().

29-ch29.indd 977 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

978 PART II The Java Library

Mapping
Often it is useful to map the elements of one stream to another. For example, a stream that
contains a database of name, telephone, and e-mail address information might map only
the name and e-mail address portions to another stream. As another example, you might
want to apply some transformation to the elements in a stream. To do this, you could map
the transformed elements to a new stream. Because mapping operations are quite common,
the stream API provides built-in support for them. The most general mapping method is
map(). It is shown here:

<R> Stream<R> map(Function<? super T, ? extends R> mapFunc)

Here, R specifies the type of elements of the new stream; T is the type of elements of the
invoking stream; and mapFunc is an instance of Function, which does the mapping. The map
function must be stateless and non-interfering. Since a new stream is returned, map() is an
intermediate method.

Function is a functional interface declared in java.util.function. It is declared as
shown here:

Function<T, R>

As it relates to map(), T is the element type and R is the result of the mapping. Function
has the abstract method shown here:

R apply(T val)

Here, val is a reference to the object being mapped. The mapped result is returned.
The following is a simple example of map(). It provides a variation on the previous

example program. As before, the program computes the product of the square roots of the
values in an ArrayList. In this version, however, the square roots of the elements are first
mapped to a new stream. Then, reduce() is employed to compute the product.

// Map one stream to another.

import java.util.*;
import java.util.stream.*;

class StreamDemo4 {

 public static void main(String[] args) {

 // A list of double values.
 ArrayList<Double> myList = new ArrayList<>();

 myList.add(7.0);
 myList.add(18.0);
 myList.add(10.0);
 myList.add(24.0);
 myList.add(17.0);
 myList.add(5.0);

 // Map the square root of the elements in myList to a new stream.
 Stream<Double> sqrtRootStrm = myList.stream().map((a) -> Math.sqrt(a));

29-ch29.indd 978 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 979

Pa
rt

 II

 // Find the product of the square roots.
 double productOfSqrRoots = sqrtRootStrm.reduce(1.0, (a,b) -> a*b);

 System.out.println("Product of square roots is " + productOfSqrRoots);
 }
}

The output is the same as before. The difference between this version and the previous
is simply that the transformation (i.e., the computation of the square roots) occurs during
mapping, rather than during the reduction. Because of this, it is possible to use the two-
parameter form of reduce() to compute the product because it is no longer necessary to
provide a separate combiner function.

Here is an example that uses map() to create a new stream that contains only selected
fields from the original stream. In this case, the original stream contains objects of type
NamePhoneEmail, which contains names, phone numbers, and e-mail addresses. The
program then maps only the names and phone numbers to a new stream of NamePhone
objects. The e-mail addresses are discarded.

// Use map() to create a new stream that contains only
// selected aspects of the original stream.

import java.util.*;
import java.util.stream.*;

class NamePhoneEmail {
 String name;
 String phonenum;
 String email;

 NamePhoneEmail(String n, String p, String e) {
 name = n;
 phonenum = p;
 email = e;
 }
}

class NamePhone {
 String name;
 String phonenum;

 NamePhone(String n, String p) {
 name = n;
 phonenum = p;
 }
}

class StreamDemo5 {

 public static void main(String[] args) {

 // A list of names, phone numbers, and e-mail addresses.
 ArrayList<NamePhoneEmail> myList = new ArrayList<>();

29-ch29.indd 979 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

980 PART II The Java Library

 myList.add(new NamePhoneEmail("Larry", "555-5555",
 "Larry@HerbSchildt.com"));
 myList.add(new NamePhoneEmail("James", "555-4444",
 "James@HerbSchildt.com"));
 myList.add(new NamePhoneEmail("Mary", "555-3333",
 "Mary@HerbSchildt.com"));

 System.out.println("Original values in myList: ");
 myList.stream().forEach((a) -> {
 System.out.println(a.name + " " + a.phonenum + " " + a.email);
 });
 System.out.println();

 // Map just the names and phone numbers to a new stream.
 Stream<NamePhone> nameAndPhone = myList.stream().map(
 (a) -> new NamePhone(a.name,a.phonenum)
);

 System.out.println("List of names and phone numbers: ");
 nameAndPhone.forEach((a) -> {
 System.out.println(a.name + " " + a.phonenum);
 });
 }
}

The output, shown here, verifies the mapping:

Original values in myList:
Larry 555-5555 Larry@HerbSchildt.com
James 555-4444 James@HerbSchildt.com
Mary 555-3333 Mary@HerbSchildt.com

List of names and phone numbers:
Larry 555-5555
James 555-4444
Mary 555-3333

Because you can pipeline more than one intermediate operation together, you can
easily create very powerful actions. For example, the following statement uses filter() and
then map() to produce a new stream that contains only the name and phone number of
the elements with the name "James":

Stream<NamePhone> nameAndPhone = myList.stream().
 filter((a) -> a.name.equals("James")).
 map((a) -> new NamePhone(a.name,a.phonenum));

This type of filter operation is very common when creating database-style queries. As you
gain experience with the stream API, you will find that such chains of operations can be
used to create very sophisticated queries, merges, and selections on a data stream.

29-ch29.indd 980 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 981

Pa
rt

 II

In addition to the version just described, three other versions of map() are provided.
They return a primitive stream, as shown here:

IntStream mapToInt(ToIntFunction<? super T> mapFunc)

LongStream mapToLong(ToLongFunction<? super T> mapFunc)

DoubleStream mapToDouble(ToDoubleFunction<? super T> mapFunc)

Each mapFunc must implement the abstract method defined by the specified interface,
returning a value of the indicated type. For example, ToDoubleFunction specifies the
applyAsDouble(T val) method, which must return the value of its parameter as a double.

Here is an example that uses a primitive stream. It first creates an ArrayList of Double
values. It then uses stream() followed by mapToInt() to create an IntStream that contains
the ceiling of each value.

// Map a Stream to an IntStream.

import java.util.*;
import java.util.stream.*;

class StreamDemo6 {

 public static void main(String[] args) {

 // A list of double values.
 ArrayList<Double> myList = new ArrayList<>();

 myList.add(1.1);
 myList.add(3.6);
 myList.add(9.2);
 myList.add(4.7);
 myList.add(12.1);
 myList.add(5.0);

 System.out.print("Original values in myList: ");
 myList.stream().forEach((a) -> {
 System.out.print(a + " ");
 });
 System.out.println();

 // Map the ceiling of the elements in myList to an IntStream.
 IntStream cStrm = myList.stream().mapToInt((a) -> (int) Math.ceil(a));

 System.out.print("The ceilings of the values in myList: ");
 cStrm.forEach((a) -> {
 System.out.print(a + " ");
 });

 }
}

29-ch29.indd 981 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

982 PART II The Java Library

The output is shown here:

Original values in myList: 1.1 3.6 9.2 4.7 12.1 5.0
The ceilings of the values in myList: 2 4 10 5 13 5

The stream produced by mapToInt() contains the ceiling values of the original elements in
myList.

Before leaving the topic of mapping, it is necessary to point out that the stream API
also provides methods that support flat maps. These are flatMap(), flatMapToInt(),
flatMapToLong(), and flatMapToDouble(). The flat map methods are designed to handle
situations in which each element in the original stream is mapped to more than one
element in the resulting stream.

Collecting
As the preceding examples have shown, it is possible (indeed, common) to obtain a stream
from a collection. Sometimes it is desirable to obtain the opposite: to obtain a collection
from a stream. To perform such an action, the stream API provides the collect() method. It
has two forms. The one we will use first is shown here:

<R, A> R collect(Collector<? super T, A, R> collectorFunc)

Here, R specifies the type of the result, and T specifies the element type of the invoking
stream. The internal accumulated type is specified by A. The collectorFunc specifies how the
collection process works. The collect() method is a terminal operation.

The Collector interface is declared in java.util.stream, as shown here:

interface Collector<T, A, R>

T, A, and R have the same meanings as just described. Collector specifies several methods,
but for the purposes of this chapter, we won’t need to implement them. Instead, we will use
two of the predefined collectors that are provided by the Collectors class, which is packaged
in java.util.stream.

The Collectors class defines a number of static collector methods that you can use as-is.
The two we will use are toList() and toSet(), shown here:

static <T> Collector<T, ?, List<T>> toList()

static <T> Collector<T, ?, Set<T>> toSet()

The toList() method returns a collector that can be used to collect elements into a List. The
toSet() method returns a collector that can be used to collect elements into a Set. For
example, to collect elements into a List, you can call collect() like this:

collect(Collectors.toList())

29-ch29.indd 982 14/02/14 5:21 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 983

Pa
rt

 II

The following program puts the preceding discussion into action. It reworks the
example in the previous section so that it collects the names and phone numbers into a List
and a Set.

// Use collect() to create a List and a Set from a stream.

import java.util.*;
import java.util.stream.*;

class NamePhoneEmail {
 String name;
 String phonenum;
 String email;

 NamePhoneEmail(String n, String p, String e) {
 name = n;
 phonenum = p;
 email = e;
 }
}

class NamePhone {
 String name;
 String phonenum;

 NamePhone(String n, String p) {
 name = n;
 phonenum = p;
 }
}

class StreamDemo7 {

 public static void main(String[] args) {

 // A list of names, phone numbers, and e-mail addresses.
 ArrayList<NamePhoneEmail> myList = new ArrayList<>();

 myList.add(new NamePhoneEmail("Larry", "555-5555",
 "Larry@HerbSchildt.com"));
 myList.add(new NamePhoneEmail("James", "555-4444",
 "James@HerbSchildt.com"));
 myList.add(new NamePhoneEmail("Mary", "555-3333",
 "Mary@HerbSchildt.com"));

 // Map just the names and phone numbers to a new stream.
 Stream<NamePhone> nameAndPhone = myList.stream().map(
 (a) -> new NamePhone(a.name,a.phonenum)
);

 // Use collect to create a List of the names and phone numbers.
 List<NamePhone> npList = nameAndPhone.collect(Collectors.toList());

29-ch29.indd 983 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

984 PART II The Java Library

 System.out.println("Names and phone numbers in a List:");
 for(NamePhone e : npList)
 System.out.println(e.name + ": " + e.phonenum);

 // Obtain another mapping of the names and phone numbers.
 nameAndPhone = myList.stream().map(
 (a) -> new NamePhone(a.name,a.phonenum)
);

 // Now, create a Set by use of collect().
 Set<NamePhone> npSet = nameAndPhone.collect(Collectors.toSet());

 System.out.println("\nNames and phone numbers in a Set:");
 for(NamePhone e : npSet)
 System.out.println(e.name + ": " + e.phonenum);
 }
}

The output is shown here:

Names and phone numbers in a List:
Larry: 555-5555
James: 555-4444
Mary: 555-3333

Names and phone numbers in a Set:
James: 555-4444
Larry: 555-5555
Mary: 555-3333

In the program, the following line collects the name and phone numbers into a List by
using toList():

List<NamePhone> npList = nameAndPhone.collect(Collectors.toList());

After this line executes, the collection referred to by npList can be used like any other List
collection. For example, it can be cycled through by using a for-each for loop, as shown in
the next line:

for(NamePhone e : npList)
 System.out.println(e.name + ": " + e.phonenum);

The creation of a Set via collect(Collectors.toSet()) works in the same way. The ability
to move data from a collection to a stream, and then back to a collection again is a very
powerful attribute of the stream API. It gives you the ability to operate on a collection
through a stream, but then repackage it as a collection. Furthermore, the stream operations
can, if appropriate, occur in parallel.

The version of collect() used by the previous example is quite convenient, and often
the one you want, but there is a second version that gives you more control over the
collection process. It is shown here:

<R> R collect(Supplier<R> target, BiConsumer<R, ? super T> accumulator,
 BiConsumer <R, R> combiner)

29-ch29.indd 984 14/02/14 5:21 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 985

Pa
rt

 II

Here, target specifies how the object that holds the result is created. For example, to use a
LinkedList as the result collection, you would specify its constructor. The accumulator
function adds an element to the result and combiner combines two partial results. Thus,
these functions work similarly to the way they do in reduce(). For both, they must be
stateless and non-interfering. They must also be associative.

Note that the target parameter is of type Supplier. It is a functional interface declared in
java.util.function. It specifies only the get() method, which has no parameters and, in this
case, returns an object of type R. Thus, as it relates to collect(), get() returns a reference to
a mutable storage object, such as a collection.

Note also that the types of accumulator and combiner are BiConsumer. This is a functional
interface defined in java.util.function. It specifies the abstract method accept() that is
shown here:

void accept(T obj, U obj2)

This method performs some type of operation on obj and obj2. As it relates to accumulator,
obj specifies the target collection, and obj2 specifies the element to add to that collection. As
it relates to combiner, obj and obj2 specify two collections that will be combined.

Using the version of collect() just described, you could use a LinkedList as the target in
the preceding program, as shown here:

LinkedList<NamePhone> npList = nameAndPhone.collect(
 () -> new LinkedList<>(),
 (list, element) -> list.add(element),
 (listA,listB) -> listA.addAll(listB));

Notice that the first argument to collect() is a lambda expression that returns a new
LinkedList. The second argument uses the standard collection method add() to add an
element to the list. The third element uses addAll() to combine two linked lists. As a point
of interest, you can use any method defined by LinkedList to add an element to the list. For
example, you could use addFirst() to add elements to the start of the list, as shown here:

(list, element) -> list.addFirst(element)

As you may have guessed, it is not always necessary to specify a lambda expression for
the arguments to collect(). Often, method and/or constructor references will suffice. For
example, again assuming the preceding program, this statement creates a HashSet that
contains all of the elements in the nameAndPhone stream:

HashSet<NamePhone> npSet = nameAndPhone.collect(HashSet::new,
 HashSet::add,
 HashSet::addAll);

Notice that the first argument specifies the HashSet constructor reference. The second and
third specify method references to HashSet’s add() and addAll() methods.

One last point: In the language of the stream API, the collect() method performs what
is called a mutable reduction. This is because the result of the reduction is a mutable (i.e.,
changeable) storage object, such as a collection.

29-ch29.indd 985 14/02/14 5:21 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

986 PART II The Java Library

Iterators and Streams
Although a stream is not a data storage object, you can still use an iterator to cycle through
its elements in much the same way as you would use an iterator to cycle through the elements
of a collection. The stream API supports two types of iterators. The first is the traditional
Iterator. The second is Spliterator, which was added by JDK 8. It provides significant
advantages in certain situations when used with parallel streams.

Use an Iterator with a Stream
As just mentioned, you can use an iterator with a stream in just the same way that you do
with a collection. Iterators are discussed in Chapter 18, but a brief review will be useful
here. Iterators are objects that implement the Iterator interface declared in java.util. Its two
key methods are hasNext() and next(). If there is another element to iterate, hasNext()
returns true, and false otherwise. The next() method returns the next element in the
iteration.

NOTE JDK 8 adds additional iterator types that handle the primitive streams: PrimitiveIterator,
PrimitiveIterator.OfDouble, PrimitiveIterator.OfLong, and PrimitiveIterator.OfInt. These iterators all
extend the Iterator interface and work in the same general way as those based directly on Iterator.

To obtain an iterator to a stream, call iterator() on the stream. The version used by
Stream is shown here.

Iterator<T> iterator()

Here, T specifies the element type. (The primitive streams return iterators of the appropriate
primitive type.)

The following program shows how to iterate through the elements of a stream. In this
case, the strings in an ArrayList are iterated, but the process is the same for any type of stream.

// Use an iterator with a stream.

import java.util.*;
import java.util.stream.*;

class StreamDemo8 {

 public static void main(String[] args) {

 // Create a list of Strings.
 ArrayList<String> myList = new ArrayList<>();
 myList.add("Alpha");
 myList.add("Beta");
 myList.add("Gamma");
 myList.add("Delta");
 myList.add("Phi");
 myList.add("Omega");

 // Obtain a Stream to the array list.
 Stream<String> myStream = myList.stream();

29-ch29.indd 986 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 987

Pa
rt

 II

 // Obtain an iterator to the stream.
 Iterator<String> itr = myStream.iterator();

 // Iterate the elements in the stream.
 while(itr.hasNext())
 System.out.println(itr.next());
 }
}

The output is shown here:

Alpha
Beta
Gamma
Delta
Phi
Omega

Use Spliterator
Spliterator offers an alternative to Iterator, especially when parallel processing is involved.
In general, Spliterator is more sophisticated than Iterator, and a discussion of Spliterator is
found in Chapter 18. However, it will be useful to review its key features here. Spliterator
defines several methods, but we only need to use three. The first is tryAdvance(). It performs
an action on the next element and then advances the iterator. It is shown here:

boolean tryAdvance(Consumer<? super T> action)

Here, action specifies the action that is executed on the next element in the iteration.
tryAdvance() returns true if there is a next element. It returns false if no elements remain.
As discussed earlier in this chapter, Consumer declares one method called accept() that
receives an element of type T as an argument and returns void.

Because tryAdvance() returns false when there are no more elements to process, it
makes the iteration loop construct very simple, for example:

while(splitItr.tryAdvance(// perform action here);

As long as tryAdvance() returns true, the action is applied to the next element. When
tryAdvance() returns false, the iteration is complete. Notice how tryAdvance() consolidates
the purposes of hasNext() and next() provided by Iterator into a single method. This
improves the efficiency of the iteration process.

The following version of the preceding program substitutes a Spliterator for the Iterator:

// Use a Spliterator.

import java.util.*;
import java.util.stream.*;

class StreamDemo9 {

 public static void main(String[] args) {

29-ch29.indd 987 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

988 PART II The Java Library

 // Create a list of Strings.
 ArrayList<String> myList = new ArrayList<>();
 myList.add("Alpha");
 myList.add("Beta");
 myList.add("Gamma");
 myList.add("Delta");
 myList.add("Phi");
 myList.add("Omega");

 // Obtain a Stream to the array list.
 Stream<String> myStream = myList.stream();

 // Obtain a Spliterator.
 Spliterator<String> splitItr = myStream.spliterator();

 // Iterate the elements of the stream.
 while(splitItr.tryAdvance((n) -> System.out.println(n)));
 }
}

The output is the same as before.
In some cases, you might want to perform some action on each element collectively,

rather than one at a time. To handle this type of situation, Spliterator provides the
forEachRemaining() method, shown here:

default void forEachRemaining(Consumer<? super T> action)

This method applies action to each unprocessed element and then returns. For example,
assuming the preceding program, the following displays the strings remaining in the stream:

splitItr.forEachRemaining((n) -> System.out.println(n));

Notice how this method eliminates the need to provide a loop to cycle through the
elements one at a time. This is another advantage of Spliterator.

One other Spliterator method of particular interest is trySplit(). It splits the elements
being iterated in two, returning a new Spliterator to one of the partitions. The other
partition remains accessible by the original Spliterator. It is shown here:

Spliterator<T> trySplit()

If it is not possible to split the invoking Spliterator, null is returned. Otherwise, a reference
to the partition is returned. For example, here is another version of the preceding program
that demonstrates trySplit():

// Demonstrate trySplit().

import java.util.*;
import java.util.stream.*;

class StreamDemo10 {

 public static void main(String[] args) {

29-ch29.indd 988 14/02/14 5:21 PM

Pitrick
Highlight

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 29 The Stream API 989

Pa
rt

 II

 // Create a list of Strings.
 ArrayList<String> myList = new ArrayList<>();
 myList.add("Alpha");
 myList.add("Beta");
 myList.add("Gamma");
 myList.add("Delta");
 myList.add("Phi");
 myList.add("Omega");

 // Obtain a Stream to the array list.
 Stream<String> myStream = myList.stream();

 // Obtain a Spliterator.
 Spliterator<String> splitItr = myStream.spliterator();

 // Now, split the first iterator.
 Spliterator<String> splitItr2 = splitItr.trySplit();

 // If splitItr could be split, use splitItr2 first.
 if(splitItr2 != null) {
 System.out.println("Output from splitItr2: ");
 splitItr2.forEachRemaining((n) -> System.out.println(n));
 }

 // Now, use the splitItr.
 System.out.println("\nOutput from splitItr: ");
 splitItr.forEachRemaining((n) -> System.out.println(n));
 }
}

The output is shown here:

Output from splitItr2:
Alpha
Beta
Gamma

Output from splitItr:
Delta
Phi
Omega

Although splitting the Spliterator in this simple illustration is of no practical value,
splitting can be of great value when parallel processing over large data sets. However, in
many cases, it is better to use one of the other Stream methods in conjunction with a
parallel stream, rather than manually handling these details with Spliterator. Spliterator is
primarily for the cases in which none of the predefined methods seems appropriate.

29-ch29.indd 989 14/02/14 5:21 PM

Pitrick
Highlight

Pitrick
Underline

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

990 PART II The Java Library

More to Explore in the Stream API
This chapter has discussed several key aspects of the stream API and introduced the
techniques required to use them, but the stream API has much more to offer. To begin,
here are a few of the other methods provided by Stream that you will find helpful:

•	 To determine if one or more elements in a stream satisfy a specified predicate, use
allMatch(), anyMatch(), or noneMatch().

•	 To obtain the number of elements in the stream, call count().

•	 To obtain a stream that contains only unique elements, use distinct().

•	 To create a stream that contains a specified set of elements, use of().

One last point: the stream API is a powerful addition to Java. It is likely that it will be enhanced
over time to include even more functionality. Therefore, a periodic perusal of its API
documentation is advised.

29-ch29.indd 990 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

30
CHAPTER

 991

Regular Expressions
and Other Packages

When Java was originally released, it included a set of eight packages, called the core API.
Each subsequent release added to the API. Today, the Java API contains a very large number
of packages. Many of the packages support areas of specialization that are beyond the scope
of this book. However, several packages warrant an examination here. Four are java.util.regex,
java.lang.reflect, java.rmi, and java.text. They support regular expression processing,
reflection, Remote Method Invocation (RMI), and text formatting, respectively. The chapter
ends by introducing the new date and time API in java.time and its subpackages.

The regular expression package lets you perform sophisticated pattern matching operations.
This chapter provides an in-depth introduction to this package along with extensive examples.
Reflection is the ability of software to analyze itself. It is an essential part of the Java Beans
technology that is covered in Chapter 37. Remote Method Invocation (RMI) allows you to build
Java applications that are distributed among several machines. This chapter provides a simple
client/server example that uses RMI. The text formatting capabilities of java.text have many
uses. The one examined here formats date and time strings. The new date and time API
supplies an up-to-date approach to handling date and time.

The Core Java API Packages
At the time of this writing, Table 30-1 lists all of the core API packages defined by Java
(those in the java namespace) and summarizes their functions.

Table 30-1 The Core Java API Packages

Package Primary Function
java.applet Supports construction of applets.

java.awt Provides capabilities for graphical user interfaces.

java.awt.color Supports color spaces and profiles.

java.awt.datatransfer Transfers data to and from the system clipboard.

30-ch30.indd 991 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

992 PART II The Java Library

Package Primary Function
java.awt.dnd Supports drag-and-drop operations.

java.awt.event Handles events.

java.awt.font Represents various types of fonts.

java.awt.geom Allows you to work with geometric shapes.

java.awt.im Allows input of Japanese, Chinese, and Korean characters to text
editing components.

java.awt.im.spi Supports alternative input devices.

java.awt.image Processes images.

java.awt.image.renderable Supports rendering-independent images.

java.awt.print Supports general print capabilities.

java.beans Allows you to build software components.

java.beans.beancontext Provides an execution environment for Beans.

java.io Inputs and outputs data.

java.lang Provides core functionality.

java.lang.annotation Supports annotations (metadata).

java.lang.instrument Supports program instrumentation.

java.lang.invoke Supports dynamic languages.

java.lang.management Supports management of the execution environment.

java.lang.ref Enables some interaction with the garbage collector.

java.lang.reflect Analyzes code at run time.

java.math Handles large integers and decimal numbers.

java.net Supports networking.

java.nio Top-level package for the NIO classes. Encapsulates buffers.

java.nio.channels Encapsulates channels, which are used by the NIO system.

java.nio.channels.spi Supports service providers for channels.

java.nio.charset Encapsulates character sets.

java.nio.charset.spi Supports service providers for character sets.

java.nio.file Provides NIO support for files.

java.nio.file.attribute Supports NIO file attributes.

java.nio.file.spi Supports NIO service providers for files.

java.rmi Provides remote method invocation.

java.rmi.activation Activates persistent objects.

java.rmi.dgc Manages distributed garbage collection.

java.rmi.registry Maps names to remote object references.

java.rmi.server Supports remote method invocation.

java.security Handles certificates, keys, digests, signatures, and other security
functions.

Table 30-1 The Core Java API Packages (continued)

30-ch30.indd 992 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 993

Pa
rt

 II
Regular Expression Processing

The java.util.regex package supports regular expression processing. As the term is used
here, a regular expression is a string of characters that describes a character sequence. This
general description, called a pattern, can then be used to find matches in other character
sequences. Regular expressions can specify wildcard characters, sets of characters, and
various quantifiers. Thus, you can specify a regular expression that represents a general
form that can match several different specific character sequences.

There are two classes that support regular expression processing: Pattern and Matcher.
These classes work together. Use Pattern to define a regular expression. Match the pattern
against another sequence using Matcher.

Package Primary Function
java.security.acl Manages access control lists.

java.security.cert Parses and manages certificates.

java.security.interfaces Defines interfaces for DSA (Digital Signature Algorithm) keys.

java.security.spec Specifies keys and algorithm parameters.

java.sql Communicates with a SQL (Structured Query Language) database.

java.text Formats, searches, and manipulates text.

java.text.spi Supports service providers for text formatting classes in java.text.

java.time Primary support for the new date and time API. (Added by JDK 8.)

java.time.chrono Supports alternative, non-Gregorian calendars. (Added by JDK 8.)

java.time.format Supports date and time formatting. (Added by JDK 8.)

java.time.temporal Supports extended date and time functionality. (Added by JDK 8.)

java.time.zone Supports time zones. (Added by JDK 8.)

java.util Contains common utilities.

java.util.concurrent Supports the concurrent utilities.

java.util.concurrent.atomic Supports atomic (that is, indivisible) operations on variables without
the use of locks.

java.util.concurrent.locks Supports synchronization locks.

java.util.function Provides several functional interfaces. (Added by JDK 8.)

java.util.jar Creates and reads JAR files.

java.util.logging Supports logging of information related to a program’s execution.

java.util.prefs Encapsulates information relating to user preference.

java.util.regex Supports regular expression processing.

java.util.spi Supports service providers for the utility classes in java.util.

java.util.stream Supports the new stream API. (Added by JDK 8.)

java.util.zip Reads and writes compressed and uncompressed ZIP files.

Table 30-1 The Core Java API Packages (continued)

30-ch30.indd 993 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

994 PART II The Java Library

Pattern
The Pattern class defines no constructors. Instead, a pattern is created by calling the
compile() factory method. One of its forms is shown here:

static Pattern compile(String pattern)

Here, pattern is the regular expression that you want to use. The compile() method transforms
the string in pattern into a pattern that can be used for pattern matching by the Matcher
class. It returns a Pattern object that contains the pattern.

Once you have created a Pattern object, you will use it to create a Matcher. This is done
by calling the matcher() factory method defined by Pattern. It is shown here:

Matcher matcher(CharSequence str)

Here str is the character sequence that the pattern will be matched against. This is called
the input sequence. CharSequence is an interface that defines a read-only set of characters. It
is implemented by the String class, among others. Thus, you can pass a string to matcher().

Matcher
The Matcher class has no constructors. Instead, you create a Matcher by calling the matcher()
factory method defined by Pattern, as just explained. Once you have created a Matcher, you
will use its methods to perform various pattern matching operations.

The simplest pattern matching method is matches(), which simply determines whether
the character sequence matches the pattern. It is shown here:

boolean matches()

It returns true if the sequence and the pattern match, and false otherwise. Understand that
the entire sequence must match the pattern, not just a subsequence of it.

To determine if a subsequence of the input sequence matches the pattern, use find().
One version is shown here:

boolean find()

It returns true if there is a matching subsequence and false otherwise. This method can be
called repeatedly, allowing it to find all matching subsequences. Each call to find() begins
where the previous one left off.

You can obtain a string containing the last matching sequence by calling group(). One
of its forms is shown here:

String group()

The matching string is returned. If no match exists, then an IllegalStateException is thrown.
You can obtain the index within the input sequence of the current match by calling

start(). The index one past the end of the current match is obtained by calling end(). The
forms used in this chapter are shown here:

int start()
int end()

Both throw IllegalStateException if no match exists.

30-ch30.indd 994 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 995

Pa
rt

 II

You can replace all occurrences of a matching sequence with another sequence by
calling replaceAll(), shown here:

String replaceAll(String newStr)

Here, newStr specifies the new character sequence that will replace the ones that match the
pattern. The updated input sequence is returned as a string.

Regular Expression Syntax
Before demonstrating Pattern and Matcher, it is necessary to explain how to construct a
regular expression. Although no rule is complicated by itself, there are a large number of
them, and a complete discussion is beyond the scope of this chapter. However, a few of the
more commonly used constructs are described here.

In general, a regular expression is comprised of normal characters, character classes
(sets of characters), wildcard characters, and quantifiers. A normal character is matched
as-is. Thus, if a pattern consists of "xy", then the only input sequence that will match it is
"xy". Characters such as newline and tab are specified using the standard escape sequences,
which begin with a \ . For example, a newline is specified by \n. In the language of regular
expressions, a normal character is also called a literal.

A character class is a set of characters. A character class is specified by putting the
characters in the class between brackets. For example, the class [wxyz] matches w, x, y, or z.
To specify an inverted set, precede the characters with a ^. For example, [^wxyz] matches
any character except w, x, y, or z. You can specify a range of characters using a hyphen. For
example, to specify a character class that will match the digits 1 through 9, use [1-9].

The wildcard character is the . (dot) and it matches any character. Thus, a pattern that
consists of "." will match these (and other) input sequences: "A", "a", "x", and so on.

A quantifier determines how many times an expression is matched. The quantifiers are
shown here:

+ Match one or more.

* Match zero or more.

? Match zero or one.

For example, the pattern "x+" will match "x", "xx", and "xxx", among others.
One other point: In general, if you specify an invalid expression, a

PatternSyntaxException will be thrown.

Demonstrating Pattern Matching
The best way to understand how regular expression pattern matching operates is to work
through some examples. The first, shown here, looks for a match with a literal pattern:

// A simple pattern matching demo.
import java.util.regex.*;

class RegExpr {
 public static void main(String args[]) {

30-ch30.indd 995 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

996 PART II The Java Library

 Pattern pat;
 Matcher mat;
 boolean found;

 pat = Pattern.compile("Java");
 mat = pat.matcher("Java");
 found = mat.matches(); // check for a match

 System.out.println("Testing Java against Java.");
 if(found) System.out.println("Matches");
 else System.out.println("No Match");

 System.out.println();

 System.out.println("Testing Java against Java 8.");
 mat = pat.matcher("Java 8"); // create a new matcher

 found = mat.matches(); // check for a match

 if(found) System.out.println("Matches");
 else System.out.println("No Match");
 }
}

The output from the program is shown here:

 Testing Java against Java.
 Matches

 Testing Java against Java 8.
 No Match

Let’s look closely at this program. The program begins by creating the pattern that contains
the sequence "Java". Next, a Matcher is created for that pattern that has the input sequence
"Java". Then, the matches() method is called to determine if the input sequence matches
the pattern. Because the sequence and the pattern are the same, matches() returns true.
Next, a new Matcher is created with the input sequence "Java 8" and matches() is called
again. In this case, the pattern and the input sequence differ, and no match is found.
Remember, the matches() function returns true only when the input sequence precisely
matches the pattern. It will not return true just because a subsequence matches.

You can use find() to determine if the input sequence contains a subsequence that
matches the pattern. Consider the following program:

// Use find() to find a subsequence.
import java.util.regex.*;

class RegExpr2 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("Java");
 Matcher mat = pat.matcher("Java 8");

 System.out.println("Looking for Java in Java 8.");

30-ch30.indd 996 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 997

Pa
rt

 II

 if(mat.find()) System.out.println("subsequence found");
 else System.out.println("No Match");
 }
}

The output is shown here:

 Looking for Java in Java 8.
 subsequence found

In this case, find() finds the subsequence "Java".
The find() method can be used to search the input sequence for repeated occurrences

of the pattern because each call to find() picks up where the previous one left off. For
example, the following program finds two occurrences of the pattern "test":

// Use find() to find multiple subsequences.
import java.util.regex.*;

class RegExpr3 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("test");
 Matcher mat = pat.matcher("test 1 2 3 test");

 while(mat.find()) {
 System.out.println("test found at index " +
 mat.start());
 }
 }
}

The output is shown here:

 test found at index 0
 test found at index 11

As the output shows, two matches were found. The program uses the start() method to
obtain the index of each match.

Using Wildcards and Quantifiers
Although the preceding programs show the general technique for using Pattern and
Matcher, they don’t show their power. The real benefit of regular expression processing is
not seen until wildcards and quantifiers are used. To begin, consider the following example
that uses the + quantifier to match any arbitrarily long sequence of Ws:

// Use a quantifier.
import java.util.regex.*;

class RegExpr4 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("W+");
 Matcher mat = pat.matcher("W WW WWW");

30-ch30.indd 997 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

998 PART II The Java Library

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

The output from the program is shown here:

 Match: W
 Match: WW
 Match: WWW

As the output shows, the regular expression pattern "W+" matches any arbitrarily long
sequence of Ws.

The next program uses a wildcard to create a pattern that will match any sequence that
begins with e and ends with d. To do this, it uses the dot wildcard character along with the +
quantifier.

// Use wildcard and quantifier.
import java.util.regex.*;

class RegExpr5 {
 public static void main(String args[]) {
 Pattern pat = Pattern.compile("e.+d");
 Matcher mat = pat.matcher("extend cup end table");

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

You might be surprised by the output produced by the program, which is shown here:

 Match: extend cup end

Only one match is found, and it is the longest sequence that begins with e and ends with
d. You might have expected two matches: "extend" and "end". The reason that the longer
sequence is found is that, by default, find() matches the longest sequence that fits the
pattern. This is called greedy behavior. You can specify reluctant behavior by adding the ?
quantifier to the pattern, as shown in this version of the program. It causes the shortest
matching pattern to be obtained.

// Use the ? quantifier.
import java.util.regex.*;

class RegExpr6 {
 public static void main(String args[]) {
 // Use reluctant matching behavior.
 Pattern pat = Pattern.compile("e.+?d");
 Matcher mat = pat.matcher("extend cup end table");

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

30-ch30.indd 998 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 999

Pa
rt

 II

The output from the program is shown here:

 Match: extend
 Match: end

As the output shows, the pattern "e.+?d" will match the shortest sequence that begins with
e and ends with d. Thus, two matches are found.

Working with Classes of Characters
Sometimes you will want to match any sequence that contains one or more characters, in
any order, that are part of a set of characters. For example, to match whole words, you want
to match any sequence of the letters of the alphabet. One of the easiest ways to do this is
to use a character class, which defines a set of characters. Recall that a character class
is created by putting the characters you want to match between brackets. For example, to
match the lowercase characters a through z, use [a-z]. The following program demonstrates
this technique:

// Use a character class.
import java.util.regex.*;

class RegExpr7 {
 public static void main(String args[]) {
 // Match lowercase words.
 Pattern pat = Pattern.compile("[a-z]+");
 Matcher mat = pat.matcher("this is a test.");

 while(mat.find())
 System.out.println("Match: " + mat.group());
 }
}

The output is shown here:

 Match: this
 Match: is
 Match: a
 Match: test

Using replaceAll()
The replaceAll() method supplied by Matcher lets you perform powerful search and
replace operations that use regular expressions. For example, the following program
replaces all occurrences of sequences that begin with "Jon" with "Eric":

// Use replaceAll().
import java.util.regex.*;

class RegExpr8 {
 public static void main(String args[]) {
 String str = "Jon Jonathan Frank Ken Todd";

 Pattern pat = Pattern.compile("Jon.*? ");
 Matcher mat = pat.matcher(str);

30-ch30.indd 999 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1000 PART II The Java Library

 System.out.println("Original sequence: " + str);

 str = mat.replaceAll("Eric ");

 System.out.println("Modified sequence: " + str);

 }
}

The output is shown here:

 Original sequence: Jon Jonathan Frank Ken Todd
 Modified sequence: Eric Eric Frank Ken Todd

Because the regular expression "Jon.*? " matches any string that begins with Jon followed
by zero or more characters, ending in a space, it can be used to match and replace both
Jon and Jonathan with the name Eric. Such a substitution is not easily accomplished
without pattern matching capabilities.

Using split()
You can reduce an input sequence into its individual tokens by using the split() method
defined by Pattern. One form of the split() method is shown here:

String[] split(CharSequence str)

It processes the input sequence passed in str, reducing it into tokens based on the
delimiters specified by the pattern.

For example, the following program finds tokens that are separated by spaces, commas,
periods, and exclamation points:

// Use split().
import java.util.regex.*;

class RegExpr9 {
 public static void main(String args[]) {

 // Match lowercase words.
 Pattern pat = Pattern.compile("[,.!]");

 String strs[] = pat.split("one two,alpha9 12!done.");

 for(int i=0; i < strs.length; i++)
 System.out.println("Next token: " + strs[i]);

 }
}

The output is shown here:

 Next token: one
 Next token: two
 Next token: alpha9

30-ch30.indd 1000 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1001

Pa
rt

 II

 Next token: 12
 Next token: done

As the output shows, the input sequence is reduced to its individual tokens. Notice that the
delimiters are not included.

Two Pattern-Matching Options
Although the pattern-matching techniques described in the foregoing offer the greatest
flexibility and power, there are two alternatives which you might find useful in some
circumstances. If you only need to perform a one-time pattern match, you can use the
matches() method defined by Pattern. It is shown here:

static boolean matches(String pattern, CharSequence str)

It returns true if pattern matches str and false otherwise. This method automatically compiles
pattern and then looks for a match. If you will be using the same pattern repeatedly, then
using matches() is less efficient than compiling the pattern and using the pattern-matching
methods defined by Matcher, as described previously.

You can also perform a pattern match by using the matches() method implemented by
String. It is shown here:

boolean matches(String pattern)

If the invoking string matches the regular expression in pattern, then matches() returns
true. Otherwise, it returns false.

Exploring Regular Expressions
The overview of regular expressions presented in this section only hints at their power. Since
text parsing, manipulation, and tokenization are a large part of programming, you will likely
find Java’s regular expression subsystem a powerful tool that you can use to your advantage.
It is, therefore, wise to explore the capabilities of regular expressions. Experiment with
several different types of patterns and input sequences. Once you understand how regular
expression pattern matching works, you will find it useful in many of your programming
endeavors.

Reflection
Reflection is the ability of software to analyze itself. This is provided by the java.lang.reflect
package and elements in Class. Reflection is an important capability, especially when using
components called Java Beans. It allows you to analyze a software component and describe
its capabilities dynamically, at run time rather than at compile time. For example, by using
reflection, you can determine what methods, constructors, and fields a class supports.
Reflection was introduced in Chapter 12. It is examined further here.

The package java.lang.reflect includes several interfaces. Of special interest is Member,
which defines methods that allow you to get information about a field, constructor, or
method of a class. There are also ten classes in this package. These are listed in Table 30-2.

30-ch30.indd 1001 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1002 PART II The Java Library

The following application illustrates a simple use of the Java reflection capabilities. It
prints the constructors, fields, and methods of the class java.awt.Dimension. The program
begins by using the forName() method of Class to get a class object for java.awt.Dimension.
Once this is obtained, getConstructors(), getFields(), and getMethods() are used to
analyze this class object. They return arrays of Constructor, Field, and Method objects that
provide the information about the object. The Constructor, Field, and Method classes
define several methods that can be used to obtain information about an object. You will
want to explore these on your own. However, each supports the toString() method.
Therefore, using Constructor, Field, and Method objects as arguments to the println()
method is straightforward, as shown in the program.

// Demonstrate reflection.
import java.lang.reflect.*;
public class ReflectionDemo1 {
 public static void main(String args[]) {
 try {
 Class<?> c = Class.forName("java.awt.Dimension");
 System.out.println("Constructors:");
 Constructor<?> constructors[] = c.getConstructors();
 for(int i = 0; i < constructors.length; i++) {
 System.out.println(" " + constructors[i]);
 }

 System.out.println("Fields:");
 Field fields[] = c.getFields();
 for(int i = 0; i < fields.length; i++) {
 System.out.println(" " + fields[i]);
 }

 System.out.println("Methods:");
 Method methods[] = c.getMethods();

Table 30-2 Classes Defined in java.lang.reflect

Class Primary Function
AccessibleObject Allows you to bypass the default access control checks.

Array Allows you to dynamically create and manipulate arrays.

Constructor Provides information about a constructor.

Executable An abstract superclass extended by Method and Constructor.
(Added by JDK 8.)

Field Provides information about a field.

Method Provides information about a method.

Modifier Provides information about class and member access modifiers.

Parameter Provides information about parameters. (Added by JDK 8.)

Proxy Supports dynamic proxy classes.

ReflectPermission Allows reflection of private or protected members of a class.

30-ch30.indd 1002 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1003

Pa
rt

 II

 for(int i = 0; i < methods.length; i++) {
 System.out.println(" " + methods[i]);
 }
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

Here is the output from this program. (The precise order may differ slightly from that shown.)

 Constructors:
 public java.awt.Dimension(int,int)
 public java.awt.Dimension()
 public java.awt.Dimension(java.awt.Dimension)
 Fields:
 public int java.awt.Dimension.width
 public int java.awt.Dimension.height
 Methods:
 public int java.awt.Dimension.hashCode()
 public boolean java.awt.Dimension.equals(java.lang.Object)
 public java.lang.String java.awt.Dimension.toString()
 public java.awt.Dimension java.awt.Dimension.getSize()
 public void java.awt.Dimension.setSize(double,double)
 public void java.awt.Dimension.setSize(java.awt.Dimension)
 public void java.awt.Dimension.setSize(int,int)
 public double java.awt.Dimension.getHeight()
 public double java.awt.Dimension.getWidth()
 public java.lang.Object java.awt.geom.Dimension2D.clone()
 public void java.awt.geom.
 Dimension2D.setSize(java.awt.geom.Dimension2D)
 public final native java.lang.Class java.lang.Object.getClass()
 public final native void java.lang.Object.wait(long)
 throws java.lang.InterruptedException
 public final void java.lang.Object.wait()
 throws java.lang.InterruptedException
 public final void java.lang.Object.wait(long,int)
 throws java.lang.InterruptedException
 public final native void java.lang.Object.notify()
 public final native void java.lang.Object.notifyAll()

The next example uses Java’s reflection capabilities to obtain the public methods of a
class. The program begins by instantiating class A. The getClass() method is applied to this
object reference, and it returns the Class object for class A. The getDeclaredMethods()
method returns an array of Method objects that describe only the methods declared by
this class. Methods inherited from superclasses such as Object are not included.

Each element of the methods array is then processed. The getModifiers() method
returns an int containing flags that describe which modifiers apply for this element. The
Modifier class provides a set of isX methods, shown in Table 30-3, that can be used to
examine this value. For example, the static method isPublic() returns true if its argument

30-ch30.indd 1003 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1004 PART II The Java Library

includes the public modifier. Otherwise, it returns false. In the following program, if the
method supports public access, its name is obtained by the getName() method and is then
printed.

// Show public methods.
import java.lang.reflect.*;
public class ReflectionDemo2 {
 public static void main(String args[]) {

 try {
 A a = new A();
 Class<?> c = a.getClass();
 System.out.println("Public Methods:");
 Method methods[] = c.getDeclaredMethods();
 for(int i = 0; i < methods.length; i++) {
 int modifiers = methods[i].getModifiers();
 if(Modifier.isPublic(modifiers)) {

Table 30-3 The “is” Methods Defined by Modifier That Determine Modifiers

Method Description
static boolean isAbstract(int val) Returns true if val has the abstract flag set and false

otherwise.

static boolean isFinal(int val) Returns true if val has the final flag set and false
otherwise.

static boolean isInterface(int val) Returns true if val has the interface flag set and false
otherwise.

static boolean isNative(int val) Returns true if val has the native flag set and false
otherwise.

static boolean isPrivate(int val) Returns true if val has the private flag set and false
otherwise.

static boolean isProtected(int val) Returns true if val has the protected flag set and false
otherwise.

static boolean isPublic(int val) Returns true if val has the public flag set and false
otherwise.

static boolean isStatic(int val) Returns true if val has the static flag set and false
otherwise.

static boolean isStrict(int val) Returns true if val has the strict flag set and false
otherwise.

static boolean isSynchronized(int val) Returns true if val has the synchronized flag set and
false otherwise.

static boolean isTransient(int val) Returns true if val has the transient flag set and false
otherwise.

static boolean isVolatile(int val) Returns true if val has the volatile flag set and false
otherwise.

30-ch30.indd 1004 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1005

Pa
rt

 II

 System.out.println(" " + methods[i].getName());
 }
 }
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

class A {
 public void a1() {
 }
 public void a2() {
 }
 protected void a3() {
 }
 private void a4() {
 }
}

Here is the output from this program:

 Public Methods:
 a1
 a2

Modifier also includes a set of static methods that return the type of modifiers that can
be applied to a specific type of program element. These methods are

static int classModifiers()

static int constructorModifiers()

static int fieldModifiers()

static int interfaceModifiers()

static int methodModifiers()

static int parameterModifiers() (Added by JDK 8.)

For example, methodModifiers() returns the modifiers that can be applied to a method.
Each method returns flags, packed into an int, that indicate which modifiers are legal.
The modifier values are defined by constants in Modifier, which include PROTECTED,
PUBLIC, PRIVATE, STATIC, FINAL, and so on.

Remote Method Invocation (RMI)
Remote Method Invocation (RMI) allows a Java object that executes on one machine to
invoke a method of a Java object that executes on another machine. This is an important
feature, because it allows you to build distributed applications. While a complete discussion
of RMI is outside the scope of this book, the following simplified example describes the
basic principles involved.

30-ch30.indd 1005 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1006 PART II The Java Library

A Simple Client/Server Application Using RMI
This section provides step-by-step directions for building a simple client/server application
by using RMI. The server receives a request from a client, processes it, and returns a result.
In this example, the request specifies two numbers. The server adds these together and
returns the sum.

Step One: Enter and Compile the Source Code
This application uses four source files. The first file, AddServerIntf.java, defines the remote
interface that is provided by the server. It contains one method that accepts two double
arguments and returns their sum. All remote interfaces must extend the Remote interface,
which is part of java.rmi. Remote defines no members. Its purpose is simply to indicate that
an interface uses remote methods. All remote methods can throw a RemoteException.

import java.rmi.*;

public interface AddServerIntf extends Remote {
 double add(double d1, double d2) throws RemoteException;
}

The second source file, AddServerImpl.java, implements the remote interface. The
implementation of the add() method is straightforward. Remote objects typically extend
UnicastRemoteObject, which provides functionality that is needed to make objects available
from remote machines.

import java.rmi.*;
import java.rmi.server.*;

public class AddServerImpl extends UnicastRemoteObject
 implements AddServerIntf {

 public AddServerImpl() throws RemoteException {
 }
 public double add(double d1, double d2) throws RemoteException {
 return d1 + d2;
 }
}

The third source file, AddServer.java, contains the main program for the server
machine. Its primary function is to update the RMI registry on that machine. This is done
by using the rebind() method of the Naming class (found in java.rmi). That method
associates a name with an object reference. The first argument to the rebind() method
is a string that names the server as "AddServer". Its second argument is a reference to an
instance of AddServerImpl.

import java.net.*;
import java.rmi.*;

public class AddServer {
 public static void main(String args[]) {

30-ch30.indd 1006 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1007

Pa
rt

 II

 try {
 AddServerImpl addServerImpl = new AddServerImpl();
 Naming.rebind("AddServer", addServerImpl);
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

The fourth source file, AddClient.java, implements the client side of this distributed
application. AddClient.java requires three command-line arguments. The first is the IP
address or name of the server machine. The second and third arguments are the two
numbers that are to be summed.

The application begins by forming a string that follows the URL syntax. This URL uses
the rmi protocol. The string includes the IP address or name of the server and the string
"AddServer". The program then invokes the lookup() method of the Naming class. This
method accepts one argument, the rmi URL, and returns a reference to an object of type
AddServerIntf. All remote method invocations can then be directed to this object.

The program continues by displaying its arguments and then invokes the remote add()
method. The sum is returned from this method and is then printed.

import java.rmi.*;

public class AddClient {
 public static void main(String args[]) {
 try {
 String addServerURL = "rmi://" + args[0] + "/AddServer";
 AddServerIntf addServerIntf =
 (AddServerIntf)Naming.lookup(addServerURL);
 System.out.println("The first number is: " + args[1]);
 double d1 = Double.valueOf(args[1]).doubleValue();
 System.out.println("The second number is: " + args[2]);

 double d2 = Double.valueOf(args[2]).doubleValue();
 System.out.println("The sum is: " + addServerIntf.add(d1, d2));
 }
 catch(Exception e) {
 System.out.println("Exception: " + e);
 }
 }
}

After you enter all the code, use javac to compile the four source files that you created.

Step Two: Manually Generate a Stub if Required
In the context of RMI, a stub is a Java object that resides on the client machine. Its function
is to present the same interfaces as the remote server. Remote method calls initiated by the
client are actually directed to the stub. The stub works with the other parts of the RMI
system to formulate a request that is sent to the remote machine.

A remote method may accept arguments that are simple types or objects. In the latter
case, the object may have references to other objects. All of this information must be sent to

30-ch30.indd 1007 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1008 PART II The Java Library

the remote machine. That is, an object passed as an argument to a remote method call must
be serialized and sent to the remote machine. Recall from Chapter 20 that the serialization
facilities also recursively process all referenced objects.

If a response must be returned to the client, the process works in reverse. Note that the
serialization and deserialization facilities are also used if objects are returned to a client.

Prior to Java 5, stubs needed to be built manually by using rmic. This step is not required
for modern versions of Java. However, if you are working in a legacy environment, then you
can use the rmic compiler, as shown here, to build a stub:

rmic AddServerImpl

This command generates the file AddServerImpl_Stub.class. When using rmic, be sure that
CLASSPATH is set to include the current directory.

Step Three: Install Files on the Client and Server Machines
Copy AddClient.class, AddServerImpl_Stub.class (if needed), and AddServerIntf.class
to a directory on the client machine. Copy AddServerIntf.class, AddServerImpl.class,
AddServerImpl_Stub.class (if needed), and AddServer.class to a directory on the server
machine.

NOTE RMI has techniques for dynamic class loading, but they are not used by the example at hand.
Instead, all of the files that are used by the client and server applications must be installed manually
on those machines.

Step Four: Start the RMI Registry on the Server Machine
The JDK provides a program called rmiregistry, which executes on the server machine. It
maps names to object references. First, check that the CLASSPATH environment variable
includes the directory in which your files are located. Then, start the RMI Registry from the
command line, as shown here:

start rmiregistry

When this command returns, you should see that a new window has been created. You need
to leave this window open until you are done experimenting with the RMI example.

Step Five: Start the Server
The server code is started from the command line, as shown here:

java AddServer

Recall that the AddServer code instantiates AddServerImpl and registers that object with
the name "AddServer".

Step Six: Start the Client
The AddClient software requires three arguments: the name or IP address of the server
machine and the two numbers that are to be summed together. You may invoke it from the
command line by using one of the two formats shown here:

java AddClient server1 8 9
java AddClient 11.12.13.14 8 9

30-ch30.indd 1008 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1009

Pa
rt

 II

In the first line, the name of the server is provided. The second line uses its IP address
(11.12.13.14).

You can try this example without actually having a remote server. To do so, simply install
all of the programs on the same machine, start rmiregistry, start AddServer, and then execute
AddClient using this command line:

java AddClient 127.0.0.1 8 9

Here, the address 127.0.0.1 is the “loop back” address for the local machine. Using this address
allows you to exercise the entire RMI mechanism without actually having to install the server
on a remote computer. (If you are using a firewall, then this approach may not work.)

In either case, sample output from this program is shown here:

 The first number is: 8
 The second number is: 9
 The sum is: 17.0

NOTE When working with RMI in the real world, it may be necessary for the server to install a security
manager.

Formatting Date and Time with java.text
The package java.text allows you to format, parse, search, and manipulate text. This section
examines two of its most commonly used classes: those that format date and time information.
However, it is important to state at the outset that the new date and time API described later
in this chapter offers a modern approach to handling date and time that also supports
formatting. Of course, legacy code will continue to use the classes shown here for some time.

DateFormat Class
DateFormat is an abstract class that provides the ability to format and parse dates and times.
The getDateInstance() method returns an instance of DateFormat that can format date
information. It is available in these forms:

static final DateFormat getDateInstance()
static final DateFormat getDateInstance(int style)
static final DateFormat getDateInstance(int style, Locale locale)

The argument style is one of the following values: DEFAULT, SHORT, MEDIUM, LONG,
or FULL. These are int constants defined by DateFormat. They cause different details about
the date to be presented. The argument locale is one of the static references defined by
Locale (refer to Chapter 19 for details). If the style and/or locale is not specified, defaults
are used.

One of the most commonly used methods in this class is format(). It has several
overloaded forms, one of which is shown here:

final String format(Date d)

The argument is a Date object that is to be displayed. The method returns a string
containing the formatted information.

30-ch30.indd 1009 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1010 PART II The Java Library

The following listing illustrates how to format date information. It begins by creating a
Date object. This captures the current date and time information. Then it outputs the date
information by using different styles and locales.

// Demonstrate date formats.
import java.text.*;
import java.util.*;

public class DateFormatDemo {
 public static void main(String args[]) {
 Date date = new Date();
 DateFormat df;

 df = DateFormat.getDateInstance(DateFormat.SHORT, Locale.JAPAN);
 System.out.println("Japan: " + df.format(date));

 df = DateFormat.getDateInstance(DateFormat.MEDIUM, Locale.KOREA);
 System.out.println("Korea: " + df.format(date));

 df = DateFormat.getDateInstance(DateFormat.LONG, Locale.UK);
 System.out.println("United Kingdom: " + df.format(date));

 df = DateFormat.getDateInstance(DateFormat.FULL, Locale.US);
 System.out.println("United States: " + df.format(date));
 }
}

Sample output from this program is shown here:

 Japan: 14/01/01
 Korea: 2014. 1. 1
 United Kingdom: 01 January 2014
 United States: Wednesday, January 1, 2014

The getTimeInstance() method returns an instance of DateFormat that can format
time information. It is available in these versions:

static final DateFormat getTimeInstance()
static final DateFormat getTimeInstance(int style)
static final DateFormat getTimeInstance(int style, Locale locale)

The argument style is one of the following values: DEFAULT, SHORT, MEDIUM, LONG,
or FULL. These are int constants defined by DateFormat. They cause different details about
the time to be presented. The argument locale is one of the static references defined by
Locale. If the style and/or locale is not specified, defaults are used.

The following listing illustrates how to format time information. It begins by creating a
Date object. This captures the current date and time information. Then it outputs the time
information by using different styles and locales.

// Demonstrate time formats.
import java.text.*;
import java.util.*;

30-ch30.indd 1010 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1011

Pa
rt

 II

public class TimeFormatDemo {
 public static void main(String args[]) {
 Date date = new Date();
 DateFormat df;

 df = DateFormat.getTimeInstance(DateFormat.SHORT, Locale.JAPAN);
 System.out.println("Japan: " + df.format(date));

 df = DateFormat.getTimeInstance(DateFormat.LONG, Locale.UK);
 System.out.println("United Kingdom: " + df.format(date));

 df = DateFormat.getTimeInstance(DateFormat.FULL, Locale.CANADA);
 System.out.println("Canada: " + df.format(date));
 }
}

Sample output from this program is shown here:

 Japan: 13:06
 United Kingdom: 13:06:53 CST
 Canada: 1:06:53 o’clock PM CST

The DateFormat class also has a getDateTimeInstance() method that can format both
date and time information. You may wish to experiment with it on your own.

SimpleDateFormat Class
SimpleDateFormat is a concrete subclass of DateFormat. It allows you to define your own
formatting patterns that are used to display date and time information.

One of its constructors is shown here:

SimpleDateFormat(String formatString)

The argument formatString describes how date and time information is displayed. An
example of its use is given here:

SimpleDateFormat sdf = SimpleDateFormat("dd MMM yyyy hh:mm:ss zzz");

The symbols used in the formatting string determine the information that is displayed.
Table 30-4 lists these symbols and gives a description of each.

In most cases, the number of times a symbol is repeated determines how that data
is presented. Text information is displayed in an abbreviated form if the pattern letter is
repeated less than four times. Otherwise, the unabbreviated form is used. For example, a
zzzz pattern can display Pacific Daylight Time, and a zzz pattern can display PDT.

For numbers, the number of times a pattern letter is repeated determines how many
digits are presented. For example, hh:mm:ss can present 01:51:15, but h:m:s displays the
same time value as 1:51:15.

Finally, M or MM causes the month to be displayed as one or two digits. However, three
or more repetitions of M cause the month to be displayed as a text string.

30-ch30.indd 1011 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1012 PART II The Java Library

The following program shows how this class is used:

// Demonstrate SimpleDateFormat.
import java.text.*;
import java.util.*;

public class SimpleDateFormatDemo {
 public static void main(String args[]) {
 Date date = new Date();
 SimpleDateFormat sdf;
 sdf = new SimpleDateFormat("hh:mm:ss");
 System.out.println(sdf.format(date));
 sdf = new SimpleDateFormat("dd MMM yyyy hh:mm:ss zzz");
 System.out.println(sdf.format(date));
 sdf = new SimpleDateFormat("E MMM dd yyyy");

Table 30-4 Formatting String Symbols for SimpleDateFormat

Symbol Description
a AM or PM

d Day of month (1–31)

h Hour in AM/PM (1–12)

k Hour in day (1–24)

m Minute in hour (0–59)

s Second in minute (0–59)

u Day of week, with Monday being 1

w Week of year (1–52)

y Year

z Time zone

D Day of year (1–366)

E Day of week (for example, Thursday)

F Day of week in month

G Era (for example, AD or BC)

H Hour in day (0–23)

K Hour in AM/PM (0–11)

L Month

M Month

S Millisecond in second

W Week of month (1–5)

X Time zone in ISO 8601 format

Y Week year

Z Time zone in RFC 822 format

30-ch30.indd 1012 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1013

Pa
rt

 II

 System.out.println(sdf.format(date));
 }
}

Sample output from this program is shown here:

 01:30:51
 01 Jan 2014 01:30:51 CST
 Wed Jan 01 2014

The Time and Date API Added by JDK 8
In Chapter 19, Java’s long-standing approach to handling date and time through the use of
classes such as Calendar and GregorianCalendar was discussed. At the time of this writing,
this traditional approach is still in widespread use and is something that all Java programmers
need to be familiar with. However, with the release of JDK 8, Java now includes another
approach to handling time and date. This new approach is defined in the following packages:

Package Description
java.time Provides top-level classes that support time and date.

java.time.chrono Supports alternative, non-Gregorian calendars.

java.time.format Supports time and date formatting.

java.time.temporal Supports extended date and time functionality.

java.time.zone Supports time zones.

These new packages define a large number of classes, interfaces, and enumerations that
provide extensive, finely grained support for time and date operations. Because of the
number of elements that comprise the new time and date API, it can seem fairly intimidating
at first. However, it is well organized and logically structured. Its size reflects the detail of
control and flexibility that it provides. Although it is far beyond the scope of this book to
examine each element in this extensive API, we will look at several of its main classes. As
you will see, these classes are sufficient for many uses.

Time and Date Fundamentals
In java.time are defined several top-level classes that give you easy access to the time and
date. Three of these are LocalDate, LocalTime, and LocalDateTime. As their names suggest,
they encapsulate the local date, time, and date and time. Using these classes, it is easy to
obtain the current date and time, format the date and time, and compare dates and times,
among other operations.

LocalDate encapsulates a date that uses the default Gregorian calendar as specified by
ISO 8601. LocalTime encapsulates a time, as specified by ISO 8601. LocalDateTime
encapsulates both date and time. These classes contain a large number of methods that
give you access to the date and time components, allow you to compare dates and times,
add or subtract date or time components, and so on. Because a common naming convention
for methods is employed, once you know how to use one of these classes, the others are
easy to master.

30-ch30.indd 1013 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1014 PART II The Java Library

LocalDate, LocalTime, and LocalDateTime do not define public constructors. Rather,
to obtain an instance, you will use a factory method. One very convenient method is now(),
which is defined for all three classes. It returns the current date and/or time of the system.
Each class defines several versions, but we will use its simplest form. Here is the version we
will use as defined by LocalDate:

static LocalDate now()

The version for LocalTime is shown here:

static LocalTime now()

The version for LocalDateTime is shown here:

static LocalDateTime now()

As you can see, in each case, an appropriate object is returned. The object returned by
now() can be displayed in its default, human-readable form by use of a println() statement,
for example. However, it is also possible to take full control over the formatting of date
and time.

The following program uses LocalDate and LocalTime to obtain the current date and
time and then displays them. Notice how now() is called to retrieve the current date
and time.

// A simple example of LocalDate and LocalTime.
import java.time.*;

class DateTimeDemo {
 public static void main(String args[]) {

 LocalDate curDate = LocalDate.now();
 System.out.println(curDate);

 LocalTime curTime = LocalTime.now();
 System.out.println(curTime);
 }
}

Sample output is shown here:

2014-01-01
14:03:41.436

The output reflects the default format that is given to the date and time. (The next
section shows how to specify a different format.)

Because the preceding program displays both the current date and the current time, it
could have been more easily written using the LocalDateTime class. In this approach, only
a single instance needs to be created and only a single call to now() is required, as shown
here:

LocalDateTime curDateTime = LocalDateTime.now();
System.out.println(curDateTime);

30-ch30.indd 1014 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1015

Pa
rt

 II

Using this approach, the default output includes both date and time. Here is a sample:

2014-01-01T14:04:56.799

One other point: from a LocalDateTime instance, it is possible to obtain a reference to
the date or time component by using the toLocalDate() and toLocalTime() methods,
shown here:

LocalDate toLocalDate()

LocalTime toLocalTime()

Each returns a reference to the indicated element.

Formatting Date and Time
Although the default formats shown in the preceding examples will be adequate for some
uses, often you will want to specify a different format. Fortunately, this is easy to do because
LocalDate, LocalTime, and LocalDateTime all provide the format() method, shown here:

String format(DateTimeFormatter fmtr)

Here, fmtr specifies the instance of DateTimeFormatter that will provide the format.
DateTimeFormatter is packaged in java.time.format. To obtain a DateTimeFormatter

instance, you will typically use one of its factory methods. Three are shown here:

static DateTimeFormatter ofLocalizedDate(FormatStyle fmtDate)

static DateTimeFormatter ofLocalizedTime(FormatStyle fmtTime)

static DateTimeFormatter ofLocalizedDateTime(FormatStyle fmtDate,
 FormatStyle fmtTime)

Of course, the type of DateTimeFormatter that you create will be based on the type of
object it will be operating on. For example, if you want to format the date in a LocalDate
instance, then use ofLocalizedDate(). The specific format is specified by the FormatStyle
parameter.

FormatStyle is an enumeration that is packaged in java.time.format. It defines the
following constants:

FULL

LONG

MEDIUM

SHORT

These specify the level of detail that will be displayed. (Thus, this form of DateTimeFormatter
works similarly to java.text.DateFormat, described earlier in this chapter.)

30-ch30.indd 1015 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1016 PART II The Java Library

Here is an example that uses DateTimeFormatter to display the current date and time:

// Demonstrate DateTimeFormatter.
import java.time.*;
import java.time.format.*;

class DateTimeDemo2 {
 public static void main(String args[]) {

 LocalDate curDate = LocalDate.now();
 System.out.println(curDate.format(
 DateTimeFormatter.ofLocalizedDate(FormatStyle.FULL)));

 LocalTime curTime = LocalTime.now();
 System.out.println(curTime.format(
 DateTimeFormatter.ofLocalizedTime(FormatStyle.SHORT)));
 }
}

Sample output is shown here:

Wednesday, January 1, 2014
2:16 PM

In some situations, you may want a format different from the ones you can specify by
use of FormatStyle. One way to accomplish this is to use a predefined formatter, such as
ISO_DATE or ISO_TIME, provided by DateTimeFormatter. Another way is to create a
custom format by specifying a pattern. To do this, you can use the ofPattern() factory
method of DateTimeFormatter. One version is shown here:

static DateTimeFormatter ofPattern(String fmtPattern)

Here, fmtPattern specifies a string that contains the date and time pattern that you want. It
returns a DateTimeFormatter that will format according to that pattern. The default locale
is used.

In general, a pattern consists of format specifiers, called pattern letters. A pattern letter
will be replaced by the date or time component that it specifies. The full list of pattern
letters is shown in the API documentation for ofPattern(). Here is a sampling. Note that
the pattern letters are case-sensitive.

a AM/PM indicator

d Day in month

E Day in week

h Hour, 12-hour clock

H Hour, 24-hour clock

M Month

m Minutes

s Seconds

y Year

30-ch30.indd 1016 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 30 Regular Expressions and Other Packages 1017

Pa
rt

 II

In general, the precise output that you see will be determined by how many times a pattern
letter is repeated. (Thus, DateTimeFormatter works a bit like java.text.SimpleDateFormat,
described earlier in this chapter.) For example, assuming that the month is April, the patterns:

M MM MMM MMMM

produce the following formatted output:

4 04 Apr April

Frankly, experimentation is the best way to understand what each pattern letter does and
how various repetitions affect the output.

When you want to output a pattern letter as text, enclose the text between single quotation
marks. In general, it is a good idea to enclose all non-pattern characters within single
quotation marks to avoid problems if the set of pattern letters changes in subsequent
versions of Java.

The following program demonstrates the use of a date and time pattern:

// Create a custom date and time format.
import java.time.*;
import java.time.format.*;

class DateTimeDemo3 {
 public static void main(String args[]) {

 LocalDateTime curDateTime = LocalDateTime.now();
 System.out.println(curDateTime.format(
 DateTimeFormatter.ofPattern("MMMM d',' yyyy h':'mm a")));
 }
}

Sample output is shown here:

January 1, 2014 2:22 PM

One other point about creating custom date and time output: LocalDate, LocalTime,
and LocalDateTime define methods that let you obtain various date and time components.
For example, getHour() returns the hour as an int; getMonth() returns the month in the
form of a Month enumeration value; and getYear() returns the year as an int. Using these,
and other methods, you can manually construct output. You can also use these values for
other purposes, such as when creating specialized timers.

Parsing Date and Time Strings
LocalDate, LocalTime, and LocalDateTime provide the ability to parse date and/or time
strings. To do this, call parse() on an instance of one of those classes. It has two forms. The
first uses the default formatter that parses the date and/or time formatted in the standard
ISO fashion, such as 03:31 for time and 2014-08-02 for date. The form of this version of

30-ch30.indd 1017 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1018 PART II The Java Library

parse() for LocalDateTime is shown here. (Its form for the other classes is similar except
for the type of object returned.)

static LocalDateTime parse(CharSequence dateTimeStr)

Here, dateTimeStr is a string that contains the date and time in the proper format. If the
format is invalid, an error will result.

If you want to parse a date and/or time string that is in a format other than ISO format,
you can use a second form of parse() that lets you specify your own formatter. The version
specified by LocalDateTime is shown next. (The other classes provide a similar form except
for the return type.)

static LocalDateTime parse(CharSequence dateTimeStr,
 DateTimeFormatter dateTimeFmtr)

Here, dateTimeFmtr specifies the formatter that you want to use.
Here is a simple example that parses a date and time string by use of a custom

formatter:

// Parse a date and time.
import java.time.*;
import java.time.format.*;

class DateTimeDemo4 {
 public static void main(String args[]) {

 // Obtain a LocalDateTime object by parsing a date and time string.
 LocalDateTime curDateTime =
 LocalDateTime.parse("June 21, 2014 12:01 AM",
 DateTimeFormatter.ofPattern("MMMM d',' yyyy hh':'mm a"));

 // Now, display the parsed date and time.
 System.out.println(curDateTime.format(
 DateTimeFormatter.ofPattern("MMMM d',' yyyy h':'mm a")));
 }
}

Sample output is shown here:

June 21, 2014 12:01 AM

Other Things to Explore in java.time
Although you will want to explore all of the date and time packages, a good place to start is
with java.time. It contains a great deal of functionality that you may find useful. Begin by
examining the methods defined by LocalDate, LocalTime, and LocalDateTime. Each has
methods that let you add or subtract dates and/or times, adjust dates and/or times by a
given component, compare dates and/or times, and create instances based on date and/or
time components, among others. Other classes in java.time that you may find of particular
interest include Instant, Duration, and Period. Instant encapsulates an instant in time.
Duration encapsulates a length of time. Period encapsulates a length of date.

30-ch30.indd 1018 14/02/14 5:21 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio

Introducing GUI
Programming with Swing

PART

III
CHAPTER 31
Introducing Swing

CHAPTER 32
Exploring Swing

CHAPTER 33
Introducing Swing Menus

31-ch31.indd 1019 14/02/14 5:22 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

31
CHAPTER

 1021

Introducing Swing

In Part II, you saw how to build very simple user interfaces with the AWT classes. Although
the AWT is still a crucial part of Java, its component set is no longer widely used to create
graphical user interfaces. Today, most programmers use Swing or JavaFX for this purpose.
JavaFX is discussed in Part IV. Here, Swing is introduced. Swing is a framework that provides
more powerful and flexible GUI components than does the AWT. As a result, it is the GUI
that has been widely used by Java programmers for more than a decade.

Coverage of Swing is divided between three chapters. This chapter introduces Swing. It
begins by describing Swing’s core concepts. It then shows the general form of a Swing
program, including both applications and applets. It concludes by explaining how painting
is accomplished in Swing. The next chapter presents several commonly used Swing
components. The third chapter introduces Swing-based menus. It is important to understand
that the number of classes and interfaces in the Swing packages is quite large, and they can’t
all be covered in this book. (In fact, full coverage of Swing requires an entire book of its own.)
However, these three chapters will give you a basic understanding of this important topic.

NOTE For a comprehensive introduction to Swing, see my book Swing: A Beginner's Guide published by
McGraw-Hill Professional (2007).

The Origins of Swing
Swing did not exist in the early days of Java. Rather, it was a response to deficiencies present
in Java’s original GUI subsystem: the Abstract Window Toolkit. The AWT defines a basic set
of controls, windows, and dialog boxes that support a usable, but limited graphical interface.
One reason for the limited nature of the AWT is that it translates its various visual components
into their corresponding, platform-specific equivalents, or peers. This means that the look
and feel of a component is defined by the platform, not by Java. Because the AWT components
use native code resources, they are referred to as heavyweight.

The use of native peers led to several problems. First, because of variations between
operating systems, a component might look, or even act, differently on different platforms.

31-ch31.indd 1021 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1022 PART III Introducing GUI Programming with Swing

This potential variability threatened the overarching philosophy of Java: write once, run
anywhere. Second, the look and feel of each component was fixed (because it is defined by
the platform) and could not be (easily) changed. Third, the use of heavyweight components
caused some frustrating restrictions. For example, a heavyweight component was always
opaque.

Not long after Java’s original release, it became apparent that the limitations and
restrictions present in the AWT were sufficiently serious that a better approach was needed.
The solution was Swing. Introduced in 1997, Swing was included as part of the Java Foundation
Classes (JFC). Swing was initially available for use with Java 1.1 as a separate library. However,
beginning with Java 1.2, Swing (and the rest of the JFC) was fully integrated into Java.

Swing Is Built on the AWT
Before moving on, it is necessary to make one important point: although Swing eliminates
a number of the limitations inherent in the AWT, Swing does not replace it. Instead, Swing is
built on the foundation of the AWT. This is why the AWT is still a crucial part of Java. Swing
also uses the same event handling mechanism as the AWT. Therefore, a basic understanding
of the AWT and of event handling is required to use Swing. (The AWT is covered in
Chapters 25 and 26. Event handling is described in Chapter 24.)

Two Key Swing Features
As just explained, Swing was created to address the limitations present in the AWT. It does
this through two key features: lightweight components and a pluggable look and feel.
Together they provide an elegant, yet easy-to-use solution to the problems of the AWT.
More than anything else, it is these two features that define the essence of Swing. Each
is examined here.

Swing Components Are Lightweight
With very few exceptions, Swing components are lightweight. This means that they are
written entirely in Java and do not map directly to platform-specific peers. Thus,
lightweight components are more efficient and more flexible. Furthermore,
because lightweight components do not translate into native peers, the look and feel
of each component is determined by Swing, not by the underlying operating system. As
a result, each component will work in a consistent manner across all platforms.

Swing Supports a Pluggable Look and Feel
Swing supports a pluggable look and feel (PLAF). Because each Swing component is rendered
by Java code rather than by native peers, the look and feel of a component is under the
control of Swing. This fact means that it is possible to separate the look and feel of a
component from the logic of the component, and this is what Swing does. Separating out
the look and feel provides a significant advantage: it becomes possible to change the way
that a component is rendered without affecting any of its other aspects. In other words, it is
possible to “plug in” a new look and feel for any given component without creating any side
effects in the code that uses that component. Moreover, it becomes possible to define entire

31-ch31.indd 1022 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1023

Pa
rt

 II
I

sets of look-and-feels that represent different GUI styles. To use a specific style, its look and
feel is simply “plugged in.” Once this is done, all components are automatically rendered
using that style.

Pluggable look-and-feels offer several important advantages. It is possible to define a
look and feel that is consistent across all platforms. Conversely, it is possible to create a look
and feel that acts like a specific platform. For example, if you know that an application will
be running only in a Windows environment, it is possible to specify the Windows look and
feel. It is also possible to design a custom look and feel. Finally, the look and feel can be
changed dynamically at run time.

Java 8 provides look-and-feels, such as metal and Nimbus, that are available to all Swing
users. The metal look and feel is also called the Java look and feel. It is platform-independent
and available in all Java execution environments. It is also the default look and feel. Windows
environments also have access to the Windows look and feel. This book uses the default
Java look and feel (metal) because it is platform independent.

The MVC Connection
In general, a visual component is a composite of three distinct aspects:

•	 The way that the component looks when rendered on the screen

•	 The way that the component reacts to the user

•	 The state information associated with the component

No matter what architecture is used to implement a component, it must implicitly contain
these three parts. Over the years, one component architecture has proven itself to be
exceptionally effective: Model-View-Controller, or MVC for short.

The MVC architecture is successful because each piece of the design corresponds to an
aspect of a component. In MVC terminology, the model corresponds to the state information
associated with the component. For example, in the case of a check box, the model contains
a field that indicates if the box is checked or unchecked. The view determines how the
component is displayed on the screen, including any aspects of the view that are affected by
the current state of the model. The controller determines how the component reacts to the
user. For example, when the user clicks a check box, the controller reacts by changing the
model to reflect the user’s choice (checked or unchecked). This then results in the view
being updated. By separating a component into a model, a view, and a controller, the specific
implementation of each can be changed without affecting the other two. For instance,
different view implementations can render the same component in different ways without
affecting the model or the controller.

Although the MVC architecture and the principles behind it are conceptually sound,
the high level of separation between the view and the controller is not beneficial for Swing
components. Instead, Swing uses a modified version of MVC that combines the view and
the controller into a single logical entity called the UI delegate. For this reason, Swing’s
approach is called either the Model-Delegate architecture or the Separable Model architecture.
Therefore, although Swing’s component architecture is based on MVC, it does not use a
classical implementation of it.

31-ch31.indd 1023 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1024 PART III Introducing GUI Programming with Swing

Swing’s pluggable look and feel is made possible by its Model-Delegate architecture.
Because the view (look) and controller (feel) are separate from the model, the look and
feel can be changed without affecting how the component is used within a program.
Conversely, it is possible to customize the model without affecting the way that the
component appears on the screen or responds to user input.

To support the Model-Delegate architecture, most Swing components contain two
objects. The first represents the model. The second represents the UI delegate. Models are
defined by interfaces. For example, the model for a button is defined by the ButtonModel
interface. UI delegates are classes that inherit ComponentUI. For example, the UI delegate
for a button is ButtonUI. Normally, your programs will not interact directly with the UI
delegate.

Components and Containers
A Swing GUI consists of two key items: components and containers. However, this distinction is
mostly conceptual because all containers are also components. The difference between the
two is found in their intended purpose: As the term is commonly used, a component is an
independent visual control, such as a push button or slider. A container holds a group of
components. Thus, a container is a special type of component that is designed to hold
other components. Furthermore, in order for a component to be displayed, it must be held
within a container. Thus, all Swing GUIs will have at least one container. Because containers
are components, a container can also hold other containers. This enables Swing to define
what is called a containment hierarchy, at the top of which must be a top-level container.

Let’s look a bit more closely at components and containers.

Components
In general, Swing components are derived from the JComponent class. (The only exceptions
to this are the four top-level containers, described in the next section.) JComponent provides
the functionality that is common to all components. For example, JComponent supports the
pluggable look and feel. JComponent inherits the AWT classes Container and Component.
Thus, a Swing component is built on and compatible with an AWT component.

All of Swing’s components are represented by classes defined within the package
javax.swing. The following table shows the class names for Swing components (including
those used as containers).

JApplet JButton JCheckBox JCheckBoxMenuItem

JColorChooser JComboBox JComponent JDesktopPane

JDialog JEditorPane JFileChooser JFormattedTextField

JFrame JInternalFrame JLabel JLayer

JLayeredPane JList JMenu JMenuBar

JMenuItem JOptionPane JPanel JPasswordField

JPopupMenu JProgressBar JRadioButton JRadioButtonMenuItem

JRootPane JScrollBar JScrollPane JSeparator

JSlider JSpinner JSplitPane JTabbedPane

31-ch31.indd 1024 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1025

Pa
rt

 II
I

JTable JTextArea JTextField JTextPane

JTogglebutton JToolBar JToolTip JTree

JViewport JWindow

Notice that all component classes begin with the letter J. For example, the class for a label
is JLabel; the class for a push button is JButton; and the class for a scroll bar is JScrollBar.

Containers
Swing defines two types of containers. The first are top-level containers: JFrame, JApplet,
JWindow, and JDialog. These containers do not inherit JComponent. They do, however,
inherit the AWT classes Component and Container. Unlike Swing’s other components,
which are lightweight, the top-level containers are heavyweight. This makes the top-level
containers a special case in the Swing component library.

As the name implies, a top-level container must be at the top of a containment hierarchy.
A top-level container is not contained within any other container. Furthermore, every
containment hierarchy must begin with a top-level container. The one most commonly
used for applications is JFrame. The one used for applets is JApplet.

The second type of containers supported by Swing are lightweight containers. Lightweight
containers do inherit JComponent. An example of a lightweight container is JPanel, which
is a general-purpose container. Lightweight containers are often used to organize and manage
groups of related components because a lightweight container can be contained within
another container. Thus, you can use lightweight containers such as JPanel to create
subgroups of related controls that are contained within an outer container.

The Top-Level Container Panes
Each top-level container defines a set of panes. At the top of the hierarchy is an instance
of JRootPane. JRootPane is a lightweight container whose purpose is to manage the other
panes. It also helps manage the optional menu bar. The panes that comprise the root pane
are called the glass pane, the content pane, and the layered pane.

The glass pane is the top-level pane. It sits above and completely covers all other panes.
By default, it is a transparent instance of JPanel. The glass pane enables you to manage
mouse events that affect the entire container (rather than an individual control) or to paint
over any other component, for example. In most cases, you won’t need to use the glass
pane directly, but it is there if you need it.

The layered pane is an instance of JLayeredPane. The layered pane allows components
to be given a depth value. This value determines which component overlays another. (Thus,
the layered pane lets you specify a Z-order for a component, although this is not something
that you will usually need to do.) The layered pane holds the content pane and the (optional)
menu bar.

Although the glass pane and the layered panes are integral to the operation of a top-level
container and serve important purposes, much of what they provide occurs behind the scene.
The pane with which your application will interact the most is the content pane, because
this is the pane to which you will add visual components. In other words, when you add a
component, such as a button, to a top-level container, you will add it to the content pane.
By default, the content pane is an opaque instance of JPanel.

31-ch31.indd 1025 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1026 PART III Introducing GUI Programming with Swing

The Swing Packages
Swing is a very large subsystem and makes use of many packages. At the time of this writing,
these are the packages defined by Swing.

javax.swing javax.swing.plaf.basic javax.swing.text

javax.swing.border javax.swing.plaf.metal javax.swing.text.html

javax.swing.colorchooser javax.swing.plaf.multi javax.swing.text.html.parser

javax.swing.event javax.swing.plaf.nimbus javax.swing.text.rtf

javax.swing.filechooser javax.swing.plaf.synth javax.swing.tree

javax.swing.plaf javax.swing.table javax.swing.undo

The main package is javax.swing. This package must be imported into any program that
uses Swing. It contains the classes that implement the basic Swing components, such as
push buttons, labels, and check boxes.

A Simple Swing Application
Swing programs differ from both the console-based programs and the AWT-based programs
shown earlier in this book. For example, they use a different set of components and a different
container hierarchy than does the AWT. Swing programs also have special requirements that
relate to threading. The best way to understand the structure of a Swing program is to work
through an example. There are two types of Java programs in which Swing is typically used.
The first is a desktop application. The second is the applet. This section shows how to create
a Swing application. The creation of a Swing applet is described later in this chapter.

Although quite short, the following program shows one way to write a Swing
application. In the process, it demonstrates several key features of Swing. It uses two Swing
components: JFrame and JLabel. JFrame is the top-level container that is commonly used
for Swing applications. JLabel is the Swing component that creates a label, which is a
component that displays information. The label is Swing’s simplest component because
it is passive. That is, a label does not respond to user input. It just displays output. The
program uses a JFrame container to hold an instance of a JLabel. The label displays a
short text message.

// A simple Swing application.

import javax.swing.*;

class SwingDemo {

 SwingDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("A Simple Swing Application");

31-ch31.indd 1026 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1027

Pa
rt

 II
I

 // Give the frame an initial size.
 jfrm.setSize(275, 100);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a text-based label.
 JLabel jlab = new JLabel(" Swing means powerful GUIs.");

 // Add the label to the content pane.
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
 });
 }
}

Swing programs are compiled and run in the same way as other Java applications. Thus,
to compile this program, you can use this command line:

javac SwingDemo.java

To run the program, use this command line:

java SwingDemo

When the program is run, it will produce a window similar to that shown in Figure 31-1.
Because the SwingDemo program illustrates several core Swing concepts, we will

examine it carefully, line by line. The program begins by importing javax.swing. As
mentioned, this package contains the components and models defined by Swing. For
example, javax.swing defines classes that implement labels, buttons, text controls, and
menus. It will be included in all programs that use Swing.

Figure 31-1 The window produced by the SwingDemo program

31-ch31.indd 1027 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1028 PART III Introducing GUI Programming with Swing

Next, the program declares the SwingDemo class and a constructor for that class.
The constructor is where most of the action of the program occurs. It begins by creating
a JFrame, using this line of code:

JFrame jfrm = new JFrame("A Simple Swing Application");

This creates a container called jfrm that defines a rectangular window complete with a title
bar; close, minimize, maximize, and restore buttons; and a system menu. Thus, it creates a
standard, top-level window. The title of the window is passed to the constructor.

Next, the window is sized using this statement:

jfrm.setSize(275, 100);

The setSize() method (which is inherited by JFrame from the AWT class Component) sets
the dimensions of the window, which are specified in pixels. Its general form is shown here:

void setSize(int width, int height)

In this example, the width of the window is set to 275 and the height is set to 100.
By default, when a top-level window is closed (such as when the user clicks the close

box), the window is removed from the screen, but the application is not terminated.
While this default behavior is useful in some situations, it is not what is needed for most
applications. Instead, you will usually want the entire application to terminate when its
top-level window is closed. There are a couple of ways to achieve this. The easiest way is to
call setDefaultCloseOperation(), as the program does:

jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

After this call executes, closing the window causes the entire application to terminate. The
general form of setDefaultCloseOperation() is shown here:

void setDefaultCloseOperation(int what)

The value passed in what determines what happens when the window is closed. There are
several other options in addition to JFrame.EXIT_ON_CLOSE. They are shown here:

DISPOSE_ON_CLOSE

HIDE_ON_CLOSE

DO_NOTHING_ON_CLOSE

Their names reflect their actions. These constants are declared in WindowConstants, which
is an interface declared in javax.swing that is implemented by JFrame.

The next line of code creates a Swing JLabel component:

JLabel jlab = new JLabel(" Swing means powerful GUIs.");

JLabel is the simplest and easiest-to-use component because it does not accept user input. It
simply displays information, which can consist of text, an icon, or a combination of the two.
The label created by the program contains only text, which is passed to its constructor.

The next line of code adds the label to the content pane of the frame:

jfrm.add(jlab);

31-ch31.indd 1028 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1029

Pa
rt

 II
I

As explained earlier, all top-level containers have a content pane in which components are
stored. Thus, to add a component to a frame, you must add it to the frame’s content pane.
This is accomplished by calling add() on the JFrame reference (jfrm in this case). The
general form of add() is shown here:

Component add(Component comp)

The add() method is inherited by JFrame from the AWT class Container.
By default, the content pane associated with a JFrame uses border layout. The version

of add() just shown adds the label to the center location. Other versions of add() enable
you to specify one of the border regions. When a component is added to the center, its size
is adjusted automatically to fit the size of the center.

Before continuing, an important historical point needs to be made. Prior to JDK 5,
when adding a component to the content pane, you could not invoke the add() method
directly on a JFrame instance. Instead, you needed to call add() on the content pane of the
JFrame object. The content pane can be obtained by calling getContentPane() on a JFrame
instance. The getContentPane() method is shown here:

Container getContentPane()

It returns a Container reference to the content pane. The add() method was then called
on that reference to add a component to a content pane. Thus, in the past, you had to use
the following statement to add jlab to jfrm:

jfrm.getContentPane().add(jlab); // old-style

Here, getContentPane() first obtains a reference to content pane, and then add() adds the
component to the container linked to this pane. This same procedure was also required to
invoke remove() to remove a component and setLayout() to set the layout manager for
the content pane. You will see explicit calls to getContentPane() frequently throughout
pre-5.0 code. Today, the use of getContentPane() is no longer necessary. You can simply
call add(), remove(), and setLayout() directly on JFrame because these methods have
been changed so that they operate on the content pane automatically.

The last statement in the SwingDemo constructor causes the window to become visible:

jfrm.setVisible(true);

The setVisible() method is inherited from the AWT Component class. If its argument is true,
the window will be displayed. Otherwise, it will be hidden. By default, a JFrame is invisible,
so setVisible(true) must be called to show it.

Inside main(), a SwingDemo object is created, which causes the window and the label
to be displayed. Notice that the SwingDemo constructor is invoked using these lines of code:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new SwingDemo();
 }
});

This sequence causes a SwingDemo object to be created on the event dispatching thread
rather than on the main thread of the application. Here’s why. In general, Swing programs
are event-driven. For example, when a user interacts with a component, an event is

31-ch31.indd 1029 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1030 PART III Introducing GUI Programming with Swing

generated. An event is passed to the application by calling an event handler defined by the
application. However, the handler is executed on the event dispatching thread provided by
Swing and not on the main thread of the application. Thus, although event handlers are
defined by your program, they are called on a thread that was not created by your program.

To avoid problems (including the potential for deadlock), all Swing GUI components
must be created and updated from the event dispatching thread, not the main thread of
the application. However, main() is executed on the main thread. Thus, main() cannot
directly instantiate a SwingDemo object. Instead, it must create a Runnable object that
executes on the event dispatching thread and have this object create the GUI.

To enable the GUI code to be created on the event dispatching thread, you must use
one of two methods that are defined by the SwingUtilities class. These methods are
invokeLater() and invokeAndWait(). They are shown here:

static void invokeLater(Runnable obj)

static void invokeAndWait(Runnable obj)
 throws InterruptedException, InvocationTargetException

Here, obj is a Runnable object that will have its run() method called by the event dispatching
thread. The difference between the two methods is that invokeLater() returns immediately,
but invokeAndWait() waits until obj.run() returns. You can use one of these methods to
call a method that constructs the GUI for your Swing application, or whenever you need to
modify the state of the GUI from code not executed by the event dispatching thread. You
will normally want to use invokeLater(), as the preceding program does. However, when
constructing the initial GUI for an applet, you will need to use invokeAndWait().

Event Handling
The preceding example showed the basic form of a Swing program, but it left out one
important part: event handling. Because JLabel does not take input from the user, it does not
generate events, so no event handling was needed. However, the other Swing components do
respond to user input and the events generated by those interactions need to be handled.
Events can also be generated in ways not directly related to user input. For example, an event
is generated when a timer goes off. Whatever the case, event handling is a large part of any
Swing-based application.

The event handling mechanism used by Swing is the same as that used by the AWT.
This approach is called the delegation event model, and it is described in Chapter 24. In
many cases, Swing uses the same events as does the AWT, and these events are packaged
in java.awt.event. Events specific to Swing are stored in javax.swing.event.

Although events are handled in Swing in the same way as they are with the AWT, it is
still useful to work through a simple example. The following program handles the event
generated by a Swing push button. Sample output is shown in Figure 31-2.

Figure 31-2 Output from the EventDemo program

31-ch31.indd 1030 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1031

Pa
rt

 II
I

// Handle an event in a Swing program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class EventDemo {

 JLabel jlab;

 EventDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("An Event Example");

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(220, 90);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Make two buttons.
 JButton jbtnAlpha = new JButton("Alpha");
 JButton jbtnBeta = new JButton("Beta");

 // Add action listener for Alpha.
 jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Alpha was pressed.");
 }
 });

 // Add action listener for Beta.
 jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Beta was pressed.");
 }
 });

 // Add the buttons to the content pane.
 jfrm.add(jbtnAlpha);
 jfrm.add(jbtnBeta);

 // Create a text-based label.
 jlab = new JLabel("Press a button.");

 // Add the label to the content pane.
 jfrm.add(jlab);

 // Display the frame.
 jfrm.setVisible(true);
 }

31-ch31.indd 1031 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1032 PART III Introducing GUI Programming with Swing

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new EventDemo();
 }
 });
 }
}

First, notice that the program now imports both the java.awt and java.awt.event
packages. The java.awt package is needed because it contains the FlowLayout class, which
supports the standard flow layout manager used to lay out components in a frame. (See
Chapter 26 for coverage of layout managers.) The java.awt.event package is needed
because it defines the ActionListener interface and the ActionEvent class.

The EventDemo constructor begins by creating a JFrame called jfrm. It then sets
the layout manager for the content pane of jfrm to FlowLayout. Recall that, by default, the
content pane uses BorderLayout as its layout manager. However, for this example,
FlowLayout is more convenient. Notice that FlowLayout is assigned using this statement:

jfrm.setLayout(new FlowLayout());

As explained, in the past you had to explicitly call getContentPane() to set the layout
manager for the content pane. This requirement was removed as of JDK 5.

After setting the size and default close operation, EventDemo() creates two push
buttons, as shown here:

JButton jbtnAlpha = new JButton("Alpha");
JButton jbtnBeta = new JButton("Beta");

The first button will contain the text "Alpha" and the second will contain the text "Beta".
Swing push buttons are instances of JButton. JButton supplies several constructors. The
one used here is

JButton(String msg)

The msg parameter specifies the string that will be displayed inside the button.
When a push button is pressed, it generates an ActionEvent. Thus, JButton provides

the addActionListener() method, which is used to add an action listener. (JButton also
provides removeActionListener() to remove a listener, but this method is not used by the
program.) As explained in Chapter 24, the ActionListener interface defines only one
method: actionPerformed(). It is shown again here for your convenience:

void actionPerformed(ActionEvent ae)

This method is called when a button is pressed. In other words, it is the event handler that
is called when a button press event has occurred.

Next, event listeners for the button’s action events are added by the code shown here:

// Add action listener for Alpha.
jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {

31-ch31.indd 1032 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1033

Pa
rt

 II
I

 jlab.setText("Alpha was pressed.");
 }
});

// Add action listener for Beta.
jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("Beta was pressed.");
 }
});

Here, anonymous inner classes are used to provide the event handlers for the two buttons.
Each time a button is pressed, the string displayed in jlab is changed to reflect which button
was pressed.

Beginning with JDK 8, lambda expressions can also be used to implement event
handlers. For example, the event handler for the Alpha button could be written like this:

 jbtnAlpha.addActionListener((ae) -> jlab.setText("Alpha was pressed."));

As you can see, this code is shorter. For the benefit of readers using versions of Java prior to
JDK 8, subsequent examples will not use lambda expressions, but you should consider using
them for new code that you create.

Next, the buttons are added to the content pane of jfrm:

jfrm.add(jbtnAlpha);
jfrm.add(jbtnBeta);

Finally, jlab is added to the content pane and window is made visible. When you run the
program, each time you press a button, a message is displayed in the label that indicates
which button was pressed.

One last point: Remember that all event handlers, such as actionPerformed(), are
called on the event dispatching thread. Therefore, an event handler must return quickly
in order to avoid slowing down the application. If your application needs to do something
time consuming as the result of an event, it must use a separate thread.

Create a Swing Applet
The second type of program that commonly uses Swing is the applet. Swing-based applets
are similar to AWT-based applets, but with an important difference: A Swing applet extends
JApplet rather than Applet. JApplet is derived from Applet. Thus, JApplet includes all of
the functionality found in Applet and adds support for Swing. JApplet is a top-level Swing
container, which means that it is not derived from JComponent. Because JApplet is a top-
level container, it includes the various panes described earlier. This means that all components
are added to JApplet’s content pane in the same way that components are added to
JFrame’s content pane.

Swing applets use the same four life-cycle methods as described in Chapter 23: init(),
start(), stop(), and destroy(). Of course, you need override only those methods that are
needed by your applet. Painting is accomplished differently in Swing than it is in the AWT,
and a Swing applet will not normally override the paint() method. (Painting in Swing is
described later in this chapter.)

31-ch31.indd 1033 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1034 PART III Introducing GUI Programming with Swing

One other point: All interaction with components in a Swing applet must take place
on the event dispatching thread, as described in the previous section. This threading issue
applies to all Swing programs.

Here is an example of a Swing applet. It provides the same functionality as the previous
application, but does so in applet form. Figure 31-3 shows the program when executed by
appletviewer.

// A simple Swing-based applet

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/*
This HTML can be used to launch the applet:

<applet code="MySwingApplet" width=220 height=90>
</applet>
*/

public class MySwingApplet extends JApplet {
 JButton jbtnAlpha;
 JButton jbtnBeta;

 JLabel jlab;

 // Initialize the applet.
 public void init() {
 try {
 SwingUtilities.invokeAndWait(new Runnable () {
 public void run() {
 makeGUI(); // initialize the GUI
 }
 });
 } catch(Exception exc) {
 System.out.println("Can’t create because of "+ exc);
 }
 }

Figure 31-3 Output from the example Swing applet

31-ch31.indd 1034 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1035

Pa
rt

 II
I

 // This applet does not need to override start(), stop(),
 // or destroy().

 // Set up and initialize the GUI.
 private void makeGUI() {

 // Set the applet to use flow layout.
 setLayout(new FlowLayout());

 // Make two buttons.
 jbtnAlpha = new JButton("Alpha");
 jbtnBeta = new JButton("Beta");

 // Add action listener for Alpha.
 jbtnAlpha.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Alpha was pressed.");
 }
 });

 // Add action listener for Beta.
 jbtnBeta.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent le) {
 jlab.setText("Beta was pressed.");
 }
 });

 // Add the buttons to the content pane.
 add(jbtnAlpha);
 add(jbtnBeta);

 // Create a text-based label.
 jlab = new JLabel("Press a button.");

 // Add the label to the content pane.
 add(jlab);
 }
}

There are two important things to notice about this applet. First, MySwingApplet
extends JApplet. As explained, all Swing-based applets extend JApplet rather than Applet.
Second, the init() method initializes the Swing components on the event dispatching
thread by setting up a call to makeGUI(). Notice that this is accomplished through the use
of invokeAndWait() rather than invokeLater(). Applets must use invokeAndWait() because
the init() method must not return until the entire initialization process has been completed.
In essence, the start() method cannot be called until after initialization, which means that
the GUI must be fully constructed.

Inside makeGUI(), the two buttons and label are created, and the action listeners are
added to the buttons. Finally, the components are added to the content pane. Although
this example is quite simple, this same general approach must be used when building any
Swing GUI that will be used by an applet.

31-ch31.indd 1035 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1036 PART III Introducing GUI Programming with Swing

Painting in Swing
Although the Swing component set is quite powerful, you are not limited to using it because
Swing also lets you write directly into the display area of a frame, panel, or one of Swing’s
other components, such as JLabel. Although many (perhaps most) uses of Swing will not
involve drawing directly to the surface of a component, it is available for those applications
that need this capability. To write output directly to the surface of a component, you will
use one or more drawing methods defined by the AWT, such as drawLine() or drawRect().
Thus, most of the techniques and methods described in Chapter 25 also apply to Swing.
However, there are also some very important differences, and the process is discussed in
detail in this section.

Painting Fundamentals
Swing’s approach to painting is built on the original AWT-based mechanism, but Swing’s
implementation offers more finally grained control. Before examining the specifics of
Swing-based painting, it is useful to review the AWT-based mechanism that underlies it.

The AWT class Component defines a method called paint() that is used to draw output
directly to the surface of a component. For the most part, paint() is not called by your
program. (In fact, only in the most unusual cases should it ever be called by your program.)
Rather, paint() is called by the run-time system whenever a component must be rendered.
This situation can occur for several reasons. For example, the window in which the component
is displayed can be overwritten by another window and then uncovered. Or, the window might
be minimized and then restored. The paint() method is also called when a program begins
running. When writing AWT-based code, an application will override paint() when it needs
to write output directly to the surface of the component.

Because JComponent inherits Component, all Swing’s lightweight components inherit
the paint() method. However, you will not override it to paint directly to the surface of a
component. The reason is that Swing uses a bit more sophisticated approach to painting that
involves three distinct methods: paintComponent(), paintBorder(), and paintChildren().
These methods paint the indicated portion of a component and divide the painting process
into its three distinct, logical actions. In a lightweight component, the original AWT method
paint() simply executes calls to these methods, in the order just shown.

To paint to the surface of a Swing component, you will create a subclass of the component
and then override its paintComponent() method. This is the method that paints the interior
of the component. You will not normally override the other two painting methods. When
overriding paintComponent(), the first thing you must do is call super.paintComponent(),
so that the superclass portion of the painting process takes place. (The only time this is not
required is when you are taking complete, manual control over how a component is
displayed.) After that, write the output that you want to display. The paintComponent()
method is shown here:

protected void paintComponent(Graphics g)

The parameter g is the graphics context to which output is written.

31-ch31.indd 1036 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1037

Pa
rt

 II
I

To cause a component to be painted under program control, call repaint(). It works in
Swing just as it does for the AWT. The repaint() method is defined by Component. Calling
it causes the system to call paint() as soon as it is possible to do so. Because painting is a
time-consuming operation, this mechanism allows the run-time system to defer painting
momentarily until some higher-priority task has completed, for example. Of course, in
Swing the call to paint() results in a call to paintComponent(). Therefore, to output to
the surface of a component, your program will store the output until paintComponent()
is called. Inside the overridden paintComponent(), you will draw the stored output.

Compute the Paintable Area
When drawing to the surface of a component, you must be careful to restrict your output
to the area that is inside the border. Although Swing automatically clips any output that will
exceed the boundaries of a component, it is still possible to paint into the border, which will
then get overwritten when the border is drawn. To avoid this, you must compute the paintable
area of the component. This is the area defined by the current size of the component minus
the space used by the border. Therefore, before you paint to a component, you must obtain
the width of the border and then adjust your drawing accordingly.

To obtain the border width, call getInsets(), shown here:

Insets getInsets()

This method is defined by Container and overridden by JComponent. It returns an Insets
object that contains the dimensions of the border. The inset values can be obtained by
using these fields:

int top;

int bottom;

int left;

int right;

These values are then used to compute the drawing area given the width and the height
of the component. You can obtain the width and height of the component by calling
getWidth() and getHeight() on the component. They are shown here:

int getWidth()

int getHeight()

By subtracting the value of the insets, you can compute the usable width and height of the
component.

A Paint Example
Here is a program that puts into action the preceding discussion. It creates a class called
PaintPanel that extends JPanel. The program then uses an object of that class to display
lines whose endpoints have been generated randomly. Sample output is shown in Figure 31-4.

31-ch31.indd 1037 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1038 PART III Introducing GUI Programming with Swing

// Paint lines to a panel.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.util.*;

// This class extends JPanel. It overrides
// the paintComponent() method so that random
// lines are plotted in the panel.
class PaintPanel extends JPanel {
 Insets ins; // holds the panel’s insets

 Random rand; // used to generate random numbers

 // Construct a panel.
 PaintPanel() {

 // Put a border around the panel.
 setBorder(
 BorderFactory.createLineBorder(Color.RED, 5));

 rand = new Random();
 }

 // Override the paintComponent() method.
 protected void paintComponent(Graphics g) {
 // Always call the superclass method first.
 super.paintComponent(g);

 int x, y, x2, y2;

 // Get the height and width of the component.
 int height = getHeight();
 int width = getWidth();

 // Get the insets.
 ins = getInsets();

 // Draw ten lines whose endpoints are randomly generated.
 for(int i=0; i < 10; i++) {

Figure 31-4 Sample output from the PaintPanel program

31-ch31.indd 1038 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 31 Introducing Swing 1039

Pa
rt

 II
I

 // Obtain random coordinates that define
 // the endpoints of each line.
 x = rand.nextInt(width-ins.left);
 y = rand.nextInt(height-ins.bottom);
 x2 = rand.nextInt(width-ins.left);
 y2 = rand.nextInt(height-ins.bottom);

 // Draw the line.
 g.drawLine(x, y, x2, y2);
 }
 }
}

// Demonstrate painting directly onto a panel.
class PaintDemo {

 JLabel jlab;
 PaintPanel pp;

 PaintDemo() {

 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Paint Demo");

 // Give the frame an initial size.
 jfrm.setSize(200, 150);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create the panel that will be painted.
 pp = new PaintPanel();

 // Add the panel to the content pane. Because the default
 // border layout is used, the panel will automatically be
 // sized to fit the center region.
 jfrm.add(pp);

 // Display the frame.
 jfrm.setVisible(true);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new PaintDemo();
 }
 });
 }
}

31-ch31.indd 1039 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1040 PART III Introducing GUI Programming with Swing

Let’s examine this program closely. The PaintPanel class extends JPanel. JPanel is one of
Swing’s lightweight containers, which means that it is a component that can be added to the
content pane of a JFrame. To handle painting, PaintPanel overrides the paintComponent()
method. This enables PaintPanel to write directly to the surface of the component when
painting takes place. The size of the panel is not specified because the program uses the
default border layout and the panel is added to the center. This results in the panel being
sized to fill the center. If you change the size of the window, the size of the panel will be
adjusted accordingly.

Notice that the constructor also specifies a 5-pixel wide, red border. This is
accomplished by setting the border by using the setBorder() method, shown here:

void setBorder(Border border)

Border is the Swing interface that encapsulates a border. You can obtain a border by calling
one of the factory methods defined by the BorderFactory class. The one used in the program
is createLineBorder(), which creates a simple line border. It is shown here:

static Border createLineBorder(Color clr, int width)

Here, clr specifies the color of the border and width specifies its width in pixels.
Inside the override of paintComponent(), notice that it first calls super.paintComponent().

As explained, this is necessary to ensure that the component is properly drawn. Next, the width
and height of the panel are obtained along with the insets. These values are used to ensure the
lines lie within the drawing area of the panel. The drawing area is the overall width and height
of a component less the border width. The computations are designed to work with differently
sized PaintPanels and borders. To prove this, try changing the size of the window. The lines will
still all lie within the borders of the panel.

The PaintDemo class creates a PaintPanel and then adds the panel to the content pane.
When the application is first displayed, the overridden paintComponent() method is called,
and the lines are drawn. Each time you resize or hide and restore the window, a new set of
lines are drawn. In all cases, the lines fall within the paintable area.

31-ch31.indd 1040 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

32
CHAPTER

 1041

Exploring Swing

The previous chapter described several of the core concepts relating to Swing and showed
the general form of both a Swing application and a Swing applet. This chapter continues
the discussion of Swing by presenting an overview of several Swing components, such as
buttons, check boxes, trees, and tables. The Swing components provide rich functionality
and allow a high level of customization. Because of space limitations, it is not possible to
describe all of their features and attributes. Rather, the purpose of this overview is to give
you a feel for the capabilities of the Swing component set.

The Swing component classes described in this chapter are shown here:

JButton JCheckBox JComboBox JLabel

JList JRadioButton JScrollPane JTabbedPane

JTable JTextField JToggleButton JTree

These components are all lightweight, which means that they are all derived from
JComponent.

Also discussed is the ButtonGroup class, which encapsulates a mutually exclusive set of
Swing buttons, and ImageIcon, which encapsulates a graphics image. Both are defined by
Swing and packaged in javax.swing.

One other point: The Swing components are demonstrated in applets because the code
for an applet is more compact than it is for a desktop application. However, the same
techniques apply to both applets and applications.

JLabel and ImageIcon
JLabel is Swing’s easiest-to-use component. It creates a label and was introduced in the
preceding chapter. Here, we will look at JLabel a bit more closely. JLabel can be used to
display text and/or an icon. It is a passive component in that it does not respond to user
input. JLabel defines several constructors. Here are three of them:

JLabel(Icon icon)
JLabel(String str)
JLabel(String str, Icon icon, int align)

32-ch32.indd 1041 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1042 PART III Introducing GUI Programming with Swing

Here, str and icon are the text and icon used for the label. The align argument specifies the
horizontal alignment of the text and/or icon within the dimensions of the label. It must be
one of the following values: LEFT, RIGHT, CENTER, LEADING, or TRAILING. These
constants are defined in the SwingConstants interface, along with several others used by
the Swing classes.

Notice that icons are specified by objects of type Icon, which is an interface defined by
Swing. The easiest way to obtain an icon is to use the ImageIcon class. ImageIcon implements
Icon and encapsulates an image. Thus, an object of type ImageIcon can be passed as an
argument to the Icon parameter of JLabel’s constructor. There are several ways to provide
the image, including reading it from a file or downloading it from a URL. Here is the
ImageIcon constructor used by the example in this section:

ImageIcon(String filename)

It obtains the image in the file named filename.
The icon and text associated with the label can be obtained by the following methods:

Icon getIcon()
String getText()

The icon and text associated with a label can be set by these methods:

void setIcon(Icon icon)
void setText(String str)

Here, icon and str are the icon and text, respectively. Therefore, using setText() it is
possible to change the text inside a label during program execution.

The following applet illustrates how to create and display a label containing both an
icon and a string. It begins by creating an ImageIcon object for the file hourglass.png,
which depicts an hourglass. This is used as the second argument to the JLabel constructor.
The first and last arguments for the JLabel constructor are the label text and the alignment.
Finally, the label is added to the content pane.

// Demonstrate JLabel and ImageIcon.
import java.awt.*;
import javax.swing.*;
/*
 <applet code="JLabelDemo" width=250 height=200>
 </applet>
*/

public class JLabelDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);

32-ch32.indd 1042 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1043

Pa
rt

 II
I

 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Create an icon.
 ImageIcon ii = new ImageIcon("hourglass.png");

 // Create a label.
 JLabel jl = new JLabel("Hourglass", ii, JLabel.CENTER);

 // Add the label to the content pane.
 add(jl);
 }
}

Output from the label example is shown here:

JTextField
JTextField is the simplest Swing text component. It is also probably its most widely used text
component. JTextField allows you to edit one line of text. It is derived from JTextComponent,
which provides the basic functionality common to Swing text components. JTextField uses
the Document interface for its model. Three of JTextField’s constructors are shown here:

JTextField(int cols)
JTextField(String str, int cols)
JTextField(String str)

Here, str is the string to be initially presented, and cols is the number of columns in the text
field. If no string is specified, the text field is initially empty. If the number of columns is
not specified, the text field is sized to fit the specified string.

JTextField generates events in response to user interaction. For example, an ActionEvent
is fired when the user presses enter. A CaretEvent is fired each time the caret (i.e., the
cursor) changes position. (CaretEvent is packaged in javax.swing.event.) Other events are

32-ch32.indd 1043 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1044 PART III Introducing GUI Programming with Swing

also possible. In many cases, your program will not need to handle these events. Instead,
you will simply obtain the string currently in the text field when it is needed. To obtain the
text currently in the text field, call getText().

The following example illustrates JTextField. It creates a JTextField and adds it to the
content pane. When the user presses enter, an action event is generated. This is handled
by displaying the text in the status window.

// Demonstrate JTextField.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JTextFieldDemo" width=300 height=50>
 </applet>
*/

public class JTextFieldDemo extends JApplet {
 JTextField jtf;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add text field to content pane.
 jtf = new JTextField(15);
 add(jtf);
 jtf.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 // Show text when user presses ENTER.
 showStatus(jtf.getText());
 }
 });
 }
}

Output from the text field example is shown here:

32-ch32.indd 1044 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1045

Pa
rt

 II
I

The Swing Buttons
Swing defines four types of buttons: JButton, JToggleButton, JCheckBox, and JRadioButton.
All are subclasses of the AbstractButton class, which extends JComponent. Thus, all buttons
share a set of common traits.

AbstractButton contains many methods that allow you to control the behavior of buttons.
For example, you can define different icons that are displayed for the button when it is
disabled, pressed, or selected. Another icon can be used as a rollover icon, which is displayed
when the mouse is positioned over a button. The following methods set these icons:

void setDisabledIcon(Icon di)
void setPressedIcon(Icon pi)
void setSelectedIcon(Icon si)
void setRolloverIcon(Icon ri)

Here, di, pi, si, and ri are the icons to be used for the indicated purpose.
The text associated with a button can be read and written via the following methods:

String getText()
void setText(String str)

Here, str is the text to be associated with the button.
The model used by all buttons is defined by the ButtonModel interface. A button

generates an action event when it is pressed. Other events are possible. Each of the
concrete button classes is examined next.

JButton
The JButton class provides the functionality of a push button. You have already seen a
simple form of it in the preceding chapter. JButton allows an icon, a string, or both to be
associated with the push button. Three of its constructors are shown here:

JButton(Icon icon)
JButton(String str)
JButton(String str, Icon icon)

Here, str and icon are the string and icon used for the button.
When the button is pressed, an ActionEvent is generated. Using the ActionEvent object

passed to the actionPerformed() method of the registered ActionListener, you can obtain
the action command string associated with the button. By default, this is the string displayed
inside the button. However, you can set the action command by calling setActionCommand()
on the button. You can obtain the action command by calling getActionCommand() on the
event object. It is declared like this:

String getActionCommand()

The action command identifies the button. Thus, when using two or more buttons within
the same application, the action command gives you an easy way to determine which button
was pressed.

In the preceding chapter, you saw an example of a text-based button. The following
demonstrates an icon-based button. It displays four push buttons and a label. Each button

32-ch32.indd 1045 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1046 PART III Introducing GUI Programming with Swing

displays an icon that represents a timepiece. When a button is pressed, the name
of that timepiece is displayed in the label.

// Demonstrate an icon-based JButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JButtonDemo" width=250 height=750>
 </applet>
*/

public class JButtonDemo extends JApplet
implements ActionListener {
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add buttons to content pane.
 ImageIcon hourglass = new ImageIcon("hourglass.png");
 JButton jb = new JButton(hourglass);
 jb.setActionCommand("Hourglass");
 jb.addActionListener(this);
 add(jb);

 ImageIcon analog = new ImageIcon("analog.png");
 jb = new JButton(analog);
 jb.setActionCommand("Analog Clock");
 jb.addActionListener(this);
 add(jb);

 ImageIcon digital = new ImageIcon("digital.png");
 jb = new JButton(digital);
 jb.setActionCommand("Digital Clock");
 jb.addActionListener(this);
 add(jb);

32-ch32.indd 1046 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1047

Pa
rt

 II
I

 ImageIcon stopwatch = new ImageIcon("stopwatch.png");
 jb = new JButton(stopwatch);
 jb.setActionCommand("Stopwatch");
 jb.addActionListener(this);
 add(jb);

 // Create and add the label to content pane.
 jlab = new JLabel("Choose a Timepiece");
 add(jlab);
 }

 // Handle button events.
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("You selected " + ae.getActionCommand());
 }
}

Output from the button example is shown here:

JToggleButton
A useful variation on the push button is called a toggle button. A toggle button looks just like
a push button, but it acts differently because it has two states: pushed and released. That is,
when you press a toggle button, it stays pressed rather than popping back up as a regular
push button does. When you press the toggle button a second time, it releases (pops up).
Therefore, each time a toggle button is pushed, it toggles between its two states.

Toggle buttons are objects of the JToggleButton class. JToggleButton implements
AbstractButton. In addition to creating standard toggle buttons, JToggleButton is a
superclass for two other Swing components that also represent two-state controls. These are
JCheckBox and JRadioButton, which are described later in this chapter. Thus, JToggleButton
defines the basic functionality of all two-state components.

JToggleButton defines several constructors. The one used by the example in this section
is shown here:

JToggleButton(String str)

32-ch32.indd 1047 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1048 PART III Introducing GUI Programming with Swing

This creates a toggle button that contains the text passed in str. By default, the button is in
the off position. Other constructors enable you to create toggle buttons that contain
images, or images and text.

JToggleButton uses a model defined by a nested class called JToggleButton.Toggle-
ButtonModel. Normally, you won’t need to interact directly with the model to use a
standard toggle button.

Like JButton, JToggleButton generates an action event each time it is pressed. Unlike
JButton, however, JToggleButton also generates an item event. This event is used by those
components that support the concept of selection. When a JToggleButton is pressed in, it is
selected. When it is popped out, it is deselected.

To handle item events, you must implement the ItemListener interface. Recall from
Chapter 24, that each time an item event is generated, it is passed to the itemStateChanged()
method defined by ItemListener. Inside itemStateChanged(), the getItem() method can
be called on the ItemEvent object to obtain a reference to the JToggleButton instance that
generated the event. It is shown here:

Object getItem()

A reference to the button is returned. You will need to cast this reference to JToggleButton.
The easiest way to determine a toggle button’s state is by calling the isSelected() method

(inherited from AbstractButton) on the button that generated the event. It is shown here:

boolean isSelected()

It returns true if the button is selected and false otherwise.
Here is an example that uses a toggle button. Notice how the item listener works. It

simply calls isSelected() to determine the button’s state.

// Demonstrate JToggleButton.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JToggleButtonDemo" width=200 height=80>
 </applet>
*/

public class JToggleButtonDemo extends JApplet {

 JLabel jlab;
 JToggleButton jtbn;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);

32-ch32.indd 1048 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1049

Pa
rt

 II
I

 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Create a label.
 jlab = new JLabel("Button is off.");

 // Make a toggle button.
 jtbn = new JToggleButton("On/Off");

 // Add an item listener for the toggle button.
 jtbn.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent ie) {
 if(jtbn.isSelected())
 jlab.setText("Button is on.");
 else
 jlab.setText("Button is off.");
 }

 });

 // Add the toggle button and label to the content pane.
 add(jtbn);
 add(jlab);
 }
}

The output from the toggle button example is shown here:

Check Boxes
The JCheckBox class provides the functionality of a check box. Its immediate superclass is
JToggleButton, which provides support for two-state buttons, as just described. JCheckBox
defines several constructors. The one used here is

JCheckBox(String str)

It creates a check box that has the text specified by str as a label. Other constructors let you
specify the initial selection state of the button and specify an icon.

32-ch32.indd 1049 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1050 PART III Introducing GUI Programming with Swing

When the user selects or deselects a check box, an ItemEvent is generated. You can
obtain a reference to the JCheckBox that generated the event by calling getItem() on the
ItemEvent passed to the itemStateChanged() method defined by ItemListener. The easiest
way to determine the selected state of a check box is to call isSelected() on the JCheckBox
instance.

The following example illustrates check boxes. It displays four check boxes and a label.
When the user clicks a check box, an ItemEvent is generated. Inside the itemStateChanged()
method, getItem() is called to obtain a reference to the JCheckBox object that generated
the event. Next, a call to isSelected() determines if the box was selected or cleared. The
getText() method gets the text for that check box and uses it to set the text inside the label.

// Demonstrate JCheckbox.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JCheckBoxDemo" width=270 height=50>
 </applet>
*/

public class JCheckBoxDemo extends JApplet
implements ItemListener {
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Add check boxes to the content pane.
 JCheckBox cb = new JCheckBox("C");
 cb.addItemListener(this);
 add(cb);

 cb = new JCheckBox("C++");
 cb.addItemListener(this);
 add(cb);

32-ch32.indd 1050 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1051

Pa
rt

 II
I

 cb = new JCheckBox("Java");
 cb.addItemListener(this);
 add(cb);

 cb = new JCheckBox("Perl");
 cb.addItemListener(this);
 add(cb);

 // Create the label and add it to the content pane.
 jlab = new JLabel("Select languages");
 add(jlab);
 }

 // Handle item events for the check boxes.
 public void itemStateChanged(ItemEvent ie) {
 JCheckBox cb = (JCheckBox)ie.getItem();

 if(cb.isSelected())
 jlab.setText(cb.getText() + " is selected");
 else
 jlab.setText(cb.getText() + " is cleared");
 }
}

Output from this example is shown here:

Radio Buttons
Radio buttons are a group of mutually exclusive buttons, in which only one button can be
selected at any one time. They are supported by the JRadioButton class, which extends
JToggleButton. JRadioButton provides several constructors. The one used in the example
is shown here:

JRadioButton(String str)

Here, str is the label for the button. Other constructors let you specify the initial selection
state of the button and specify an icon.

In order for their mutually exclusive nature to be activated, radio buttons must be
configured into a group. Only one of the buttons in the group can be selected at any time.
For example, if a user presses a radio button that is in a group, any previously selected
button in that group is automatically deselected. A button group is created by the
ButtonGroup class. Its default constructor is invoked for this purpose. Elements are
then added to the button group via the following method:

void add(AbstractButton ab)

Here, ab is a reference to the button to be added to the group.
A JRadioButton generates action events, item events, and change events each time the

button selection changes. Most often, it is the action event that is handled, which means
that you will normally implement the ActionListener interface. Recall that the only method
defined by ActionListener is actionPerformed(). Inside this method, you can use a number
of different ways to determine which button was selected. First, you can check its action
command by calling getActionCommand(). By default, the action command is the same

32-ch32.indd 1051 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1052 PART III Introducing GUI Programming with Swing

as the button label, but you can set the action command to something else by calling
setActionCommand() on the radio button. Second, you can call getSource() on the
ActionEvent object and check that reference against the buttons. Third, you can check each
radio button to find out which one is currently selected by calling isSelected() on each
button. Finally, each button could use its own action event handler implemented as either
an anonymous inner class or a lambda expression. Remember, each time an action event
occurs, it means that the button being selected has changed and that one and only one
button will be selected.

The following example illustrates how to use radio buttons. Three radio buttons are
created. The buttons are then added to a button group. As explained, this is necessary to
cause their mutually exclusive behavior. Pressing a radio button generates an action event,
which is handled by actionPerformed(). Within that handler, the getActionCommand()
method gets the text that is associated with the radio button and uses it to set the text
within a label.

// Demonstrate JRadioButton
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JRadioButtonDemo" width=300 height=50>
 </applet>
*/

public class JRadioButtonDemo extends JApplet
implements ActionListener {
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Create radio buttons and add them to content pane.
 JRadioButton b1 = new JRadioButton("A");
 b1.addActionListener(this);
 add(b1);

32-ch32.indd 1052 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1053

Pa
rt

 II
I

 JRadioButton b2 = new JRadioButton("B");
 b2.addActionListener(this);
 add(b2);

 JRadioButton b3 = new JRadioButton("C");
 b3.addActionListener(this);
 add(b3);

 // Define a button group.
 ButtonGroup bg = new ButtonGroup();
 bg.add(b1);
 bg.add(b2);
 bg.add(b3);

 // Create a label and add it to the content pane.
 jlab = new JLabel("Select One");
 add(jlab);
 }

 // Handle button selection.
 public void actionPerformed(ActionEvent ae) {
 jlab.setText("You selected " + ae.getActionCommand());
 }
}

Output from the radio button example is shown here:

JTabbedPane
JTabbedPane encapsulates a tabbed pane. It manages a set of components by linking them
with tabs. Selecting a tab causes the component associated with that tab to come to the
forefront. Tabbed panes are very common in the modern GUI, and you have no doubt used
them many times. Given the complex nature of a tabbed pane, they are surprisingly easy to
create and use.

JTabbedPane defines three constructors. We will use its default constructor, which
creates an empty control with the tabs positioned across the top of the pane. The other
two constructors let you specify the location of the tabs, which can be along any of the four
sides. JTabbedPane uses the SingleSelectionModel model.

Tabs are added by calling addTab(). Here is one of its forms:

void addTab(String name, Component comp)

Here, name is the name for the tab, and comp is the component that should be added to the
tab. Often, the component added to a tab is a JPanel that contains a group of related
components. This technique allows a tab to hold a set of components.

32-ch32.indd 1053 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1054 PART III Introducing GUI Programming with Swing

The general procedure to use a tabbed pane is outlined here:

 1. Create an instance of JTabbedPane.

 2. Add each tab by calling addTab().

 3. Add the tabbed pane to the content pane.

The following example illustrates a tabbed pane. The first tab is titled "Cities" and
contains four buttons. Each button displays the name of a city. The second tab is titled
"Colors" and contains three check boxes. Each check box displays the name of a color. The
third tab is titled "Flavors" and contains one combo box. This enables the user to select one
of three flavors.

// Demonstrate JTabbedPane.
import javax.swing.*;
/*
 <applet code="JTabbedPaneDemo" width=400 height=100>
 </applet>
*/

public class JTabbedPaneDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 JTabbedPane jtp = new JTabbedPane();
 jtp.addTab("Cities", new CitiesPanel());
 jtp.addTab("Colors", new ColorsPanel());
 jtp.addTab("Flavors", new FlavorsPanel());
 add(jtp);
 }
}

// Make the panels that will be added to the tabbed pane.
class CitiesPanel extends JPanel {

 public CitiesPanel() {
 JButton b1 = new JButton("New York");
 add(b1);
 JButton b2 = new JButton("London");
 add(b2);

32-ch32.indd 1054 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1055

Pa
rt

 II
I

 JButton b3 = new JButton("Hong Kong");
 add(b3);
 JButton b4 = new JButton("Tokyo");
 add(b4);
 }
}

class ColorsPanel extends JPanel {

 public ColorsPanel() {
 JCheckBox cb1 = new JCheckBox("Red");
 add(cb1);
 JCheckBox cb2 = new JCheckBox("Green");
 add(cb2);
 JCheckBox cb3 = new JCheckBox("Blue");
 add(cb3);
 }
}

class FlavorsPanel extends JPanel {

 public FlavorsPanel() {
 JComboBox<String> jcb = new JComboBox<String>();
 jcb.addItem("Vanilla");
 jcb.addItem("Chocolate");
 jcb.addItem("Strawberry");
 add(jcb);
 }
}

Output from the tabbed pane example is shown in the following three illustrations:

32-ch32.indd 1055 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1056 PART III Introducing GUI Programming with Swing

JScrollPane
JScrollPane is a lightweight container that automatically handles the scrolling of another
component. The component being scrolled can be either an individual component, such as
a table, or a group of components contained within another lightweight container, such as a
JPanel. In either case, if the object being scrolled is larger than the viewable area, horizontal
and/or vertical scroll bars are automatically provided, and the component can be scrolled
through the pane. Because JScrollPane automates scrolling, it usually eliminates the need
to manage individual scroll bars.

The viewable area of a scroll pane is called the viewport. It is a window in which the
component being scrolled is displayed. Thus, the viewport displays the visible portion of
the component being scrolled. The scroll bars scroll the component through the viewport.
In its default behavior, a JScrollPane will dynamically add or remove a scroll bar as needed.
For example, if the component is taller than the viewport, a vertical scroll bar is added. If
the component will completely fit within the viewport, the scroll bars are removed.

JScrollPane defines several constructors. The one used in this chapter is shown here:

JScrollPane(Component comp)

The component to be scrolled is specified by comp. Scroll bars are automatically displayed
when the content of the pane exceeds the dimensions of the viewport.

Here are the steps to follow to use a scroll pane:

 1. Create the component to be scrolled.

 2. Create an instance of JScrollPane, passing to it the object to scroll.

 3. Add the scroll pane to the content pane.

The following example illustrates a scroll pane. First, a JPanel object is created, and
400 buttons are added to it, arranged into 20 columns. This panel is then added to a scroll
pane, and the scroll pane is added to the content pane. Because the panel is larger than the
viewport, vertical and horizontal scroll bars appear automatically. You can use the scroll
bars to scroll the buttons into view.

// Demonstrate JScrollPane.
import java.awt.*;
import javax.swing.*;
/*
 <applet code="JScrollPaneDemo" width=300 height=250>
 </applet>
*/

public class JScrollPaneDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {

32-ch32.indd 1056 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1057

Pa
rt

 II
I

 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Add 400 buttons to a panel.
 JPanel jp = new JPanel();
 jp.setLayout(new GridLayout(20, 20));
 int b = 0;

 for(int i = 0; i < 20; i++) {
 for(int j = 0; j < 20; j++) {
 jp.add(new JButton("Button " + b));
 ++b;
 }
 }

 // Create the scroll pane.
 JScrollPane jsp = new JScrollPane(jp);

 // Add the scroll pane to the content pane.
 // Because the default border layout is used,
 // the scroll pane will be added to the center.
 add(jsp, BorderLayout.CENTER);
 }
}

Output from the scroll pane example is shown here:

32-ch32.indd 1057 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1058 PART III Introducing GUI Programming with Swing

JList
In Swing, the basic list class is called JList. It supports the selection of one or more items
from a list. Although the list often consists of strings, it is possible to create a list of just
about any object that can be displayed. JList is so widely used in Java that it is highly
unlikely that you have not seen one before.

In the past, the items in a JList were represented as Object references. However,
beginning with JDK 7, JList was made generic and is now declared like this:

class JList<E>

Here, E represents the type of the items in the list.
JList provides several constructors. The one used here is

JList(E[] items)

This creates a JList that contains the items in the array specified by items.
JList is based on two models. The first is ListModel. This interface defines how access

to the list data is achieved. The second model is the ListSelectionModel interface, which
defines methods that determine what list item or items are selected.

Although a JList will work properly by itself, most of the time you will wrap a JList inside
a JScrollPane. This way, long lists will automatically be scrollable, which simplifies GUI
design. It also makes it easy to change the number of entries in a list without having to
change the size of the JList component.

A JList generates a ListSelectionEvent when the user makes or changes a selection. This
event is also generated when the user deselects an item. It is handled by implementing
ListSelectionListener. This listener specifies only one method, called valueChanged(),
which is shown here:

void valueChanged(ListSelectionEvent le)

Here, le is a reference to the event. Although ListSelectionEvent does provide some
methods of its own, normally you will interrogate the JList object itself to determine
what has occurred. Both ListSelectionEvent and ListSelectionListener are packaged in
javax.swing.event.

By default, a JList allows the user to select multiple ranges of items within the list, but
you can change this behavior by calling setSelectionMode(), which is defined by JList. It is
shown here:

void setSelectionMode(int mode)

Here, mode specifies the selection mode. It must be one of these values defined by
ListSelectionModel:

SINGLE_SELECTION

SINGLE_INTERVAL_SELECTION

MULTIPLE_INTERVAL_SELECTION

The default, multiple-interval selection, lets the user select multiple ranges of items within
a list. With single-interval selection, the user can select one range of items. With single

32-ch32.indd 1058 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1059

Pa
rt

 II
I

selection, the user can select only a single item. Of course, a single item can be selected
in the other two modes, too. It’s just that they also allow a range to be selected.

You can obtain the index of the first item selected, which will also be the index of the
only selected item when using single-selection mode, by calling getSelectedIndex(),
shown here:

int getSelectedIndex()

Indexing begins at zero. So, if the first item is selected, this method will return 0. If no item
is selected, –1 is returned.

Instead of obtaining the index of a selection, you can obtain the value associated with
the selection by calling getSelectedValue():

E getSelectedValue()

It returns a reference to the first selected value. If no value has been selected, it returns null.
The following applet demonstrates a simple JList, which holds a list of cities. Each time

a city is selected in the list, a ListSelectionEvent is generated, which is handled by the
valueChanged() method defined by ListSelectionListener. It responds by obtaining the
index of the selected item and displaying the name of the selected city in a label.

// Demonstrate JList.
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;

/*
 <applet code="JListDemo" width=200 height=120>
 </applet>
*/

public class JListDemo extends JApplet {
 JList<String> jlst;
 JLabel jlab;
 JScrollPane jscrlp;

 // Create an array of cities.
 String Cities[] = { "New York", "Chicago", "Houston",
 "Denver", "Los Angeles", "Seattle",
 "London", "Paris", "New Delhi",
 "Hong Kong", "Tokyo", "Sydney" };

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);

32-ch32.indd 1059 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1060 PART III Introducing GUI Programming with Swing

 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Create a JList.
 jlst = new JList<String>(Cities);

 // Set the list selection mode to single selection.
 jlst.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

 // Add the list to a scroll pane.
 jscrlp = new JScrollPane(jlst);

 // Set the preferred size of the scroll pane.
 jscrlp.setPreferredSize(new Dimension(120, 90));

 // Make a label that displays the selection.
 jlab = new JLabel("Choose a City");

 // Add selection listener for the list.
 jlst.addListSelectionListener(new ListSelectionListener() {
 public void valueChanged(ListSelectionEvent le) {
 // Get the index of the changed item.
 int idx = jlst.getSelectedIndex();

 // Display selection, if item was selected.
 if(idx != -1)
 jlab.setText("Current selection: " + Cities[idx]);
 else // Otherwise, reprompt.
 jlab.setText("Choose a City");

 }
 });

 // Add the list and label to the content pane.
 add(jscrlp);
 add(jlab);
 }
}

Output from the list example is shown here:

32-ch32.indd 1060 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1061

Pa
rt

 II
I

JComboBox
Swing provides a combo box (a combination of a text field and a drop-down list) through the
JComboBox class. A combo box normally displays one entry, but it will also display a drop-
down list that allows a user to select a different entry. You can also create a combo box that
lets the user enter a selection into the text field.

In the past, the items in a JComboBox were represented as Object references. However,
beginning with JDK 7, JComboBox was made generic and is now declared like this:

class JComboBox<E>

Here, E represents the type of the items in the combo box.
The JComboBox constructor used by the example is shown here:

JComboBox(E[] items)

Here, items is an array that initializes the combo box. Other constructors are available.
JComboBox uses the ComboBoxModel. Mutable combo boxes (those whose entries can

be changed) use the MutableComboBoxModel.
In addition to passing an array of items to be displayed in the drop-down list, items can

be dynamically added to the list of choices via the addItem() method, shown here:

void addItem(E obj)

Here, obj is the object to be added to the combo box. This method must be used only with
mutable combo boxes.

JComboBox generates an action event when the user selects an item from the list.
JComboBox also generates an item event when the state of selection changes, which occurs
when an item is selected or deselected. Thus, changing a selection means that two item
events will occur: one for the deselected item and another for the selected item. Often, it is
sufficient to simply listen for action events, but both event types are available for your use.

One way to obtain the item selected in the list is to call getSelectedItem() on the
combo box. It is shown here:

Object getSelectedItem()

You will need to cast the returned value into the type of object stored in the list.
The following example demonstrates the combo box. The combo box contains entries

for "Hourglass", "Analog", "Digital", and "Stopwatch". When a timepiece is selected, an
icon-based label is updated to display it. You can see how little code is required to use this
powerful component.

// Demonstrate JComboBox.
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
 <applet code="JComboBoxDemo" width=300 height=200>
 </applet>
*/

32-ch32.indd 1061 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1062 PART III Introducing GUI Programming with Swing

public class JComboBoxDemo extends JApplet {
 JLabel jlab;
 ImageIcon hourglass, analog, digital, stopwatch;
 JComboBox<String> jcb;

 String timepieces[] = { "Hourglass", "Analog", "Digital", "Stopwatch" };

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Change to flow layout.
 setLayout(new FlowLayout());

 // Instantiate a combo box and add it to the content pane.
 jcb = new JComboBox<String>(timepieces);
 add(jcb);

 // Handle selections.
 jcb.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 String s = (String) jcb.getSelectedItem();
 jlab.setIcon(new ImageIcon(s + ".png"));
 }
 });

 // Create a label and add it to the content pane.
 jlab = new JLabel(new ImageIcon("hourglass.png"));
 add(jlab);
 }

}

32-ch32.indd 1062 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1063

Pa
rt

 II
I

Output from the combo box example is shown here:

Trees
A tree is a component that presents a hierarchical view of data. The user has the ability to
expand or collapse individual subtrees in this display. Trees are implemented in Swing by
the JTree class. A sampling of its constructors is shown here:

JTree(Object obj [])
JTree(Vector<?> v)
JTree(TreeNode tn)

In the first form, the tree is constructed from the elements in the array obj. The second
form constructs the tree from the elements of vector v. In the third form, the tree whose
root node is specified by tn specifies the tree.

Although JTree is packaged in javax.swing, its support classes and interfaces are
packaged in javax.swing.tree. This is because the number of classes and interfaces needed
to support JTree is quite large.

JTree relies on two models: TreeModel and TreeSelectionModel. A JTree generates a
variety of events, but three relate specifically to trees: TreeExpansionEvent, TreeSelectionEvent,
and TreeModelEvent. TreeExpansionEvent events occur when a node is expanded or
collapsed. A TreeSelectionEvent is generated when the user selects or deselects a node within
the tree. A TreeModelEvent is fired when the data or structure of the tree changes. The
listeners for these events are TreeExpansionListener, TreeSelectionListener, and
TreeModelListener, respectively. The tree event classes and listener interfaces are packaged
in javax.swing.event.

The event handled by the sample program shown in this section is TreeSelectionEvent.
To listen for this event, implement TreeSelectionListener. It defines only one method,
called valueChanged(), which receives the TreeSelectionEvent object. You can obtain
the path to the selected object by calling getPath(), shown here, on the event object:

TreePath getPath()

32-ch32.indd 1063 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1064 PART III Introducing GUI Programming with Swing

It returns a TreePath object that describes the path to the changed node. The TreePath
class encapsulates information about a path to a particular node in a tree. It provides
several constructors and methods. In this book, only the toString() method is used. It
returns a string that describes the path.

The TreeNode interface declares methods that obtain information about a tree node.
For example, it is possible to obtain a reference to the parent node or an enumeration of
the child nodes. The MutableTreeNode interface extends TreeNode. It declares methods
that can insert and remove child nodes or change the parent node.

The DefaultMutableTreeNode class implements the MutableTreeNode interface. It
represents a node in a tree. One of its constructors is shown here:

DefaultMutableTreeNode(Object obj)

Here, obj is the object to be enclosed in this tree node. The new tree node doesn’t have a
parent or children.

To create a hierarchy of tree nodes, the add() method of DefaultMutableTreeNode can
be used. Its signature is shown here:

void add(MutableTreeNode child)

Here, child is a mutable tree node that is to be added as a child to the current node.
JTree does not provide any scrolling capabilities of its own. Instead, a JTree is typically

placed within a JScrollPane. This way, a large tree can be scrolled through a smaller viewport.
Here are the steps to follow to use a tree:

 1. Create an instance of JTree.

 2. Create a JScrollPane and specify the tree as the object to be scrolled.

 3. Add the tree to the scroll pane.

 4. Add the scroll pane to the content pane.

The following example illustrates how to create a tree and handle selections. The
program creates a DefaultMutableTreeNode instance labeled "Options". This is the top
node of the tree hierarchy. Additional tree nodes are then created, and the add() method
is called to connect these nodes to the tree. A reference to the top node in the tree is
provided as the argument to the JTree constructor. The tree is then provided as the
argument to the JScrollPane constructor. This scroll pane is then added to the content
pane. Next, a label is created and added to the content pane. The tree selection is displayed
in this label. To receive selection events from the tree, a TreeSelectionListener is registered
for the tree. Inside the valueChanged() method, the path to the current selection is
obtained and displayed.

// Demonstrate JTree.
import java.awt.*;
import javax.swing.event.*;
import javax.swing.*;
import javax.swing.tree.*;
/*
 <applet code="JTreeDemo" width=400 height=200>
 </applet>
*/

32-ch32.indd 1064 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1065

Pa
rt

 II
I

public class JTreeDemo extends JApplet {
 JTree tree;
 JLabel jlab;

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();
 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Create top node of tree.
 DefaultMutableTreeNode top = new DefaultMutableTreeNode("Options");

 // Create subtree of "A".
 DefaultMutableTreeNode a = new DefaultMutableTreeNode("A");
 top.add(a);
 DefaultMutableTreeNode a1 = new DefaultMutableTreeNode("A1");
 a.add(a1);
 DefaultMutableTreeNode a2 = new DefaultMutableTreeNode("A2");
 a.add(a2);

 // Create subtree of "B"
 DefaultMutableTreeNode b = new DefaultMutableTreeNode("B");
 top.add(b);
 DefaultMutableTreeNode b1 = new DefaultMutableTreeNode("B1");
 b.add(b1);
 DefaultMutableTreeNode b2 = new DefaultMutableTreeNode("B2");
 b.add(b2);
 DefaultMutableTreeNode b3 = new DefaultMutableTreeNode("B3");
 b.add(b3);

 // Create the tree.
 tree = new JTree(top);

 // Add the tree to a scroll pane.
 JScrollPane jsp = new JScrollPane(tree);

 // Add the scroll pane to the content pane.
 add(jsp);

 // Add the label to the content pane.
 jlab = new JLabel();
 add(jlab, BorderLayout.SOUTH);

32-ch32.indd 1065 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1066 PART III Introducing GUI Programming with Swing

 // Handle tree selection events.
 tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent tse) {
 jlab.setText("Selection is " + tse.getPath());
 }
 });
 }
}

Output from the tree example is shown here:

The string presented in the text field describes the path from the top tree node to the
selected node.

JTable
JTable is a component that displays rows and columns of data. You can drag the cursor
on column boundaries to resize columns. You can also drag a column to a new position.
Depending on its configuration, it is also possible to select a row, column, or cell within the
table, and to change the data within a cell. JTable is a sophisticated component that offers
many more options and features than can be discussed here. (It is perhaps Swing’s most
complicated component.) However, in its default configuration, JTable still offers
substantial functionality that is easy to use—especially if you simply want to use the table
to present data in a tabular format. The brief overview presented here will give you a
general understanding of this powerful component.

Like JTree, JTable has many classes and interfaces associated with it. These are
packaged in javax.swing.table.

At its core, JTable is conceptually simple. It is a component that consists of one or more
columns of information. At the top of each column is a heading. In addition to describing
the data in a column, the heading also provides the mechanism by which the user can
change the size of a column or change the location of a column within the table. JTable
does not provide any scrolling capabilities of its own. Instead, you will normally wrap a
JTable inside a JScrollPane.

JTable supplies several constructors. The one used here is

JTable(Object data[][], Object colHeads[])

32-ch32.indd 1066 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 32 Exploring Swing 1067

Pa
rt

 II
I

Here, data is a two-dimensional array of the information to be presented, and colHeads is a
one-dimensional array with the column headings.

JTable relies on three models. The first is the table model, which is defined by the
TableModel interface. This model defines those things related to displaying data in a
two-dimensional format. The second is the table column model, which is represented by
TableColumnModel. JTable is defined in terms of columns, and it is TableColumnModel
that specifies the characteristics of a column. These two models are packaged in
javax.swing.table. The third model determines how items are selected, and it is specified
by the ListSelectionModel, which was described when JList was discussed.

A JTable can generate several different events. The two most fundamental to a table’s
operation are ListSelectionEvent and TableModelEvent. A ListSelectionEvent is generated
when the user selects something in the table. By default, JTable allows you to select one or
more complete rows, but you can change this behavior to allow one or more columns, or
one or more individual cells to be selected. A TableModelEvent is fired when that table’s
data changes in some way. Handling these events requires a bit more work than it does to
handle the events generated by the previously described components and is beyond the
scope of this book. However, if you simply want to use JTable to display data (as the
following example does), then you don’t need to handle any events.

Here are the steps required to set up a simple JTable that can be used to display data:

 1. Create an instance of JTable.

 2. Create a JScrollPane object, specifying the table as the object to scroll.

 3. Add the table to the scroll pane.

 4. Add the scroll pane to the content pane.

The following example illustrates how to create and use a simple table. A one-dimensional
array of strings called colHeads is created for the column headings. A two-dimensional array
of strings called data is created for the table cells. You can see that each element in the array is
an array of three strings. These arrays are passed to the JTable constructor. The table is added
to a scroll pane, and then the scroll pane is added to the content pane. The table displays the
data in the data array. The default table configuration also allows the contents of a cell to be
edited. Changes affect the underlying array, which is data in this case.

// Demonstrate JTable.
import java.awt.*;
import javax.swing.*;
/*
 <applet code="JTableDemo" width=400 height=200>
 </applet>
*/

public class JTableDemo extends JApplet {

 public void init() {
 try {
 SwingUtilities.invokeAndWait(
 new Runnable() {
 public void run() {
 makeGUI();

32-ch32.indd 1067 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1068 PART III Introducing GUI Programming with Swing

 }
 }
);
 } catch (Exception exc) {
 System.out.println("Can't create because of " + exc);
 }
 }

 private void makeGUI() {

 // Initialize column headings.
 String[] colHeads = { "Name", "Extension", "ID#" };

 // Initialize data.
 Object[][] data = {
 { "Gail", "4567", "865" },
 { "Ken", "7566", "555" },
 { "Viviane", "5634", "587" },
 { "Melanie", "7345", "922" },
 { "Anne", "1237", "333" },
 { "John", "5656", "314" },
 { "Matt", "5672", "217" },
 { "Claire", "6741", "444" },
 { "Erwin", "9023", "519" },
 { "Ellen", "1134", "532" },
 { "Jennifer", "5689", "112" },
 { "Ed", "9030", "133" },
 { "Helen", "6751", "145" }
 };

 // Create the table.
 JTable table = new JTable(data, colHeads);

 // Add the table to a scroll pane.
 JScrollPane jsp = new JScrollPane(table);

 // Add the scroll pane to the content pane.
 add(jsp);
 }
}

Output from this example is shown here:

32-ch32.indd 1068 14/02/14 5:22 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

33
CHAPTER

 1069

Introducing Swing Menus

This chapter introduces another fundamental aspect of the Swing GUI environment: the
menu. Menus form an integral part of many applications because they present the program’s
functionality to the user. Because of their importance, Swing provides extensive support for
menus. They are an area in which Swing’s power is readily apparent.

The Swing menu system supports several key elements, including

•	 The menu bar, which is the main menu for an application.

•	 The standard menu, which can contain either items to be selected or other menus
(submenus).

•	 The popup menu, which is usually activated by right-clicking the mouse.

•	 The toolbar, which provides rapid access to program functionality, often paralleling
menu items.

•	 The action, which enables two or more different components to be managed by a
single object. Actions are commonly used with menus and toolbars.

Swing menus also support accelerator keys, which enable menu items to be selected without
having to activate the menu, and mnemonics, which allow a menu item to be selected by
the keyboard once the menu options are displayed.

Menu Basics
The Swing menu system is supported by a group of related classes. The ones used in this
chapter are shown in Table 33-1, and they represent the core of the menu system. Although
they may seem a bit confusing at first, Swing menus are quite easy to use. Swing allows a
high degree of customization, if desired; however, you will normally use the menu classes
as-is because they support all of the most needed options. For example, you can easily add
images and keyboard shortcuts to a menu.

33-ch33.indd 1069 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1070 PART III Introducing GUI Programming with Swing

Here is a brief overview of how the classes fit together. To create the top-level menu for
an application, you first create a JMenuBar object. This class is, loosely speaking, a
container for menus. To the JMenuBar instance, you will add instances of JMenu. Each
JMenu object defines a menu. That is, each JMenu object contains one or more selectable
items. The items displayed by a JMenu are objects of JMenuItem. Thus, a JMenuItem
defines a selection that can be chosen by the user.

As an alternative or adjunct to menus that descend from the menu bar, you can also
create stand-alone, popup menus. To create a popup menu, first create an object of type
JPopupMenu. Then, add JMenuItems to it. A popup menu is normally activated by clicking
the right mouse button when the mouse is over a component for which a popup menu has
been defined.

In addition to “standard” menu items, you can also include check boxes and radio
buttons in a menu. A check box menu item is created by JCheckBoxMenuItem. A radio
button menu item is created by JRadioButtonMenuItem. Both of these classes extend
JMenuItem. They can be used in standard menus and popup menus.

JToolBar creates a stand-alone component that is related to the menu. It is often used
to provide fast access to functionality contained within the menus of the application. For
example, a toolbar might provide fast access to the formatting commands supported by a
word processor.

JSeparator is a convenience class that creates a separator line in a menu.
One key point to understand about Swing menus is that each menu item extends

AbstractButton. Recall that AbstractButton is also the superclass of all of Swing’s button
components, such as JButton. Thus, all menu items are, essentially, buttons. Obviously, they
won’t actually look like buttons when used in a menu, but they will, in many ways, act like
buttons. For example, selecting a menu item generates an action event in the same way that
pressing a button does.

Another key point is that JMenuItem is a superclass of JMenu. This allows the creation
of submenus, which are, essentially, menus within menus. To create a submenu, you first
create and populate a JMenu object and then add it to another JMenu object. You will see
this process in action in the following section.

As mentioned in passing previously, when a menu item is selected, an action event is
generated. The action command string associated with that action event will, by default, be
the name of the selection. Thus, you can determine which item was selected by examining

Class Description
JMenuBar An object that holds the top-level menu for the application.

JMenu A standard menu. A menu consists of one or more JMenuItems.

JMenuItem An object that populates menus.

JCheckBoxMenuItem A check box menu item.

JRadioButtonMenuItem A radio button menu item

JSeparator The visual separator between menu items.

JPopupMenu A menu that is typically activated by right-clicking the mouse.

Table 33-1 The Core Swing Menu Classes

33-ch33.indd 1070 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1071

Pa
rt

 II
I

the action command. Of course, you can also use separate anonymous inner classes or
lambda expressions to handle each menu item’s action events. In this case, the menu
selection is already known, and there is no need to examine the action command string to
determine which item was selected.

Menus can also generate other types of events. For example, each time that a menu is
activated, selected, or canceled, a MenuEvent is generated that can be listened for via a
MenuListener. Other menu-related events include MenuKeyEvent, MenuDragMouseEvent,
and PopupMenuEvent. In many cases, however, you need only watch for action events, and
in this chapter, we will use only action events.

An Overview of JMenuBar, JMenu, and JMenuItem
Before you can create a menu, you need to know something about the three core menu
classes: JMenuBar, JMenu, and JMenuItem. These form the minimum set of classes needed
to construct a main menu for an application. JMenu and JMenuItem are also used by popup
menus. Thus, these classes form the foundation of the menu system.

JMenuBar
As mentioned, JMenuBar is essentially a container for menus. Like all components, it inherits
JComponent (which inherits Container and Component). It has only one constructor, which
is the default constructor. Therefore, initially the menu bar will be empty, and you will need
to populate it with menus prior to use. Each application has one and only one menu bar.

JMenuBar defines several methods, but often you will only need to use one: add().
The add() method adds a JMenu to the menu bar. It is shown here:

JMenu add(JMenu menu)

Here, menu is a JMenu instance that is added to the menu bar. A reference to the menu is
returned. Menus are positioned in the bar from left to right, in the order in which they are
added. If you want to add a menu at a specific location, then use this version of add(),
which is inherited from Container:

Component add(Component menu, int idx)

Here, menu is added at the index specified by idx. Indexing begins at 0, with 0 being the
left-most menu.

In some cases, you might want to remove a menu that is no longer needed. You can do
this by calling remove(), which is inherited from Container. It has these two forms:

void remove(Component menu)

void remove(int idx)

Here, menu is a reference to the menu to remove, and idx is the index of the menu to
remove. Indexing begins at zero.

Another method that is sometimes useful is getMenuCount(), shown here:

int getMenuCount()

It returns the number of elements contained within the menu bar.

33-ch33.indd 1071 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1072 PART III Introducing GUI Programming with Swing

JMenuBar defines some other methods that you might find helpful in specialized
applications. For example, you can obtain an array of references to the menus in the bar by
calling getSubElements(). You can determine if a menu is selected by calling isSelected().

Once a menu bar has been created and populated, it is added to a JFrame by calling
setJMenuBar() on the JFrame instance. (Menu bars are not added to the content pane.)
The setJMenuBar() method is shown here:

void setJMenuBar(JMenuBar mb)

Here, mb is a reference to the menu bar. The menu bar will be displayed in a position
determined by the look and feel. Usually, this is at the top of the window.

JMenu
JMenu encapsulates a menu, which is populated with JMenuItems. As mentioned, it is
derived from JMenuItem. This means that one JMenu can be a selection in another JMenu.
This enables one menu to be a submenu of another. JMenu defines a number of constructors.
For example, here is the one used in the examples in this chapter:

JMenu(String name)

This constructor creates a menu that has the title specified by name. Of course, you don’t
have to give a menu a name. To create an unnamed menu, you can use the default
constructor:

JMenu()

Other constructors are also supported. In each case, the menu is empty until menu items
are added to it.

JMenu defines many methods. Here is a brief description of some commonly used ones.
To add an item to the menu, use the add() method, which has a number of forms, including
the two shown here:

JMenuItem add(JMenuItem item)

JMenuItem add(Component item, int idx)

Here, item is the menu item to add. The first form adds the item to the end of the menu.
The second form adds the item at the index specified by idx. As expected, indexing starts at
zero. Both forms return a reference to the item added. As a point of interest, you can also
use insert() to add menu items to a menu.

You can add a separator (an object of type JSeparator) to a menu by calling
addSeparator(), shown here:

void addSeparator()

The separator is added onto the end of the menu. You can insert a separator into a menu
by calling insertSeparator(), shown next:

void insertSeparator(int idx)

Here, idx specifies the zero-based index at which the separator will be added.

33-ch33.indd 1072 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1073

Pa
rt

 II
I

You can remove an item from a menu by calling remove(). Two of its forms are
shown here:

void remove(JMenuItem menu)

void remove(int idx)

In this case, menu is a reference to the item to remove and idx is the index of the item
to remove.

You can obtain the number of items in the menu by calling getMenuComponentCount(),
shown here:

int getMenuComponentCount()

You can get an array of the items in the menu by calling getMenuComponents(), shown next:

Component[] getMenuComponents()

An array containing the components is returned.

JMenuItem
JMenuItem encapsulates an element in a menu. This element can be a selection linked to
some program action, such as Save or Close, or it can cause a submenu to be displayed. As
mentioned, JMenuItem is derived from AbstractButton, and every item in a menu can be
thought of as a special kind of button. Therefore, when a menu item is selected, an action
event is generated. (This is similar to the way a JButton fires an action event when it is
pressed.) JMenuItem defines many constructors. The ones used in this chapter are
shown here:

JMenuItem(String name)

JMenuItem(Icon image)

JMenuItem(String name, Icon image)

JMenuItem(String name, int mnem)

JMenuItem(Action action)

The first constructor creates a menu item with the name specified by name. The second
creates a menu item that displays the image specified by image. The third creates a menu
item with the name specified by name and the image specified by image. The fourth creates
a menu item with the name specified by name and uses the keyboard mnemonic specified
by mnem. This mnemonic enables you to select an item from the menu by pressing the
specified key. The last constructor creates a menu item using the information specified in
action. A default constructor is also supported.

Because menu items inherit AbstractButton, you have access to the functionality
provided by AbstractButton. One such method that is often useful with menus is
setEnabled(), which you can use to enable or disable a menu item. It is shown here:

void setEnabled(boolean enable)

If enable is true, the menu item is enabled. If enable is false, the item is disabled and cannot
be selected.

33-ch33.indd 1073 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1074 PART III Introducing GUI Programming with Swing

Create a Main Menu
Traditionally, the most commonly used menu is the main menu. This is the menu defined by
the menu bar, and it is the menu that defines all (or nearly all) of the functionality of an
application. Fortunately, Swing makes creating and managing the main menu easy. This
section shows you how to construct a basic main menu. Subsequent sections will show you
how to add options to it.

Constructing the main menu requires several steps. First, create the JMenuBar object
that will hold the menus. Next, construct each menu that will be in the menu bar. In
general, a menu is constructed by first creating a JMenu object and then adding JMenuItems
to it. After the menus have been created, add them to the menu bar. The menu bar, itself,
must then be added to the frame by calling setJMenuBar(). Finally, for each menu item,
you must add an action listener that handles the action event fired when the menu item is
selected.

A good way to understand the process of creating and managing menus is to work
through an example. Here is a program that creates a simple menu bar that contains three
menus. The first is a standard File menu that contains Open, Close, Save, and Exit selections.
The second menu is called Options, and it contains two submenus called Colors and Priority.
The third menu is called Help, and it has one item: About. When a menu item is selected,
the name of the selection is displayed in a label in the content pane. Sample output is
shown in Figure 33-1.

// Demonstrate a simple main menu.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class MenuDemo implements ActionListener {

 JLabel jlab;

 MenuDemo() {
 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Menu Demo");

Figure 33-1 Sample output from the MenuDemo program

33-ch33.indd 1074 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1075

Pa
rt

 II
I

 // Specify FlowLayout for the layout manager.
 jfrm.setLayout(new FlowLayout());

 // Give the frame an initial size.
 jfrm.setSize(220, 200);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a label that will display the menu selection.
 jlab = new JLabel();

 // Create the menu bar.
 JMenuBar jmb = new JMenuBar();

 // Create the File menu.
 JMenu jmFile = new JMenu("File");
 JMenuItem jmiOpen = new JMenuItem("Open");
 JMenuItem jmiClose = new JMenuItem("Close");
 JMenuItem jmiSave = new JMenuItem("Save");
 JMenuItem jmiExit = new JMenuItem("Exit");
 jmFile.add(jmiOpen);
 jmFile.add(jmiClose);
 jmFile.add(jmiSave);
 jmFile.addSeparator();
 jmFile.add(jmiExit);
 jmb.add(jmFile);

 // Create the Options menu.
 JMenu jmOptions = new JMenu("Options");

 // Create the Colors submenu.
 JMenu jmColors = new JMenu("Colors");
 JMenuItem jmiRed = new JMenuItem("Red");
 JMenuItem jmiGreen = new JMenuItem("Green");
 JMenuItem jmiBlue = new JMenuItem("Blue");
 jmColors.add(jmiRed);
 jmColors.add(jmiGreen);
 jmColors.add(jmiBlue);
 jmOptions.add(jmColors);

 // Create the Priority submenu.
 JMenu jmPriority = new JMenu("Priority");
 JMenuItem jmiHigh = new JMenuItem("High");
 JMenuItem jmiLow = new JMenuItem("Low");
 jmPriority.add(jmiHigh);
 jmPriority.add(jmiLow);
 jmOptions.add(jmPriority);

 // Create the Reset menu item.
 JMenuItem jmiReset = new JMenuItem("Reset");
 jmOptions.addSeparator();
 jmOptions.add(jmiReset);

33-ch33.indd 1075 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1076 PART III Introducing GUI Programming with Swing

 // Finally, add the entire options menu to
 // the menu bar
 jmb.add(jmOptions);

 // Create the Help menu.
 JMenu jmHelp = new JMenu("Help");
 JMenuItem jmiAbout = new JMenuItem("About");
 jmHelp.add(jmiAbout);
 jmb.add(jmHelp);

 // Add action listeners for the menu items.
 jmiOpen.addActionListener(this);
 jmiClose.addActionListener(this);
 jmiSave.addActionListener(this);
 jmiExit.addActionListener(this);
 jmiRed.addActionListener(this);
 jmiGreen.addActionListener(this);
 jmiBlue.addActionListener(this);
 jmiHigh.addActionListener(this);
 jmiLow.addActionListener(this);
 jmiReset.addActionListener(this);
 jmiAbout.addActionListener(this);

 // Add the label to the content pane.
 jfrm.add(jlab);

 // Add the menu bar to the frame.
 jfrm.setJMenuBar(jmb);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Handle menu item action events.
 public void actionPerformed(ActionEvent ae) {
 // Get the action command from the menu selection.
 String comStr = ae.getActionCommand();

 // If user chooses Exit, then exit the program.
 if(comStr.equals("Exit")) System.exit(0);

 // Otherwise, display the selection.
 jlab.setText(comStr + " Selected");
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new MenuDemo();
 }
 });
 }
}

33-ch33.indd 1076 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1077

Pa
rt

 II
I

Let’s examine, in detail, how the menus in this program are created, beginning with the
MenuDemo constructor. It starts by creating a JFrame and setting its layout manager, size,
and default close operation. (These operations are described in Chapter 31.) A JLabel is
then constructed. It will be used to display a menu selection. Next, the menu bar is
constructed and a reference to it is assigned to jmb by this statement:

// Create the menu bar.
JMenuBar jmb = new JMenuBar();

Then, the File menu jmFile and its menu entries are created by this sequence:

// Create the File menu.
JMenu jmFile = new JMenu("File");
JMenuItem jmiOpen = new JMenuItem("Open");
JMenuItem jmiClose = new JMenuItem("Close");
JMenuItem jmiSave = new JMenuItem("Save");
JMenuItem jmiExit = new JMenuItem("Exit");

The names Open, Close, Save, and Exit will be shown as selections in the menu. Next,
the menu entries are added to the file menu by this sequence:

jmFile.add(jmiOpen);
jmFile.add(jmiClose);
jmFile.add(jmiSave);
jmFile.addSeparator();
jmFile.add(jmiExit);

Finally, the File menu is added to the menu bar with this line:

jmb.add(jmFile);

Once the preceding code sequence completes, the menu bar will contain one entry: File.
The File menu will contain four selections in this order: Open, Close, Save, and Exit.
However, notice that a separator has been added before Exit. This visually separates Exit
from the preceding three selections.

The Options menu is constructed using the same basic process as the File menu.
However, the Options menu consists of two submenus, Colors and Priority, and a Reset
entry. The submenus are first constructed individually and then added to the Options
menu. The Reset item is added last. Then, the Options menu is added to the menu bar.
The Help menu is constructed using the same process.

Notice that MenuDemo implements the ActionListener interface and action events
generated by a menu selection are handled by the actionPerformed() method defined by
MenuDemo. Therefore, the program adds this as the action listener for the menu items.
Notice that no listeners are added to the Colors or Priority items because they are not
actually selections. They simply activate submenus.

Finally, the menu bar is added to the frame by the following line:

jfrm.setJMenuBar(jmb);

As mentioned, menu bars are not added to the content pane. They are added directly to
the JFrame.

33-ch33.indd 1077 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1078 PART III Introducing GUI Programming with Swing

The actionPerformed() method handles the action events generated by the menu. It
obtains the action command string associated with the selection by calling
getActionCommand() on the event. It stores a reference to this string in comStr. Then, it
tests the action command against "Exit", as shown here:

if(comStr.equals("Exit")) System.exit(0);

If the action command is "Exit", then the program terminates by calling System.exit(). This
method causes the immediate termination of a program and passes its argument as a status
code to the calling process, which is usually the operating system or the browser. By
convention, a status code of zero means normal termination. Anything else indicates that
the program terminated abnormally. For all other menu selections, the choice is displayed.

At this point, you might want to experiment a bit with the MenuDemo program. Try
adding another menu or adding additional items to an existing menu. It is important that
you understand the basic menu concepts before moving on because this program will
evolve throughout the course of this chapter.

Add Mnemonics and Accelerators to Menu Items
The menu created in the preceding example is functional, but it is possible to make it
better. In real applications, a menu usually includes support for keyboard shortcuts because
they give an experienced user the ability to select menu items rapidly. Keyboard shortcuts
come in two forms: mnemonics and accelerators. As it applies to menus, a mnemonic defines
a key that lets you select an item from an active menu by typing the key. Thus, a mnemonic
allows you to use the keyboard to select an item from a menu that is already being displayed.
An accelerator is a key that lets you select a menu item without having to first activate the menu.

A mnemonic can be specified for both JMenuItem and JMenu objects. There are two
ways to set the mnemonic for JMenuItem. First, it can be specified when an object is
constructed using this constructor:

JMenuItem(String name, int mnem)

In this case, the name is passed in name and the mnemonic is passed in mnen. Second, you
can set the mnemonic by calling setMnemonic(). To specify a mnemonic for JMenu, you
must call setMnemonic(). This method is inherited by both classes from AbstractButton
and is shown next:

void setMnemonic(int mnem)

Here, mnem specifies the mnemonic. It should be one of the constants defined in
java.awt.event.KeyEvent, such as KeyEvent.VK_F or KeyEvent.VK_Z. (There is another
version of setMnemonic() that takes a char argument, but it is considered obsolete.)
Mnemonics are not case sensitive, so in the case of VK_A, typing either a or A will work.

By default, the first matching letter in the menu item will be underscored. In cases in
which you want to underscore a letter other than the first match, specify the index of the
letter as an argument to setDisplayedMnemonicIndex(), which is inherited by both JMenu
and JMenuItem from AbstractButton. It is shown here:

void setDisplayedMnemonicIndex(int idx)

The index of the letter to underscore is specified by idx.

33-ch33.indd 1078 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1079

Pa
rt

 II
I

An accelerator can be associated with a JMenuItem object. It is specified by calling
setAccelerator(), shown next:

void setAccelerator(KeyStroke ks)

Here, ks is the key combination that is pressed to select the menu item. KeyStroke is a class
that contains several factory methods that construct various types of keystroke accelerators.
The following are three examples:

static KeyStroke getKeyStroke(char ch)

static KeyStroke getKeyStroke(Character ch, int modifier)

static KeyStroke getKeyStroke(int ch, int modifier)

Here, ch specifies the accelerator character. In the first version, the character is specified as
a char value. In the second, it is specified as an object of type Character. In the third, it is a
value of type KeyEvent, previously described. The value of modifier must be one or more of
the following constants, defined in the java.awt.event.InputEvent class:

InputEvent.ALT_DOWN_MASK InputEvent.ALT_GRAPH_DOWN_MASK

InputEvent.CTRL_DOWN_MASK InputEvent.META_DOWN_MASK

InputEvent.SHIFT_DOWN_MASK

Therefore, if you pass VK_A for the key character and InputEvent.CTRL_DOWN_MASK
for the modifier, the accelerator key combination is ctrl-a.

The following sequence adds both mnemonics and accelerators to the File menu
created by the MenuDemo program in the previous section. After making this change, you
can select the File menu by typing alt-f. Then, you can use the mnemonics o, c, s, or e to
select an option. Alternatively, you can directly select a File menu option by pressing
ctrl-o, ctrl-c, ctrl-s, or ctrl-e. Figure 33-2 shows how this menu looks when activated.

// Create the File menu with mnemonics and accelerators.
JMenu jmFile = new JMenu("File");
jmFile.setMnemonic(KeyEvent.VK_F);

JMenuItem jmiOpen = new JMenuItem("Open",
 KeyEvent.VK_O);
jmiOpen.setAccelerator(

Figure 33-2 The File menu after adding mnemonics and accelerators

33-ch33.indd 1079 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1080 PART III Introducing GUI Programming with Swing

 KeyStroke.getKeyStroke(KeyEvent.VK_O,
 InputEvent.CTRL_DOWN_MASK));

JMenuItem jmiClose = new JMenuItem("Close",
 KeyEvent.VK_C);
jmiClose.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_C,
 InputEvent.CTRL_DOWN_MASK));

JMenuItem jmiSave = new JMenuItem("Save",
 KeyEvent.VK_S);
jmiSave.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_S,
 InputEvent.CTRL_DOWN_MASK));

JMenuItem jmiExit = new JMenuItem("Exit",
 KeyEvent.VK_E);
jmiExit.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_E,
 InputEvent.CTRL_DOWN_MASK));

Add Images and Tooltips to Menu Items
You can add images to menu items or use images instead of text. The easiest way to add an
image is to specify it when the menu item is being constructed using one of these constructors:

JMenuItem(Icon image)

JMenuItem(String name, Icon image)

The first creates a menu item that displays the image specified by image. The second creates
a menu item with the name specified by name and the image specified by image. For example,
here the About menu item is associated with an image when it is created.

ImageIcon icon = new ImageIcon("AboutIcon.gif");
JMenuItem jmiAbout = new JMenuItem("About", icon);

After this addition, the icon specified by icon will be displayed next to the text "About"
when the Help menu is displayed. This is shown in Figure 33-3. You can also add an icon to
a menu item after the item has been created by calling setIcon(), which is inherited from

Figure 33-3 The About item with the addition of an icon

33-ch33.indd 1080 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1081

Pa
rt

 II
I

AbstractButton. You can specify the horizontal alignment of the image relative to the text
by calling setHorizontalTextPosition().

You can specify a disabled icon, which is shown when the menu item is disabled, by
calling setDisabledIcon(). Normally, when a menu item is disabled, the default icon is
shown in gray. If a disabled icon is specified, then that icon is displayed when the menu
item is disabled.

A tooltip is a small message that describes an item. It is automatically displayed if the
mouse remains over the item for a moment. You can add a tooltip to a menu item by calling
setToolTipText() on the item, specifying the text you want displayed. It is shown here:

void setToolTipText(String msg)

In this case, msg is the string that will be displayed when the tooltip is activated. For
example, this creates a tooltip for the About item:

jmiAbout.setToolTipText("Info about the MenuDemo program.");

As a point of interest, setToolTipText() is inherited by JMenuItem from JComponent.
This means you can add a tooltip to other types of components, such as a push button. You
might want to try this on your own.

Use JRadioButtonMenuItem and JCheckBoxMenuItem
Although the type of menu items used by the preceding examples are, as a general rule, the
most commonly used, Swing defines two others: check boxes and radio buttons. These items
can streamline a GUI by allowing a menu to provide functionality that would otherwise
require additional, stand-alone components. Also, sometimes, including check boxes or
radio buttons in a menu simply seems the most natural place for a specific set of features.
Whatever your reason, Swing makes it easy to use check boxes and radio buttons in menus,
and both are examined here.

To add a check box to a menu, create a JCheckBoxMenuItem. It defines several
constructors. This is the one used in this chapter:

JCheckBoxMenuItem(String name)

Here, name specifies the name of the item. The initial state of the check box is unchecked.
If you want to specify the initial state, you can use this constructor:

JCheckBoxMenuItem(String name, boolean state)

In this case, if state is true, the box is initially checked. Otherwise, it is cleared.
JCheckBoxMenuItem also provides constructors that let you specify an icon. Here is
one example:

JCheckBoxMenuItem(String name, Icon icon)

In this case, name specifies the name of the item and the image associated with the item is
passed in icon. The item is initially unchecked. Other constructors are also supported.

Check boxes in menus work like stand-alone check boxes. For example, they generate
action events and item events when their state changes. Check boxes are especially useful in
menus when you have options that can be selected and you want to display their selected/
deselected status.

33-ch33.indd 1081 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1082 PART III Introducing GUI Programming with Swing

// Use check boxes for colors. This allows
// the user to select more than one color.
JCheckBoxMenuItem jmiRed = new JCheckBoxMenuItem("Red");
JCheckBoxMenuItem jmiGreen = new JCheckBoxMenuItem("Green");
JCheckBoxMenuItem jmiBlue = new JCheckBoxMenuItem("Blue");

jmColors.add(jmiRed);
jmColors.add(jmiGreen);
jmColors.add(jmiBlue);
jmOptions.add(jmColors);

// Create the Priority submenu.
JMenu jmPriority = new JMenu("Priority");

// Use radio buttons for the priority setting.
// This lets the menu show which priority is used
// but also ensures that one and only one priority
// can be selected at any one time. Notice that
// the High radio button is initially selected.
JRadioButtonMenuItem jmiHigh =
 new JRadioButtonMenuItem("High", true);
JRadioButtonMenuItem jmiLow =
 new JRadioButtonMenuItem("Low");

jmPriority.add(jmiHigh);
jmPriority.add(jmiLow);
jmOptions.add(jmPriority);

// Create button group for the radio button menu items.
ButtonGroup bg = new ButtonGroup();
bg.add(jmiHigh);
bg.add(jmiLow);

// Create the Reset menu item.
JMenuItem jmiReset = new JMenuItem("Reset");
jmOptions.addSeparator();
jmOptions.add(jmiReset);

// Finally, add the entire options menu to
// the menu bar
jmb.add(jmOptions);

Create a Popup Menu
A popular alternative or addition to the menu bar is the popup menu. Typically, a popup
menu is activated by clicking the right mouse button when over a component. Popup
menus are supported in Swing by the JPopupMenu class. JPopupMenu has two constructors.
In this chapter, only the default constructor is used:

JPopupMenu()

It creates a default popup menu. The other constructor lets you specify a title for the menu.
Whether this title is displayed is subject to the look and feel.

(b)

A radio button can be added to a menu by creating an object of type
JRadioButtonMenuItem. JRadioButtonMenuItem inherits JMenuItem. It provides a
rich assortment of constructors. The ones used in this chapter are shown here:

JRadioButtonMenuItem(String name)

JRadioButtonMenuItem(String name, boolean state)

The first constructor creates an unselected radio button menu item that is associated with
the name passed in name. The second lets you specify the initial state of the button. If state is
true, the button is initially selected. Otherwise, it is deselected. Other constructors let you
specify an icon. Here is one example:

JRadioButtonMenuItem(String name, Icon icon, boolean state)

This creates a radio button menu item that is associated with the name passed in name and
the image passed in icon. If state is true, the button is initially selected. Otherwise, it is
deselected. Several other constructors are supported.

A JRadioButtonMenuItem works like a stand-alone radio button, generating item and
action events. Like stand-alone radio buttons, menu-based radio buttons must be put into a
button group in order for them to exhibit mutually exclusive selection behavior.

Because both JCheckBoxMenuItem and JRadioButtonMenuItem inherit JMenuItem,
each has all of the functionality provided by JMenuItem. Aside from having the extra
capabilities of check boxes and radio buttons, they act like and are used like other menu
items.

To try check box and radio button menu items, first remove the code that creates the
Options menu in the MenuDemo example program. Then substitute the following code
sequence, which uses check boxes for the Colors submenu and radio buttons for the
Priority submenu. After making the substitution, the Options menu will look like those
shown in Figure 33-4.

// Create the Options menu.
JMenu jmOptions = new JMenu("Options");

// Create the Colors submenu.
JMenu jmColors = new JMenu("Colors");

Figure 33-4 The effects of check box (a) and radio button (b) menu items

(a)

33-ch33.indd 1082 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1083

Pa
rt

 II
I

// Use check boxes for colors. This allows
// the user to select more than one color.
JCheckBoxMenuItem jmiRed = new JCheckBoxMenuItem("Red");
JCheckBoxMenuItem jmiGreen = new JCheckBoxMenuItem("Green");
JCheckBoxMenuItem jmiBlue = new JCheckBoxMenuItem("Blue");

jmColors.add(jmiRed);
jmColors.add(jmiGreen);
jmColors.add(jmiBlue);
jmOptions.add(jmColors);

// Create the Priority submenu.
JMenu jmPriority = new JMenu("Priority");

// Use radio buttons for the priority setting.
// This lets the menu show which priority is used
// but also ensures that one and only one priority
// can be selected at any one time. Notice that
// the High radio button is initially selected.
JRadioButtonMenuItem jmiHigh =
 new JRadioButtonMenuItem("High", true);
JRadioButtonMenuItem jmiLow =
 new JRadioButtonMenuItem("Low");

jmPriority.add(jmiHigh);
jmPriority.add(jmiLow);
jmOptions.add(jmPriority);

// Create button group for the radio button menu items.
ButtonGroup bg = new ButtonGroup();
bg.add(jmiHigh);
bg.add(jmiLow);

// Create the Reset menu item.
JMenuItem jmiReset = new JMenuItem("Reset");
jmOptions.addSeparator();
jmOptions.add(jmiReset);

// Finally, add the entire options menu to
// the menu bar
jmb.add(jmOptions);

Create a Popup Menu
A popular alternative or addition to the menu bar is the popup menu. Typically, a popup
menu is activated by clicking the right mouse button when over a component. Popup
menus are supported in Swing by the JPopupMenu class. JPopupMenu has two constructors.
In this chapter, only the default constructor is used:

JPopupMenu()

It creates a default popup menu. The other constructor lets you specify a title for the menu.
Whether this title is displayed is subject to the look and feel.

(b)

33-ch33.indd 1083 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1084 PART III Introducing GUI Programming with Swing

In general, popup menus are constructed like regular menus. First, create a JPopupMenu
object, and then add menu items to it. Menu item selections are also handled in the same
way: by listening for action events. The main difference between a popup menu and regular
menu is the activation process.

Activating a popup menu requires three steps.

 1. You must register a listener for mouse events.

 2. Inside the mouse event handler, you must watch for the popup trigger.

 3. When a popup trigger is received, you must show the popup menu by calling show().

Let’s examine each of these steps closely.
A popup menu is normally activated by clicking the right mouse button when the

mouse pointer is over a component for which a popup menu is defined. Thus, the popup
trigger is usually caused by right-clicking the mouse on a popup menu–enabled component.
To listen for the popup trigger, implement the MouseListener interface and then register
the listener by calling the addMouseListener() method. As described in Chapter 24,
MouseListener defines the methods shown here:

void mouseClicked(MouseEvent me)

void mouseEntered(MouseEvent me)

void mouseExited(MouseEvent me)

void mousePressed(MouseEvent me)

void mouseReleased(MouseEvent me)

Of these, two are very important relative to the popup menu: mousePressed() and
mouseReleased(). Depending on the installed look and feel, either of these two events
can trigger a popup menu. For this reason, it is often easier to use a MouseAdapter to
implement the MouseListener interface and simply override mousePressed() and
mouseReleased().

The MouseEvent class defines several methods, but only four are commonly needed
when activating a popup menu. They are shown here:

int getX()

int getY()

boolean isPopupTrigger()

Component getComponent()

The current X,Y location of the mouse relative to the source of the event is found by calling
getX() and getY(). These are used to specify the upper-left corner of the popup menu when
it is displayed. The isPopupTrigger() method returns true if the mouse event represents
a popup trigger and false otherwise. You will use this method to determine when to pop up
the menu. To obtain a reference to the component that generated the mouse event, call
getComponent().

33-ch33.indd 1084 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1085

Pa
rt

 II
I

To actually display the popup menu, call the show() method defined by JPopupMenu,
shown next:

void show(Component invoker, int upperX, int upperY)

Here, invoker is the component relative to which the menu will be displayed. The values of
upperX and upperY define the X,Y location of the upper-left corner of the menu, relative to
invoker. A common way to obtain the invoker is to call getComponent() on the event object
passed to the mouse event handler.

The preceding theory can be put into practice by adding a popup Edit menu to the
MenuDemo program shown at the start of this chapter. This menu will have three items
called Cut, Copy, and Paste. Begin by adding the following instance variable to MenuDemo:

JPopupMenu jpu;

The jpu variable will hold a reference to the popup menu.
Next, add the following code sequence to the MenuDemo constructor:

// Create an Edit popup menu.
jpu = new JPopupMenu();

// Create the popup menu items.
JMenuItem jmiCut = new JMenuItem("Cut");
JMenuItem jmiCopy = new JMenuItem("Copy");
JMenuItem jmiPaste = new JMenuItem("Paste");

// Add the menu items to the popup menu.
jpu.add(jmiCut);
jpu.add(jmiCopy);
jpu.add(jmiPaste);

// Add a listener for the popup trigger.
jfrm.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 if(me.isPopupTrigger())
 jpu.show(me.getComponent(), me.getX(), me.getY());
 }
 public void mouseReleased(MouseEvent me) {
 if(me.isPopupTrigger())
 jpu.show(me.getComponent(), me.getX(), me.getY());
 }
});

This sequence begins by constructing an instance of JPopupMenu and storing it in jpu.
Then, it creates the three menu items, Cut, Copy, and Paste, in the usual way, and adds
them to jpu. This finishes the construction of the popup Edit menu. Popup menus are not
added to the menu bar or any other object.

Next, a MouseListener is added by creating an anonymous inner class. This class is
based on the MouseAdapter class, which means that the listener need only override those

33-ch33.indd 1085 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1086 PART III Introducing GUI Programming with Swing

methods that are relevant to the popup menu: mousePressed() and mouseReleased().
The adapter provides default implementations of the other MouseListener methods. Notice
that the mouse listener is added to jfrm. This means that a right-button click inside any
part of the content pane will trigger the popup menu.

The mousePressed() and mouseReleased() methods call isPopupTrigger() to
determine if the mouse event is a popup trigger event. If it is, the popup menu is displayed
by calling show(). The invoker is obtained by calling getComponent() on the mouse event.
In this case, the invoker will be the content pane. The X,Y coordinates of the upper-left
corner are obtained by calling getX() and getY(). This makes the menu pop up with its
upper-left corner directly under the mouse pointer.

Finally, you also need to add these action listeners to the program. They handle the
action events fired when the user selects an item from the popup menu.

jmiCut.addActionListener(this);
jmiCopy.addActionListener(this);
jmiPaste.addActionListener(this);

After you have made these additions, the popup menu can be activated by clicking the
right mouse button anywhere inside the content pane of the application. Figure 33-5 shows
the result.

One other point about the preceding example. Because the invoker of the popup menu
is always jfrm, in this case, you could pass it explicitly rather than calling getComponent().
To do so, you must make jfrm into an instance variable of the MenuDemo class (rather
than a local variable) so that it is accessible to the inner class. Then you can use this call to
show() to display the popup menu:

jpu.show(jfrm, me.getX(), me.getY());

Although this works in this example, the advantage of using getComponent() is that the
popup menu will automatically pop up relative to the invoking component. Thus, the same
code could be used to display any popup menu relative to its invoking object.

Figure 33-5 A popup Edit menu

33-ch33.indd 1086 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1087

Pa
rt

 II
I

Create a Toolbar
A toolbar is a component that can serve as both an alternative and as an adjunct to a menu.
A toolbar contains a list of buttons (or other components) that give the user immediate
access to various program options. For example, a toolbar might contain buttons that select
various font options, such as bold, italics, highlight, or underline. These options can be
selected without needing to drop through a menu. Typically, toolbar buttons show icons
rather than text, although either or both are allowed. Furthermore, tooltips are often
associated with icon-based toolbar buttons. Toolbars can be positioned on any side of a
window by dragging the toolbar, or they can be dragged out of the window entirely, in
which case they become free floating.

In Swing, toolbars are instances of the JToolBar class. Its constructors enable you to
create a toolbar with or without a title. You can also specify the layout of the toolbar, which
will be either horizontal or vertical. The JToolBar constructors are shown here:

JToolBar()

JToolBar(String title)

JToolBar(int how)

JToolBar(String title, int how)

The first constructor creates a horizontal toolbar with no title. The second creates a
horizontal toolbar with the title specified by title. The title will show only when the toolbar is
dragged out of its window. The third creates a toolbar that is oriented as specified by how.
The value of how must be either JToolBar.VERTICAL or JToolBar.HORIZONTAL. The
fourth constructor creates a toolbar that has the title specified by title and is oriented as
specified by how.

A toolbar is typically used with a window that uses a border layout. There are two
reasons for this. First, it allows the toolbar to be initially positioned along one of the four
border positions. Frequently, the top position is used. Second, it allows the toolbar to be
dragged to any side of the window.

In addition to dragging the toolbar to different locations within a window, you can also
drag it out of the window. Doing so creates an undocked toolbar. If you specify a title when
you create the toolbar, then that title will be shown when the toolbar is undocked.

You add buttons (or other components) to a toolbar in much the same way that you
add them to a menu bar. Simply call add(). The components are shown in the toolbar in
the order in which they are added.

Once you have created a toolbar, you do not add it to the menu bar (if one exists).
Instead, you add it to the window container. As mentioned, typically you will add a toolbar
to the top (that is, north) position of a border layout, using a horizontal orientation. The
component that will be affected is added to the center of the border layout. Using this
approach causes the program to begin running with the toolbar in the expected location.
However, you can drag the toolbar to any of the other positions. Of course, you can also
drag the toolbar out of the window.

To illustrate the toolbar, we will add one to the MenuDemo program. The toolbar will
present three debugging options: set a breakpoint, clear a breakpoint, and resume program
execution. Three steps are needed to add the toolbar.

33-ch33.indd 1087 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1088 PART III Introducing GUI Programming with Swing

First, remove this line from the program.

jfrm.setLayout(new FlowLayout());

By removing this line, the JFrame automatically uses a border layout.
Second, because BorderLayout is being used, change the line that adds the label jlab to

the frame, as shown next:

jfrm.add(jlab, BorderLayout.CENTER);

This line explicitly adds jlab to the center of the border layout. (Explicitly specifying the
center position is technically not necessary because, by default, components are added to
the center when a border layout is used. However, explicitly specifying the center makes it
clear to anyone reading the code that a border layout is being used and that jlab goes in the
center.)

Next, add the following code, which creates the Debug toolbar.

// Create a Debug toolbar.
JToolBar jtb = new JToolBar("Debug");

// Load the images.
ImageIcon set = new ImageIcon("setBP.gif");
ImageIcon clear = new ImageIcon("clearBP.gif");
ImageIcon resume = new ImageIcon("resume.gif");

// Create the toolbar buttons.
JButton jbtnSet = new JButton(set);
jbtnSet.setActionCommand("Set Breakpoint");
jbtnSet.setToolTipText("Set Breakpoint");

JButton jbtnClear = new JButton(clear);
jbtnClear.setActionCommand("Clear Breakpoint");
jbtnClear.setToolTipText("Clear Breakpoint");

JButton jbtnResume = new JButton(resume);
jbtnResume.setActionCommand("Resume");
jbtnResume.setToolTipText("Resume");

// Add the buttons to the toolbar.
jtb.add(jbtnSet);
jtb.add(jbtnClear);
jtb.add(jbtnResume);

// Add the toolbar to the north position of
// the content pane.
jfrm.add(jtb, BorderLayout.NORTH);

Let’s look at this code closely. First, a JToolBar is created and given the title "Debug".
Then, a set of ImageIcon objects are created that hold the images for the toolbar buttons.
Next, three toolbar buttons are created. Notice that each has an image, but no text. Also,
each is explicitly given an action command and a tooltip. The action commands are set

33-ch33.indd 1088 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1089

Pa
rt

 II
I

because the buttons are not given names when they are constructed. Tooltips are especially
useful when applied to icon-based toolbar components because sometimes it’s hard to
design images that are intuitive to all users. The buttons are then added to the toolbar, and
the toolbar is added to the north side of the border layout of the frame.

Finally, add the action listeners for the toolbar, as shown here:

// Add the toolbar action listeners.
jbtnSet.addActionListener(this);
jbtnClear.addActionListener(this);
jbtnResume.addActionListener(this);

Each time the user presses a toolbar button, an action event is fired, and it is handled in the
same way as the other menu-related events. Figure 33-6 shows the toolbar in action.

Use Actions
Often, a toolbar and a menu item contain items in common. For example, the same
functions provided by the Debug toolbar in the preceding example might also be offered
through a menu selection. In such a case, selecting an option (such as setting a breakpoint)
causes the same action to occur, independently of whether the menu or the toolbar was
used. Also, both the toolbar button and the menu item would (most likely) use the same
icon. Furthermore, when a toolbar button is disabled, the corresponding menu item would
also need to be disabled. Such a situation would normally lead to a fair amount of
duplicated, interdependent code, which is less than optimal. Fortunately, Swing provides
a solution: the action.

An action is an instance of the Action interface. Action extends the ActionListener
interface and provides a means of combining state information with the actionPerformed()
event handler. This combination allows one action to manage two or more components.
For example, an action lets you centralize the control and handling of a toolbar button and
a menu item. Instead of having to duplicate code, your program need only create an action
that automatically handles both components.

Because Action extends ActionListener, an action must provide an implementation of
the actionPerformed() method. This handler will process the action events generated by
the objects linked to the action.

Figure 33-6 The Debug toolbar in action

33-ch33.indd 1089 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1090 PART III Introducing GUI Programming with Swing

In addition to the inherited actionPerformed() method, Action defines several methods
of its own. One of particular interest is putValue(). It sets the value of the various properties
associated with an action and is shown here:

void putValue(String key, Object val)

It assigns val to the property specified by key that represents the desired property. Although
not used by the example that follows, it is helpful to note that Action also supplies the
getValue() method that obtains a specified property. It is shown here:

Object getValue(String key)

It returns a reference to the property specified by key.
The key values used by putValue() and getValue() include those shown here:

Key Value Description
static final String ACCELERATOR_KEY Represents the accelerator property.

Accelerators are specified as KeyStroke
objects.

static final String
 ACTION_COMMAND_KEY

Represents the action command property.
An action command is specified as a string.

static final String
 DISPLAYED_MNEMONIC_INDEX_KEY

Represents the index of the character
displayed as the mnemonic. This is an
Integer value.

static final String LARGE_ICON_KEY Represents the large icon associated with the
action. The icon is specified as an object of
type Icon.

static final String LONG_DESCRIPTION Represents a long description of the action.
This description is specified as a string.

static final String MNEMONIC_KEY Represents the mnemonic property. A
mnemonic is specified as a KeyEvent
constant.

static final String NAME Represents the name of the action (which
also becomes the name of the button or
menu item to which the action is linked).
The name is specified as a string.

static final String SELECTED_KEY Represents the selection status. If set, the
item is selected. The state is represented by a
Boolean value.

static final String SHORT_DESCRIPTION Represents the tooltip text associated with
the action. The tooltip text is specified as a
string.

static final String SMALL_ICON Represents the icon associated with the
action. The icon is specified as an object of
type Icon.

33-ch33.indd 1090 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1091

Pa
rt

 II
I

For example, to set the mnemonic to the letter X, use this call to putValue():

actionOb.putValue(MNEMONIC_KEY, new Integer(KeyEvent.VK_X));

One Action property that is not accessible through putValue() and getValue() is the
enabled/disabled status. For this, you use the setEnabled() and isEnabled() methods.
They are shown here:

void setEnabled(boolean enabled)

boolean isEnabled()

For setEnabled(), if enabled is true, the action is enabled. Otherwise, it is disabled. If the
action is enabled, isEnabled() returns true. Otherwise, it returns false.

Although you can implement all of the Action interface yourself, you won’t usually need
to. Instead, Swing provides a partial implementation called AbstractAction that you can
extend. By extending AbstractAction, you need implement only one method:
actionPerformed(). The other Action methods are provided for you. AbstractAction
provides three constructors. The one used in this chapter is shown here:

AbstractAction(String name, Icon image)

It constructs an AbstractAction that has the name specified by name and the icon specified
by image.

Once you have created an action, it can be added to a JToolBar and used to construct a
JMenuItem. To add an action to a JToolBar, use this version of add():

void add(Action actObj)

Here, actObj is the action that is being added to the toolbar. The properties defined by
actObj are used to create a toolbar button. To create a menu item from an action, use this
JMenuItem constructor:

JMenuItem(Action actObj)

Here, actObj is the action used to construct a menu item according to its properties.

NOTE In addition to JToolBar and JMenuItem, actions are also supported by several other Swing
components, such as JPopupMenu, JButton, JRadioButton, and JCheckBox. JRadioButtonMenuItem
and JCheckBoxMenuItem also support actions.

To illustrate the benefit of actions, we will use them to manage the Debug toolbar
created in the previous section. We will also add a Debug submenu under the Options main
menu. The Debug submenu will contain the same selections as the Debug toolbar: Set
Breakpoint, Clear Breakpoint, and Resume. The same actions that support these items in
the toolbar will also support these items in the menu. Therefore, instead of having to create
duplicate code to handle both the toolbar and menu, both are handled by the actions.

33-ch33.indd 1091 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1092 PART III Introducing GUI Programming with Swing

Begin by creating an inner class called DebugAction that extends AbstractAction, as
shown here:

// A class to create an action for the Debug menu
// and toolbar.
class DebugAction extends AbstractAction {
 public DebugAction(String name, Icon image, int mnem,
 int accel, String tTip) {
 super(name, image);
 putValue(ACCELERATOR_KEY,
 KeyStroke.getKeyStroke(accel,
 InputEvent.CTRL_DOWN_MASK));
 putValue(MNEMONIC_KEY, new Integer(mnem));
 putValue(SHORT_DESCRIPTION, tTip);
 }

 // Handle events for both the toolbar and the
 // Debug menu.
 public void actionPerformed(ActionEvent ae) {
 String comStr = ae.getActionCommand();

 jlab.setText(comStr + " Selected");

 // Toggle the enabled status of the
 // Set and Clear Breakpoint options.
 if(comStr.equals("Set Breakpoint")) {
 clearAct.setEnabled(true);
 setAct.setEnabled(false);
 } else if(comStr.equals("Clear Breakpoint")) {
 clearAct.setEnabled(false);
 setAct.setEnabled(true);
 }
 }
}

DebugAction extends AbstractAction. It creates an action class that will be used to
define the properties associated with the Debug menu and toolbar. Its constructor has five
parameters that let you specify the following items:

•	 Name

•	 Icon

•	 Mnemonic

•	 Accelerator

•	 Tooltip

The first two are passed to AbstractAction’s constructor via super. The other three
properties are set through calls to putValue().

The actionPerformed() method of DebugAction handles events for the action. This
means that when an instance of DebugAction is used to create a toolbar button and a menu

33-ch33.indd 1092 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1093

Pa
rt

 II
I

item, events generated by either of those components are handled by the actionPerformed()
method in DebugAction. Notice that this handler displays the selection in jlab. In addition,
if the Set Breakpoint option is selected, then the Clear Breakpoint option is enabled and
the Set Breakpoint option is disabled. If the Clear Breakpoint option is selected, then the
Set Breakpoint option is enabled and the Clear Breakpoint option is disabled. This illustrates
how an action can be used to enable or disable a component. When an action is disabled, it
is disabled for all uses of that action. In this case, if Set Breakpoint is disabled, then it is
disabled both in the toolbar and in the menu.

Next, add these DebugAction instance variables to MenuDemo:

DebugAction setAct;
DebugAction clearAct;
DebugAction resumeAct;

Next, create three ImageIcons that represent the Debug options, as shown here:

// Load the images for the actions.
ImageIcon setIcon = new ImageIcon("setBP.gif");
ImageIcon clearIcon = new ImageIcon("clearBP.gif");
ImageIcon resumeIcon = new ImageIcon("resume.gif");

Now, create the actions that manage the Debug options, as shown here:

// Create actions.
setAct =
 new DebugAction("Set Breakpoint",
 setIcon,
 KeyEvent.VK_S,
 KeyEvent.VK_B,
 "Set a break point.");

clearAct =
 new DebugAction("Clear Breakpoint",
 clearIcon,
 KeyEvent.VK_C,
 KeyEvent.VK_L,
 "Clear a break point.");

resumeAct =
 new DebugAction("Resume",
 resumeIcon,
 KeyEvent.VK_R,
 KeyEvent.VK_R,
 "Resume execution after breakpoint.");

// Initially disable the Clear Breakpoint option.
clearAct.setEnabled(false);

Notice that the accelerator for Set Breakpoint is B and the accelerator for Clear Breakpoint
is L. The reason these keys are used rather than S and C is that these keys are already
allocated by the File menu for Save and Close. However, they can still be used as mnemonics
because each mnemonic is localized to its own menu. Also notice that the action that

33-ch33.indd 1093 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1094 PART III Introducing GUI Programming with Swing

represents Clear Breakpoint is initially disabled. It will be enabled only after a breakpoint
has been set.

Next, use the actions to create buttons for the toolbar and then add those buttons to
the toolbar, as shown here:

// Create the toolbar buttons by using the actions.
JButton jbtnSet = new JButton(setAct);
JButton jbtnClear = new JButton(clearAct);
JButton jbtnResume = new JButton(resumeAct);

// Create a Debug toolbar.
JToolBar jtb = new JToolBar("Breakpoints");

// Add the buttons to the toolbar.
jtb.add(jbtnSet);
jtb.add(jbtnClear);
jtb.add(jbtnResume);

// Add the toolbar to the north position of
// the content pane.
jfrm.add(jtb, BorderLayout.NORTH);

Finally, create the Debug menu, as shown next:

// Now, create a Debug menu that goes under the Options
// menu bar item. Use the actions to create the items.
JMenu jmDebug = new JMenu("Debug");
JMenuItem jmiSetBP = new JMenuItem(setAct);
JMenuItem jmiClearBP = new JMenuItem(clearAct);
JMenuItem jmiResume = new JMenuItem(resumeAct);
jmDebug.add(jmiSetBP);
jmDebug.add(jmiClearBP);
jmDebug.add(jmiResume);
jmOptions.add(jmDebug);

After making these changes and additions, the actions that you created will be used to
manage both the Debug menu and the toolbar. Thus, changing a property in the action
(such as disabling it) will affect all uses of that action. The program will now look as shown
in Figure 33-7.

Figure 33-7 Using actions to manage the Debug toolbar and menu

33-ch33.indd 1094 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1095

Pa
rt

 II
I

Put the Entire MenuDemo Program Together
Throughout the course of this discussion, many changes and additions have been made to
the MenuDemo program shown at the start of the chapter. Before concluding, it will be
helpful to assemble all the pieces. Doing so not only eliminates any ambiguity about the way
the pieces fit together, but it also gives you a complete menu demonstration program that
you can experiment with.

The following version of MenuDemo includes all of the additions and enhancements
described in this chapter. For clarity, the program has been reorganized, with separate
methods being used to construct the various menus and toolbar. Notice that several of the
menu-related variables, such as jmb, jmFile, and jtb, have been made into instance variables.

// The complete MenuDemo program.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class MenuDemo implements ActionListener {

 JLabel jlab;

 JMenuBar jmb;

 JToolBar jtb;

 JPopupMenu jpu;

 DebugAction setAct;
 DebugAction clearAct;
 DebugAction resumeAct;

 MenuDemo() {
 // Create a new JFrame container.
 JFrame jfrm = new JFrame("Complete Menu Demo");

 // Use default border layout.

 // Give the frame an initial size.
 jfrm.setSize(360, 200);

 // Terminate the program when the user closes the application.
 jfrm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 // Create a label that will display the menu selection.
 jlab = new JLabel();

 // Create the menu bar.
 jmb = new JMenuBar();

 // Make the File menu.
 makeFileMenu();

33-ch33.indd 1095 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1096 PART III Introducing GUI Programming with Swing

 // Construct the Debug actions.
 makeActions();

 // Make the toolbar.
 makeToolBar();

 // Make the Options menu.
 makeOptionsMenu();

 // Make the Help menu.
 makeHelpMenu();

 // Make the Edit popup menu.
 makeEditPUMenu();

 // Add a listener for the popup trigger.
 jfrm.addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 if(me.isPopupTrigger())
 jpu.show(me.getComponent(), me.getX(), me.getY());
 }
 public void mouseReleased(MouseEvent me) {
 if(me.isPopupTrigger())
 jpu.show(me.getComponent(), me.getX(), me.getY());
 }
 });

 // Add the label to the center of the content pane.
 jfrm.add(jlab, SwingConstants.CENTER);

 // Add the toolbar to the north position of
 // the content pane.
 jfrm.add(jtb, BorderLayout.NORTH);

 // Add the menu bar to the frame.
 jfrm.setJMenuBar(jmb);

 // Display the frame.
 jfrm.setVisible(true);
 }

 // Handle menu item action events.
 // This does NOT handle events generated
 // by the Debug options.
 public void actionPerformed(ActionEvent ae) {
 // Get the action command from the menu selection.
 String comStr = ae.getActionCommand();

 // If user chooses Exit, then exit the program.
 if(comStr.equals("Exit")) System.exit(0);

 // Otherwise, display the selection.
 jlab.setText(comStr + " Selected");
 }

33-ch33.indd 1096 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1097

Pa
rt

 II
I

 // An action class for the Debug menu
 // and toolbar.
 class DebugAction extends AbstractAction {
 public DebugAction(String name, Icon image, int mnem,
 int accel, String tTip) {
 super(name, image);
 putValue(ACCELERATOR_KEY,
 KeyStroke.getKeyStroke(accel,
 InputEvent.CTRL_DOWN_MASK));
 putValue(MNEMONIC_KEY, new Integer(mnem));
 putValue(SHORT_DESCRIPTION, tTip);
 }

 // Handle events for both the toolbar and the
 // Debug menu.
 public void actionPerformed(ActionEvent ae) {
 String comStr = ae.getActionCommand();

 jlab.setText(comStr + " Selected");

 // Toggle the enabled status of the
 // Set and Clear Breakpoint options.
 if(comStr.equals("Set Breakpoint")) {
 clearAct.setEnabled(true);
 setAct.setEnabled(false);
 } else if(comStr.equals("Clear Breakpoint")) {
 clearAct.setEnabled(false);
 setAct.setEnabled(true);
 }
 }
 }

 // Create the File menu with mnemonics and accelerators.
 void makeFileMenu() {
 JMenu jmFile = new JMenu("File");
 jmFile.setMnemonic(KeyEvent.VK_F);

 JMenuItem jmiOpen = new JMenuItem("Open",
 KeyEvent.VK_O);
 jmiOpen.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_O,
 InputEvent.CTRL_DOWN_MASK));

 JMenuItem jmiClose = new JMenuItem("Close",
 KeyEvent.VK_C);
 jmiClose.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_C,
 InputEvent.CTRL_DOWN_MASK));

 JMenuItem jmiSave = new JMenuItem("Save",
 KeyEvent.VK_S);
 jmiSave.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_S,
 InputEvent.CTRL_DOWN_MASK));

33-ch33.indd 1097 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1098 PART III Introducing GUI Programming with Swing

 JMenuItem jmiExit = new JMenuItem("Exit",
 KeyEvent.VK_E);
 jmiExit.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_E,
 InputEvent.CTRL_DOWN_MASK));

 jmFile.add(jmiOpen);
 jmFile.add(jmiClose);
 jmFile.add(jmiSave);
 jmFile.addSeparator();
 jmFile.add(jmiExit);
 jmb.add(jmFile);

 // Add the action listeners for the File menu.
 jmiOpen.addActionListener(this);
 jmiClose.addActionListener(this);
 jmiSave.addActionListener(this);
 jmiExit.addActionListener(this);
 }

 // Create the Options menu.
 void makeOptionsMenu() {
 JMenu jmOptions = new JMenu("Options");

 // Create the Colors submenu.
 JMenu jmColors = new JMenu("Colors");

 // Use check boxes for colors. This allows
 // the user to select more than one color.
 JCheckBoxMenuItem jmiRed = new JCheckBoxMenuItem("Red");
 JCheckBoxMenuItem jmiGreen = new JCheckBoxMenuItem("Green");
 JCheckBoxMenuItem jmiBlue = new JCheckBoxMenuItem("Blue");

 // Add the items to the Colors menu.
 jmColors.add(jmiRed);
 jmColors.add(jmiGreen);
 jmColors.add(jmiBlue);
 jmOptions.add(jmColors);

 // Create the Priority submenu.
 JMenu jmPriority = new JMenu("Priority");

 // Use radio buttons for the priority setting.
 // This lets the menu show which priority is used
 // but also ensures that one and only one priority
 // can be selected at any one time. Notice that
 // the High radio button is initially selected.
 JRadioButtonMenuItem jmiHigh =
 new JRadioButtonMenuItem("High", true);
 JRadioButtonMenuItem jmiLow =
 new JRadioButtonMenuItem("Low");

 // Add the items to the Priority menu.
 jmPriority.add(jmiHigh);

33-ch33.indd 1098 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1099

Pa
rt

 II
I

 jmPriority.add(jmiLow);
 jmOptions.add(jmPriority);

 // Create a button group for the radio button
 // menu items.
 ButtonGroup bg = new ButtonGroup();
 bg.add(jmiHigh);
 bg.add(jmiLow);

 // Now, create a Debug submenu that goes under
 // the Options menu bar item. Use actions to
 // create the items.
 JMenu jmDebug = new JMenu("Debug");
 JMenuItem jmiSetBP = new JMenuItem(setAct);
 JMenuItem jmiClearBP = new JMenuItem(clearAct);
 JMenuItem jmiResume = new JMenuItem(resumeAct);

 // Add the items to the Debug menu.
 jmDebug.add(jmiSetBP);
 jmDebug.add(jmiClearBP);
 jmDebug.add(jmiResume);
 jmOptions.add(jmDebug);

 // Create the Reset menu item.
 JMenuItem jmiReset = new JMenuItem("Reset");
 jmOptions.addSeparator();
 jmOptions.add(jmiReset);

 // Finally, add the entire options menu to
 // the menu bar
 jmb.add(jmOptions);

 // Add the action listeners for the Options menu,
 // except for those supported by the Debug menu.
 jmiRed.addActionListener(this);
 jmiGreen.addActionListener(this);
 jmiBlue.addActionListener(this);
 jmiHigh.addActionListener(this);
 jmiLow.addActionListener(this);
 jmiReset.addActionListener(this);
 }

 // Create the Help menu.
 void makeHelpMenu() {
 JMenu jmHelp = new JMenu("Help");

 // Add an icon to the About menu item.
 ImageIcon icon = new ImageIcon("AboutIcon.gif");

 JMenuItem jmiAbout = new JMenuItem("About", icon);
 jmiAbout.setToolTipText("Info about the MenuDemo program.");
 jmHelp.add(jmiAbout);
 jmb.add(jmHelp);

33-ch33.indd 1099 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1100 PART III Introducing GUI Programming with Swing

 // Add action listener for About.
 jmiAbout.addActionListener(this);
 }

 // Construct the actions needed by the Debug menu
 // and toolbar.
 void makeActions() {
 // Load the images for the actions.
 ImageIcon setIcon = new ImageIcon("setBP.gif");
 ImageIcon clearIcon = new ImageIcon("clearBP.gif");
 ImageIcon resumeIcon = new ImageIcon("resume.gif");

 // Create actions.
 setAct =
 new DebugAction("Set Breakpoint",
 setIcon,
 KeyEvent.VK_S,
 KeyEvent.VK_B,
 "Set a break point.");

 clearAct =
 new DebugAction("Clear Breakpoint",
 clearIcon,
 KeyEvent.VK_C,
 KeyEvent.VK_L,
 "Clear a break point.");

 resumeAct =
 new DebugAction("Resume",
 resumeIcon,
 KeyEvent.VK_R,
 KeyEvent.VK_R,
 "Resume execution after breakpoint.");

 // Initially disable the Clear Breakpoint option.
 clearAct.setEnabled(false);
 }

 // Create the Debug toolbar.
 void makeToolBar() {
 // Create the toolbar buttons by using the actions.
 JButton jbtnSet = new JButton(setAct);
 JButton jbtnClear = new JButton(clearAct);
 JButton jbtnResume = new JButton(resumeAct);

 // Create the Debug toolbar.
 jtb = new JToolBar("Breakpoints");

 // Add the buttons to the toolbar.
 jtb.add(jbtnSet);
 jtb.add(jbtnClear);
 jtb.add(jbtnResume);
 }

33-ch33.indd 1100 14/02/14 5:23 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 33 Introducing Swing Menus 1101

Pa
rt

 II
I

 // Create the Edit popup menu.
 void makeEditPUMenu() {
 jpu = new JPopupMenu();

 // Create the popup menu items
 JMenuItem jmiCut = new JMenuItem("Cut");
 JMenuItem jmiCopy = new JMenuItem("Copy");
 JMenuItem jmiPaste = new JMenuItem("Paste");

 // Add the menu items to the popup menu.
 jpu.add(jmiCut);
 jpu.add(jmiCopy);
 jpu.add(jmiPaste);

 // Add the Edit popup menu action listeners.
 jmiCut.addActionListener(this);
 jmiCopy.addActionListener(this);
 jmiPaste.addActionListener(this);
 }

 public static void main(String args[]) {
 // Create the frame on the event dispatching thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 new MenuDemo();
 }
 });
 }
}

Continuing Your Exploration of Swing
Swing defines a very large GUI toolkit. It has many more features that you will want to
explore on your own. For example, it supplies dialog classes, such as JOptionPane and
JDialog, that you can use to streamline the construction of dialog windows. It also provides
additional controls beyond those introduced in Chapter 31. Two you will want to explore
are JSpinner (which creates a spin control) and JFormattedTextField (which supports
formatted text). You will also want to experiment with defining your own models for the
various components. Frankly, the best way to become familiar with Swing’s capabilities is to
experiment with it.

33-ch33.indd 1101 14/02/14 5:23 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio

Introducing GUI
Programming with JavaFX

PART

IV
CHAPTER 34
Introducing JavaFX GUI
Programming

CHAPTER 35
Exploring JavaFX Controls

CHAPTER 36
Introducing JavaFX Menus

34-ch34.indd 1103 14/02/14 5:24 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

34
CHAPTER

 1105

Introducing JavaFX
GUI Programming

Like all successful languages, Java continues to evolve and improve. This also applies to its
libraries. One of the most important examples of this evolutionary process is found in its
GUI frameworks. As explained earlier in the book, the original GUI framework was the AWT.
Because of its several limitations, it was soon followed by Swing, which offered a far superior
approach to creating GUIs. Swing was so successful that it has remained the primary Java
GUI framework for over a decade. (And a decade is a long time in the fast-moving world of
programming!) However, Swing was designed when the enterprise application dominated
software development. Today, consumer applications, and especially mobile apps, have risen
in importance, and such applications often demand a GUI that has “visual sparkle.”
Furthermore, no matter the type of application, the trend is toward more exciting visual
effects. To better handle these types of GUIs, a new approach was needed, and this lead to
the creation of JavaFX. JavaFX is Java’s next-generation client platform and GUI framework.

JavaFX provides a powerful, streamlined, flexible framework that simplifies the creation
of modern, visually exciting GUIs. As such, it is a very large system, and, as was the case with
Swing discussed in Part III, it is not possible to describe it fully in this book. Instead, the
purpose of this and the next two chapters is to introduce several of its key features and
techniques. Once you understand the fundamentals, you will find it easy to explore other
aspects of JavaFX on your own.

One question that naturally arises relating to JavaFX is this: Is JavaFX designed as a
replacement for Swing? The answer is a qualified Yes. However, given the large amount of
Swing legacy code and the legions of programmers who know how to program for Swing,
Swing will be in use for a very long time. This is especially true for enterprise applications.
Nevertheless, JavaFX has clearly been positioned as the platform of the future. It is expected
that, over the next few years, JavaFX will supplant Swing for new projects. JavaFX is
something that no Java programmer can afford to ignore.

Before continuing, it is important to mention that the development of JavaFX occurred
in two main phases. The original JavaFX was based on a scripting language called JavaFX
Script. However, JavaFX Script has been discontinued. Beginning with the release of JavaFX
2.0, JavaFX has been programmed in Java itself and provides a comprehensive API. JavaFX

34-ch34.indd 1105 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1106 PART IV Introducing GUI Programming with JavaFX

also supports FXML, which can be (but is not required to be) used to specify the user
interface. JavaFX has been bundled with Java since JDK 7, update 4. The latest version of
JavaFX is JavaFX 8, which is bundled with JDK 8. (The version number is 8 to align with the
JDK version. Thus, the numbers 3 through 7 were skipped.) Because, at the time of this
writing, JavaFX 8 represents the latest version of JavaFX, it is the version of JavaFX discussed
here. Furthermore, when the term JavaFX is used in this and the following chapters, it
refers to JavaFX 8.

NOTE This and the following two chapters assume that you have a basic understanding of event handling
as introduced in Chapter 24, and Swing fundamentals, as described by the preceding three chapters.

JavaFX Basic Concepts
In general, the JavaFX framework has all of the good features of Swing. For example, JavaFX
is lightweight. It can also support an MVC architecture. Much of what you already know
about creating GUIs using Swing is conceptually applicable to JavaFX. That said, there are
significant differences between the two.

From a programmer’s point of view, the first differences you notice between JavaFX and
Swing are the organization of the framework and the relationship of the main components.
Simply put, JavaFX offers a more streamlined, easier-to-use, updated approach. JavaFX also
greatly simplifies the rendering of objects because it handles repainting automatically. It is
no longer necessary for your program to handle this task manually. The preceding is not
intended to imply that Swing is poorly designed. It is not. It is just that the art and science
of programming has moved forward, and JavaFX has received the benefits of that evolution.
Simply put, JavaFX facilitates a more visually dynamic approach to GUIs.

The JavaFX Packages
The JavaFX elements are contained in packages that begin with the javafx prefix. At the
time of this writing, there are more than 30 JavaFX packages in its API library. Here are
four examples: javafx.application, javafx.stage, javafx.scene, and javafx.scene.layout.
Although we will only use a few of these packages in this chapter, you will want to spend
some time browsing their capabilities. JavaFX offers a wide array of functionality.

The Stage and Scene Classes
The central metaphor implemented by JavaFX is the stage. As in the case of an actual stage
play, a stage contains a scene. Thus, loosely speaking, a stage defines a space and a scene
defines what goes in that space. Or, put another way, a stage is a container for scenes and a
scene is a container for the items that comprise the scene. As a result, all JavaFX applications
have at least one stage and one scene. These elements are encapsulated in the JavaFX API
by the Stage and Scene classes. To create a JavaFX application, you will, at minimum, add at
least one Scene object to a Stage. Let’s look a bit more closely at these two classes.

Stage is a top-level container. All JavaFX applications automatically have access to one
Stage, called the primary stage. The primary stage is supplied by the run-time system when a
JavaFX application is started. Although you can create other stages, for many applications,
the primary stage will be the only one required.

34-ch34.indd 1106 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1107

Pa
rt

 IV

As mentioned, Scene is a container for the items that comprise the scene. These can
consist of controls, such as push buttons and check boxes, text, and graphics. To create a
scene, you will add those elements to an instance of Scene.

Nodes and Scene Graphs
The individual elements of a scene are called nodes. For example, a push button control is a
node. However, nodes can also consist of groups of nodes. Furthermore, a node can have a
child node. In this case, a node with a child is called a parent node or branch node. Nodes
without children are terminal nodes and are called leaves. The collection of all nodes in a
scene creates what is referred to as a scene graph, which comprises a tree.

There is one special type of node in the scene graph, called the root node. This is the
top-level node and is the only node in the scene graph that does not have a parent. Thus,
with the exception of the root node, all other nodes have parents, and all nodes either directly
or indirectly descend from the root node.

The base class for all nodes is Node. There are several other classes that are, either directly
or indirectly, subclasses of Node. These include Parent, Group, Region, and Control, to
name a few.

Layouts
JavaFX provides several layout panes that manage the process of placing elements in a
scene. For example, the FlowPane class provides a flow layout and the GridPane class
supports a row/column grid-based layout. Several other layouts, such as BorderPane
(which is similar to the AWT’s BorderLayout), are available. The layout panes are
packaged in javafx.scene.layout.

The Application Class and the Life-cycle Methods
A JavaFX application must be a subclass of the Application class, which is packaged in
javafx.application. Thus, your application class will extend Application. The Application
class defines three life-cycle methods that your application can override. These are called
init(), start(), and stop(), and are shown here, in the order in which they are called:

void init()

abstract void start(Stage primaryStage)

void stop()

The init() method is called when the application begins execution. It is used to perform
various initializations. As will be explained, however, it cannot be used to create a stage or
build a scene. If no initializations are required, this method need not be overridden because
an empty, default version is provided.

The start() method is called after init(). This is where your application begins and it
can be used to construct and set the scene. Notice that it is passed a reference to a Stage
object. This is the stage provided by the run-time system and is the primary stage. (You can
also create other stages, but you won’t need to for simple applications.) Notice that this
method is abstract. Thus, it must be overridden by your application.

34-ch34.indd 1107 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1108 PART IV Introducing GUI Programming with JavaFX

When your application is terminated, the stop() method is called. It is here that you
can handle any cleanup or shutdown chores. In cases in which no such actions are needed,
an empty, default version is provided.

Launching a JavaFX Application
To start a free-standing JavaFX application, you must call the launch() method defined by
Application. It has two forms. Here is the one used in this chapter:

public static void launch(String ... args)

Here, args is a possibly empty list of strings that typically specify command-line arguments.
When called, launch() causes the application to be constructed, followed by calls to init()
and start(). The launch() method will not return until after the application has terminated.
This version of launch() starts the subclass of Application from which launch() is called.
The second form of launch() lets you specify a class other than the enclosing class to start.

Before moving on, it is necessary to make an important point: JavaFX applications that
have been packaged by using the javafxpackager tool (or its equivalent in an IDE) do not
need to include a call to launch(). However, its inclusion often simplifies the test/debug
cycle, and it lets the program be used without the creation of a JAR file. Thus, it is included
in all of the JavaFX programs in this book.

A JavaFX Application Skeleton
All JavaFX applications share the same basic skeleton. Therefore, before looking at any more
JavaFX features, it will be useful to see what that skeleton looks like. In addition to showing
the general form of a JavaFX application, the skeleton also illustrates how to launch the
application and demonstrates when the life-cycle methods are called. A message noting
when each life-cycle method is called is displayed on the console. The complete skeleton is
shown here:

// A JavaFX application skeleton.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;

public class JavaFXSkel extends Application {

 public static void main(String[] args) {

 System.out.println("Launching JavaFX application.");

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the init() method.
 public void init() {

34-ch34.indd 1108 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1109

Pa
rt

 IV

 System.out.println("Inside the init() method.");
 }

 // Override the start() method.
 public void start(Stage myStage) {

 System.out.println("Inside the start() method.");

 // Give the stage a title.
 myStage.setTitle("JavaFX Skeleton.");

 // Create a root node. In this case, a flow layout pane
 // is used, but several alternatives exist.
 FlowPane rootNode = new FlowPane();

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 200);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Show the stage and its scene.
 myStage.show();

 }

 // Override the stop() method.
 public void stop() {
 System.out.println("Inside the stop() method.");
 }
}

Although the skeleton is quite short, it can be compiled and run. It produces the
window shown here:

It also produces the following output on the console:

Launching JavaFX application.
Inside the init() method.
Inside the start() method.

34-ch34.indd 1109 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1110 PART IV Introducing GUI Programming with JavaFX

When you close the window, this message is displayed on the console:

Inside the stop() method.

Of course, in a real program, the life-cycle methods would not normally output anything
to System.out. They do so here simply to illustrate when each method is called. Furthermore,
as explained earlier, you will need to override the init() and stop() methods only if your
application must perform special startup or shutdown actions. Otherwise, you can use the
default implementations of these methods provided by the Application class.

Let’s examine this program in detail. It begins by importing four packages. The first is
javafx.application, which contains the Application class. The Scene class is packaged in
javafx.scene, and Stage is packaged in javafx.stage. The javafx.scene.layout package
provides several layout panes. The one used by the program is FlowPane.

Next, the application class JavaFXSkel is created. Notice that it extends Application. As
explained, Application is the class from which all JavaFX applications are derived. JavaFXSkel
contains two methods. The first is main(). It is used to launch the application via a call to
launch(). Notice that the args parameter to main() is passed to the launch() method.
Although this is a common approach, you can pass a different set of parameters to launch(),
or none at all. One other point: As explained earlier, launch() is required by a free-standing
application, but not in other cases. When it is not needed, main() is also not needed.
However, for reasons already explained, both main() and launch() are included in the
JavaFX programs in this book.

When the application begins, the init() method is called first by the JavaFX run-time
system. For the sake of illustration, it simply displays a message on System.out, but it would
normally be used to initialize some aspect of the application. Of course, if no initialization
is required, it is not necessary to override init() because an empty, default implementation
is provided. It is important to emphasize that init() cannot be used to create the stage or
scene portions of a GUI. Rather, these items should be constructed and displayed by the
start() method.

After init() finishes, the start() method executes. It is here that the initial scene is
created and set to the primary stage. Let’s look at this method line-by-line. First, notice that
start() has a parameter of type Stage. When start() is called, this parameter will receive a
reference to the primary stage of the application. It is to this stage that you will set a scene
for the application.

After displaying a message on the console that start() has begun execution, it sets the
title of the stage using this call to setTitle():

myStage.setTitle("JavaFX Skeleton.");

Although this step is not necessarily required, it is customary for stand-alone applications.
This title becomes the name of the main application window.

Next, a root node for a scene is created. The root node is the only node in a scene
graph that does not have a parent. In this case, a FlowPane is used for the root node, but
there are several other classes that can be used for the root.

FlowPane rootNode = new FlowPane();

34-ch34.indd 1110 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1111

Pa
rt

 IV

As mentioned, a FlowPane is a layout manager that uses a flow layout. This is a layout in
which elements are positioned line-by-line, with lines wrapping as needed. (Thus, it works
much like the FlowLayout class used by the AWT and Swing.) In this case, a horizontal flow
is used, but it is possible to specify a vertical flow. Although not needed by this skeletal
application, it is also possible to specify other layout properties, such as a vertical and
horizontal gap between elements, and an alignment. You will see an example of this later
in this chapter.

The following line uses the root node to construct a Scene:

Scene myScene = new Scene(rootNode, 300, 200);

Scene provides several versions of its constructor. The one used here creates a scene that
has the specified root with the specified width and height. It is shown here:

Scene(Parent rootnode, double width, double height)

Notice that the type of rootnode is Parent. It is a subclass of Node and encapsulates nodes
that can have children. Also notice that the width and the height are double values. This
lets you pass fractional values, if needed. In the skeleton, the root is rootNode, the width is
300 and the height is 200.

The next line in the program sets myScene as the scene for myStage:

myStage.setScene(myScene);

Here, setScene() is a method defined by Stage that sets the scene to that specified by its
argument.

In cases in which you don’t make further use of the scene, you can combine the
previous two steps, as shown here:

myStage.setScene(new Scene(rootNode, 300, 200));

Because of its compactness, this form will be used by most of the subsequent examples.
The last line in start() displays the stage and its scene:

myStage.show();

In essence, show() shows the window that was created by the stage and screen.
When you close the application, its window is removed from the screen and the stop()

method is called by the JavaFX run-time system. In this case, stop() simply displays a message
on the console, illustrating when it is called. However, stop() would not normally display
anything. Furthermore, if your application does not need to handle any shutdown actions,
there is no reason to override stop() because an empty, default implementation is provided.

Compiling and Running a JavaFX Program
One important advantage of JavaFX is that the same program can be run in a variety of
different execution environments. For example, you can run a JavaFX program as a
stand-alone desktop application, inside a web browser, or as a Web Start application. However,
different ancillary files may be needed in some cases, for example, an HTML file or a Java
Network Launch Protocol (JNLP) file.

34-ch34.indd 1111 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1112 PART IV Introducing GUI Programming with JavaFX

In general, a JavaFX program is compiled like any other Java program. However, because
of the need for additional support for various execution environments, the easiest way to
compile a JavaFX application is to use an Integrated Development Environment (IDE) that
fully supports JavaFX programming, such as NetBeans. Just follow the instructions for the
IDE you are using.

Alternatively, if you want to compile and test a JavaFX application using the command-
line tools, you can easily do so. Just compile and run the application in the normal way,
using javac and java. Be aware that using the command-line compiler neither creates any
HTML or JNLP files that would be needed if you want to run the application in a way other
than as a stand-alone application, nor does it create a JAR file for the program. To create
these files, you need to use a tool such as javafxpackager.

The Application Thread
In the preceding discussion, it was mentioned that you cannot use the init() method to
construct a stage or scene. You also cannot create these items inside the application’s
constructor. The reason is that a stage or scene must be constructed on the application
thread. However, the application’s constructor and the init() method are called on the
main thread, also called the launcher thread. Thus, they can’t be used to construct a stage
or scene. Instead, you must use the start() method, as the skeleton demonstrates, to
create the initial GUI because start() is called on the application thread.

Furthermore, any changes to the GUI currently displayed must be made from the
application thread. Fortunately, in JavaFX, events are sent to your program on the application
thread. Therefore, event handlers can be used to interact with the GUI. The stop() method
is also called on the application thread.

A Simple JavaFX Control: Label
The primary ingredient in most user interfaces is the control because a control enables the
user to interact with the application. As you would expect, JavaFX supplies a rich assortment
of controls. The simplest control is the label because it just displays a message, which, in
this example, is text. Although quite easy to use, the label is a good way to introduce the
techniques needed to begin building a scene graph.

The JavaFX label is an instance of the Label class, which is packaged in javafx.scene.control.
Label inherits Labeled and Control, among other classes. The Labeled class defines several
features that are common to all labeled elements (that is, those that can contain text), and
Control defines features related to all controls.

Label defines three constructors. The one we will use here is

Label(String str)

Here, str is the string that is displayed.
Once you have created a label (or any other control), it must be added to the scene’s

content, which means adding it to the scene graph. To do this, you will first call getChildren()

34-ch34.indd 1112 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1113

Pa
rt

 IV

on the root node of the scene graph. It returns a list of the child nodes in the form of an
ObservableList<Node>. ObservableList is packaged in javafx.collections, and it inherits
java.util.List, which means that it supports all of the features available to a list as defined by
the Collections Framework. Using the returned list of child nodes, you can add the label to
the list by calling add(), passing in a reference to the label.

The following program puts the preceding discussion into action by creating a simple
JavaFX application that displays a label:

// Demonstrate a JavaFX label.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

public class JavaFXLabelDemo extends Application {

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate a JavaFX label.");

 // Use a FlowPane for the root node.
 FlowPane rootNode = new FlowPane();

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 200);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.
 Label myLabel = new Label("This is a JavaFX label");

 // Add the label to the scene graph.
 rootNode.getChildren().add(myLabel);

 // Show the stage and its scene.
 myStage.show();
 }
}

34-ch34.indd 1113 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1114 PART IV Introducing GUI Programming with JavaFX

This program produces the following window:

In the program, pay special attention to this line:

rootNode.getChildren().add(myLabel);

It adds the label to the list of children for which rootNode is the parent. Although this line
could be separated into its individual pieces if necessary, you will often see it as shown here.

Before moving on, it is useful to point out that ObservableList provides a method called
addAll() that can be used to add two or more children to the scene graph in a single call.
(You will see an example of this shortly.) To remove a control from the scene graph, call
remove() on the ObservableList. For example,

rootNode.getChildren().remove(myLabel);

removes myLabel from the scene.

Using Buttons and Events
Although the program in the preceding section presents a simple example of using a
JavaFX control and constructing a scene graph, it does not show how to handle events. As
you know, most GUI controls generate events that are handled by your program. For
example, buttons, check boxes, and lists all generate events when they are used. In many
ways, event handling in JavaFX is similar to event handling in Swing or the AWT, but it’s
more streamlined. Therefore, if you already are proficient at handling events for these
other two GUIs, you will have no trouble using the event handling system provided by
JavaFX.

One commonly used control is the button. This makes button events one of the most
frequently handled. Therefore, a button is a good way to demonstrate the fundamentals of
event handling in JavaFX. For this reason, the fundamentals of event handling and the
button are introduced together.

34-ch34.indd 1114 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1115

Pa
rt

 IV

Event Basics
The base class for JavaFX events is the Event class, which is packaged in javafx.event. Event
inherits java.util.EventObject, which means that JavaFX events share the same basic
functionality as other Java events. Several subclasses of Event are defined. The one that we
will use here is ActionEvent. It handles action events generated by a button.

In general, JavaFX uses what is, in essence, the delegation event model approach to event
handling. To handle an event, you must first register the handler that acts as a listener for
the event. When the event occurs, the listener is called. It must then respond to the event
and return. In this regard, JavaFX events are managed much like Swing events, for example.

Events are handled by implementing the EventHandler interface, which is also in
javafx.event. It is a generic interface with the following form:

interface EventHandler<T extends Event>

Here, T specifies the type of event that the handler will handle. It defines one method,
called handle(), which receives the event object as a parameter. It is shown here:

void handle(T eventObj)

Here, eventObj is the event that was generated. Typically, event handlers are implemented
through anonymous inner classes or lambda expressions, but you can use stand-alone
classes for this purpose if it is more appropriate to your application (for example, if one
event handler will handle events from more than one source).

Although not required by the examples in this chapter, it is sometimes useful to know
the source of an event. This is especially true if you are using one handler to handle events
from different sources. You can obtain the source of the event by calling getSource(),
which is inherited from java.util.EventObject. It is shown here:

Object getSource()

Other methods in Event let you obtain the event type, determine if the event has been
consumed, consume an event, fire an event, and obtain the target of the event. When an
event is consumed, it stops the event from being passed to a parent handler.

One last point: In JavaFX, events are processed via an event dispatch chain. When an
event is generated, it is passed to the root node of the chain. The event is then passed down
the chain to the target of the event. After the target node processes the event, the event is
passed back up the chain, thus allowing parent nodes a chance to process the event, if
necessary. This is called event bubbling. It is possible for a node in the chain to consume an
event, which prevents it from being further processed.

NOTE Although not used in this introduction to JavaFX, an application can also implement an event
filter, which can be used to manage events. A filter is added to a node by calling addEventFilter(),
which is defined by Node. A filter can consume an event, thus preventing further processing.

Introducing the Button Control
In JavaFX, the push button control is provided by the Button class, which is in javafx.scene.-
control. Button inherits a fairly long list of base classes that include ButtonBase, Labeled,
Region, Control, Parent, and Node. If you examine the API documentation for Button, you

34-ch34.indd 1115 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1116 PART IV Introducing GUI Programming with JavaFX

will see that much of its functionality comes from its base classes. Furthermore, it supports a
wide array of options. However, here we will use its default form. Buttons can contain text,
graphics, or both. In this chapter, we will use text-based buttons. An example of a graphics-
based button is shown in the next chapter.

Button defines three constructors. The one we will use is shown here:

Button(String str)

In this case, str is the message that is displayed in the button.
When a button is pressed, an ActionEvent is generated. ActionEvent is packaged in

javafx.event. You can register a listener for this event by using setOnAction(), which has
this general form:

final void setOnAction(EventHandler<ActionEvent> handler)

Here, handler is the handler being registered. As mentioned, often you will use an anonymous
inner class or lambda expression for the handler. The setOnAction() method sets the
property onAction, which stores a reference to the handler. As with all other Java event
handling, your handler must respond to the event as fast as possible and then return. If
your handler consumes too much time, it will noticeably slow down the application. For
lengthy operations, you must use a separate thread of execution.

Demonstrating Event Handling and the Button
The following program demonstrates event handling. It uses two buttons and a label. Each
time a button is pressed, the label is set to display which button was pressed.

// Demonstrate JavaFX events and buttons.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;

public class JavaFXEventDemo extends Application {

 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate JavaFX Buttons and Events.");

34-ch34.indd 1116 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1117

Pa
rt

 IV

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 100);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.
 response = new Label("Push a Button");

 // Create two push buttons.
 Button btnAlpha = new Button("Alpha");
 Button btnBeta = new Button("Beta");

 // Handle the action events for the Alpha button.
 btnAlpha.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Alpha was pressed.");
 }
 });

 // Handle the action events for the Beta button.
 btnBeta.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Beta was pressed.");
 }
 });

 // Add the label and buttons to the scene graph.
 rootNode.getChildren().addAll(btnAlpha, btnBeta, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output from this program is shown here:

34-ch34.indd 1117 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1118 PART IV Introducing GUI Programming with JavaFX

Let’s examine a few key portions of this program. First, notice how buttons are created
by these two lines:

Button btnAlpha = new Button("Alpha");
Button btnBeta = new Button("Beta");

This creates two text-based buttons. The first displays the string Alpha; the second
displays Beta.

Next, an action event handler is set for each of these buttons. The sequence for the
Alpha button is shown here:

// Handle the action events for the Alpha button.
btnAlpha.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Alpha was pressed.");
 }
});

As explained, buttons respond to events of type ActionEvent. To register a handler for these
events, the setOnAction() method is called on the button. It uses an anonymous inner class
to implement the EventHandler interface. (Recall that EventHandler defines only the
handle() method.) Inside handle(), the text in the response label is set to reflect the fact
that the Alpha button was pressed. Notice that this is done by calling the setText() method
on the label. Events are handled by the Beta button in the same way.

Note that response is declared as a field within FXEventDemo, rather than as a local
variable. This is because it is accessed within the button event handlers, which are
anonymous inner classes.

After the event handlers have been set, the response label and the buttons btnAlpha
and btnBeta are added to the scene graph by using a call to addAll():

rootNode.getChildren().addAll(btnAlpha, btnBeta, response);

The addAll() method adds a list of nodes to the invoking parent node. Of course, these
nodes could have been added by three separate calls to add(), but the addAll() method is
more convenient to use in this situation.

There are two other things of interest in this program that relate to the way the controls
are displayed in the window. First, when the root node is created, this statement is used:

FlowPane rootNode = new FlowPane(10, 10);

Here, the FlowPane constructor is passed two values. These specify the horizontal and
vertical gap that will be left around elements in the scene. If these gaps are not specified,
then two elements (such as two buttons) would be positioned in such a way that no space
is between them. Thus, the controls would run together, creating a very unappealing user
interface. Specifying gaps prevents this.

The second point of interest is the following line, which sets the alignment of the
elements in the FlowPane:

rootNode.setAlignment(Pos.CENTER);

34-ch34.indd 1118 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1119

Pa
rt

 IV

Here, the alignment of the elements is centered. This is done by calling setAlignment() on
the FlowPane. The value Pos.CENTER specifies that both a vertical and horizontal center
will be used. Other alignments are possible. Pos is an enumeration that specifies alignment
constants. It is packaged in javafx.geometry.

Before moving on, one more point needs to be made. The preceding program used
anonymous inner classes to handle button events. However, because the EventHandler
interface defines only one abstract method, handle(), a lambda expression could have
passed to setOnAction(), instead. In this case, the parameter type of setOnAction() would
supply the target context for the lambda expression. For example, here is the handler for
the Alpha button, rewritten to use a lambda:

btnAlpha.setOnAction((ae) ->
 response.setText("Alpha was pressed.")
);

Notice that the lambda expression is more compact than the anonymous inner class.
Because lambda expressions are a new feature just recently added to Java, but the anonymous
inner class is a widely used construct, readily understood by nearly all Java programmers,
the event handlers in subsequent examples will use anonymous inner classes. This will also
allow the examples to be compiled by readers using JDK 7 (which does not support lambdas).
However, on your own, you might want to experiment with converting them to lambda
expressions. It is a good way to gain experience using lambdas in your own code.

Drawing Directly on a Canvas
As mentioned early on, JavaFX handles rendering tasks for you automatically, rather than
you handling them manually. This is one of the most important ways that JavaFX improves
on Swing. As you may know, in Swing or the AWT, you must call the repaint() method to
cause a window to be repainted. Furthermore, your application needs to store the window
contents, redrawing them when painting is requested. JavaFX eliminates this tedious
mechanism because it keeps track of what you display in a scene and redisplays that scene
as needed. This is called retained mode. With this approach, there is no need to call a method
like repaint(). Rendering is automatic.

One place that JavaFX’s approach to rendering is especially helpful is when displaying
graphics objects, such as lines, circles, and rectangles. JavaFX’s graphics methods are found
in the GraphicsContext class, which is part of java.scene.canvas. These methods can be
used to draw directly on the surface of a canvas, which is encapsulated by the Canvas class
in java.scene.canvas. When you draw something, such as a line, on a canvas, JavaFX
automatically renders it whenever it needs to be redisplayed.

Before you can draw on a canvas, you must perform two steps. First, you must create a
Canvas instance. Second, you must obtain a GraphicsContext object that refers to that
canvas. You can then use the GraphicsContext to draw output on the canvas.

The Canvas class is derived from Node; thus it can be used as a node in a scene graph.
Canvas defines two constructors. One is the default constructor, and the other is the one
shown here:

Canvas(double width, double height)

Here, width and height specify the dimensions of the canvas.

34-ch34.indd 1119 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1120 PART IV Introducing GUI Programming with JavaFX

To obtain a GraphicsContext that refers to a canvas, call getGraphicsContext2D().
Here is its general form:

GraphicsContext getGraphicsContext2D()

The graphics context for the canvas is returned.
GraphicsContext defines a large number of methods that draw shapes, text, and images,

and support effects and transforms. If sophisticated graphics programming is in your future,
you will definitely want to study its capabilities closely. For our purposes, we will use only a
few of its methods, but they will give you a sense of its power. They are described here.

You can draw a line using strokeLine(), shown here:

void strokeLine(double startX, double startY, double endX, double endY)

It draws a line from startX,startY to endX,endY, using the current stroke, which can be a solid
color or some more complex style.

To draw a rectangle, use either strokeRect() or fillRect(), shown here:

void strokeRect(double topX, double topY, double width, double height)

void fillRect(double topX, double topY, double width, double height)

The upper-left corner of the rectangle is at topX,topY. The width and height parameters specify
its width and height. The strokeRect() method draws the outline of a rectangle using the
current stroke, and fillRect() fills the rectangle with the current fill. The current fill can be
as simple as a solid color or something more complex.

To draw an ellipse, use either strokeOval() or fillOval(), shown next:

void strokeOval(double topX, double topY, double width, double height)

void fillOval(double topX, double topY, double width, double height)

The upper-left corner of the rectangle that bounds the ellipse is at topX,topY. The width and
height parameters specify its width and height. The strokeOval() method draws the outline
of an ellipse using the current stroke, and fillOval() fills the oval with the current fill. To
draw a circle, pass the same value for width and height.

You can draw text on a canvas by using the strokeText() and fillText() methods. We
will use this version of fillText():

void fillText(String str, double topX, double topY)

It displays str starting at the location specified by topX,topY, filling the text with the current fill.
You can set the font and font size of the text being displayed by using setFont(). You can

obtain the font used by the canvas by calling getFont(). By default, the system font is used.
You can create a new font by constructing a Font object. Font is packaged in javafx.scene.-
text. For example, you can create a default font of a specified size by using this constructor:

Font(double fontSize)

Here, fontSize specifies the size of the font.
You can specify the fill and stroke using these two methods defined by Canvas:

void setFill(Paint newFill)

void setStroke(Paint newStroke)

34-ch34.indd 1120 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1121

Pa
rt

 IV

Notice that the parameter of both methods is of type Paint. This is an abstract class packaged
in javafx.scene.paint. Its subclasses define fills and strokes. The one we will use is Color,
which simply describes a solid color. Color defines several static fields that specify a wide
array of colors, such as Color.BLUE, Color.RED, Color.GREEN, and so on.

The following program uses the aforementioned methods to demonstrate drawing on a
canvas. It first displays a few graphic objects on the canvas. Then, each time the Change Color
button is pressed, the color of three of the objects changes color. If you run the program,
you will see that the shapes whose color is not changed are unaffected by the change in
color of the other objects. Furthermore, if you try covering and then uncovering the window,
you will see that the canvas is automatically repainted, without any other actions on the part
of your program. Sample output is shown here:

// Demonstrate drawing.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;
import javafx.scene.shape.*;
import javafx.scene.canvas.*;
import javafx.scene.paint.*;
import javafx.scene.text.*;

public class DirectDrawDemo extends Application {

 GraphicsContext gc;

34-ch34.indd 1121 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1122 PART IV Introducing GUI Programming with JavaFX

 Color[] colors = { Color.RED, Color.BLUE, Color.GREEN, Color.BLACK };
 int colorIdx = 0;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Draw Directly to a Canvas.");

 // Use a FlowPane for the root node.
 FlowPane rootNode = new FlowPane();

 // Center the nodes in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 450, 450);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a canvas.
 Canvas myCanvas = new Canvas(400, 400);

 // Get the graphics context for the canvas.
 gc = myCanvas.getGraphicsContext2D();

 // Create a push button.
 Button btnChangeColor = new Button("Change Color");

 // Handle the action events for the Change Color button.
 btnChangeColor.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {

 // Set the stroke and fill color.
 gc.setStroke(colors[colorIdx]);
 gc.setFill(colors[colorIdx]);

 // Redraw the line, text, and filled rectangle in the
 // new color. This leaves the color of the other nodes
 // unchanged.
 gc.strokeLine(0, 0, 200, 200);
 gc.fillText("This is drawn on the canvas.", 60, 50);
 gc.fillRect(100, 320, 300, 40);

34-ch34.indd 1122 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 34 Introducing JavaFX GUI Programming 1123

Pa
rt

 IV

 // Change the color.
 colorIdx++;
 if(colorIdx == colors.length) colorIdx= 0;
 }
 });

 // Draw initial output on the canvas.
 gc.strokeLine(0, 0, 200, 200);
 gc.strokeOval(100, 100, 200, 200);
 gc.strokeRect(0, 200, 50, 200);
 gc.fillOval(0, 0, 20, 20);
 gc.fillRect(100, 320, 300, 40);

 // Set the font size to 20 and draw text.
 gc.setFont(new Font(20));
 gc.fillText("This is drawn on the canvas.", 60, 50);

 // Add the canvas and button to the scene graph.
 rootNode.getChildren().addAll(myCanvas, btnChangeColor);

 // Show the stage and its scene.
 myStage.show();
 }
}

It is important to emphasize that GraphicsContext supports many more operations than
those demonstrated by the preceding program. For example, you can apply various
transforms, rotations, and effects. Despite its power, its various features are easy to master
and use. One other point: A canvas is transparent. Therefore, if you stack canvases, the
contents of both will show. This may be useful in some situations.

NOTE javafx.scene.shape contains several classes that can also be used to draw various types of
graphical shapes, such as circles, arcs, and lines. These are represented by nodes and can, therefore,
be directly part of the scene graph. You will want to explore these on your own.

34-ch34.indd 1123 14/02/14 5:24 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

35
CHAPTER

 1125

Exploring JavaFX
Controls

The previous chapter described several of the core concepts relating to the JavaFX GUI
framework. In the process, it introduced two controls: the label and the button. This chapter
continues the discussion of JavaFX controls. It begins by describing how to include images
in a label and button. It then presents an overview of several more JavaFX controls, including
check boxes, lists, and trees. Keep in mind that JavaFX is a rich and powerful framework.
The purpose of this chapter is to introduce a representative sampling of the JavaFX controls
and to describe several common techniques. Once you understand the basics, you will be
able to easily learn the other controls.

The JavaFX control classes discussed in this chapter are shown here:

Button ListView TextField

CheckBox RadioButton ToggleButton

Label ScrollPane TreeView

These and the other JavaFX controls are packaged in javafx.scene.control.
Also discussed are the Image and ImageView classes, which provide support for images

in controls; Tooltip, which is used to add tooltips to a control; as well as various effects and
transforms.

Using Image and ImageView
Several of JavaFX’s controls let you include an image. For example, in addition to text, you
can specify an image in a label or a button. Furthermore, you can embed stand-alone images
in a scene directly. At the foundation for JavaFX’s support for images are two classes: Image
and ImageView. Image encapsulates the image, itself, and ImageView manages the display
of an image. Both classes are packaged in javafx.scene.image.

35-ch35.indd 1125 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1126 PART IV Introducing GUI Programming with JavaFX

The Image class loads an image from either an InputStream, a URL, or a path to the
image file. Image defines several constructors; this is the one we will use:

Image(String url)

Here, url specifies a URL or a path to a file that supplies the image. The argument is assumed
to refer to a path if it does not constitute a properly formed URL. Otherwise, the image is
loaded from the URL. The examples that follow will load images from files on the local file
system. Other constructors let you specify various options, such as the image’s width and
height. One other point: Image is not derived from Node. Thus, it cannot, itself, be part of
a scene graph.

Once you have an Image, you will use ImageView to display it. ImageView is derived
from Node, which means that it can be part of a scene graph. ImageView defines three
constructors. The first one we will use is shown here:

ImageView(Image image)

This constructor creates an ImageView that uses image for its image.
Putting the preceding discussion into action, here is a program that loads an image of

an hourglass and displays it via ImageView. The hourglass image is contained in a file called
hourglass.png, which is assumed to be in the local directory.

// Load and display an image.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.geometry.*;
import javafx.scene.image.*;

public class ImageDemo extends Application {

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Display an Image");

 // Use a FlowPane for the root node.
 FlowPane rootNode = new FlowPane();

 // Use center alignment.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 200);

35-ch35.indd 1126 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1127

Pa
rt

 IV

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create an image.
 Image hourglass = new Image("hourglass.png");

 // Create an image view that uses the image.
 ImageView hourglassIV = new ImageView(hourglass);

 // Add the image to the scene graph.
 rootNode.getChildren().add(hourglassIV);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output from the program is shown here:

In the program, pay close attention to the following sequence that loads the image and
then creates an ImageView that uses that image:

// Create an image.
Image hourglass = new Image("HourGlass.png");

// Create an image view that uses the image.
ImageView hourglassIV = new ImageView(hourglass);

As explained, an image by itself cannot be added to the scene graph. It must first be
embedded in an ImageView.

In cases in which you won’t make further use of the image, you can specify a URL or
filename when creating an ImageView. In this case, there is no need to explicitly create an
Image. Instead, an Image instance containing the specified image is constructed automatically
and embedded in the ImageView. Here is the ImageView constructor that does this:

ImageView(String url)

Here, url specifies the URL or the path to a file that contains the image.

35-ch35.indd 1127 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1128 PART IV Introducing GUI Programming with JavaFX

Adding an Image to a Label
As explained in the previous chapter, the Label class encapsulates a label. It can display a
text message, a graphic, or both. So far, we have used it to display only text, but it is easy to
add an image. To do so, use this form of Label’s constructor:

Label(String str, Node image)

Here, str specifies the text message and image specifies the image. Notice that the image is
of type Node. This allows great flexibility in the type of image added to the label, but for
our purposes, the image type will be ImageView.

Here is a program that demonstrates a label that includes a graphic. It creates a label
that displays the string "Hourglass" and shows the image of an hourglass that is loaded from
the hourglass.png file.

// Demonstrate an image in a label.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;
import javafx.scene.image.*;

public class LabelImageDemo extends Application {

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Use an Image in a Label");

 // Use a FlowPane for the root node.
 FlowPane rootNode = new FlowPane();

 // Use center alignment.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 200);

 // Set the scene on the stage.
 myStage.setScene(myScene);

35-ch35.indd 1128 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1129

Pa
rt

 IV

 // Create an ImageView that contains the specified image.
 ImageView hourglassIV = new ImageView("hourglass.png");

 // Create a label that contains both an image and text.
 Label hourglassLabel = new Label("Hourglass", hourglassIV);

 // Add the label to the scene graph.
 rootNode.getChildren().add(hourglassLabel);

 // Show the stage and its scene.
 myStage.show();
 }
}

Here is the window produced by the program:

As you can see, both the image and the text are displayed. Notice that the text is to the
right of the image. This is the default. You can change the relative positions of the image
and text by calling setContentDisplay() on the label. It is shown here:

final void setContentDisplay(ContentDisplay position)

The value passed to position determines how the text and image is displayed. It must be one
of these values, which are defined by the ContentDisplay enumeration:

BOTTOM RIGHT

CENTER TEXT_ONLY

GRAPHIC_ONLY TOP

LEFT

With the exception of TEXT_ONLY and GRAPHIC_ONLY, the values specify the location
of the image. For example, if you add this line to the preceding program:

hourglassLabel.setContentDisplay(ContentDisplay.TOP);

35-ch35.indd 1129 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1130 PART IV Introducing GUI Programming with JavaFX

the image of the hourglass will be above the text, as shown here:

The other two values let you display either just the text or just the image. This might be
useful if your application wants to use an image at some times, and not at others, for example.
(If you want only an image, you can simply display it without using a label, as described in
the previous section.)

You can also add an image to a label after it has been constructed by using the
setGraphic() method. It is shown here:

final void setGraphic(Node image)

Here, image specifies the image to add.

Using an Image with a Button
Button is JavaFX’s class for push buttons. The preceding chapter introduced the Button
class. There, you saw an example of a button that contained text. Although such buttons
are common, you are not limited to this approach because you can include an image. You
can also use only the image if you choose. The procedure for adding an image to a button
is similar to that used to add an image to a label. First obtain an ImageView of the image.
Then add it to the button. One way to add the image is to use this constructor:

Button(String str, Node image)

Here, str specifies the text that is displayed within the button and image specifies the image.
You can specify the position of the image relative to the text by using setContentDisplay()
in the same way as just described for Label.

Here is an example that displays two buttons that contain images. The first shows an
hourglass. The second shows an analog clock. When a button is pressed, the selected
timepiece is reported. Notice that the text is displayed beneath the image.

// Use an image with a button.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;

35-ch35.indd 1130 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1131

Pa
rt

 IV

import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;
import javafx.scene.image.*;

public class ButtonImageDemo extends Application {

 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Use Images with Buttons");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 250, 450);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.
 response = new Label("Push a Button");

 // Create two image-based buttons.
 Button btnHourglass = new Button("Hourglass",
 new ImageView("hourglass.png"));
 Button btnAnalogClock = new Button("Analog Clock",
 new ImageView("analog.png"));

 // Position the text under the image.
 btnHourglass.setContentDisplay(ContentDisplay.TOP);
 btnAnalogClock.setContentDisplay(ContentDisplay.TOP);

 // Handle the action events for the hourglass button.
 btnHourglass.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Hourglass Pressed");
 }
 });

35-ch35.indd 1131 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1132 PART IV Introducing GUI Programming with JavaFX

 // Handle the action events for the analog clock button.
 btnAnalogClock.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Analog Clock Pressed");
 }
 });

 // Add the label and buttons to the scene graph.
 rootNode.getChildren().addAll(btnHourglass, btnAnalogClock, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

The output produced by this program is shown here:

If you want a button that contains only the image, pass a null string for the text when
constructing the button and then call setContentDisplay(), passing in the parameter

35-ch35.indd 1132 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1133

Pa
rt

 IV

ContentDisplay.GRAPHIC_ONLY. For example, if you make these modifications to the
previous program, the output will look like this:

ToggleButton
A useful variation on the push button is called the toggle button. A toggle button looks just
like a push button, but it acts differently because it has two states: pushed and released.
That is, when you press a toggle button, it stays pressed rather than popping back up as a
regular push button does. When you press the toggle button a second time, it releases
(pops up). Therefore, each time a toggle button is pushed, it toggles between these two
states. In JavaFX, a toggle button is encapsulated in the ToggleButton class. Like Button,
ToggleButton is also derived from ButtonBase. It implements the Toggle interface, which
defines functionality common to all types of two-state buttons.

ToggleButton defines three constructors. This is the one we will use:

ToggleButton(String str)

Here, str is the text displayed in the button. Another constructor allows you to include an
image. Like other buttons, a ToggleButton generates an action event when it is pressed.

Because ToggleButton defines a two-state control, it is commonly used to let the user
select an option. When the button is pressed, the option is selected. When the button is

35-ch35.indd 1133 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1134 PART IV Introducing GUI Programming with JavaFX

released, the option is deselected. For this reason, a program usually needs to determine
the toggle button’s state. To do this, use the isSelected() method, shown here:

final boolean isSelected()

It returns true if the button is pressed and false otherwise.
Here is a short program that demonstrates ToggleButton:

// Demonstrate a toggle button.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;

public class ToggleButtonDemo extends Application {

 ToggleButton tbOnOff;
 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate a Toggle Button");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 220, 120);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.
 response = new Label("Push the Button.");

 // Create the toggle button.
 tbOnOff = new ToggleButton("On/Off");

35-ch35.indd 1134 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1135

Pa
rt

 IV

 // Handle action events for the toggle button.
 tbOnOff.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 if(tbOnOff.isSelected()) response.setText("Button is on.");
 else response.setText("Button is off.");
 }
 });

 // Add the label and buttons to the scene graph.
 rootNode.getChildren().addAll(tbOnOff, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output produced by the program is shown here,
with the button pressed:

In the program, notice how the pressed/released state of
the toggle button is determined by the following lines of code
inside the button’s action event handler.

if(tbOnOff.isSelected()) response.setText("Button is on.");
else response.setText("Button is off.");

When the button is pressed, isSelected() returns true. When the button is released,
isSelected() returns false.

One other point: It is possible to use two or more toggle buttons in a group. In this
case, only one button can be in its pressed state at any one time. The process of creating
and using a group of toggle buttons is similar to that required to use radio buttons. It is
described in the following section.

RadioButton
Another type of button provided by JavaFX is the radio button. Radio buttons are a group of
mutually exclusive buttons, in which only one button can be selected at any one time. They
are supported by the RadioButton class, which extends both ButtonBase and ToggleButton. It
also implements the Toggle interface. Thus, a radio button is a specialized form of a toggle
button. You have almost certainly seen radio buttons in action because they are the primary
control employed when the user must select only one option among several alternatives.

To create a radio button, we will use the following constructor:

RadioButton(String str)

Here, str is the label for the button. Like other buttons, when a RadioButton is used, an
action event is generated.

For their mutually exclusive nature to be activated, radio buttons must be configured
into a group. Only one of the buttons in the group can be selected at any time. For example,

35-ch35.indd 1135 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1136 PART IV Introducing GUI Programming with JavaFX

if a user presses a radio button that is in a group, any previously selected button in that
group is automatically deselected. A button group is created by the ToggleGroup class,
which is packaged in javafx.scene.control. ToggleGroup provides only a default constructor.

Radio buttons are added to the toggle group by calling the setToggleGroup() method,
defined by ToggleButton, on the button. It is shown here:

final void setToggleGroup(ToggleGroup tg)

Here, tg is a reference to the toggle button group to which the button is added. After all
radio buttons have been added to the same group, their mutually exclusive behavior will
be enabled.

In general, when radio buttons are used in a group, one of the buttons is selected when
the group is first displayed in the GUI. Here are two ways to do this.

First, you can call setSelected() on the button that you want to select. It is defined by
ToggleButton (which is a superclass of RadioButton). It is shown here:

final void setSelected(boolean state)

If state is true, the button is selected. Otherwise, it is deselected. Although the button is
selected, no action event is generated.

A second way to initially select a radio button is to call fire() on the button. It is
shown here:

void fire()

This method results in an action event being generated for the button if the button was
previously not selected.

There are a number of different ways to use radio buttons. Perhaps the simplest is to
simply respond to the action event that is generated when one is selected. The following
program shows an example of this approach. It uses radio buttons to allow the user to select
a type of transportation.

// A simple demonstration of Radio Buttons.
//
// This program responds to the action events generated
// by a radio button selection. It also shows how to
// fire the button under program control.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;

public class RadioButtonDemo extends Application {

 Label response;

 public static void main(String[] args) {

35-ch35.indd 1136 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1137

Pa
rt

 IV

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate Radio Buttons");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 220, 120);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label that will report the selection.
 response = new Label("");

 // Create the radio buttons.
 RadioButton rbTrain = new RadioButton("Train");
 RadioButton rbCar = new RadioButton("Car");
 RadioButton rbPlane = new RadioButton("Airplane");

 // Create a toggle group.
 ToggleGroup tg = new ToggleGroup();

 // Add each button to a toggle group.
 rbTrain.setToggleGroup(tg);
 rbCar.setToggleGroup(tg);
 rbPlane.setToggleGroup(tg);

 // Handle action events for the radio buttons.
 rbTrain.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Transport selected is train.");
 }
 });

 rbCar.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Transport selected is car.");
 }
 });

 rbPlane.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Transport selected is airplane.");

35-ch35.indd 1137 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1138 PART IV Introducing GUI Programming with JavaFX

 }
 });

 // Fire the event for the first selection. This causes
 // that radio button to be selected and an action event
 // for that button to occur.
 rbTrain.fire();

 // Add the label and buttons to the scene graph.
 rootNode.getChildren().addAll(rbTrain, rbCar, rbPlane, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output is shown here:

In the program, pay special attention to how the radio
buttons and the toggle group are created. First, the buttons
are created using this sequence:

RadioButton rbTrain = new RadioButton("Train");
RadioButton rbCar = new RadioButton("Car");
RadioButton rbPlane = new RadioButton("Airplane");

Next, a ToggleGroup is constructed:

ToggleGroup tg = new ToggleGroup();

Finally, each radio button is added to the toggle group:

rbTrain.setToggleGroup(tg);
rbCar.setToggleGroup(tg);
rbPlane.setToggleGroup(tg);

As explained, radio buttons must be part of a toggle group in order for their mutually
exclusive behavior to be activated.

After the event handlers for each radio button have been defined, the rbTrain button is
selected by calling fire() on it. This causes that button to be selected and an action event to
be generated for it. This causes the button to be initialized with the default selection.

Handling Change Events in a Toggle Group
Although there is nothing wrong, per se, with managing radio buttons by handling action
events, as just shown, sometimes it is more appropriate (and easier) to listen to the entire
toggle group for changes. When a change takes place, the event handler can easily determine
which radio button has been selected and take action accordingly. To use this approach,
you must register a ChangeListener on the toggle group. When a change event occurs, you

35-ch35.indd 1138 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1139

Pa
rt

 IV

can then determine which button was selected. To try this approach, remove the action event
handlers and the call to fire() from the preceding program and substitute the following:

// Use a change listener to respond to a change of selection within
// the group of radio buttons.
tg.selectedToggleProperty().addListener(new ChangeListener<Toggle>() {
 public void changed(ObservableValue<? extends Toggle> changed,
 Toggle oldVal, Toggle newVal) {

 // Cast new to RadioButton.
 RadioButton rb = (RadioButton) newVal;

 // Display the selection.
 response.setText("Transport selected is " + rb.getText());
 }
});

// Select the first button. This will cause a change event
// on the toggle group.
rbTrain.setSelected(true);

You will also need to add this import statement:

import javafx.beans.value.*;

It supports the ChangeListener interface.
The output from this program is the same as before; each time a selection is made, the

response label is updated. However, in this case, only one event handler is needed for the
enter group, rather than three (one for each button). Let’s now look at this code more closely.

First, a change event listener is registered for the toggle group. To listen for change
events, you must implement the ChangeListener interface. This is done by calling
addListener() on the object returned by selectedToggleProperty(). The ChangeListener
interface defines only one method, called changed(). It is shown here:

void changed(ObservableValue<? extends T> changed, T oldVal, T newVal)

In this case, changed is the instance of ObservableValue<T>, which encapsulates an object
that can be watched for changes. The oldVal and newVal parameters pass the previous value
and the new value, respectively. Thus, in this case, newVal holds a reference to the radio
button that has just been selected.

In this example, the setSelected() method, rather than fire(), is called to set the initial
selection. Because setting the initial selection causes a change to the toggle group, it results
in a change event being generated when the program first begins. You can also use fire(),
but setSelected() was used to demonstrate that any change to the toggle group generates a
change event.

An Alternative Way to Handle Radio Buttons
Although handling events generated by radio buttons is often useful, sometimes it is more
appropriate to ignore those events and simply obtain the currently selected button when
that information is needed. This approach is demonstrated by the following program. It

35-ch35.indd 1139 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1140 PART IV Introducing GUI Programming with JavaFX

adds a button called Confirm Transport Selection. When this button is pressed, the currently
selected radio button is obtained and then the selected transport is displayed in a label.
When you try the program, notice that changing the selected radio button does not cause
the confirmed transport to change until you press the Confirm Transport Selection button.

// This radio button example demonstrates how the
// currently selected button in a group can be obtained
// under program control, when it is needed, rather
// than responding to action or change events.
//
// In this example, no events related to the radio
// buttons are handled. Instead, the current selection
// is simply obtained when the Confirm Transport Selection push
// button is pressed.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;

public class RadioButtonDemo2 extends Application {

 Label response;
 ToggleGroup tg;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate Radio Buttons");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 200, 140);

 // Set the scene on the stage.
 myStage.setScene(myScene);

35-ch35.indd 1140 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1141

Pa
rt

 IV

 // Create two labels.
 Label choose = new Label(" Select a Transport Type ");
 response = new Label("No transport confirmed");

 // Create push button used to confirm the selection.
 Button btnConfirm = new Button("Confirm Transport Selection");

 // Create the radio buttons.
 RadioButton rbTrain = new RadioButton("Train");
 RadioButton rbCar = new RadioButton("Car");
 RadioButton rbPlane = new RadioButton("Airplane");

 // Create a toggle group.
 tg = new ToggleGroup();

 // Add each button to a toggle group.
 rbTrain.setToggleGroup(tg);
 rbCar.setToggleGroup(tg);
 rbPlane.setToggleGroup(tg);

 // Initially select one of the radio buttons.
 rbTrain.setSelected(true);

 // Handle action events for the confirm button.
 btnConfirm.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 // Get the radio button that is currently selected.
 RadioButton rb = (RadioButton) tg.getSelectedToggle();

 // Display the selection.
 response.setText(rb.getText() + " is confirmed.");
 }
 });

 // Use a separator to better organize the layout.
 Separator separator = new Separator();
 separator.setPrefWidth(180);

 // Add the label and buttons to the scene graph.
 rootNode.getChildren().addAll(choose, rbTrain, rbCar, rbPlane,
 separator, btnConfirm, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

The output from the program is shown here:

35-ch35.indd 1141 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1142 PART IV Introducing GUI Programming with JavaFX

Most of the program is easy to understand, but two key points are of special interest.
First, inside the action event handler for the btnConfirm button, notice that the selected
radio button is obtained by the following line:

RadioButton rb = (RadioButton) tg.getSelectedToggle();

Here, the getSelectedToggle() method (defined by ToggleGroup) obtains the current
selection for the toggle group (which, in this case, is a group of radio buttons). It is
shown here:

final Toggle getSelectedToggle()

It returns a reference to the Toggle that is selected. In this case, the return value is cast to
RadioButton because this is the type of button in the group.

The second thing to notice is the use of a visual separator, which is created by this
sequence:

Separator separator = new Separator();
separator.setPrefWidth(180);

The Separator class creates a line, which can be either vertical or horizontal. By default, it
creates a horizontal line. (A second constructor lets you choose a vertical separator.) Separator
helps visually organize the layout of controls. It is packaged in javafx.scene.control. Next,
the width of the separator line is set by calling setPrefWidth(), passing in the width.

CheckBox
The CheckBox class encapsulates the functionality of a check box. Its immediate superclass
is ButtonBase. Although you are no doubt familiar with check boxes because they are widely
used controls, the JavaFX check box is a bit more sophisticated than you may at first think.
This is because CheckBox supports three states. The first two are checked or unchecked, as
you would expect, and this is the default behavior. The third state is indeterminate (also called
undefined). It is typically used to indicate that the state of the check box has not been set or
that it is not relevant to a specific situation. If you need the indeterminate state, you will
need to explicitly enable it.

CheckBox defines two constructors. The first is the default constructor. The second lets
you specify a string that identifies the box. It is shown here:

CheckBox(String str)

It creates a check box that has the text specified by str as a label. As with other buttons, a
CheckBox generates an action event when it is selected.

Here is a program that demonstrates check boxes. It displays check boxes that let the
user select various deployment options, which are Web, Desktop, and Mobile. Each time a
check box state changes, an action event is generated and handled by displaying the new
state (selected or cleared) and by displaying a list of all selected boxes.

// Demonstrate Check Boxes.

import javafx.application.*;
import javafx.scene.*;

35-ch35.indd 1142 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1143

Pa
rt

 IV

import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;

public class CheckboxDemo extends Application {

 CheckBox cbWeb;
 CheckBox cbDesktop;
 CheckBox cbMobile;

 Label response;
 Label allTargets;

 String targets = "";

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate Checkboxes");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 230, 140);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 Label heading = new Label("Select Deployment Options");

 // Create a label that will report the state of the
 // selected check box.
 response = new Label("No Deployment Selected");

 // Create a label that will report all targets selected.
 allTargets = new Label("Target List: <none>");

 // Create the check boxes.
 cbWeb = new CheckBox("Web");

35-ch35.indd 1143 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1144 PART IV Introducing GUI Programming with JavaFX

 cbDesktop = new CheckBox("Desktop");
 cbMobile = new CheckBox("Mobile");

 // Handle action events for the check boxes.
 cbWeb.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 if(cbWeb.isSelected())
 response.setText("Web deployment selected.");
 else
 response.setText("Web deployment cleared.");

 showAll();
 }
 });

 cbDesktop.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 if(cbDesktop.isSelected())
 response.setText("Desktop deployment selected.");
 else
 response.setText("Desktop deployment cleared.");

 showAll();
 }
 });

 cbMobile.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 if(cbMobile.isSelected())
 response.setText("Mobile deployment selected.");
 else
 response.setText("Mobile deployment cleared.");

 showAll();
 }
 });

 // Use a separator to better organize the layout.
 Separator separator = new Separator();
 separator.setPrefWidth(200);

 // Add controls to the scene graph.
 rootNode.getChildren().addAll(heading, separator, cbWeb, cbDesktop,
 cbMobile, response, allTargets);

 // Show the stage and its scene.
 myStage.show();
 }

 // Update and show the targets list.
 void showAll() {
 targets = "";
 if(cbWeb.isSelected()) targets = "Web ";

35-ch35.indd 1144 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1145

Pa
rt

 IV

 if(cbDesktop.isSelected()) targets += "Desktop ";
 if(cbMobile.isSelected()) targets += "Mobile";

 if(targets.equals("")) targets = "<none>";

 allTargets.setText("Target List: " + targets);
 }
}

Sample output is shown here:

The operation of this program is straightforward. Each time a check box is changed,
an action command is generated. To determine if the box is checked or unchecked, the
isSelected() method is called.

As mentioned, by default, CheckBox implements two states: checked and unchecked.
If you want to add the indeterminate state, it must be explicitly enabled. To do this, call
setAllowIndeterminate(), shown here:

final void setAllowIndeterminate(boolean enable)

In this case, if enable is true, the indeterminate state is enabled. Otherwise, it is disabled.
When the indeterminate state is enabled, the user can select between checked, unchecked,
and indeterminate.

You can determine if a check box is in the indeterminate state by calling
isIndeterminate(), shown here:

final boolean isIndeterminate()

It returns true if the checkbox state is indeterminate and false otherwise.
You can see the effect of a three-state check box by modifying the preceding program.

First, enable the indeterminate state on the check boxes by calling setAllowIndeterminate()
on each check box, as shown here:

cbWeb.setAllowIndeterminate(true);
cbDesktop.setAllowIndeterminate(true);
cbMobile.setAllowIndeterminate(true);

Next, handle the indeterminate state inside the action event handlers. For example, here is
the modified handler for cbWeb:

cbWeb.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 if(cbWeb.isIndeterminate())

35-ch35.indd 1145 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1146 PART IV Introducing GUI Programming with JavaFX

 response.setText("Web deployment indeterminate.");
 else if(cbWeb.isSelected())
 response.setText("Web deployment selected.");
 else
 response.setText("Web deployment cleared.");

 showAll();
 }
});

Now, all three states are tested. Update the other two handlers in the same way. After making
these changes, the indeterminate state can be selected, as this sample output shows:

Here, the Web check box is indeterminate.

ListView
Another commonly used control is the list view, which in JavaFX is encapsulated by ListView.
List views are controls that display a list of entries from which you can select one or more.
Because of their ability to make efficient use of limited screen space, list views are popular
alternatives to other types of selection controls.

ListView is a generic class that is declared like this:

class ListView<T>

Here, T specifies the type of entries stored in the list view. Often, these are entries of type
String, but other types are also allowed.

ListView defines two constructors. The first is the default constructor, which creates an
empty ListView. The second lets you specify the list of entries in the list. It is shown here:

ListView(ObservableList<T> list)

Here, list specifies a list of the items that will be displayed. It is an object of type
ObservableList, which defines a list of observable objects. It inherits java.util.List. Thus,
it supports the standard collection methods. ObservableList is packaged in javafx.collections.

Probably the easiest way to create an ObservableList for use in a ListView is to use the
factory method observableArrayList(), which is a static method defined by the FXCollections
class (which is also packaged in javafx.collections). The version we will use is shown here:

static <E> ObservableList<E> observableArrayList(E ... elements)

In this case, E specifies the type of elements, which are passed via elements.

35-ch35.indd 1146 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1147

Pa
rt

 IV

By default, a ListView allows only one item in the list to be selected at any one time.
However, you can allow multiple selections by changing the selection mode. For now, we
will use the default, single-selection model.

Although ListView provides a default size, sometimes you will want to set the preferred
height and/or width to best match your needs. One way to do this is to call the
setPrefHeight() and setPrefWidth() methods, shown here:

final void setPrefHeight(double height)

final void setPrefWidth(double width)

Alternatively, you can use a single call to set both dimensions at the same time by use of
setPrefSize(), shown here:

void setPrefSize(double width, double height)

There are two basic ways in which you can use a ListView. First, you can ignore events
generated by the list and simply obtain the selection in the list when your program needs it.
Second, you can monitor the list for changes by registering a change listener. This lets you
respond each time the user changes a selection in the list. This is the approach used here.

To listen for change events, you must first obtain the selection model used by the
ListView. This is done by calling getSelectionModel() on the list. It is shown here:

final MultipleSelectionModel<T> getSelectionModel()

It returns a reference to the model. MultipleSelectionModel is a class that defines the model
used for multiple selections, and it inherits SelectionModel. However, multiple selections
are allowed in a ListView only if multiple-selection mode is turned on.

Using the model returned by getSelectionModel(), you will obtain a reference to the
selected item property that defines what takes place when an element in the list is selected.
This is done by calling selectedItemProperty(), shown next:

final ReadOnlyObjectProperty<T> selectedItemProperty()

You will add the change listener to this property.
The following example puts the preceding discussion into action. It creates a list view

that displays various types of transportation, allowing the user to select one. When one is
chosen, the selection is displayed.

// Demonstrate a list view.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;
import javafx.beans.value.*;
import javafx.collections.*;

public class ListViewDemo extends Application {

 Label response;

35-ch35.indd 1147 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1148 PART IV Introducing GUI Programming with JavaFX

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("ListView Demo");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 200, 120);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.
 response = new Label("Select Transport Type");

 // Create an ObservableList of entries for the list view.
 ObservableList<String> transportTypes =
 FXCollections.observableArrayList("Train", "Car", "Airplane");

 // Create the list view.
 ListView<String> lvTransport = new ListView<String>(transportTypes);

 // Set the preferred height and width.
 lvTransport.setPrefSize(80, 80);

 // Get the list view selection model.
 MultipleSelectionModel<String> lvSelModel =
 lvTransport.getSelectionModel();

 // Use a change listener to respond to a change of selection within
 // a list view.
 lvSelModel.selectedItemProperty().addListener(
 new ChangeListener<String>() {
 public void changed(ObservableValue<? extends String> changed,
 String oldVal, String newVal) {

 // Display the selection.
 response.setText("Transport selected is " + newVal);
 }
 });

35-ch35.indd 1148 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1149

Pa
rt

 IV

 // Add the label and list view to the scene graph.
 rootNode.getChildren().addAll(lvTransport, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output is shown here:

In the program, pay special attention to how the ListView is constructed. First, an
ObservableList is created by this line:

ObservableList<String> transportTypes =
 FXCollections.observableArrayList("Train", "Car", "Airplane");

It uses the observableArrayList() method to create a list of strings. Then, the ObservableList
is used to initialize a ListView, as shown here:

ListView<String> lvTransport = new ListView<String>(transportTypes);

The program then sets the preferred width and height of the control.
Now, notice how the selection model is obtained for lvTransport:

MultipleSelectionModel<String> lvSelModel =
 lvTransport.getSelectionModel();

As explained, ListView uses MultipleSelectionModel, even when only a single selection is
allowed. The selectedItemProperty() method is then called on the model and a change
listener is registered to the returned item.

ListView Scrollbars
One very useful feature of ListView is that when the number of items in the list exceeds the
number that can be displayed within its dimensions, scrollbars are automatically added. For
example, if you change the declaration of transportTypes so that it includes "Bicycle" and
"Walking", as shown here:

ObservableList<String> transportTypes =
 FXCollections.observableArrayList("Train", "Car", "Airplane",
 "Bicycle", "Walking");

35-ch35.indd 1149 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1150 PART IV Introducing GUI Programming with JavaFX

the lvTransport control now looks like the one shown here:

Enabling Multiple Selections
If you want to allow more than one item to be selected, you must explicitly request it.
To do so, you must set the selection mode to SelectionMode.MULTIPLE by calling
setSelectionMode() on the ListView model. It is shown here:

final void setSelectionMode(SelectionMode mode)

In this case, mode must be either SelectionMode.MULTIPLE or SelectionMode.SINGLE.
When multiple-selection mode is enabled, you can obtain the list of the selections two

ways: as a list of selected indices or as a list of selected items. We will use a list of selected
items, but the procedure is similar when using a list of the indices of the selected items.
(Note, indexing of items in a ListView begins at zero.)

To get a list of the selected items, call getSelectedItems() on the selection model. It is
shown here:

ObservableList<T> getSelectedItems()

It returns an ObservableList of the items. Because ObservableList extends java.util.List,
you can access the items in the list just as you would any other List collection.

To experiment with multiple selections, you can modify the preceding program as
follows. First, make lvTransport final so it can be accessed within the change event handler.
Next, add this line:

lvTransport.getSelectionModel().setSelectionMode(SelectionMode.MULTIPLE);

It enables multiple-selection mode for lvTransport. Finally, replace the change event
handler with the one shown here:

lvSelModel.selectedItemProperty().addListener(
 new ChangeListener<String>() {
 public void changed(ObservableValue<? extends String> changed,
 String oldVal, String newVal) {

 String selItems = "";
 ObservableList<String> selected =
 lvTransport.getSelectionModel().getSelectedItems();

35-ch35.indd 1150 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1151

Pa
rt

 IV

 // Display the selections.
 for(int i=0; i < selected.size(); i++)
 selItems += "\n " + selected.get(i);

 response.setText("All transports selected: " + selItems);
 }
});

After making these changes, the program will display all selected forms of transports, as
the following output shows:

ComboBox
A control related to the list view is the combo box, which is implemented in JavaFX by the
ComboBox class. A combo box displays one selection, but it will also display a drop-down
list that allows the user to select a different item. You can also allow the user to edit a selection.
ComboBox inherits ComboBoxBase, which provides much of its functionality. Unlike the
ListView, which can allow multiple selections, ComboBox is designed for single-selection.

ComboBox is a generic class that is declared like this:

class ComboBox<T>

Here, T specifies the type of entries. Often, these are entries of type String, but other types
are also allowed.

ComboBox defines two constructors. The first is the default constructor, which creates
an empty ComboBox. The second lets you specify the list of entries. It is shown here:

ComboBox(ObservableList<T> list)

In this case, list specifies a list of the items that will be displayed. It is an object of type
ObservableList, which defines a list of observable objects. As explained in the previous
section, ObservableList inherits java.util.List. As also previously explained, an easy way to
create an ObservableList is to use the factory method observableArrayList(), which is a
static method defined by the FXCollections class.

A ComboBox generates an action event when its selection changes. It will also generate
a change event. Alternatively, it is also possible to ignore events and simply obtain the current
selection when needed.

You can obtain the current selection by calling getValue(), shown here:

final T getValue()

35-ch35.indd 1151 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1152 PART IV Introducing GUI Programming with JavaFX

If the value of a combo box has not yet been set (by the user or under program control),
then getValue() will return null. To set the value of a ComboBox under program control,
call setValue():

final void setValue(T newVal)

Here, newVal becomes the new value.
The following program demonstrates a combo box by reworking the previous list view

example. It handles the action event generated by the combo box.

// Demonstrate a combo box.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.geometry.*;
import javafx.collections.*;
import javafx.event.*;

public class ComboBoxDemo extends Application {

 ComboBox<String> cbTransport;
 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("ComboBox Demo");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 280, 120);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label.
 response = new Label();

35-ch35.indd 1152 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1153

Pa
rt

 IV

 // Create an ObservableList of entries for the combo box.
 ObservableList<String> transportTypes =
 FXCollections.observableArrayList("Train", "Car", "Airplane");

 // Create a combo box.
 cbTransport = new ComboBox<String>(transportTypes);

 // Set the default value.
 cbTransport.setValue("Train");

 // Set the response label to indicate the default selection.
 response.setText("Selected Transport is " + cbTransport.getValue());

 // Listen for action events on the combo box.
 cbTransport.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Selected Transport is " + cbTransport.getValue());
 }
 });

 // Add the label and combo box to the scene graph.
 rootNode.getChildren().addAll(cbTransport, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output is shown here:

As mentioned, ComboBox can be configured to allow the user to edit a selection.
Assuming that it contains only entries of type String, it is easy to enable editing capabilities.
Simply call setEditable(), shown here:

final void setEditable(boolean enable)

35-ch35.indd 1153 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1154 PART IV Introducing GUI Programming with JavaFX

If enable is true, editing is enabled. Otherwise, it is disabled. To see the effects of editing,
add this line to the preceding program:

cbTransport.setEditable(true);

After making this addition, you will be able to edit the selection.
ComboBox supports many additional features and functionality beyond those mentioned

here. You might find it interesting to explore further. Also, an alternative to a combo box in
some cases is the ChoiceBox control. You will find it easy to use because it is has similarities
to both ListView and ComboBox.

TextField
Although the controls discussed earlier are quite useful and are frequently found in a
user interface, they all implement a means of selecting a predetermined option or action.
However, sometimes you will want the user to enter a string of his or her own choosing.
To accommodate this type of input, JavaFX includes several text-based controls. The one
we will look at is TextField. It allows one line of text to be entered. Thus, it is useful for
obtaining names, ID strings, addresses, and the like. Like all text controls, TextField
inherits TextInputControl, which defines much of its functionality.

TextField defines two constructors. The first is the default constructor, which creates an
empty text field that has the default size. The second lets you specify the initial contents of
the field. Here, we will use the default constructor.

Although the default size is sometimes adequate, often you will want to specify its size.
This is done by calling setPrefColumnCount(), shown here:

final void setPrefColumnCount(int columns)

The columns value is used by TextField to determine its size.
You can set the text in a text field by calling setText(). You can obtain the current text

by calling getText(). In addition to these fundamental operations, TextField supports
several other capabilities that you might want to explore, such as cut, paste, and append.
You can also select a portion of the text under program control.

One especially useful TextField option is the ability to set a prompting message inside
the text field when the user attempts to use a blank field. To do this, call setPromptText(),
shown here:

final void setPromptText(String str)

In this case, str is the string displayed in the text field when no text has been entered. It is
displayed using low-intensity (such as a gray tone).

When the user presses enter while inside a TextField, an action event is generated.
Although handling this event is often helpful, in some cases, your program will simply
obtain the text when it is needed, rather than handling action events. Both approaches are
demonstrated by the following program. It creates a text field that requests a search string.
When the user presses enter while the text field has input focus, or presses the Get Search
String button, the string is obtained and displayed. Notice that a prompting message is also
included.

35-ch35.indd 1154 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1155

Pa
rt

 IV

// Demonstrate a text field.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;

public class TextFieldDemo extends Application {

 TextField tf;
 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate a TextField");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 230, 140);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label that will report the contents of the
 // text field.
 response = new Label("Search String: ");

 // Create a button that gets the text.
 Button btnGetText = new Button("Get Search String");

 // Create a text field.
 tf = new TextField();

 // Set the prompt.
 tf.setPromptText("Enter Search String");

35-ch35.indd 1155 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1156 PART IV Introducing GUI Programming with JavaFX

 // Set preferred column count.
 tf.setPrefColumnCount(15);

 // Handle action events for the text field. Action
 // events are generated when ENTER is pressed while
 // the text field has input focus. In this case, the
 // text in the field is obtained and displayed.
 tf.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Search String: " + tf.getText());
 }
 });

 // Get text from the text field when the button is pressed
 // and display it.
 btnGetText.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText("Search String: " + tf.getText());
 }
 });

 // Use a separator to better organize the layout.
 Separator separator = new Separator();
 separator.setPrefWidth(180);

 // Add controls to the scene graph.
 rootNode.getChildren().addAll(tf, btnGetText, separator, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output is shown here:

Other text controls that you will want to examine include TextArea, which supports
multiline text, and PasswordField, which can be used to input passwords. You might also
find HTMLEditor helpful.

35-ch35.indd 1156 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1157

Pa
rt

 IV

ScrollPane
Sometimes, the contents of a control will exceed the amount of screen space that you want
to give to it. Here are two examples: A large image may not fit within reasonable boundaries,
or you might want to display text that is longer than will fit within a small window. Whatever
the reason, JavaFX makes it easy to provide scrolling capabilities to any node in a scene
graph. This is accomplished by wrapping the node in a ScrollPane. When a ScrollPane is
used, scrollbars are automatically implemented that scroll the contents of the wrapped
node. No further action is required on your part. Because of the versatility of ScrollPane,
you will seldom need to use individual scrollbar controls.

ScrollPane defines two constructors. The first is the default constructor. The second lets
you specify a node that you want to scroll. It is shown here:

ScrollPane(Node content)

In this case, content specifies the information to be scrolled. When using the default
constructor, you will add the node to be scrolled by calling setContent(). It is shown here:

final void setContent(Node content)

After you have set the content, add the scroll pane to the scene graph. When displayed, the
content can be scrolled.

NOTE You can also use setContent() to change the content being scrolled by the scroll pane. Thus,
what is being scrolled can be changed during the execution of your program.

Although a default size is provided, as a general rule, you will want to set the
dimensions of the viewport. The viewport is the viewable area of a scroll pane. It is the area
in which the content being scrolled is displayed. Thus, the viewport displays the visible
portion of the content. The scrollbars scroll the content through the viewport. Thus, by
moving a scrollbar, you change what part of the content is visible.

You can set the viewport dimensions by using these two methods:

final void setPrefViewportHeight(double height)

final void setPrefViewportWidth(double width)

In its default behavior, a ScrollPane will dynamically add or remove a scrollbar as
needed. For example, if the component is taller than the viewport, a vertical scrollbar is
added. If the component will completely fit within the viewport, the scrollbars are removed.

One nice feature of ScrollPane is its ability to pan the contents by dragging the mouse.
By default, this feature is off. To turn it on, use setPannable(), shown here:

final void setPannable(boolean enable)

If enable is true, then panning is allowed. Otherwise, it is disabled.
You can set the position of the scrollbars under program control using setHvalue() and

setVvalue(), shown here:

final void setHvalue(double newHval)

final void setVvalue(double newVval)

35-ch35.indd 1157 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1158 PART IV Introducing GUI Programming with JavaFX

The new horizontal position is specified by newHval, and the new vertical position is
specified by newVval. Be default, scrollbar positions start at zero.

ScrollPane supports various other options. For example, it is possible to set the minimum
and maximum scrollbar positions. You can also specify when and if the scrollbars are shown
by setting a scrollbar policy. The current position of the scrollbars can be obtained by calling
getHvalue() and getVvalue().

The following program demonstrates ScrollPane by using one to scroll the contents
of a multiline label. Notice that it also enables panning.

// Demonstrate a scroll pane.
// This program scrolls the contents of a multiline
// label, but any node can be scrolled.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;

public class ScrollPaneDemo extends Application {

 ScrollPane scrlPane;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate a ScrollPane");

 // Use a FlowPane for the root node.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 200, 200);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label that will be scrolled.
 Label scrlLabel = new Label(
 "A ScrollPane streamlines the process of\n" +

35-ch35.indd 1158 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1159

Pa
rt

 IV

 "adding scroll bars to a window whose\n" +
 "contents exceed the window's dimensions.\n" +
 "It also enables a control to fit in a\n" +
 "smaller space than it otherwise would.\n" +
 "As such, it often provides a superior\n" +
 "approach over using individual scroll bars.");

 // Create a scroll pane, setting scrlLabel as the content.
 scrlPane = new ScrollPane(scrlLabel);

 // Set the viewport width and height.
 scrlPane.setPrefViewportWidth(130);
 scrlPane.setPrefViewportHeight(80);

 // Enable panning.
 scrlPane.setPannable(true);

 // Create a reset label.
 Button btnReset = new Button("Reset Scroll Bar Positions");

 // Handle action events for the reset button.
 btnReset.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 // Set the scroll bars to their zero position.
 scrlPane.setVvalue(0);
 scrlPane.setHvalue(0);
 }
 });

 // Add the label to the scene graph.
 rootNode.getChildren().addAll(scrlPane, btnReset);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output is shown here:

35-ch35.indd 1159 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1160 PART IV Introducing GUI Programming with JavaFX

TreeView
One of JavaFX’s most powerful controls is the TreeView. It presents a hierarchical view of data
in a tree-like format. In this context, the term hierarchical means some items are subordinate
to others. For example, a tree is commonly used to display the contents of a file system. In this
case, the individual files are subordinate to the directory that contains them. In a TreeView,
branches can be expanded or collapsed on demand by the user. This allows hierarchical data
to be presented in a compact, yet expandable form. Although TreeView supports many
customization options, you will often find that the default tree style and capabilities are
suitable. Therefore, even though trees support a sophisticated structure, they are still quite
easy to work with.

TreeView implements a conceptually simple, tree-based data structure. A tree begins
with a single root node that indicates the start of the tree. Under the root are one or more
child nodes There are two types of child nodes: leaf nodes (also called terminal nodes), which
have no children, and branch nodes, which form the root nodes of subtrees. A subtree is
simply a tree that is part of a larger tree. The sequence of nodes that leads from the root
to a specific node is called a path.

One very useful feature of TreeView is that it automatically provides scrollbars when the
size of the tree exceeds the dimensions of the view. Although a fully collapsed tree might be
quite small, its expanded form may be quite large. By automatically adding scrollbars as
needed, TreeView lets you use a smaller space than would ordinarily be possible.

TreeView is a generic class that is defined like this:

class TreeView<T>

Here, T specifies the type of value held by an item in the tree. Often, this will be of type
String. TreeView defines two constructors. This is the one we will use:

TreeView(TreeItem<T> rootNode)

Here, rootNode specifies the root of the tree. Because all nodes descend from the root, it is
the only one that needs to be passed to TreeView.

The items that form the tree are objects of type TreeItem. At the outset, it is important
to state that TreeItem does not inherit Node. Thus, TreeItems are not general-purpose
objects. They can be used in a TreeView, but not as stand-alone controls. TreeItem is a generic
class, as shown here:

class TreeItem<T>

Here, T specifies the type of value held by the TreeItem.
Before you can use a TreeView, you must construct the tree that it will display. To do

this, you must first create the root. Next, add other nodes to that root. You do this by calling
either add() or addAll() on the list returned by getChildren(). These other nodes can be
leaf nodes or subtrees. After the tree has been constructed, you create the TreeView by
passing the root node to its constructor.

You can handle selection events in the TreeView in a way similar to the way that you
handle them in a ListView, through the use of a change listener. To do so, first, obtain the
selection model by calling getSelectionModel(). Then, call selectedItemProperty() to
obtain the property for the selected item. On that return value, call addListener() to add a
change listener. Each time a selection is made, a reference to the new selection will be

35-ch35.indd 1160 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1161

Pa
rt

 IV

passed to the changed() handler as the new value. (See ListView for more details on
handling change events.)

You can obtain the value of a TreeItem by calling getValue(). You can also follow the
tree path of an item in either the forward or backward direction. To obtain the parent, call
getParent(). To obtain the children, call getChildren().

The following example shows how to build and use a TreeView. The tree presents a
hierarchy of food. The type of items stored in the tree are strings. The root is labeled Food.
Under it are three direct descendent nodes: Fruit, Vegetables, and Nuts. Under Fruit are
three child nodes: Apples, Pears, and Oranges. Under Apples are three leaf nodes: Fuji,
Winesap, and Jonathan. Each time a selection is made, the name of the item is displayed.
Also, the path from the root to the item is shown. This is done by the repeated use of
getParent().

// Demonstrate a TreeView

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.beans.value.*;
import javafx.geometry.*;

public class TreeViewDemo extends Application {

 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate a TreeView");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 310, 460);

 // Set the scene on the stage.
 myStage.setScene(myScene);

35-ch35.indd 1161 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1162 PART IV Introducing GUI Programming with JavaFX

 // Create a label that will report the state of the
 // selected tree item.
 response = new Label("No Selection");

 // Create tree items, starting with the root.
 TreeItem<String> tiRoot = new TreeItem<String>("Food");

 // Now add subtrees, beginning with fruit.
 TreeItem<String> tiFruit = new TreeItem<String>("Fruit");

 // Construct the Apple subtree.
 TreeItem<String> tiApples = new TreeItem<String>("Apples");

 // Add child nodes to the Apple node.
 tiApples.getChildren().add(new TreeItem<String>("Fuji"));
 tiApples.getChildren().add(new TreeItem<String>("Winesap"));
 tiApples.getChildren().add(new TreeItem<String>("Jonathan"));

 // Add varieties to the fruit node.
 tiFruit.getChildren().add(tiApples);
 tiFruit.getChildren().add(new TreeItem<String>("Pears"));
 tiFruit.getChildren().add(new TreeItem<String>("Oranges"));

 // Finally, add the fruit node to the root.
 tiRoot.getChildren().add(tiFruit);

 // Now, add vegetables subtree, using the same general process.
 TreeItem<String> tiVegetables = new TreeItem<String>("Vegetables");
 tiVegetables.getChildren().add(new TreeItem<String>("Corn"));
 tiVegetables.getChildren().add(new TreeItem<String>("Peas"));
 tiVegetables.getChildren().add(new TreeItem<String>("Broccoli"));
 tiVegetables.getChildren().add(new TreeItem<String>("Beans"));
 tiRoot.getChildren().add(tiVegetables);

 // Likewise, add nuts subtree.
 TreeItem<String> tiNuts = new TreeItem<String>("Nuts");
 tiNuts.getChildren().add(new TreeItem<String>("Walnuts"));
 tiNuts.getChildren().add(new TreeItem<String>("Peanuts"));
 tiNuts.getChildren().add(new TreeItem<String>("Pecans"));
 tiRoot.getChildren().add(tiNuts);

 // Create tree view using the tree just created.
 TreeView<String> tvFood = new TreeView<String>(tiRoot);

 // Get the tree view selection model.
 MultipleSelectionModel<TreeItem<String>> tvSelModel =
 tvFood.getSelectionModel();

 // Use a change listener to respond to a selection within
 // a tree view
 tvSelModel.selectedItemProperty().addListener(
 new ChangeListener<TreeItem<String>>() {
 public void changed(
 ObservableValue<? extends TreeItem<String>> changed,
 TreeItem<String> oldVal, TreeItem<String> newVal) {

35-ch35.indd 1162 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1163

Pa
rt

 IV

 // Display the selection and its complete path from the root.
 if(newVal != null) {

 // Construct the entire path to the selected item.
 String path = newVal.getValue();
 TreeItem<String> tmp = newVal.getParent();
 while(tmp != null) {
 path = tmp.getValue() + " -> " + path;
 tmp = tmp.getParent();
 }

 // Display the selection and the entire path.
 response.setText("Selection is " + newVal.getValue() +
 "\nComplete path is " + path);
 }
 }
 });

 // Add controls to the scene graph.
 rootNode.getChildren().addAll(tvFood, response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output is shown here:

35-ch35.indd 1163 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1164 PART IV Introducing GUI Programming with JavaFX

There are two things to pay special attention to in this program. First, notice how the
tree is constructed. First, the root node is created by this statement:

TreeItem<String> tiRoot = new TreeItem<String>("Food");

Next, the nodes under the root are constructed. These nodes consist of the root nodes of
subtrees: one for fruit, one for vegetables, and one for nuts. Next, the leaves are added to
these subtrees. However, one of these, the fruit subtree, consists of another subtree that
contains varieties of apples. The point here is that each branch in a tree leads either to a
leaf or to the root of a subtree. After all of the nodes have been constructed, the root nodes
of each subtree are added to the root node of the tree. This is done by calling add() on the
root node. For example, this is how the Nuts subtree is added to tiRoot.

tiRoot.getChildren().add(tiNuts);

The process is the same for adding any child node to its parent node.
The second thing to notice in the program is the way the path from the root to the

selected node is constructed within the change event handler. It is shown here:

String path = newVal.getValue();
TreeItem<String> tmp = newVal.getParent();
while(tmp != null) {
 path = tmp.getValue() + " -> " + path;
 tmp = tmp.getParent();
}

The code works like this: First, the value of the newly selected node is obtained. In this
example, the value will be a string, which is the node’s name. This string is assigned to the
path string. Then, a temporary variable of type TreeItem<String> is created and initialized
to refer to the parent of the newly selected node. If the newly selected node does not have a
parent, then tmp will be null. Otherwise, the loop is entered, within which each parent’s
value (which is its name in this case) is added to path. This process continues until the root
node of the tree (which has no parent) is found.

Although the preceding shows the basic mechanism required to handle a TreeView, it is
important to point out that several customizations and options are supported. TreeView is a
powerful control that you will want to examine fully on your own.

Introducing Effects and Transforms
A principal advantage of JavaFX is its ability to alter the precise look of a control (or any
node in the scene graph) through the application of an effect and/or a transform. Both
effects and transforms help give your GUI the sophisticated, modern look that users have
come to expect. Although it is beyond the scope of this book to examine each effect and
transform supported by JavaFX, the following introduction will give you an idea of the
benefits they provide.

35-ch35.indd 1164 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1165

Pa
rt

 IV

Effects
Effects are supported by the abstract Effect class and its concrete subclasses, which are
packaged in javafx.scene.effect. Using these effects, you can customize the way a node in a
scene graph looks. Several built-in effects are provided. Here is a sampling:

Bloom Increases the brightness of the brighter parts of a node.

BoxBlur Blurs a node.

DropShadow Displays a shadow that appears behind the node.

Glow Produces a glowing effect.

InnerShadow Displays a shadow inside a node.

Lighting Creates shadow effects of a light source.

Reflection Displays a reflection.

These, and the other effects, are easy to use and are available for use by any Node,
including controls. Of course, depending on the control, some effects will be more
appropriate than others.

To set an effect on a node, call setEffect(), which is defined by Node. It is shown here:

final void setEffect(Effect effect)

Here, effect is the effect that will be applied. To specify no effect, pass null. Thus, to add an
effect to a node, first create an instance of that effect and then pass it to setEffect(). Once
this has been done, the effect will be used whenever the node is rendered (as long as the
effect is supported by the environment). To demonstrate the power of effects, we will use
two of them: Glow and InnerShadow. However, the process of adding an effect is essentially
the same no matter what effect you choose.

Glow produces an effect that gives a node a glowing appearance. The amount of glow is
under your control. To use a glow effect, you must first create a Glow instance. This is the
constructor that we will use:

Glow(double glowLevel)

Here, glowLevel specifies the amount of glowing, which must be a value between 0.0 and 1.0.
After a Glow instance has been created, the glow level can be changed by using

setLevel(), shown here:

final void setLevel(double glowLevel)

As before, glowLevel specifies the glow level, which must be between 0.0 and 1.0.
InnerShadow produces an effect that simulates a shadow on the inside of the node. It

supports various constructors. This is the one we will use:

InnerShadow(double radius, Color shadowColor)

35-ch35.indd 1165 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1166 PART IV Introducing GUI Programming with JavaFX

Here, radius specifies the radius of the shadow inside the node. In essence, the radius
describes the size of the shadow. The color of the shadow is specified by shadowColor. Here,
the type Color is the JavaFX type javafx.scene.paint.Color. It defines a large number of
constants, such as Color.GREEN, Color.RED, and Color.BLUE, which makes it easy to use.

Transforms
Transforms are supported by the abstract Transform class, which is packaged in javafx.-
scene.transform. Four of its subclasses are Rotate, Scale, Shear, and Translate. Each does
what its name suggests. (Another subclass is Affine, but typically you will use one or more of
the preceding transform classes.) It is possible to perform more than one transform on a
node. For example, you could rotate it and scale it. Transforms are supported by the Node
class as described next.

One way to add a transform to a node is to add it to the list of transforms maintained by
the node. This list is obtained by calling getTransforms(), which is defined by Node. It is
shown here:

final ObservableList<Transform> getTransforms()

It returns a reference to the list of transforms. To add a transform, simply add it to this list
by calling add(). You can clear the list by calling clear(). You can use remove() to remove a
specific element.

In some cases, you can specify a transform directly, by setting one of Node’s properties.
For example, you can set the rotation angle of a node, with the pivot point being at the
center of the node, by calling setRotate(), passing in the desired angle. You can set a scale
by using setScaleX() and setScaleY(), and you can translate a node by using setTranslateX()
and setTranslateY(). (Z axis translations may also be supported by the platform.) However,
using the transforms list offers the greatest flexibility, and that is the approach
demonstrated here.

NOTE Any transforms specified on a node directly will be applied after all transforms in the transforms
list.

To demonstrate the use of transforms, we will use the Rotate and Scale classes. The
other transforms are used in the same general way. Rotate rotates a node around a specified
point. It defines several constructors. Here is one example:

Rotate(double angle, double x, double y)

Here, angle specifies the number of degrees to rotate. The center of rotation, called the
pivot point, is specified by x and y. It is also possible to use the default constructor and set
these values after a Rotate object has been created, which is what the following
demonstration program will do. This is done by using the setAngle(), setPivotX(),
and setPivotY() methods, shown here:

final void setAngle(double angle)

final void setPivotX(double x)

final void setPivotY(double y)

35-ch35.indd 1166 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1167

Pa
rt

 IV

As before, angle specifies the number of degrees to rotate and the center of rotation is
specified by x and y.

Scale scales a node as specified by a scale factor. Scale defines several constructors. This
is the one we will use:

Scale(double widthFactor, double heightFactor)

Here, widthFactor specifies the scaling factor applied to the node’s width, and heightFactor
specifies the scaling factor applied to the node’s height. These factors can be changed after
a Scale instance has been created by using setX() and setY(), shown here:

final void setX(double widthFactor)

final void setY(double heightFactor)

As before, widthFactor specifies the scaling factor applied to the node’s width, and heightFactor
specifies the scaling factor applied to the node’s height.

Demonstrating Effects and Transforms
The following program demonstrates the use of effects and transforms. It does so by
creating four buttons called Rotate, Scale, Glow, and Shadow. Each time one of these
buttons is pressed, the corresponding effect or transform is applied to the button. Sample
output is shown here:

When you examine the program, you will see how easy it is to customize the look of
your GUI. You might find it interesting to experiment with it, trying different transforms or
effects, or trying the effects on different types of nodes other than buttons.

// Demonstrate rotation, scaling, glowing, and inner shadow.

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;
import javafx.scene.transform.*;
import javafx.scene.effect.*;
import javafx.scene.paint.*;

public class EffectsAndTransformsDemo extends Application {

35-ch35.indd 1167 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1168 PART IV Introducing GUI Programming with JavaFX

 double angle = 0.0;
 double glowVal = 0.0;
 boolean shadow = false;
 double scaleFactor = 1.0;

 // Create initial effects and transforms.
 Glow glow = new Glow(0.0);
 InnerShadow innerShadow = new InnerShadow(10.0, Color.RED);
 Rotate rotate = new Rotate();
 Scale scale = new Scale(scaleFactor, scaleFactor);

 // Create four push buttons.
 Button btnRotate = new Button("Rotate");
 Button btnGlow = new Button("Glow");
 Button btnShadow = new Button("Shadow off");
 Button btnScale = new Button("Scale");

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Effects and Transforms Demo");

 // Use a FlowPane for the root node. In this case,
 // vertical and horizontal gaps of 10 are used.
 FlowPane rootNode = new FlowPane(10, 10);

 // Center the controls in the scene.
 rootNode.setAlignment(Pos.CENTER);

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 100);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Set the initial glow effect.
 btnGlow.setEffect(glow);

 // Add rotation to the transform list for the Rotate button.
 btnRotate.getTransforms().add(rotate);

 // Add scaling to the transform list for the Scale button.
 btnScale.getTransforms().add(scale);

 // Handle the action events for the Rotate button.
 btnRotate.setOnAction(new EventHandler<ActionEvent>() {

35-ch35.indd 1168 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 35 Exploring JavaFX Controls 1169

Pa
rt

 IV

 public void handle(ActionEvent ae) {
 // Each time button is pressed, it is rotated 30 degrees
 // around its center.
 angle += 30.0;

 rotate.setAngle(angle);
 rotate.setPivotX(btnRotate.getWidth()/2);
 rotate.setPivotY(btnRotate.getHeight()/2);
 }
 });

 // Handle the action events for the Scale button.
 btnScale.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 // Each time button is pressed, the button's scale is changed.
 scaleFactor += 0.1;
 if(scaleFactor > 1.0) scaleFactor = 0.4;

 scale.setX(scaleFactor);
 scale.setY(scaleFactor);

 }
 });

 // Handle the action events for the Glow button.
 btnGlow.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 // Each time button is pressed, its glow value is changed.
 glowVal += 0.1;
 if(glowVal > 1.0) glowVal = 0.0;

 // Set the new glow value.
 glow.setLevel(glowVal);
 }
 });

 // Handle the action events for the Shadow button.
 btnShadow.setOnAction(new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 // Each time button is pressed, its shadow status is changed.
 shadow = !shadow;
 if(shadow) {
 btnShadow.setEffect(innerShadow);
 btnShadow.setText("Shadow on");
 } else {
 btnShadow.setEffect(null);
 btnShadow.setText("Shadow off");
 }
 }
 });

 // Add the label and buttons to the scene graph.
 rootNode.getChildren().addAll(btnRotate, btnScale, btnGlow, btnShadow);

35-ch35.indd 1169 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1170 PART IV Introducing GUI Programming with JavaFX

 // Show the stage and its scene.
 myStage.show();
 }
}

Before leaving the topic of effects and transforms, it is useful to mention that several of
them are particularly pleasing when used on a Text node. Text is a class packaged in
javafx.scene.text. It creates a node that consists of text. Because it is a node, the text can be
easily manipulated as a unit and various effects and transforms can be applied.

Adding Tooltips
One very popular element in the modern GUI is the tooltip. A tooltip is a short message that
is displayed when the mouse hovers over a control. In JavaFX, a tooltip can be easily added
to any control. Frankly, because of the benefits that tooltips offer and the ease by which
they can be incorporated into your GUI, there is virtually no reason not to use them where
appropriate.

To add a tooltip, you call the setTooltip() method defined by Control. (Control is a
base class for all controls.) The setTooltip() method is shown here:

final void setTooltip(Tooltip tip)

In this case, tip is an instance of Tooltip, which specifies the tooltip. Once a tooltip has been
set, it is automatically displayed when the mouse hovers over the control. No other action is
required on your part.

The Tooltip class encapsulates a tooltip. This is the constructor that we will use:

Tooltip(String str)

Here, str specifies the message that will be displayed by the tooltip.
To see tooltips in action, try adding the following statements to the CheckboxDemo

program shown earlier.

cbWeb.setTooltip(new Tooltip("Deploy to Web"));
cbDesktop.setTooltip(new Tooltip("Deploy to Desktop"));
cbMobile.setTooltip(new Tooltip("Deploy to Mobile"));

After these additions, the tooltips will be displayed for each check box.

Disabling a Control
Before leaving the subject of controls, it is useful to describe one more feature. Any node in
the scene graph, including a control, can be disabled under program control. To disable a
control, use setDisable(), defined by Node. It is shown here:

final void setDisable(boolean disable)

If disable is true, the control is disabled; otherwise, it is enabled. Thus, using setDisable(),
you can disable a control and then enable it later.

35-ch35.indd 1170 14/02/14 5:24 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

36
CHAPTER

 1171

Introducing JavaFX
Menus

Menus are an important part of many GUIs because they give the user access to a program’s
core functionally. Furthermore, the proper implementation of an application’s menus is a
necessary part of creating a successful GUI. Because of the key role they play in many
applications, JavaFX provides extensive support for menus. Fortunately, JavaFX’s approach
to menus is both powerful and streamlined.

As you will see throughout the course of this chapter, JavaFX menus have several parallels
with Swing menus, which were described in Chapter 33. As a result, if you already know
how to create Swing menus, learning how to create menus in JavaFX is easy. That said, there
are also several differences, so it is important not to jump to conclusions about the JavaFX
menu system.

The JavaFX menu system supports several key elements, including

•	 The menu bar, which is the main menu for an application.

•	 The standard menu, which can contain either items to be selected or other menus
(submenus).

•	 The context menu, which is often activated by right-clicking the mouse. Context
menus are also called popup menus.

JavaFX menus also support accelerator keys, which enable menu items to be selected without
having to activate the menu, and mnemonics, which allow a menu item to be selected by the
keyboard once the menu options are displayed. In addition to “normal” menus, JavaFX also
supports the toolbar, which provides rapid access to program functionality, often paralleling
menu items.

Menu Basics
The JavaFX menu system is supported by a group of related classes packaged in
javafx.scene.control. The ones used in this chapter are shown in Table 36-1, and they
represent the core of the menu system. Although JavaFX allows a high degree of

36-ch36.indd 1171 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1172 PART IV Introducing GUI Programming with JavaFX

customization if desired, normally you will simply use the menu classes as-is because their
default look and feel is generally what you will want.

Here is brief overview of how the classes fit together. To create a main menu for an
application, you first need an instance of MenuBar. This class is, loosely speaking, a
container for menus. To the MenuBar you add instances of Menu. Each Menu object
defines a menu. That is, each Menu object contains one or more selectable items. The
items displayed by a Menu are objects of type MenuItem. Thus, a MenuItem defines a
selection that can be chosen by the user.

In addition to “standard” menu items, you can also include check and radio menu items
in a menu. Their operation parallels check box and radio button controls. A check menu
item is created by CheckMenuItem. A radio menu item is created by RadioMenuItem. Both
of these classes extend MenuItem.

SeparatorMenuItem is a convenience class that creates a separator line in a menu. It
inherits CustomMenuItem, which is a class that facilitates embedding other types of controls
in a menu item. CustomMenuItem extends MenuItem.

One key point about JavaFX menus is that MenuItem does not inherit Node. Thus,
instances of MenuItem can only be used in a menu. They cannot be otherwise incorporated
into a scene graph. However, MenuBar does inherit Node, which does allow the menu bar
to be added to the scene graph.

Another key point is that MenuItem is a superclass of Menu. This allows the creation of
submenus, which are, essentially, menus within menus. To create a submenu, you first create
and populate a Menu object with MenuItems and then add it to another Menu object. You
will see this process in action in the examples that follow.

When a menu item is selected, an action event is generated. The text associated with
the selection will be the name of the selection. Thus, when using one action event handler
to process all menu selections, one way you can determine which item was selected is by
examining the name. Of course, you can also use separate anonymous inner classes or
lambda expressions to handle each menu item’s action events. In this case, the menu
selection is already known and there is no need to examine the name to determine which
item was selected.

As an alternative or adjunct to menus that descend from the menu bar, you can also
create stand-alone, context menus, which pop up when activated. To create a context
menu, first create an object of type ContextMenu. Then, add MenuItems to it. A context
menu is often activated by clicking the right mouse button when the mouse is over a control

Class Description
CheckMenuItem A check menu item.

ContextMenu A popup menu that is typically activated by right-clicking the mouse.

Menu A standard menu. A menu consists of one or more MenuItems.

MenuBar An object that holds the top-level menu for the application.

MenuItem An object that populates menus.

RadioMenuItem A radio menu item.

SeparatorMenuItem A visual separator between menu items.

Table 36-1 The Core JavaFX Menu Classes

36-ch36.indd 1172 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1173

Pa
rt

 IV

for which a context menu has been defined. It is important to point out that ContextMenu
is not derived from MenuItem. Rather, it inherits PopupControl.

A feature related to the menu is the toolbar. In JavaFX, toolbars are supported by the
ToolBar class. It creates a stand-alone component that is often used to provide fast access to
functionality contained within the menus of the application. For example, a toolbar might
provide fast access to the formatting commands supported by a word processor.

An Overview of MenuBar, Menu, and MenuItem
Before you can create a menu, you need to know some specifics about MenuBar, Menu, and
MenuItem. These form the minimum set of classes needed to construct a main menu for an
application. MenuItems are also used by context (i.e., popup) menus. Thus, these classes
form the foundation of the menu system.

MenuBar
MenuBar is essentially a container for menus. It is the control that supplies the main menu
of an application. Like all JavaFX controls, it inherits Node. Thus, it can be added to a scene
graph. MenuBar has only one constructor, which is the default constructor. Therefore, initially,
the menu bar will be empty, and you will need to populate it with menus prior to use. As a
general rule, an application has one and only one menu bar.

MenuBar defines several methods, but often you will use only one: getMenus(). It returns
a list of the menus managed by the menu bar. It is to this list that you will add the menus
that you create. The getMenus() method is shown here:

final ObservableList<Menu> getMenus()

A Menu instance is added to this list of menus by calling add(). You can also use addAll()
to add two or more Menu instances in a single call. The added menus are positioned in the
bar from left to right, in the order in which they are added. If you want to add a menu at a
specific location, then use this version of add():

void add(int idx, Menu menu)

Here, menu is added at the index specified by idx. Indexing begins at 0, with 0 being the
left-most menu.

In some cases, you might want to remove a menu that is no longer needed. You can do
this by calling remove() on the ObservableList returned by getMenus(). Here are two of
its forms:

void remove(Menu menu)

void remove(int idx)

Here, menu is a reference to the menu to remove, and idx is the index of the menu to
remove. Indexing begins at zero.

It is sometimes useful to obtain a count of the number of items in a menu bar. To do
this, call size() on the list returned by getMenus().

NOTE Recall that ObservableList implements the List collections interface, which gives you access to
all the methods defined by List.

36-ch36.indd 1173 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1174 PART IV Introducing GUI Programming with JavaFX

Once a menu bar has been created and populated, it is added to the scene graph in the
normal way.

Menu
Menu encapsulates a menu, which is populated with MenuItems. As mentioned, Menu is
derived from MenuItem. This means that one Menu can be a selection in another Menu.
This enables one menu to be submenu of another. Menu defines three constructors.
Perhaps the most commonly used is shown here:

Menu(String name)

It creates a menu that has the name specified by name. You can specify an image along with
text with this constructor:

Menu(String name, Node image)

Here, image specifies the image that is displayed. In all cases, the menu is empty until menu
items are added to it. Finally, you don’t have to give a menu a name when it is constructed.
To create an unnamed menu, you can use the default constructor:

Menu()

In this case, you can add a name and/or image after the fact by calling setText() or
setGraphic().

Each menu maintains a list of menu items that it contains. To add an item to the menu,
add items to this list. To do so, first call getItems(), shown here:

final ObservableList<MenuItem> getItems()

It returns the list of items currently associated with the menu. To this list, add menu items
by calling either add() or addAll(). Among other actions, you can remove an item by
calling remove() and obtain the size of the list by calling size().

One other point: You can add a menu separator to the list of menu items, which is an
object of type SeparatorMenuItem. Separators help organize long menus by allowing you to
group related items together. A separator can also help set off an important item, such as
the Exit selection in a menu.

MenuItem
MenuItem encapsulates an element in a menu. This element can be either a selection linked
to some program action, such as Save or Close, or it can cause a submenu to be displayed.
MenuItem defines the following three constructors.

MenuItem()

MenuItem(String name)

MenuItem(String name, Node image)

The first creates an empty menu item. The second lets you specify the name of the item,
and the third enables you to include an image.

36-ch36.indd 1174 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1175

Pa
rt

 IV

A MenuItem generates an action event when selected. You can register an action event
handler for such an event by calling setOnAction(), just as you did when handling button
events. It is shown again for your convenience:

final void setOnAction(EventHandler<ActionEvent> handler)

Here, handler specifies the event handler. You can fire an action event on a menu item by
calling fire().

MenuItem defines several methods. One that is often useful is setDisable(), which you
can use to enable or disable a menu item. It is shown here:

final void setDisable(boolean disable)

If disable is true, the menu item is disabled and cannot be selected. If disable is false, the
item is enabled. Using setDisable(), you can turn menu items on or off, depending on
program conditions.

Create a Main Menu
As a general rule, the most commonly used menu is the main menu. This is the menu defined
by the menu bar, and it is the menu that defines all (or nearly all) of the functionality of an
application. As you will see, JavaFX streamlines the process of creating and managing the
main menu. Here, you will see how to construct a simple main menu. Subsequent sections
will show various options.

NOTE As a way of clearly illustrating the similarities and differences between the Swing and JavaFX menu
systems, the examples in this chapter rework the menu examples from Chapter 33. If you already
know Swing, you might find it helpful to compare the two different approaches.

Constructing the main menu requires several steps. First, create the MenuBar instance
that will hold the menus. Next, construct each menu that will be in the menu bar. In general,
a menu is constructed by first creating a Menu object and then adding MenuItems to it.
After the menus have been created, add them to the menu bar. Then, the menu bar, itself,
must be added to the scene graph. Finally, for each menu item, you must add an action
event handler that responds to the action event fired when a menu item is selected.

A good way to understand the process of creating and managing menus is to work
through an example. Here is a program that creates a simple menu bar that contains three
menus. The first is a standard File menu that contains Open, Close, Save, and Exit selections.
The second menu is called Options, and it contains two submenus called Colors and Priority.
The third menu is called Help, and it has one item: About. When a menu item is selected,
the name of the selection is displayed in a label.

// Demonstrate Menus

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;

36-ch36.indd 1175 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1176 PART IV Introducing GUI Programming with JavaFX

import javafx.event.*;
import javafx.geometry.*;

public class MenuDemo extends Application {

 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate Menus");

 // Use a BorderPane for the root node.
 BorderPane rootNode = new BorderPane();

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 300);

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label that will report the selection.
 response = new Label("Menu Demo");

 // Create the menu bar.
 MenuBar mb = new MenuBar();

 // Create the File menu.
 Menu fileMenu = new Menu("File");
 MenuItem open = new MenuItem("Open");
 MenuItem close = new MenuItem("Close");
 MenuItem save = new MenuItem("Save");
 MenuItem exit = new MenuItem("Exit");
 fileMenu.getItems().addAll(open, close, save,
 new SeparatorMenuItem(), exit);

 // Add File menu to the menu bar.
 mb.getMenus().add(fileMenu);

 // Create the Options menu.
 Menu optionsMenu = new Menu("Options");

 // Create the Colors submenu.
 Menu colorsMenu = new Menu("Colors");
 MenuItem red = new MenuItem("Red");
 MenuItem green = new MenuItem("Green");
 MenuItem blue = new MenuItem("Blue");

36-ch36.indd 1176 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1177

Pa
rt

 IV

 colorsMenu.getItems().addAll(red, green, blue);
 optionsMenu.getItems().add(colorsMenu);

 // Create the Priority submenu.
 Menu priorityMenu = new Menu("Priority");
 MenuItem high = new MenuItem("High");
 MenuItem low = new MenuItem("Low");
 priorityMenu.getItems().addAll(high, low);
 optionsMenu.getItems().add(priorityMenu);

 // Add a separator.
 optionsMenu.getItems().add(new SeparatorMenuItem());

 // Create the Reset menu item.
 MenuItem reset = new MenuItem("Reset");
 optionsMenu.getItems().add(reset);

 // Add Options menu to the menu bar.
 mb.getMenus().add(optionsMenu);

 // Create the Help menu.
 Menu helpMenu = new Menu("Help");
 MenuItem about = new MenuItem("About");
 helpMenu.getItems().add(about);

 // Add Help menu to the menu bar.
 mb.getMenus().add(helpMenu);

 // Create one event handler that will handle menu action events.
 EventHandler<ActionEvent> MEHandler =
 new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 String name = ((MenuItem)ae.getTarget()).getText();

 // If Exit is chosen, the program is terminated.
 if(name.equals("Exit")) Platform.exit();

 response.setText(name + " selected");
 }
 };

 // Set action event handlers for the menu items.
 open.setOnAction(MEHandler);
 close.setOnAction(MEHandler);
 save.setOnAction(MEHandler);
 exit.setOnAction(MEHandler);
 red.setOnAction(MEHandler);
 green.setOnAction(MEHandler);
 blue.setOnAction(MEHandler);
 high.setOnAction(MEHandler);
 low.setOnAction(MEHandler);
 reset.setOnAction(MEHandler);
 about.setOnAction(MEHandler);

36-ch36.indd 1177 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1178 PART IV Introducing GUI Programming with JavaFX

 // Add the menu bar to the top of the border pane and
 // the response label to the center position.
 rootNode.setTop(mb);
 rootNode.setCenter(response);

 // Show the stage and its scene.
 myStage.show();
 }
}

Sample output is shown here:

Let’s examine, in detail, how the menus in this program are created. First, note that
MenuDemo uses a BorderPane instance for the root node. BorderPane is similar to the
AWT’s BorderLayout discussed in Chapter 26. It defines a window that has five areas: top,
bottom, left, right, and center. The following methods set the node assigned to these areas:

final void setTop(Node node)

final void setBottom(Node node)

final void setLeft(Node node)

final void setRight(Node node)

final void setCenter(Node node)

Here, node specifies the element, such as a control, that will be shown in each location.
Later in the program, the menu bar is positioned in the top location and a label that
displays the menu selection is set to the center position. Setting the menu bar to the top
position ensures that it will be shown at the top of the application and will automatically be
resized to fit the horizontal width of the window. This is why BorderPane is used in the
menu examples. Of course, other approaches, such as using a VBox, are also valid.

36-ch36.indd 1178 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1179

Pa
rt

 IV

Much of the code in the program is used to construct the menu bar, its menus, and
menu items, and this code warrants a close inspection. First, the menu bar is constructed
and a reference to it is assigned to mb by this statement:

// Create the menu bar.
MenuBar mb = new MenuBar();

At this point, the menu bar is empty. It will be populated by the menus that follow.
Next, the File menu and its menu entries are created by this sequence:

// Create the File menu.
Menu fileMenu = new Menu("File");
MenuItem open = new MenuItem("Open");
MenuItem close = new MenuItem("Close");
MenuItem save = new MenuItem("Save");
MenuItem exit = new MenuItem("Exit");

The names Open, Close, Save, and Exit will be shown as selections in the menu. The menu
entries are added to the File menu by this call to addAll() on the list of menu items returned
by getItems():

fileMenu.getItems().addAll(open, close, save,
 new SeparatorMenuItem(), exit);

Recall that getItems() returns the menu items associated with a Menu instance. To add
menu items to a menu, you will add them to this list. Notice that a separator is used to
separate visually the Exit entry from the others.

Finally, the File menu is added to the menu bar by this line:

// Add File menu to the menu bar.
mb.getMenus().add(fileMenu);

Once the preceding code sequence completes, the menu bar will contain one entry: File.
The File menu will contain four selections in this order: Open, Close, Save, and Exit.

The Options menu is constructed using the same basic process as the File menu.
However, the Options menu consists of two submenus, Colors and Priority, and a Reset
entry. The submenus are first constructed individually and then added to the Options
menu. As explained, because Menu inherits MenuItem, a Menu can be added as an entry
into another Menu. This is the way the submenus are created. The Reset item is added
last. Then, the Options menu is added to the menu bar. The Help menu is constructed
using the same process.

After all of the menus have been constructed, an ActionEvent handler called
MEHandler is created that will process menu selections. For demonstration purposes, a
single handler will process all selections, but in a real-world application, it is often easier to
specify a separate handler for each individual selection by using anonymous inner classes or
lambda expressions. The ActionEvent handler for the menu items is shown here:

// Create one event handler that will handle all menu events.
EventHandler<ActionEvent> MEHandler = new EventHandler<ActionEvent>() {

36-ch36.indd 1179 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1180 PART IV Introducing GUI Programming with JavaFX

 public void handle(ActionEvent ae) {
 String name = ((MenuItem)ae.getTarget()).getText();

 // If Exit is chosen, the program is terminated.
 if(name.equals("Exit")) Platform.exit();

 response.setText(name + " selected");
 }
};

Inside handle(), the target of the event is obtained by calling getTarget(). The returned
reference is cast to MenuItem, and its name is returned by calling getText(). This string is
then assigned to name. If name contains the string "Exit", the application is terminated by
calling Platform.exit(). Otherwise, the name is displayed in the response label.

Before continuing, it must be pointed out that a JavaFX application must call
Platform.exit(), not System.exit(). The Platform class is defined by JavaFX and
packaged in javafx.application. Its exit() method causes the stop() life-cycle method
to be called. System.exit() does not.

Finally, MEHandler is registered as the action event handler for each menu item by the
following statements:

// Set action event handlers for the menu items.
open.setOnAction(MEHandler);
close.setOnAction(MEHandler);
save.setOnAction(MEHandler);
exit.setOnAction(MEHandler);
red.setOnAction(MEHandler);
green.setOnAction(MEHandler);
blue.setOnAction(MEHandler);
high.setOnAction(MEHandler);
low.setOnAction(MEHandler);
reset.setOnAction(MEHandler);
about.setOnAction(MEHandler);

Notice that no listeners are added to the Colors or Priority items because they are not
actually selections. They simply activate submenus.

Finally, the menu bar is added to the root node by the following line:

rootNode.setTop(mb);

This causes the menu bar to be placed at the top of the window.
At this point, you might want to experiment a bit with the MenuDemo program. Try

adding another menu or adding additional items to an existing menu. It is important that
you understand the basic menu concepts before moving on because this program will
evolve throughout the remainder of this chapter.

Add Mnemonics and Accelerators to Menu Items
The menu created in the preceding example is functional, but it is possible to make it
better. In real applications, a menu usually includes support for keyboard shortcuts. These
come in two forms: accelerators and mnemonics. An accelerator is a key combination that

36-ch36.indd 1180 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1181

Pa
rt

 IV

lets you select a menu item without having to first activate the menu. As it applies to menus,
a mnemonic defines a key that lets you select an item from an active menu by typing the
key. Thus, a mnemonic allows you to use the keyboard to select an item from a menu that is
already being displayed.

An accelerator can be associated with a Menu or MenuItem. It is specified by calling
setAccelerator(), shown next:

final void setAccelerator(KeyCombination keyComb)

Here, keyComb is the key combination that is pressed to select the menu item.
KeyCombination is class that encapsulates a key combination, such as ctrl-s. It is
packaged in javafx.scene.input.

KeyCombination defines two protected constructors, but often you will use the
keyCombination() factory method, shown here:

static KeyCombination keyCombination(String keys)

In this case, keys is a string that specifies the key combination. It typically consists of a modifier,
such as ctrl, alt, shift, or meta, and a letter, such as s. There is a special value, called
shortcut, which can be used to specify the ctrl key in a Windows system and the meta key
on a Mac. (It also maps to the typically used shortcut key on other types of systems.)
Therefore, if you want to specify ctrl-s as the key combination for Save, then use the string
"shortcut+S". This way, it will work for both Windows and Mac and elsewhere.

The following sequence adds accelerators to the File menu created by the MenuDemo
program in the previous section. After making this change, you can directly select a File
menu option by pressing ctrl-o, ctrl-c, ctrl-s, or ctrl-e.

// Add keyboard accelerators for the File menu.
open.setAccelerator(KeyCombination.keyCombination("shortcut+O"));
close.setAccelerator(KeyCombination.keyCombination("shortcut+C"));
save.setAccelerator(KeyCombination.keyCombination("shortcut+S"));
exit.setAccelerator(KeyCombination.keyCombination("shortcut+E"));

A mnemonic can be specified for both MenuItem and Menu objects, and it is very easy
to do. Simply precede the letter in the name of the menu or menu item with an underscore.
For example, in the preceding example, to add the mnemonic F to the File menu, declare
fileMenu as shown here:

Menu fileMenu = new Menu("_File"); // now defines a mnemonic

After making this change, you can select the File menu by typing alt then f. However,
mnemonics are active only if mnemonic parsing is true (as it is by default). You can turn
mnemonic parsing on or off by using setMnemonicParsing(), shown here:

final void setMnemonicParsing(boolean enable)

In this case, if enable is true, then mnemonic parsing is turned on. Otherwise, it is turned off.

36-ch36.indd 1181 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1182 PART IV Introducing GUI Programming with JavaFX

After making these changes, the File menu will now look like this:

Add Images to Menu Items
You can add images to menu items or use images instead of text. The easiest way to add an
image is to specify it when the menu item is being constructed using this constructor:

MenuItem(String name, Node image)

It creates a menu item with the name specified by name and the image specified by image.
For example, here the About menu item is associated with an image when it is created.

ImageView aboutIV = new ImageView("aboutIcon.gif");
MenuItem about = new MenuItem("About", aboutIV);

After this addition, the image specified by aboutIV will be displayed next to the text
“About” when the Help menu is displayed, as shown here:

36-ch36.indd 1182 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1183

Pa
rt

 IV

One last point: You can also add an image to a menu item after the item has been
created by calling setGraphic(). This lets you change the image during program execution.

Use RadioMenuItem and CheckMenuItem
Although the type of menu items used by the preceding examples are, as a general rule, the
most commonly used, JavaFX defines two others: check menu items and radio menu items.
These elements can streamline a GUI by allowing a menu to provide functionality that would
otherwise require additional, stand-alone components. Also, sometimes including check or
radio menu items simply seems most natural for a specific set of features. Whatever your
reason, it is easy to use check and/or radio menu items in menus, and both are
examined here.

To add a check menu item to a menu, use CheckMenuItem. It defines three constructors,
which parallel the ones defined by MenuItem. The one used in this chapter is shown here:

CheckMenuItem(String name)

Here, name specifies the name of the item. The initial state of the item is unchecked. If
you want to check a check menu item under program control, call setSelected(),
shown here:

final void setSelected(boolean selected)

If selected is true, the menu item is checked. Otherwise, it is unchecked.
Like stand-alone check boxes, check menu items generate action events when their

state is changed. Check menu items are especially appropriate in menus when you have
options that can be selected and you want to display their selected/deselected status.

A radio menu item can be added to a menu by creating an object of type
RadioMenuItem. RadioMenuItem defines a number of constructors. The one used in
this chapter is shown here:

RadioMenuItem(String name)

It creates a radio menu item that has the name passed in name. The item is not selected.
As with the case of check menu items, to select a radio menu item, call setSelected(),
passing true as an argument.

RadioMenuItem works like a stand-alone radio button, generating both change and
action events. Like stand-alone radio buttons, menu radio items must be put into a toggle
group in order for them to exhibit mutually exclusive selection behavior.

Because both CheckMenuItem and RadioMenuItem inherit MenuItem, each has all of
the functionality provided by MenuItem. Aside from having the extra capabilities of check
boxes and radio buttons, they act like and are used like other menu items.

To try check and radio menu items, first remove the code that creates the Options menu
in the MenuDemo example program. Then substitute the following code sequence, which
uses check menu items for the Colors submenu and radio menu items for the Priority
submenu.

// Create the Options menu.
Menu optionsMenu = new Menu("Options");

36-ch36.indd 1183 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1184 PART IV Introducing GUI Programming with JavaFX

// Create the Colors submenu.
Menu colorsMenu = new Menu("Colors");

// Use check menu items for colors. This allows
// the user to select more than one color.
CheckMenuItem red = new CheckMenuItem("Red");
CheckMenuItem green = new CheckMenuItem("Green");
CheckMenuItem blue = new CheckMenuItem("Blue");
colorsMenu.getItems().addAll(red, green, blue);
optionsMenu.getItems().add(colorsMenu);

// Select green for the default color selection.
green.setSelected(true);

// Create the Priority submenu.
Menu priorityMenu = new Menu("Priority");

// Use radio menu items for the priority setting.
// This lets the menu show which priority is used
// and also ensures that one and only one priority
// can be selected at any one time.
RadioMenuItem high = new RadioMenuItem("High");
RadioMenuItem low = new RadioMenuItem("Low");

// Create a toggle group and use it for the radio menu items.
ToggleGroup tg = new ToggleGroup();
high.setToggleGroup(tg);
low.setToggleGroup(tg);

// Select High priority for the default selection.
high.setSelected(true);

// Add the radio menu items to the Priority menu and
// add the Priority menu to the Options menu.
priorityMenu.getItems().addAll(high, low);
optionsMenu.getItems().add(priorityMenu);

// Add a separator.
optionsMenu.getItems().add(new SeparatorMenuItem());

// Create the Reset menu item.
MenuItem reset = new MenuItem("Reset");
optionsMenu.getItems().add(reset);

// Add Options menu to the menu bar.
mb.getMenus().add(optionsMenu);

36-ch36.indd 1184 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1185

Pa
rt

 IV

After making the substitution, the check menu items in the Colors submenu look like those
shown here:

Here is how the radio menu items in the Priority submenu now look:

Create a Context Menu
A popular alternative or addition to the menu bar is the popup menu, which in JavaFX is
referred to as a context menu. Typically, a context menu is activated by clicking the right
mouse button when over a control. Popup menus are supported in JavaFX by the
ContextMenu class. The direct superclass of ContextMenu is PopupControl. An indirect
superclass of ContextMenu is javafx.stage.PopupWindow, which supplies much of its basic
functionality.

36-ch36.indd 1185 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1186 PART IV Introducing GUI Programming with JavaFX

ContextMenu has two constructors. The one used in this chapter is shown here:

ContextMenu(MenuItem ... menuItems)

Here, menuItems specify the menu items that will constitute the context menu. The second
ContextMenu constructor creates an empty menu to which items must be added.

In general, context menus are constructed like regular menus. Menu items are created
and added to the menu. Menu item selections are also handled in the same way: by handling
action events. The main difference between a context menu and a regular menu is the
activation process.

To associate a context menu with a control is amazingly easy. Simply call
setContextMenu() on the control, passing in a reference to the menu that you
want to pop up. When you right-click on that control, the associated context menu
will be shown. The setContextMenu() method is shown here:

final void setContextMenu(ContextMenu menu)

In this case, menu specifies the context menu associated with the invoking control.
To demonstrate a context menu, we will add one to the MenuDemo program. The context

menu will present a standard “Edit” menu that includes the Cut, Copy, and Paste entries. It
will be set on a text field control. When the mouse is right-clicked while in the text field,
the context menu will pop up. To begin, create the context menu, as shown here:

// Create the context menu items
MenuItem cut = new MenuItem("Cut");
MenuItem copy = new MenuItem("Copy");
MenuItem paste = new MenuItem("Paste");

// Create a context (i.e., popup) menu that shows edit options.
final ContextMenu editMenu = new ContextMenu(cut, copy, paste);

This sequence begins by constructing the MenuItems that will form the menu. It then
creates an instance of ContextMenu called editMenu that contains the items.

Next, add the action event handler to these menu items, as shown here:

cut.setOnAction(MEHandler);
copy.setOnAction(MEHandler);
paste.setOnAction(MEHandler);

This finishes the construction of the context menu, but the menu has not yet been
associated with a control.

Now, add the following sequence that creates the text field:

// Create a text field and set its column width to 20.
TextField tf = new TextField();
tf.setPrefColumnCount(20);

Next, set the context menu on the text field:

// Add the context menu to the textfield.
tf.setContextMenu(editMenu);

Now, when the mouse is right-clicked over the text field, the context menu will pop up.

36-ch36.indd 1186 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1187

Pa
rt

 IV

To add the text field to the program, you must create a flow pane that will hold both
the text field and the response label. This pane will then be added to the center of the
BorderPane. This step is necessary because only one node can be added to any single location
within a BorderPane. First, remove this line of code:

rootNode.setCenter(response);

Replace it with the following code:

// Create a flow pane that will hold both the response
// label and the text field.
FlowPane fpRoot = new FlowPane(10, 10);

// Center the controls in the scene.
fpRoot.setAlignment(Pos.CENTER);

// Add both the label and the text field to the flow pane.
fpRoot.getChildren().addAll(response, tf);

// Add the flow pane to the center of the border layout.
rootNode.setCenter(fpRoot);

Of course, the menu bar is still added to the top position of the border pane.
After making these changes, when you right-click over the text field, the context menu

will pop up, as shown here:

It is also possible to associate a context menu with a scene. One way to do this is by
calling setOnContextMenuRequested() on the root node of the scene. This method is
defined by Node and is shown here:

final void setOnContextMenuRequested(
 EventHandler<? super ContextMenuEvent> eventHandler)

36-ch36.indd 1187 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1188 PART IV Introducing GUI Programming with JavaFX

Here, eventHandler specifies the handler that will be called when a popup request has been
received for the context menu. In this case, the handler must call the show() method defined
by ContextMenu to cause the context menu to be displayed. This is the version we will use:

final void show(Node node, double upperX, double upperY)

Here, node is the element on which the context menu is linked. The values of upperX and
upperY define the X,Y location of the upper-left corner of the menu, relative to the screen.
Typically, you will pass the screen coordinates at which the right-click occurred. To do this,
you will call the getScreenX() and getScreenY() methods defined by ContextMenuEvent.
They are shown here:

final double getScreenX()

final double getScreenY()

Thus, you will typically pass the results of these methods to the show() method.
The preceding theory can be put into practice by adding the context menu to the root

node of the scene graph. After doing so, right-clicking anywhere in the scene will cause the
menu to pop up. To do this, first add the following sequence to the MenuDemo program:

// Add the context menu to the entire scene graph.
rootNode.setOnContextMenuRequested(
 new EventHandler<ContextMenuEvent>() {
 public void handle(ContextMenuEvent ae) {
 // Popup menu at the location of the right click.
 editMenu.show(rootNode, ae.getScreenX(), ae.getScreenY());
 }
});

Second, declare rootNode final so that it can be accessed within the anonymous inner
class. After you have made these additions and changes, the context menu can be activated
by clicking the right mouse button anywhere inside the application scene. For example,
here is the menu displayed after right-clicking in the upper-left portion of the window.

36-ch36.indd 1188 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1189

Pa
rt

 IV

Create a Toolbar
A toolbar is a component that can serve as both an alternative and as an adjunct to a menu.
Typically, a toolbar contains a list of buttons that give the user immediate access to various
program options. For example, a toolbar might contain buttons that select various font
options, such as bold, italics, highlight, or underline. These options can be selected without
the need to drop through a menu. As a general rule, toolbar buttons show images rather
than text, although either or both are allowed. Furthermore, often tooltips are associated
with image-based toolbar buttons.

In JavaFX, toolbars are instances of the ToolBar class. It defines the two constructors,
shown here:

ToolBar()

ToolBar(Node ... nodes)

The first constructor creates an empty, horizontal toolbar. The second creates a horizontal
toolbar that contains the specified nodes, which are usually some form of button. If you
want to create a vertical toolbar, call setOrientation() on the toolbar. It is shown here:

final void setOrientation(Orientation how)

The value of how must be either Orientation.VERTICAL or Orientation.HORIZONTAL.
You add buttons (or other controls) to a toolbar in much the same way that you add

them to a menu bar: call add() on the reference returned by the getItems() method.
Often, however, it is easier to specify the items in the ToolBar constructor, and that is the
approach used in this chapter. Once you have created a toolbar, add it to the scene graph.
For example, when using a border layout, it could be added to the bottom location. Of
course, other approaches are commonly used. For example, it could be added to a location
directly under the menu bar or at the side of the window.

To illustrate a toolbar, we will add one to the MenuDemo program. The toolbar will
present three debugging options: Set Breakpoint, Clear Breakpoint, and Resume Execution.
We will also add tooltips to the menu items. Recall from the previous chapter, a tooltip is a
small message that describes an item. It is automatically displayed if the mouse hovers over
the item for moment. You can add a tooltip to the menu item in the same way as you add it to
a control: by calling setTooltip(). Tooltips are especially useful when applied to image-based
toolbar controls because sometimes it’s hard to design images that are intuitive to all users.

First, add the following code, which creates the debugging toolbar:

// Define a toolbar. First, create toolbar items.
Button btnSet = new Button("Set Breakpoint",
 new ImageView("setBP.gif"));
Button btnClear = new Button("Clear Breakpoint",
 new ImageView("clearBP.gif"));
Button btnResume = new Button("Resume Execution",
 new ImageView("resume.gif"));

// Now, turn off text in the buttons.
btnSet.setContentDisplay(ContentDisplay.GRAPHIC_ONLY);
btnClear.setContentDisplay(ContentDisplay.GRAPHIC_ONLY);
btnResume.setContentDisplay(ContentDisplay.GRAPHIC_ONLY);

36-ch36.indd 1189 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1190 PART IV Introducing GUI Programming with JavaFX

// Set tooltips.
btnSet.setTooltip(new Tooltip("Set a breakpoint."));
btnClear.setTooltip(new Tooltip("Clear a breakpoint."));
btnResume.setTooltip(new Tooltip("Resume execution."));

// Create the toolbar.
ToolBar tbDebug = new ToolBar(btnSet, btnClear, btnResume);

Let’s look at this code closely. First, three buttons are created that correspond to the
debug actions. Notice that each has an image associated with it. Next, each button
deactivates the text display by calling setContentDisplay(). As a point of interest, it would
have been possible to leave the text displayed, but the toolbar would have had a somewhat
nonstandard look. (The text for each button is still needed, however, because it will be used
by the action event handler for the buttons.) Tooltips are then set for each button. Finally,
the toolbar is created, with the buttons specified as the contents.

Next, add the following sequence, which defines an action event handler for the
toolbar buttons:

// Create a handler for the toolbar buttons.
EventHandler<ActionEvent> btnHandler = new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText(((Button)ae.getTarget()).getText());
 }
};

// Set the toolbar button action event handlers.
btnSet.setOnAction(btnHandler);
btnClear.setOnAction(btnHandler);
btnResume.setOnAction(btnHandler);

Finally, add the toolbar to the bottom of the border layout by using this statement:

rootNode.setBottom(tbDebug);

After making these additions, each time the user presses a toolbar button, an action event is
fired, and it is handled by displaying the button’s text in the response label. The following
output shows the toolbar in action.

36-ch36.indd 1190 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1191

Pa
rt

 IV

Put the Entire MenuDemo Program Together
Throughout the course of this discussion, many changes and additions have been made to
the MenuDemo program shown at the start of the chapter. Before concluding, it will be
helpful to assemble all the pieces. Doing so not only eliminates any ambiguity about the way
the pieces fit together, but it also gives you a complete menu demonstration program that
you can experiment with.

The following version of MenuDemo includes all of the additions and enhancements
described in this chapter. For clarity, the program has been reorganized, with separate
methods being used to construct the various menus and toolbar. Notice that several of the
menu-related variables, such as mb and tbDebug, have been made into instance variables so
they can be directly accessed by any part of the class.

// Demonstrate Menus -- Final Version

import javafx.application.*;
import javafx.scene.*;
import javafx.stage.*;
import javafx.scene.layout.*;
import javafx.scene.control.*;
import javafx.event.*;
import javafx.geometry.*;
import javafx.scene.input.*;
import javafx.scene.image.*;
import javafx.beans.value.*;

public class MenuDemoFinal extends Application {

 MenuBar mb;
 EventHandler<ActionEvent> MEHandler;
 ContextMenu editMenu;
 ToolBar tbDebug;

 Label response;

 public static void main(String[] args) {

 // Start the JavaFX application by calling launch().
 launch(args);
 }

 // Override the start() method.
 public void start(Stage myStage) {

 // Give the stage a title.
 myStage.setTitle("Demonstrate Menus -- Final Version");

 // Use a BorderPane for the root node.
 final BorderPane rootNode = new BorderPane();

 // Create a scene.
 Scene myScene = new Scene(rootNode, 300, 300);

36-ch36.indd 1191 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1192 PART IV Introducing GUI Programming with JavaFX

 // Set the scene on the stage.
 myStage.setScene(myScene);

 // Create a label that will report the selection.
 response = new Label();

 // Create one event handler for all menu action events.
 MEHandler = new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 String name = ((MenuItem)ae.getTarget()).getText();

 if(name.equals("Exit")) Platform.exit();

 response.setText(name + " selected");
 }
 };

 // Create the menu bar.
 mb = new MenuBar();

 // Create the File menu.
 makeFileMenu();

 // Create the Options menu.
 makeOptionsMenu();

 // Create the Help menu.
 makeHelpMenu();

 // Create the context menu.
 makeContextMenu();

 // Create a text field and set its column width to 20.
 TextField tf = new TextField();
 tf.setPrefColumnCount(20);

 // Add the context menu to the text field.
 tf.setContextMenu(editMenu);

 // Create the toolbar.
 makeToolBar();

 // Add the context menu to the entire scene graph.
 rootNode.setOnContextMenuRequested(
 new EventHandler<ContextMenuEvent>() {
 public void handle(ContextMenuEvent ae) {
 // Popup menu at the location of the right click.
 editMenu.show(rootNode, ae.getScreenX(), ae.getScreenY());
 }
 });

 // Add the menu bar to the top of the border pane.
 rootNode.setTop(mb);

36-ch36.indd 1192 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1193

Pa
rt

 IV

 // Create a flow pane that will hold both the response
 // label and the text field.
 FlowPane fpRoot = new FlowPane(10, 10);

 // Center the controls in the scene.
 fpRoot.setAlignment(Pos.CENTER);

 // Use a separator to better organize the layout.
 Separator separator = new Separator();
 separator.setPrefWidth(260);

 // Add the label, separator, and text field to the flow pane.
 fpRoot.getChildren().addAll(response, separator, tf);

 // Add the toolbar to the bottom of the border pane.
 rootNode.setBottom(tbDebug);

 // Add the flow pane to the center of the border layout.
 rootNode.setCenter(fpRoot);

 // Show the stage and its scene.
 myStage.show();
 }

 // Create the File menu.
 void makeFileMenu() {
 // Create the File menu, including a mnemonic.
 Menu fileMenu = new Menu("_File");

 // Create the File menu items.
 MenuItem open = new MenuItem("Open");
 MenuItem close = new MenuItem("Close");
 MenuItem save = new MenuItem("Save");
 MenuItem exit = new MenuItem("Exit");

 // Add items to File menu.
 fileMenu.getItems().addAll(open, close, save,
 new SeparatorMenuItem(), exit);

 // Add keyboard accelerators for the File menu.
 open.setAccelerator(KeyCombination.keyCombination("shortcut+O"));
 close.setAccelerator(KeyCombination.keyCombination("shortcut+C"));
 save.setAccelerator(KeyCombination.keyCombination("shortcut+S"));
 exit.setAccelerator(KeyCombination.keyCombination("shortcut+E"));

 // Set action event handlers.
 open.setOnAction(MEHandler);
 close.setOnAction(MEHandler);
 save.setOnAction(MEHandler);
 exit.setOnAction(MEHandler);

 // Add File menu to the menu bar.
 mb.getMenus().add(fileMenu);
 }

36-ch36.indd 1193 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1194 PART IV Introducing GUI Programming with JavaFX

 // Create the Options menu.
 void makeOptionsMenu() {
 Menu optionsMenu = new Menu("Options");

 // Create the Colors submenu.
 Menu colorsMenu = new Menu("Colors");

 // Use check menu items for colors. This allows
 // the user to select more than one color.
 CheckMenuItem red = new CheckMenuItem("Red");
 CheckMenuItem green = new CheckMenuItem("Green");
 CheckMenuItem blue = new CheckMenuItem("Blue");

 // Add the check menu items for the Colors menu and
 // add the colors menu to the Options menu.
 colorsMenu.getItems().addAll(red, green, blue);
 optionsMenu.getItems().add(colorsMenu);

 // Select green for the default color selection.
 green.setSelected(true);

 // Create the Priority submenu.
 Menu priorityMenu = new Menu("Priority");

 // Use radio menu items for the priority setting.
 // This lets the menu show which priority is used
 // and also ensures that one and only one priority
 // can be selected at any one time.
 RadioMenuItem high = new RadioMenuItem("High");
 RadioMenuItem low = new RadioMenuItem("Low");

 // Create a toggle group and use it for the radio menu items.
 ToggleGroup tg = new ToggleGroup();
 high.setToggleGroup(tg);
 low.setToggleGroup(tg);

 // Select High priority for the default selection.
 high.setSelected(true);

 // Add the radio menu items to the Priority menu and
 // add the Priority menu to the Options menu.
 priorityMenu.getItems().addAll(high, low);
 optionsMenu.getItems().add(priorityMenu);

 // Add a separator.
 optionsMenu.getItems().add(new SeparatorMenuItem());

 // Create the Reset menu item and add it to the Options menu.
 MenuItem reset = new MenuItem("Reset");
 optionsMenu.getItems().add(reset);

 // Set action event handlers.
 red.setOnAction(MEHandler);
 green.setOnAction(MEHandler);
 blue.setOnAction(MEHandler);

36-ch36.indd 1194 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 36 Introducing JavaFX Menus 1195

Pa
rt

 IV

 high.setOnAction(MEHandler);
 low.setOnAction(MEHandler);
 reset.setOnAction(MEHandler);

 // Use a change listener to respond to changes in the radio
 // menu item setting.
 tg.selectedToggleProperty().addListener(new ChangeListener<Toggle>() {
 public void changed(ObservableValue<? extends Toggle> changed,
 Toggle oldVal, Toggle newVal) {
 if(newVal==null) return;

 // Cast newVal to RadioButton.
 RadioMenuItem rmi = (RadioMenuItem) newVal;

 // Display the selection.
 response.setText("Priority selected is " + rmi.getText());
 }
 });

 // Add Options menu to the menu bar.
 mb.getMenus().add(optionsMenu);
 }

 // Create the Help menu.
 void makeHelpMenu() {

 // Create an ImageView for the image.
 ImageView aboutIV = new ImageView("aboutIcon.gif");

 // Create the Help menu.
 Menu helpMenu = new Menu("Help");

 // Create the About menu item and add it to the Help menu.
 MenuItem about = new MenuItem("About", aboutIV);
 helpMenu.getItems().add(about);

 // Set action event handler.
 about.setOnAction(MEHandler);

 // Add Help menu to the menu bar.
 mb.getMenus().add(helpMenu);
 }

 // Create the context menu items.
 void makeContextMenu() {

 // Create the edit context menu items.
 MenuItem cut = new MenuItem("Cut");
 MenuItem copy = new MenuItem("Copy");
 MenuItem paste = new MenuItem("Paste");

 // Create a context (i.e., popup) menu that shows edit options.
 editMenu = new ContextMenu(cut, copy, paste);

36-ch36.indd 1195 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1196 PART IV Introducing GUI Programming with JavaFX

 // Set the action event handlers.
 cut.setOnAction(MEHandler);
 copy.setOnAction(MEHandler);
 paste.setOnAction(MEHandler);
 }

 // Create the toolbar.
 void makeToolBar() {
 // Create toolbar items.
 Button btnSet = new Button("Set Breakpoint",
 new ImageView("setBP.gif"));
 Button btnClear = new Button("Clear Breakpoint",
 new ImageView("clearBP.gif"));
 Button btnResume = new Button("Resume Execution",
 new ImageView("resume.gif"));

 // Turn off text in the buttons.
 btnSet.setContentDisplay(ContentDisplay.GRAPHIC_ONLY);
 btnClear.setContentDisplay(ContentDisplay.GRAPHIC_ONLY);
 btnResume.setContentDisplay(ContentDisplay.GRAPHIC_ONLY);

 // Set tooltips.
 btnSet.setTooltip(new Tooltip("Set a breakpoint."));
 btnClear.setTooltip(new Tooltip("Clear a breakpoint."));
 btnResume.setTooltip(new Tooltip("Resume execution."));

 // Create the toolbar.
 tbDebug = new ToolBar(btnSet, btnClear, btnResume);

 // Create a handler for the toolbar buttons.
 EventHandler<ActionEvent> btnHandler = new EventHandler<ActionEvent>() {
 public void handle(ActionEvent ae) {
 response.setText(((Button)ae.getTarget()).getText());
 }
 };

 // Set the toolbar button action event handlers.
 btnSet.setOnAction(btnHandler);
 btnClear.setOnAction(btnHandler);
 btnResume.setOnAction(btnHandler);
 }
}

Continuing Your Exploration of JavaFX
JavaFX represents a major advance in GUI frameworks for Java. It also redefines aspects of the
Java platform. The preceding three chapters have introduced several of its core features, but
there is much left to explore. For example, JavaFX supplies several more controls, such as
sliders, stand-alone scrollbars, and tables. You will want to experiment with its layouts, such as
VBox and Hbox. You will also want to explore, in detail, the various effects in javafx.scene.-
effect and the various transforms in javafx.scene.transform. Another exciting class is WebView,
which gives you an easy way to integrate web content into a scene graph. Frankly, all of JavaFX
is worthy of serious study. In many ways, it is charting the future course of Java.

36-ch36.indd 1196 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8 / blind folio

Applying Java

PART

V
CHAPTER 37
Java Beans

CHAPTER 38
Introducing Servlets

APPENDIX
Using Java's
Documentation
Comments

37-ch37.indd 1197 14/02/14 5:25 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

37
CHAPTER

 1199

Java Beans

This chapter provides an overview of Java Beans. Beans are important because they allow
you to build complex systems from software components. These components may be provided
by you or supplied by one or more different vendors. Java Beans defines an architecture
that specifies how these building blocks can operate together.

To better understand the value of Beans, consider the following. Hardware designers
have a wide variety of components that can be integrated together to construct a system.
Resistors, capacitors, and inductors are examples of simple building blocks. Integrated
circuits provide more advanced functionality. All of these different parts can be reused. It
is not necessary or possible to rebuild these capabilities each time a new system is needed.
Also, the same pieces can be used in different types of circuits. This is possible because the
behavior of these components is understood and documented.

The software industry has also been seeking the benefits of reusability and interoperability
of a component-based approach. To realize these benefits, a component architecture is
needed that allows programs to be assembled from software building blocks, perhaps
provided by different vendors. It must also be possible for a designer to select a component,
understand its capabilities, and incorporate it into an application. When a new version of a
component becomes available, it should be easy to incorporate this functionality into existing
code. Fortunately, Java Beans provides just such an architecture.

What Is a Java Bean?
A Java Bean is a software component that has been designed to be reusable in a variety of
different environments. There is no restriction on the capability of a Bean. It may perform
a simple function, such as obtaining an inventory value, or a complex function, such as
forecasting the performance of a stock portfolio. A Bean may be visible to an end user. One
example of this is a button on a graphical user interface. A Bean may also be invisible to a
user. Software to decode a stream of multimedia information in real time is an example of
this type of building block. Finally, a Bean may be designed to work autonomously on a
user’s workstation or to work in cooperation with a set of other distributed components.

37-ch37.indd 1199 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1200 PART V Applying Java

Software to generate a pie chart from a set of data points is an example of a Bean that can
execute locally. However, a Bean that provides real-time price information from a stock or
commodities exchange would need to work in cooperation with other distributed software
to obtain its data.

Advantages of Java Beans
The following list enumerates some of the benefits that Java Bean technology provides for a
component developer:

•	 A Bean obtains all the benefits of Java’s “write-once, run-anywhere” paradigm.

•	 The properties, events, and methods of a Bean that are exposed to another
application can be controlled.

•	 Auxiliary software can be provided to help configure a Bean. This software is only
needed when the design-time parameters for that component are being set. It does
not need to be included in the run-time environment.

•	 The state of a Bean can be saved in persistent storage and restored at a later time.

•	 A Bean may register to receive events from other objects and can generate events
that are sent to other objects.

Introspection
At the core of Java Beans is introspection. This is the process of analyzing a Bean to determine
its capabilities. This is an essential feature of the Java Beans API because it allows another
application, such as a design tool, to obtain information about a component. Without
introspection, the Java Beans technology could not operate.

There are two ways in which the developer of a Bean can indicate which of its properties,
events, and methods should be exposed. With the first method, simple naming conventions
are used. These allow the introspection mechanisms to infer information about a Bean. In
the second way, an additional class that extends the BeanInfo interface is provided that
explicitly supplies this information. Both approaches are examined here.

Design Patterns for Properties
A property is a subset of a Bean’s state. The values assigned to the properties determine the
behavior and appearance of that component. A property is set through a setter method. A
property is obtained by a getter method. There are two types of properties: simple and indexed.

Simple Properties
A simple property has a single value. It can be identified by the following design patterns,
where N is the name of the property and T is its type:

public T getN()
public void setN(T arg)

A read/write property has both of these methods to access its values. A read-only property
has only a get method. A write-only property has only a set method.

37-ch37.indd 1200 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 37 Java Beans 1201

Pa
rt

 V

Here are three read/write simple properties along with their getter and setter methods:

private double depth, height, width;

public double getDepth() {
 return depth;
}
public void setDepth(double d) {
 depth = d;
}

public double getHeight() {
 return height;
}
public void setHeight(double h) {
 height = h;
}

public double getWidth() {
 return width;
}
public void setWidth(double w) {
 width = w;
}

NOTE For a boolean property, a method of the form isPropertyName() can also be used as an
accessor.

Indexed Properties
An indexed property consists of multiple values. It can be identified by the following design
patterns, where N is the name of the property and T is its type:

public T getN(int index);
public void setN(int index, T value);
public T[] getN();
public void setN(T values[]);

Here is an indexed property called data along with its getter and setter methods:

private double data[];

public double getData(int index) {
 return data[index];
}
public void setData(int index, double value) {
 data[index] = value;
}
public double[] getData() {
 return data;
}
public void setData(double[] values) {
 data = new double[values.length];
 System.arraycopy(values, 0, data, 0, values.length);
}

37-ch37.indd 1201 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1202 PART V Applying Java

Design Patterns for Events
Beans use the delegation event model that was discussed earlier in this book. Beans can
generate events and send them to other objects. These can be identified by the following
design patterns, where T is the type of the event:

public void addTListener(TListener eventListener)
public void addTListener(TListener eventListener)
 throws java.util.TooManyListenersException
public void removeTListener(TListener eventListener)

These methods are used to add or remove a listener for the specified event. The version of
addTListener() that does not throw an exception can be used to multicast an event, which
means that more than one listener can register for the event notification. The version that
throws TooManyListenersException unicasts the event, which means that the number of
listeners can be restricted to one. In either case, removeTListener() is used to remove the
listener. For example, assuming an event interface type called TemperatureListener, a Bean
that monitors temperature might supply the following methods:

public void addTemperatureListener(TemperatureListener tl) {
 ...
}
public void removeTemperatureListener(TemperatureListener tl) {
 ...
}

Methods and Design Patterns
Design patterns are not used for naming nonproperty methods. The introspection
mechanism finds all of the public methods of a Bean. Protected and private methods
are not presented.

Using the BeanInfo Interface
As the preceding discussion shows, design patterns implicitly determine what information is
available to the user of a Bean. The BeanInfo interface enables you to explicitly control what
information is available. The BeanInfo interface defines several methods, including these:

PropertyDescriptor[] getPropertyDescriptors()
EventSetDescriptor[] getEventSetDescriptors()
MethodDescriptor[] getMethodDescriptors()

They return arrays of objects that provide information about the properties, events, and
methods of a Bean. The classes PropertyDescriptor, EventSetDescriptor, and MethodDescriptor
are defined within the java.beans package, and they describe the indicated elements. By
implementing these methods, a developer can designate exactly what is presented to a user,
bypassing introspection based on design patterns.

When creating a class that implements BeanInfo, you must call that class bnameBeanInfo,
where bname is the name of the Bean. For example, if the Bean is called MyBean, then the
information class must be called MyBeanBeanInfo.

37-ch37.indd 1202 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 37 Java Beans 1203

Pa
rt

 V

To simplify the use of BeanInfo, JavaBeans supplies the SimpleBeanInfo class. It provides
default implementations of the BeanInfo interface, including the three methods just shown.
You can extend this class and override one or more of the methods to explicitly control
what aspects of a Bean are exposed. If you don’t override a method, then design-pattern
introspection will be used. For example, if you don’t override getPropertyDescriptors(),
then design patterns are used to discover a Bean’s properties. You will see SimpleBeanInfo
in action later in this chapter.

Bound and Constrained Properties
A Bean that has a bound property generates an event when the property is changed. The
event is of type PropertyChangeEvent and is sent to objects that previously registered an
interest in receiving such notifications. A class that handles this event must implement the
PropertyChangeListener interface.

A Bean that has a constrained property generates an event when an attempt is made to
change its value. It also generates an event of type PropertyChangeEvent. It too is sent to objects
that previously registered an interest in receiving such notifications. However, those other
objects have the ability to veto the proposed change by throwing a PropertyVetoException. This
capability allows a Bean to operate differently according to its run-time environment. A class
that handles this event must implement the VetoableChangeListener interface.

Persistence
Persistence is the ability to save the current state of a Bean, including the values of a Bean’s
properties and instance variables, to nonvolatile storage and to retrieve them at a later time.
The object serialization capabilities provided by the Java class libraries are used to provide
persistence for Beans.

The easiest way to serialize a Bean is to have it implement the java.io.Serializable
interface, which is simply a marker interface. Implementing java.io.Serializable makes
serialization automatic. Your Bean need take no other action. Automatic serialization can
also be inherited. Therefore, if any superclass of a Bean implements java.io.Serializable,
then automatic serialization is obtained.

When using automatic serialization, you can selectively prevent a field from being saved
through the use of the transient keyword. Thus, data members of a Bean specified as transient
will not be serialized.

If a Bean does not implement java.io.Serializable, you must provide serialization yourself,
such as by implementing java.io.Externalizable. Otherwise, containers cannot save the
configuration of your component.

Customizers
A Bean developer can provide a customizer that helps another developer configure the Bean.
A customizer can provide a step-by-step guide through the process that must be followed to
use the component in a specific context. Online documentation can also be provided. A
Bean developer has great flexibility to develop a customizer that can differentiate his or her
product in the marketplace.

37-ch37.indd 1203 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1204 PART V Applying Java

The Java Beans API
The Java Beans functionality is provided by a set of classes and interfaces in the java.beans
package. This section provides a brief overview of its contents. Table 37-1 lists the interfaces
in java.beans and provides a brief description of their functionality. Table 37-2 lists the
classes in java.beans.

Table 37-1 The Interfaces in java.beans

Interface Description
AppletInitializer Methods in this interface are used to initialize Beans that are

also applets.

BeanInfo This interface allows a designer to specify information about the
properties, events, and methods of a Bean.

Customizer This interface allows a designer to provide a graphical user interface
through which a Bean may be configured.

DesignMode Methods in this interface determine if a Bean is executing in
design mode.

ExceptionListener A method in this interface is invoked when an exception has occurred.

PropertyChangeListener A method in this interface is invoked when a bound property
is changed.

PropertyEditor Objects that implement this interface allow designers to change and
display property values.

VetoableChangeListener A method in this interface is invoked when a constrained property is
changed.

Visibility Methods in this interface allow a Bean to execute in environments
where a graphical user interface is not available.

Table 37-2 The Classes in java.beans

Class Description
BeanDescriptor This class provides information about a Bean. It also allows

you to associate a customizer with a Bean.

Beans This class is used to obtain information about a Bean.

DefaultPersistenceDelegate A concrete subclass of PersistenceDelegate.

Encoder Encodes the state of a set of Beans. Can be used to write this
information to a stream.

EventHandler Supports dynamic event listener creation.

EventSetDescriptor Instances of this class describe an event that can be generated
by a Bean.

Expression Encapsulates a call to a method that returns a result.

FeatureDescriptor This is the superclass of the PropertyDescriptor,
EventSetDescriptor, and MethodDescriptor classes,
among others.

37-ch37.indd 1204 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 37 Java Beans 1205

Pa
rt

 V

Although it is beyond the scope of this chapter to discuss all of the classes, four
are of particular interest: Introspector, PropertyDescriptor, EventSetDescriptor, and
MethodDescriptor. Each is briefly examined here.

Class Description
IndexedPropertyChangeEvent A subclass of PropertyChangeEvent that represents a change

to an indexed property.

IndexedPropertyDescriptor Instances of this class describe an indexed property of a Bean.

IntrospectionException An exception of this type is generated if a problem occurs
when analyzing a Bean.

Introspector This class analyzes a Bean and constructs a BeanInfo object
that describes the component.

MethodDescriptor Instances of this class describe a method of a Bean.

ParameterDescriptor Instances of this class describe a method parameter.

PersistenceDelegate Handles the state information of an object.

PropertyChangeEvent This event is generated when bound or constrained
properties are changed. It is sent to objects that registered
an interest in these events and that implement either the
PropertyChangeListener or VetoableChangeListener interfaces.

PropertyChangeListenerProxy Extends EventListenerProxy and implements
PropertyChangeListener.

PropertyChangeSupport Beans that support bound properties can use this class to
notify PropertyChangeListener objects.

PropertyDescriptor Instances of this class describe a property of a Bean.

PropertyEditorManager This class locates a PropertyEditor object for a given type.

PropertyEditorSupport This class provides functionality that can be used when writing
property editors.

PropertyVetoException An exception of this type is generated if a change to a
constrained property is vetoed.

SimpleBeanInfo This class provides functionality that can be used when writing
BeanInfo classes.

Statement Encapsulates a call to a method.

VetoableChangeListenerProxy Extends EventListenerProxy and implements
VetoableChangeListener.

VetoableChangeSupport Beans that support constrained properties can use this class to
notify VetoableChangeListener objects.

XMLDecoder Used to read a Bean from an XML document.

XMLEncoder Used to write a Bean to an XML document.

Table 37-2 The Classes in java.beans (continued)

37-ch37.indd 1205 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1206 PART V Applying Java

Introspector
The Introspector class provides several static methods that support introspection. Of most
interest is getBeanInfo(). This method returns a BeanInfo object that can be used to obtain
information about the Bean. The getBeanInfo() method has several forms, including the
one shown here:

static BeanInfo getBeanInfo(Class<?> bean) throws IntrospectionException

The returned object contains information about the Bean specified by bean.

PropertyDescriptor
The PropertyDescriptor class describes the characteristics of a Bean property. It supports
several methods that manage and describe properties. For example, you can determine if a
property is bound by calling isBound(). To determine if a property is constrained, call
isConstrained(). You can obtain the name of a property by calling getName().

EventSetDescriptor
The EventSetDescriptor class represents a Bean event. It supports several methods that obtain
the methods that a Bean uses to add or remove event listeners, and to otherwise manage
events. For example, to obtain the method used to add listeners, call getAddListenerMethod().
To obtain the method used to remove listeners, call getRemoveListenerMethod(). To obtain
the type of a listener, call getListenerType(). You can obtain the name of an event by calling
getName().

MethodDescriptor
The MethodDescriptor class represents a Bean method. To obtain the name of the method,
call getName(). You can obtain information about the method by calling getMethod(),
shown here:

Method getMethod()

An object of type Method that describes the method is returned.

A Bean Example
This chapter concludes with an example that illustrates various aspects of Bean programming,
including introspection and using a BeanInfo class. It also makes use of the Introspector,
PropertyDescriptor, and EventSetDescriptor classes. The example uses three classes. The
first is a Bean called Colors, shown here:

// A simple Bean.
import java.awt.*;
import java.awt.event.*;
import java.io.Serializable;

public class Colors extends Canvas implements Serializable {
 transient private Color color; // not persistent
 private boolean rectangular; // is persistent

37-ch37.indd 1206 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 37 Java Beans 1207

Pa
rt

 V

 public Colors() {
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 change();
 }
 });
 rectangular = false;
 setSize(200, 100);
 change();
 }

 public boolean getRectangular() {
 return rectangular;
 }

 public void setRectangular(boolean flag) {
 this.rectangular = flag;
 repaint();
 }

 public void change() {
 color = randomColor();
 repaint();
 }

 private Color randomColor() {
 int r = (int)(255*Math.random());
 int g = (int)(255*Math.random());
 int b = (int)(255*Math.random());
 return new Color(r, g, b);
 }

 public void paint(Graphics g) {
 Dimension d = getSize();
 int h = d.height;
 int w = d.width;
 g.setColor(color);
 if(rectangular) {
 g.fillRect(0, 0, w-1, h-1);
 }
 else {
 g.fillOval(0, 0, w-1, h-1);
 }
 }
}

The Colors Bean displays a colored object within a frame. The color of the component
is determined by the private Color variable color, and its shape is determined by the private
boolean variable rectangular. The constructor defines an anonymous inner class that extends
MouseAdapter and overrides its mousePressed() method. The change() method is invoked
in response to mouse presses. It selects a random color and then repaints the component.
The getRectangular() and setRectangular() methods provide access to the one property

37-ch37.indd 1207 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1208 PART V Applying Java

of this Bean. The change() method calls randomColor() to choose a color and then calls
repaint() to make the change visible. Notice that the paint() method uses the rectangular
and color variables to determine how to present the Bean.

The next class is ColorsBeanInfo. It is a subclass of SimpleBeanInfo that provides explicit
information about Colors. It overrides getPropertyDescriptors() in order to designate
which properties are presented to a Bean user. In this case, the only property exposed is
rectangular. The method creates and returns a PropertyDescriptor object for the rectangular
property. The PropertyDescriptor constructor that is used is shown here:

PropertyDescriptor(String property, Class<?> beanCls)
 throws IntrospectionException

Here, the first argument is the name of the property, and the second argument is the class
of the Bean.

// A Bean information class.
import java.beans.*;
public class ColorsBeanInfo extends SimpleBeanInfo {
 public PropertyDescriptor[] getPropertyDescriptors() {
 try {
 PropertyDescriptor rectangular = new
 PropertyDescriptor("rectangular", Colors.class);
 PropertyDescriptor pd[] = {rectangular};
 return pd;
 }
 catch(Exception e) {
 System.out.println("Exception caught. " + e);
 }
 return null;
 }
}

The final class is called IntrospectorDemo. It uses introspection to display the
properties and events that are available within the Colors Bean.

// Show properties and events.
import java.awt.*;
import java.beans.*;

public class IntrospectorDemo {
 public static void main(String args[]) {
 try {
 Class<?> c = Class.forName("Colors");
 BeanInfo beanInfo = Introspector.getBeanInfo(c);

 System.out.println("Properties:");
 PropertyDescriptor propertyDescriptor[] =
 beanInfo.getPropertyDescriptors();
 for(int i = 0; i < propertyDescriptor.length; i++) {
 System.out.println("\t" + propertyDescriptor[i].getName());
 }

37-ch37.indd 1208 14/02/14 5:25 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 37 Java Beans 1209

Pa
rt

 V

 System.out.println("Events:");
 EventSetDescriptor eventSetDescriptor[] =
 beanInfo.getEventSetDescriptors();
 for(int i = 0; i < eventSetDescriptor.length; i++) {
 System.out.println("\t" + eventSetDescriptor[i].getName());
 }
 }
 catch(Exception e) {
 System.out.println("Exception caught. " + e);
 }
 }
}

The output from this program is the following:

 Properties:
 rectangular
 Events:
 mouseWheel
 mouse
 mouseMotion
 component
 hierarchyBounds
 focus
 hierarchy
 propertyChange
 inputMethod
 key

Notice two things in the output. First, because ColorsBeanInfo overrides
getPropertyDescriptors() such that the only property returned is rectangular, only
the rectangular property is displayed. However, because getEventSetDescriptors() is not
overridden by ColorsBeanInfo, design-pattern introspection is used, and all events are
found, including those in Colors’ superclass, Canvas. Remember, if you don’t override
one of the “get” methods defined by SimpleBeanInfo, then the default, design-pattern
introspection is used. To observe the difference that ColorsBeanInfo makes, erase its class
file and then run IntrospectorDemo again. This time it will report more properties.

37-ch37.indd 1209 14/02/14 5:25 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

38
CHAPTER

 1211

Introducing Servlets

This chapter presents an introduction to servlets. Servlets are small programs that execute
on the server side of a web connection. Just as applets dynamically extend the functionality
of a web browser, servlets dynamically extend the functionality of a web server. The topic of
servlets is quite large, and it is beyond the scope of this chapter to cover it all. Instead, we
will focus on the core concepts, interfaces, and classes, and develop several examples.

Background
In order to understand the advantages of servlets, you must have a basic understanding of
how web browsers and servers cooperate to provide content to a user. Consider a request
for a static web page. A user enters a Uniform Resource Locator (URL) into a browser. The
browser generates an HTTP request to the appropriate web server. The web server maps
this request to a specific file. That file is returned in an HTTP response to the browser. The
HTTP header in the response indicates the type of the content. The Multipurpose Internet
Mail Extensions (MIME) are used for this purpose. For example, ordinary ASCII text has a
MIME type of text/plain. The Hypertext Markup Language (HTML) source code of a web
page has a MIME type of text/html.

Now consider dynamic content. Assume that an online store uses a database to store
information about its business. This would include items for sale, prices, availability, orders,
and so forth. It wishes to make this information accessible to customers via web pages. The
contents of those web pages must be dynamically generated to reflect the latest information
in the database.

In the early days of the Web, a server could dynamically construct a page by creating a
separate process to handle each client request. The process would open connections to one
or more databases in order to obtain the necessary information. It communicated with the
web server via an interface known as the Common Gateway Interface (CGI). CGI allowed
the separate process to read data from the HTTP request and write data to the HTTP
response. A variety of different languages were used to build CGI programs. These included
C, C++, and Perl.

38-ch38.indd 1211 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1212 PART V Applying Java

However, CGI suffered serious performance problems. It was expensive in terms of
processor and memory resources to create a separate process for each client request. It was
also expensive to open and close database connections for each client request. In addition,
the CGI programs were not platform-independent. Therefore, other techniques were
introduced. Among these are servlets.

Servlets offer several advantages in comparison with CGI. First, performance is
significantly better. Servlets execute within the address space of a web server. It is not
necessary to create a separate process to handle each client request. Second, servlets are
platform-independent because they are written in Java. Third, the Java security manager on
the server enforces a set of restrictions to protect the resources on a server machine. Finally,
the full functionality of the Java class libraries is available to a servlet. It can communicate
with applets, databases, or other software via the sockets and RMI mechanisms that you
have seen already.

The Life Cycle of a Servlet
Three methods are central to the life cycle of a servlet. These are init(), service(), and
destroy(). They are implemented by every servlet and are invoked at specific times by the
server. Let us consider a typical user scenario to understand when these methods are called.

First, assume that a user enters a Uniform Resource Locator (URL) to a web browser.
The browser then generates an HTTP request for this URL. This request is then sent to the
appropriate server.

Second, this HTTP request is received by the web server. The server maps this request
to a particular servlet. The servlet is dynamically retrieved and loaded into the address
space of the server.

Third, the server invokes the init() method of the servlet. This method is invoked only
when the servlet is first loaded into memory. It is possible to pass initialization parameters
to the servlet so it may configure itself.

Fourth, the server invokes the service() method of the servlet. This method is called to
process the HTTP request. You will see that it is possible for the servlet to read data that has
been provided in the HTTP request. It may also formulate an HTTP response for the client.

The servlet remains in the server’s address space and is available to process any other
HTTP requests received from clients. The service() method is called for each HTTP request.

Finally, the server may decide to unload the servlet from its memory. The algorithms by
which this determination is made are specific to each server. The server calls the destroy()
method to relinquish any resources such as file handles that are allocated for the servlet.
Important data may be saved to a persistent store. The memory allocated for the servlet and
its objects can then be garbage collected.

Servlet Development Options
To create servlets, you will need access to a servlet container/server. Two popular ones are
Glassfish and Tomcat. Glassfish is from Oracle and is provided by the Java EE SDK. It is
supported by NetBeans. Tomcat is an open-source product maintained by the Apache
Software Foundation. It can also be used by NetBeans. Both Tomcat and Glassfish can also
be used with other IDEs, such as Eclipse. The examples and descriptions in this chapter use
Tomcat for reasons that will soon be apparent.

38-ch38.indd 1212 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1213

Pa
rt

 V

Although IDEs such as NetBeans and Eclipse are very useful and can streamline the
creation of servlets, they are not used in this chapter. The way you develop and deploy
servlets differs among IDEs, and it is simply not possible for this book to address each
environment. Furthermore, many readers will be using the command-line tools rather
than an IDE. Therefore, if you are using an IDE, you must refer to the instructions for that
environment for information concerning the development and deployment of servlets. For
this reason, the instructions given here and elsewhere in this chapter assume that only the
command-line tools are employed. Thus, they will work for nearly any reader.

Tomcat is used in this chapter because, in the opinion of this author, it makes it
relatively easy to run the example servlets using only command-line tools and a text editor.
It is also widely available in various programming environments. Furthermore, since only
command-line tools are used, you don’t need to download and install an IDE just to
experiment with servlets. Understand, however, that even if you are developing in an
environment that uses Glassfish, the concepts presented here still apply. It is just that
the mechanics of preparing a servlet for testing will be slightly different.

REMEMBER The instructions for developing and deploying servlets in this chapter are based on Tomcat
and use only command-line tools. If you are using an IDE and different servlet container/server,
consult the documentation for your environment.

Using Tomcat
Tomcat contains the class libraries, documentation, and run-time support that you will
need to create and test servlets. At the time of this writing, several versions of Tomcat are
available. The instructions that follow use 7.0.47. You can download Tomcat from
tomcat.apache.org. You should choose a version appropriate to your environment.

The examples in this chapter assume a 64-bit Windows environment. Assuming that a
64-bit version of Tomcat 7.0.47 was unpacked from the root directly, the default location is

C:\apache-tomcat-7.0.47-windows-x64\apache-tomcat-7.0.47\

This is the location assumed by the examples in this book. If you load Tomcat in a different
location (or use a different version of Tomcat), you will need to make appropriate changes
to the examples. You may need to set the environmental variable JAVA_HOME to the top-
level directory in which the Java Development Kit is installed.

NOTE All of the directories shown in this section assume Tomcat 7.0.47. If you install a different version
of Tomcat, then you will need to adjust the directory names and paths to match those used by the
version you installed.

Once installed, you start Tomcat by selecting startup.bat from the bin directly under
the apache-tomcat-7.0.47 directory. To stop Tomcat, execute shutdown.bat, also in the bin
directory.

The classes and interfaces needed to build servlets are contained in servlet-api.jar,
which is in the following directory:

C:\apache-tomcat-7.0.47-windows-x64\apache-tomcat-7.0.47\lib

38-ch38.indd 1213 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1214 PART V Applying Java

To make servlet-api.jar accessible, update your CLASSPATH environment variable so that
it includes

C:\apache-tomcat-7.0.47-windows-x64\apache-tomcat-7.0.47\lib\servlet-api.jar

Alternatively, you can specify this file when you compile the servlets. For example, the
following command compiles the first servlet example:

javac HelloServlet.java -classpath "C:\apache-tomcat-7.0.47-windows-
x64\apache-tomcat-7.0.47\lib\servlet-api.jar"

Once you have compiled a servlet, you must enable Tomcat to find it. For our purposes,
this means putting it into a directory under Tomcat’s webapps directory and entering its
name into a web.xml file. To keep things simple, the examples in this chapter use the
directory and web.xml file that Tomcat supplies for its own example servlets. This way, you
won’t have to create any files or directories just to experiment with the sample servlets.
Here is the procedure that you will follow.

First, copy the servlet’s class file into the following directory:

C:\apache-tomcat-7.0.47-windows-x64\apache-tomcat-7.0.47\webapps\
examples\WEB-INF\classes

Next, add the servlet’s name and mapping to the web.xml file in the following directory:

C:\apache-tomcat-7.0.47-windows-x64\apache-tomcat-7.0.47\webapps\
examples\WEB-INF

For instance, assuming the first example, called HelloServlet, you will add the following
lines in the section that defines the servlets:

<servlet>
 <servlet-name>HelloServlet</servlet-name>
 <servlet-class>HelloServlet</servlet-class>
</servlet>

Next, you will add the following lines to the section that defines the servlet mappings:

<servlet-mapping>
 <servlet-name>HelloServlet</servlet-name>
 <url-pattern>/servlet/HelloServlet</url-pattern>
</servlet-mapping>

Follow this same general procedure for all of the examples.

A Simple Servlet
To become familiar with the key servlet concepts, we will begin by building and testing a
simple servlet. The basic steps are the following:

 1. Create and compile the servlet source code. Then, copy the servlet’s class file
to the proper directory, and add the servlet’s name and mappings to the proper
web.xml file.

38-ch38.indd 1214 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1215

Pa
rt

 V

 2. Start Tomcat.

 3. Start a web browser and request the servlet.

Let us examine each of these steps in detail.

Create and Compile the Servlet Source Code
To begin, create a file named HelloServlet.java that contains the following program:

import java.io.*;
import javax.servlet.*;

public class HelloServlet extends GenericServlet {

 public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("Hello!");
 pw.close();
 }
}

Let’s look closely at this program. First, note that it imports the javax.servlet package.
This package contains the classes and interfaces required to build servlets. You will learn
more about these later in this chapter. Next, the program defines HelloServlet as a subclass
of GenericServlet. The GenericServlet class provides functionality that simplifies the
creation of a servlet. For example, it provides versions of init() and destroy(), which may
be used as is. You need supply only the service() method.

Inside HelloServlet, the service() method (which is inherited from GenericServlet) is
overridden. This method handles requests from a client. Notice that the first argument is a
ServletRequest object. This enables the servlet to read data that is provided via the client
request. The second argument is a ServletResponse object. This enables the servlet to
formulate a response for the client.

The call to setContentType() establishes the MIME type of the HTTP response. In this
program, the MIME type is text/html. This indicates that the browser should interpret the
content as HTML source code.

Next, the getWriter() method obtains a PrintWriter. Anything written to this stream is
sent to the client as part of the HTTP response. Then println() is used to write some simple
HTML source code as the HTTP response.

Compile this source code and place the HelloServlet.class file in the proper Tomcat
directory as described in the previous section. Also, add HelloServlet to the web.xml file,
as described earlier.

Start Tomcat
Start Tomcat as explained earlier. Tomcat must be running before you try to execute a servlet.

38-ch38.indd 1215 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1216 PART V Applying Java

Start a Web Browser and Request the Servlet
Start a web browser and enter the URL shown here:

http://localhost:8080/examples/servlets/servlet/HelloServlet

Alternatively, you may enter the URL shown here:

http://127.0.0.1:8080/examples/servlets/servlet/HelloServlet

This can be done because 127.0.0.1 is defined as the IP address of the local machine.
You will observe the output of the servlet in the browser display area. It will contain the

string Hello! in bold type.

The Servlet API
Two packages contain the classes and interfaces that are required to build the servlets
described in this chapter. These are javax.servlet and javax.servlet.http. They constitute
the core of the Servlet API. Keep in mind that these packages are not part of the Java core
packages. Therefore, they are not included with Java SE. Instead, they are provided by
Tomcat. They are also provided by Java EE.

The Servlet API has been in a process of ongoing development and enhancement. The
current servlet specification is version 3.1. However, because changes happen fast in the
world of Java, you will want to check for any additions or alterations. This chapter discusses
the core of the Servlet API, which will be available to most readers and works with all
modern versions of the servlet specification.

The javax.servlet Package
The javax.servlet package contains a number of interfaces and classes that establish the
framework in which servlets operate. The following table summarizes several key interfaces
that are provided in this package. The most significant of these is Servlet. All servlets must
implement this interface or extend a class that implements the interface. The ServletRequest
and ServletResponse interfaces are also very important.

Interface Description
Servlet Declares life cycle methods for a servlet.

ServletConfig Allows servlets to get initialization parameters.

ServletContext Enables servlets to log events and access information
about their environment.

ServletRequest Used to read data from a client request.

ServletResponse Used to write data to a client response.

38-ch38.indd 1216 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1217

Pa
rt

 V

The following table summarizes the core classes that are provided in the javax.servlet
package:

Class Description
GenericServlet Implements the Servlet and ServletConfig interfaces.

ServletInputStream Encapsulates an input stream for reading requests from a
client.

ServletOutputStream Encapsulates an output stream for writing responses to a client.

ServletException Indicates a servlet error occurred.

UnavailableException Indicates a servlet is unavailable.

Let us examine these interfaces and classes in more detail.

The Servlet Interface
All servlets must implement the Servlet interface. It declares the init(), service(), and
destroy() methods that are called by the server during the life cycle of a servlet. A method
is also provided that allows a servlet to obtain any initialization parameters. The methods
defined by Servlet are shown in Table 38-1.

The init(), service(), and destroy() methods are the life cycle methods of the servlet.
These are invoked by the server. The getServletConfig() method is called by the servlet to
obtain initialization parameters. A servlet developer overrides the getServletInfo() method
to provide a string with useful information (for example, the version number). This
method is also invoked by the server.

Table 38-1 The Methods Defined by Servlet

Method Description
void destroy() Called when the servlet is unloaded.

ServletConfig getServletConfig() Returns a ServletConfig object that contains any
initialization parameters.

String getServletInfo() Returns a string describing the servlet.

void init(ServletConfig sc)
 throws ServletException

Called when the servlet is initialized. Initialization
parameters for the servlet can be obtained from sc. A
ServletException should be thrown if the servlet cannot
be initialized.

void service(ServletRequest req,
 ServletResponse res)
 throws ServletException,
 IOException

Called to process a request from a client. The request from
the client can be read from req. The response to the client
can be written to res. An exception is generated if a servlet
or IO problem occurs.

38-ch38.indd 1217 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1218 PART V Applying Java

The ServletConfig Interface
The ServletConfig interface allows a servlet to obtain configuration data when it is loaded.
The methods declared by this interface are summarized here:

Method Description
ServletContext getServletContext() Returns the context for this servlet.

String getInitParameter(String param) Returns the value of the initialization parameter
named param.

Enumeration<String>
 getInitParameterNames()

Returns an enumeration of all initialization
parameter names.

String getServletName() Returns the name of the invoking servlet.

The ServletContext Interface
The ServletContext interface enables servlets to obtain information about their
environment. Several of its methods are summarized in Table 38-2.

The ServletRequest Interface
The ServletRequest interface enables a servlet to obtain information about a client request.
Several of its methods are summarized in Table 38-3.

The ServletResponse Interface
The ServletResponse interface enables a servlet to formulate a response for a client.
Several of its methods are summarized in Table 38-4.

Table 38-2 Various Methods Defined by ServletContext

Method Description
Object getAttribute(String attr) Returns the value of the server attribute named attr.

String getMimeType(String file) Returns the MIME type of file.

String getRealPath(String vpath) Returns the real (i.e., absolute) path that
corresponds to the relative path vpath.

String getServerInfo() Returns information about the server.

void log(String s) Writes s to the servlet log.

void log(String s, Throwable e) Writes s and the stack trace for e to the servlet log.

void setAttribute(String attr, Object val) Sets the attribute specified by attr to the value
passed in val.

38-ch38.indd 1218 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1219

Pa
rt

 V

Table 38-3 Various Methods Defined by ServletRequest

Method Description
Object getAttribute(String attr) Returns the value of the attribute named attr.

String getCharacterEncoding() Returns the character encoding of the request.

int getContentLength() Returns the size of the request. The value –1 is
returned if the size is unavailable.

String getContentType() Returns the type of the request. A null value is
returned if the type cannot be determined.

ServletInputStream getInputStream()
 throws IOException

Returns a ServletInputStream that can be
used to read binary data from the request. An
IllegalStateException is thrown if getReader()
has been previously invoked on this object.

String getParameter(String pname) Returns the value of the parameter named pname.

Enumeration<String> getParameterNames() Returns an enumeration of the parameter names
for this request.

String[] getParameterValues(String name) Returns an array containing values associated
with the parameter specified by name.

String getProtocol() Returns a description of the protocol.

BufferedReader getReader()
 throws IOException

Returns a buffered reader that can be used to read
text from the request. An IllegalStateException is
thrown if getInputStream() has been previously
invoked on this object.

String getRemoteAddr() Returns the string equivalent of the client IP
address.

String getRemoteHost() Returns the string equivalent of the client host
name.

String getScheme() Returns the transmission scheme of the URL
used for the request (for example, "http", "ftp").

String getServerName() Returns the name of the server.

int getServerPort() Returns the port number.

Table 38-4 Various Methods Defined by ServletResponse

Method Description
String getCharacterEncoding() Returns the character encoding for the response.

ServletOutputStream
 getOutputStream()
 throws IOException

Returns a ServletOutputStream that can be used to write
binary data to the response. An IllegalStateException is thrown
if getWriter() has been previously invoked on this object.

PrintWriter getWriter()
 throws IOException

Returns a PrintWriter that can be used to write character
data to the response. An IllegalStateException is thrown if
getOutputStream() has been previously invoked on this object.

void setContentLength(int size) Sets the content length for the response to size.

void setContentType(String type) Sets the content type for the response to type.

38-ch38.indd 1219 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1220 PART V Applying Java

The GenericServlet Class
The GenericServlet class provides implementations of the basic life cycle methods for a
servlet. GenericServlet implements the Servlet and ServletConfig interfaces. In addition, a
method to append a string to the server log file is available. The signatures of this method
are shown here:

void log(String s)
void log(String s, Throwable e)

Here, s is the string to be appended to the log, and e is an exception that occurred.

The ServletInputStream Class
The ServletInputStream class extends InputStream. It is implemented by the servlet
container and provides an input stream that a servlet developer can use to read the data
from a client request. In addition to the input methods inherited from InputStream, a
method is provided to read bytes from the stream. It is shown here:

int readLine(byte[] buffer, int offset, int size) throws IOException

Here, buffer is the array into which size bytes are placed starting at offset. The method returns
the actual number of bytes read or –1 if an end-of-stream condition is encountered.

The ServletOutputStream Class
The ServletOutputStream class extends OutputStream. It is implemented by the servlet
container and provides an output stream that a servlet developer can use to write data to
a client response. In addition to the output methods provided by OutputStream, it also
defines the print() and println() methods, which output data to the stream.

The Servlet Exception Classes
javax.servlet defines two exceptions. The first is ServletException, which indicates that
a servlet problem has occurred. The second is UnavailableException, which extends
ServletException. It indicates that a servlet is unavailable.

Reading Servlet Parameters
The ServletRequest interface includes methods that allow you to read the names and values
of parameters that are included in a client request. We will develop a servlet that illustrates
their use. The example contains two files. A web page is defined in PostParameters.html,
and a servlet is defined in PostParametersServlet.java.

The HTML source code for PostParameters.html is shown in the following listing. It
defines a table that contains two labels and two text fields. One of the labels is Employee
and the other is Phone. There is also a submit button. Notice that the action parameter of
the form tag specifies a URL. The URL identifies the servlet to process the HTTP POST
request.

<html>
<body>

38-ch38.indd 1220 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1221

Pa
rt

 V

<center>
<form name="Form1"
 method="post"
 action="http://localhost:8080/examples/servlets/
 servlet/PostParametersServlet">
<table>
<tr>
 <td>Employee</td>
 <td><input type=textbox name="e" size="25" value=""></td>
</tr>
<tr>
 <td>Phone</td>
 <td><input type=textbox name="p" size="25" value=""></td>
</tr>
</table>
<input type=submit value="Submit">
</body>
</html>

The source code for PostParametersServlet.java is shown in the following listing. The
service() method is overridden to process client requests. The getParameterNames()
method returns an enumeration of the parameter names. These are processed in a loop.
You can see that the parameter name and value are output to the client. The parameter
value is obtained via the getParameter() method.

import java.io.*;
import java.util.*;
import javax.servlet.*;

public class PostParametersServlet
extends GenericServlet {

 public void service(ServletRequest request,
 ServletResponse response)
 throws ServletException, IOException {

 // Get print writer.
 PrintWriter pw = response.getWriter();

 // Get enumeration of parameter names.
 Enumeration e = request.getParameterNames();

 // Display parameter names and values.
 while(e.hasMoreElements()) {
 String pname = (String)e.nextElement();
 pw.print(pname + " = ");
 String pvalue = request.getParameter(pname);
 pw.println(pvalue);
 }
 pw.close();
 }
}

38-ch38.indd 1221 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1222 PART V Applying Java

Compile the servlet. Next, copy it to the appropriate directory, and update the web.xml
file, as previously described. Then, perform these steps to test this example:

 1. Start Tomcat (if it is not already running).

 2. Display the web page in a browser.

 3. Enter an employee name and phone number in the text fields.

 4. Submit the web page.

After following these steps, the browser will display a response that is dynamically generated
by the servlet.

The javax.servlet.http Package
The preceding examples have used the classes and interfaces defined in javax.servlet, such
as ServletRequest, ServletResponse, and GenericServlet, to illustrate the basic functionality
of servlets. However, when working with HTTP, you will normally use the interfaces and
classes in javax.servlet.http. As you will see, its functionality makes it easy to build servlets
that work with HTTP requests and responses.

The following table summarizes the interfaces used in this chapter:

Interface Description
HttpServletRequest Enables servlets to read data from an HTTP request.

HttpServletResponse Enables servlets to write data to an HTTP response.

HttpSession Allows session data to be read and written.

The following table summarizes the classes used in this chapter. The most important of
these is HttpServlet. Servlet developers typically extend this class in order to process HTTP
requests.

Class Description
Cookie Allows state information to be stored on a client machine.

HttpServlet Provides methods to handle HTTP requests and responses.

The HttpServletRequest Interface
The HttpServletRequest interface enables a servlet to obtain information about a client
request. Several of its methods are shown in Table 38-5.

The HttpServletResponse Interface
The HttpServletResponse interface enables a servlet to formulate an HTTP response to a
client. Several constants are defined. These correspond to the different status codes that
can be assigned to an HTTP response. For example, SC_OK indicates that the HTTP

38-ch38.indd 1222 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1223

Pa
rt

 V

request succeeded, and SC_NOT_FOUND indicates that the requested resource is not
available. Several methods of this interface are summarized in Table 38-6.

The HttpSession Interface
The HttpSession interface enables a servlet to read and write the state information that is
associated with an HTTP session. Several of its methods are summarized in Table 38-7. All
of these methods throw an IllegalStateException if the session has already been invalidated.

Table 38-5 Various Methods Defined by HttpServletRequest

Method Description
String getAuthType() Returns authentication scheme.

Cookie[] getCookies() Returns an array of the cookies in this request.

long getDateHeader(String field) Returns the value of the date header field named field.

String getHeader(String field) Returns the value of the header field named field.

Enumeration<String>
 getHeaderNames()

Returns an enumeration of the header names.

int getIntHeader(String field) Returns the int equivalent of the header field
named field.

String getMethod() Returns the HTTP method for this request.

String getPathInfo() Returns any path information that is located after the
servlet path and before a query string of the URL.

String getPathTranslated() Returns any path information that is located after
the servlet path and before a query string of the URL
after translating it to a real path.

String getQueryString() Returns any query string in the URL.

String getRemoteUser() Returns the name of the user who issued this request.

String getRequestedSessionId() Returns the ID of the session.

String getRequestURI() Returns the URI.

StringBuffer getRequestURL() Returns the URL.

String getServletPath() Returns that part of the URL that identifies the servlet.

HttpSession getSession() Returns the session for this request. If a session does
not exist, one is created and then returned.

HttpSession getSession(boolean new) If new is true and no session exists, creates and
returns a session for this request. Otherwise, returns
the existing session for this request.

boolean
 isRequestedSessionIdFromCookie()

Returns true if a cookie contains the session ID.
Otherwise, returns false.

boolean
 isRequestedSessionIdFromURL()

Returns true if the URL contains the session ID.
Otherwise, returns false.

boolean isRequestedSessionIdValid() Returns true if the requested session ID is valid in the
current session context.

38-ch38.indd 1223 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1224 PART V Applying Java

The Cookie Class
The Cookie class encapsulates a cookie. A cookie is stored on a client and contains state
information. Cookies are valuable for tracking user activities. For example, assume that a
user visits an online store. A cookie can save the user’s name, address, and other information.
The user does not need to enter this data each time he or she visits the store.

A servlet can write a cookie to a user’s machine via the addCookie() method of the
HttpServletResponse interface. The data for that cookie is then included in the header
of the HTTP response that is sent to the browser.

The names and values of cookies are stored on the user’s machine. Some of the
information that can be saved for each cookie includes the following:

•	 The name of the cookie

•	 The value of the cookie

•	 The expiration date of the cookie

•	 The domain and path of the cookie

Table 38-6 Various Methods Defined by HttpServletResponse

Method Description
void addCookie(Cookie cookie) Adds cookie to the HTTP response.

boolean containsHeader(String field) Returns true if the HTTP response header
contains a field named field.

String encodeURL(String url) Determines if the session ID must be encoded
in the URL identified as url. If so, returns the
modified version of url. Otherwise, returns
url. All URLs generated by a servlet should be
processed by this method.

String encodeRedirectURL(String url) Determines if the session ID must be encoded
in the URL identified as url. If so, returns the
modified version of url. Otherwise, returns url.
All URLs passed to sendRedirect() should be
processed by this method.

void sendError(int c)
 throws IOException

Sends the error code c to the client.

void sendError(int c, String s)
 throws IOException

Sends the error code c and message s to the client.

void sendRedirect(String url)
 throws IOException

Redirects the client to url.

void setDateHeader(String field, long msec) Adds field to the header with date value equal
to msec (milliseconds since midnight, January 1,
1970, GMT).

void setHeader(String field, String value) Adds field to the header with value equal to value.

void setIntHeader(String field, int value) Adds field to the header with value equal to value.

void setStatus(int code) Sets the status code for this response to code.

38-ch38.indd 1224 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1225

Pa
rt

 V

The expiration date determines when this cookie is deleted from the user’s machine. If
an expiration date is not explicitly assigned to a cookie, it is deleted when the current browser
session ends.

The domain and path of the cookie determine when it is included in the header of an
HTTP request. If the user enters a URL whose domain and path match these values, the
cookie is then supplied to the web server. Otherwise, it is not.

There is one constructor for Cookie. It has the signature shown here:

Cookie(String name, String value)

Here, the name and value of the cookie are supplied as arguments to the constructor. The
methods of the Cookie class are summarized in Table 38-8.

The HttpServlet Class
The HttpServlet class extends GenericServlet. It is commonly used when developing
servlets that receive and process HTTP requests. The methods defined by the HttpServlet
class are summarized in Table 38-9.

Table 38-7 Various Methods Defined by HttpSession

Method Description
Object getAttribute(String attr) Returns the value associated with the name passed in

attr. Returns null if attr is not found.

Enumeration<String>
 getAttributeNames()

Returns an enumeration of the attribute names
associated with the session.

long getCreationTime() Returns the creation time (in milliseconds since
midnight, January 1, 1970, GMT) of the invoking
session.

String getId() Returns the session ID.

long getLastAccessedTime() Returns the time (in milliseconds since midnight,
January 1, 1970, GMT) when the client last made a
request on the invoking session.

void invalidate() Invalidates this session and removes it from the
context.

boolean isNew() Returns true if the server created the session and it
has not yet been accessed by the client.

void removeAttribute(String attr) Removes the attribute specified by attr from the
session.

void setAttribute(String attr, Object val) Associates the value passed in val with the attribute
name passed in attr.

38-ch38.indd 1225 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1226 PART V Applying Java

Table 38-8 The Methods Defined by Cookie

Method Description
Object clone() Returns a copy of this object.

String getComment() Returns the comment.

String getDomain() Returns the domain.

int getMaxAge() Returns the maximum age (in seconds).

String getName() Returns the name.

String getPath() Returns the path.

boolean getSecure() Returns true if the cookie is secure. Otherwise, returns false.

String getValue() Returns the value.

int getVersion() Returns the version.

boolean isHttpOnly() Returns true if the cookie has the HttpOnly attribute.

void setComment(String c) Sets the comment to c.

void setDomain(String d) Sets the domain to d.

void setHttpOnly(boolean httpOnly) If httpOnly is true, then the HttpOnly attribute is added to
the cookie. If httpOnly is false, the HttpOnly attribute is
removed.

void setMaxAge(int secs) Sets the maximum age of the cookie to secs. This is the
number of seconds after which the cookie is deleted.

void setPath(String p) Sets the path to p.

void setSecure(boolean secure) Sets the security flag to secure.

void setValue(String v) Sets the value to v.

void setVersion(int v) Sets the version to v.

Method Description
void doDelete(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP DELETE request.

void doGet(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP GET request.

void doHead(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException,
 ServletException

Handles an HTTP HEAD request.

void doOptions(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP OPTIONS request.

Table 38-9 The Methods Defined by HttpServlet

38-ch38.indd 1226 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1227

Pa
rt

 V

Handling HTTP Requests and Responses
The HttpServlet class provides specialized methods that handle the various types of HTTP
requests. A servlet developer typically overrides one of these methods. These methods are
doDelete(), doGet(), doHead(), doOptions(), doPost(), doPut(), and doTrace(). A
complete description of the different types of HTTP requests is beyond the scope of this
book. However, the GET and POST requests are commonly used when handling form
input. Therefore, this section presents examples of these cases.

Handling HTTP GET Requests
Here we will develop a servlet that handles an HTTP GET request. The servlet is invoked
when a form on a web page is submitted. The example contains two files. A web page is
defined in ColorGet.html, and a servlet is defined in ColorGetServlet.java. The HTML
source code for ColorGet.html is shown in the following listing. It defines a form that
contains a select element and a submit button. Notice that the action parameter of the
form tag specifies a URL. The URL identifies a servlet to process the HTTP GET request.

<html>
<body>
<center>
<form name="Form1"
 action="http://localhost:8080/examples/servlets/servlet/ColorGetServlet">
Color:
<select name="color" size="1">
<option value="Red">Red</option>
<option value="Green">Green</option>

Table 38-9 The Methods Defined by HttpServlet (continued)

Method Description
void doPost(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP POST request.

void doPut(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP PUT request.

void doTrace(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException

Handles an HTTP TRACE request.

long
 getLastModified(HttpServletRequest req)

Returns the time (in milliseconds since midnight,
January 1, 1970, GMT) when the requested
resource was last modified.

void service(HttpServletRequest req,
 HttpServletResponse res)
 throws IOException, ServletException

Called by the server when an HTTP request
arrives for this servlet. The arguments provide
access to the HTTP request and response,
respectively.

38-ch38.indd 1227 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1228 PART V Applying Java

<option value="Blue">Blue</option>
</select>

<input type=submit value="Submit">
</form>
</body>
</html>

The source code for ColorGetServlet.java is shown in the following listing. The doGet()
method is overridden to process any HTTP GET requests that are sent to this servlet. It uses
the getParameter() method of HttpServletRequest to obtain the selection that was made
by the user. A response is then formulated.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ColorGetServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String color = request.getParameter("color");
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("The selected color is: ");
 pw.println(color);
 pw.close();
 }
}

Compile the servlet. Next, copy it to the appropriate directory, and update the web.xml
file, as previously described. Then, perform these steps to test this example:

 1. Start Tomcat, if it is not already running.

 2. Display the web page in a browser.

 3. Select a color.

 4. Submit the web page.

After completing these steps, the browser will display the response that is dynamically
generated by the servlet.

One other point: Parameters for an HTTP GET request are included as part of the URL
that is sent to the web server. Assume that the user selects the red option and submits the
form. The URL sent from the browser to the server is

http://localhost:8080/examples/servlets/servlet/ColorGetServlet?color=Red

The characters to the right of the question mark are known as the query string.

38-ch38.indd 1228 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1229

Pa
rt

 V

Handling HTTP POST Requests
Here we will develop a servlet that handles an HTTP POST request. The servlet is invoked
when a form on a web page is submitted. The example contains two files. A web page is
defined in ColorPost.html, and a servlet is defined in ColorPostServlet.java.

The HTML source code for ColorPost.html is shown in the following listing. It is
identical to ColorGet.html except that the method parameter for the form tag explicitly
specifies that the POST method should be used, and the action parameter for the form
tag specifies a different servlet.

<html>
<body>
<center>
<form name="Form1"
 method="post"
 action="http://localhost:8080/examples/servlets/servlet/ColorPostServlet">
Color:
<select name="color" size="1">
<option value="Red">Red</option>
<option value="Green">Green</option>
<option value="Blue">Blue</option>
</select>

<input type=submit value="Submit">
</form>
</body>
</html>

The source code for ColorPostServlet.java is shown in the following listing. The
doPost() method is overridden to process any HTTP POST requests that are sent to this
servlet. It uses the getParameter() method of HttpServletRequest to obtain the selection
that was made by the user. A response is then formulated.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ColorPostServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 String color = request.getParameter("color");
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("The selected color is: ");
 pw.println(color);
 pw.close();
 }
}

Compile the servlet and perform the same steps as described in the previous section to
test it.

38-ch38.indd 1229 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1230 PART V Applying Java

NOTE Parameters for an HTTP POST request are not included as part of the URL that is sent to
the web server. In this example, the URL sent from the browser to the server is http://
localhost:8080/examples/servlets/servlet/ColorPostServlet.
The parameter names and values are sent in the body of the HTTP request.

Using Cookies
Now, let’s develop a servlet that illustrates how to use cookies. The servlet is invoked when a
form on a web page is submitted. The example contains three files as summarized here:

File Description
AddCookie.html Allows a user to specify a value for the cookie named MyCookie.

AddCookieServlet.java Processes the submission of AddCookie.html.

GetCookiesServlet.java Displays cookie values.

The HTML source code for AddCookie.html is shown in the following listing. This page
contains a text field in which a value can be entered. There is also a submit button on the
page. When this button is pressed, the value in the text field is sent to AddCookieServlet via
an HTTP POST request.

<html>
<body>
<center>
<form name="Form1"
 method="post"
 action="http://localhost:8080/examples/servlets/servlet/AddCookieServlet">
Enter a value for MyCookie:
<input type=textbox name="data" size=25 value="">
<input type=submit value="Submit">
</form>
</body>
</html>

The source code for AddCookieServlet.java is shown in the following listing. It gets the
value of the parameter named "data". It then creates a Cookie object that has the name
"MyCookie" and contains the value of the "data" parameter. The cookie is then added to
the header of the HTTP response via the addCookie() method. A feedback message is then
written to the browser.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class AddCookieServlet extends HttpServlet {

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

38-ch38.indd 1230 14/02/14 5:26 PM

http://localhost:8080/examples/servlets/servlet/ColorPostServlet
http://localhost:8080/examples/servlets/servlet/ColorPostServlet

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1231

Pa
rt

 V

 // Get parameter from HTTP request.
 String data = request.getParameter("data");

 // Create cookie.
 Cookie cookie = new Cookie("MyCookie", data);

 // Add cookie to HTTP response.
 response.addCookie(cookie);

 // Write output to browser.
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("MyCookie has been set to");
 pw.println(data);
 pw.close();
 }
}

The source code for GetCookiesServlet.java is shown in the following listing. It invokes
the getCookies() method to read any cookies that are included in the HTTP GET request.
The names and values of these cookies are then written to the HTTP response. Observe
that the getName() and getValue() methods are called to obtain this information.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class GetCookiesServlet extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Get cookies from header of HTTP request.
 Cookie[] cookies = request.getCookies();

 // Display these cookies.
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.println("");
 for(int i = 0; i < cookies.length; i++) {
 String name = cookies[i].getName();
 String value = cookies[i].getValue();
 pw.println("name = " + name +
 "; value = " + value);
 }
 pw.close();
 }
}

38-ch38.indd 1231 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1232 PART V Applying Java

Compile the servlets. Next, copy them to the appropriate directory, and update the
web.xml file, as previously described. Then, perform these steps to test this example:

 1. Start Tomcat, if it is not already running.

 2. Display AddCookie.html in a browser.

 3. Enter a value for MyCookie.

 4. Submit the web page.

After completing these steps, you will observe that a feedback message is displayed by the
browser.

Next, request the following URL via the browser:

http://localhost:8080/examples/servlets/servlet/GetCookiesServlet

Observe that the name and value of the cookie are displayed in the browser.
In this example, an expiration date is not explicitly assigned to the cookie via the

setMaxAge() method of Cookie. Therefore, the cookie expires when the browser session
ends. You can experiment by using setMaxAge() and observe that the cookie is then saved
on the client machine.

Session Tracking
HTTP is a stateless protocol. Each request is independent of the previous one. However,
in some applications, it is necessary to save state information so that information can be
collected from several interactions between a browser and a server. Sessions provide such
a mechanism.

A session can be created via the getSession() method of HttpServletRequest. An
HttpSession object is returned. This object can store a set of bindings that associate names
with objects. The setAttribute(), getAttribute(), getAttributeNames(), and removeAttribute()
methods of HttpSession manage these bindings. Session state is shared by all servlets that
are associated with a client.

The following servlet illustrates how to use session state. The getSession() method gets
the current session. A new session is created if one does not already exist. The getAttribute()
method is called to obtain the object that is bound to the name "date". That object is a Date
object that encapsulates the date and time when this page was last accessed. (Of course,
there is no such binding when the page is first accessed.) A Date object encapsulating the
current date and time is then created. The setAttribute() method is called to bind the
name "date" to this object.

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class DateServlet extends HttpServlet {

38-ch38.indd 1232 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Chapter 38 Introducing Servlets 1233

Pa
rt

 V

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // Get the HttpSession object.
 HttpSession hs = request.getSession(true);

 // Get writer.
 response.setContentType("text/html");
 PrintWriter pw = response.getWriter();
 pw.print("");

 // Display date/time of last access.
 Date date = (Date)hs.getAttribute("date");
 if(date != null) {
 pw.print("Last access: " + date + "
");
 }

 // Display current date/time.
 date = new Date();
 hs.setAttribute("date", date);
 pw.println("Current date: " + date);
 }
}

When you first request this servlet, the browser displays one line with the current date
and time information. On subsequent invocations, two lines are displayed. The first line
shows the date and time when the servlet was last accessed. The second line shows the
current date and time.

38-ch38.indd 1233 14/02/14 5:26 PM

This page has been intentionally left blank

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

APPENDIX

 1235

Using Java’s
Documentation Comments

As explained in Part I, Java supports three types of comments. The first two are the // and
the /* */. The third type is called a documentation comment. It begins with the character
sequence /**. It ends with */. Documentation comments allow you to embed information
about your program into the program itself. You can then use the javadoc utility program
(supplied with the JDK) to extract the information and put it into an HTML file.
Documentation comments make it convenient to document your programs. You have
almost certainly seen documentation generated with javadoc, because that is the way
the Java API library was documented.

The javadoc Tags
The javadoc utility recognizes the following tags:

Tag Meaning
@author Identifies the author.

{@code} Displays information as-is, without processing HTML styles, in
code font.

@deprecated Specifies that a program element is deprecated.

{@docRoot} Specifies the path to the root directory of the current documentation.

@exception Identifies an exception thrown by a method or constructor.

{@inheritDoc} Inherits a comment from the immediate superclass.

{@link} Inserts an in-line link to another topic.

{@linkplain} Inserts an in-line link to another topic, but the link is displayed in a plain-
text font.

{@literal} Displays information as-is, without processing HTML styles.

@param Documents a parameter.

@return Documents a method’s return value.

@see Specifies a link to another topic.

Appendix.indd 1235 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1236 PART V Applying Java

Tag Meaning
@serial Documents a default serializable field.

@serialData Documents the data written by the writeObject() or writeExternal() methods.

@serialField Documents an ObjectStreamField component.

@since States the release when a specific change was introduced.

@throws Same as @exception.

{@value} Displays the value of a constant, which must be a static field.

@version Specifies the version of a class.

Document tags that begin with an “at” sign (@) are called stand-alone tags (also called
block tags), and they must be used on their own line. Tags that begin with a brace, such as
{@code}, are called in-line tags, and they can be used within a larger description. You may
also use other, standard HTML tags in a documentation comment. However, some tags,
such as headings, should not be used because they disrupt the look of the HTML file
produced by javadoc.

As it relates to documenting source code, you can use documentation comments to
document classes, interfaces, fields, constructors, and methods. In all cases, the documentation
comment must immediately precede the item being documented. Some tags, such as @see,
@since, and @deprecated, can be used to document any element. Other tags apply only to the
relevant elements. Each tag is examined next.

NOTE Documentation comments can also be used for documenting a package and preparing an
overview, but the procedures differ from those used to document source code. See the javadoc
documentation for details on these uses.

@author
The @author tag documents the author of a class or interface. It has the following syntax:

@author description

Here, description will usually be the name of the author. You will need to specify the -author
option when executing javadoc in order for the @author field to be included in the HTML
documentation.

{@code}
The {@code} tag enables you to embed text, such as a snippet of code, into a comment.
That text is then displayed as-is in code font, without any further processing, such as HTML
rendering. It has the following syntax:

{@code code-snippet}

@deprecated
The @deprecated tag specifies that a program element is deprecated. It is recommended
that you include @see or {@link} tags to inform the programmer about available
alternatives. The syntax is the following:

@deprecated description

Appendix.indd 1236 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Appendix Using Java’s Documentation Comments 1237

Pa
rt

 V

Here, description is the message that describes the deprecation. The @deprecated tag can be
used in documentation for fields, methods, constructors, classes, and interfaces.

{@docRoot}
{@docRoot} specifies the path to the root directory of the current documentation.

@exception
The @exception tag describes an exception to a method. It has the following syntax:

@exception exception-name explanation

Here, the fully qualified name of the exception is specified by exception-name, and explanation
is a string that describes how the exception can occur. The @exception tag can only be
used in documentation for a method or constructor.

{@inheritDoc}
This tag inherits a comment from the immediate superclass.

{@link}
The {@link} tag provides an in-line link to additional information. It has the following
syntax:

{@link pkg.class#member text}

Here, pkg.class#member specifies the name of a class or method to which a link is added, and
text is the string that is displayed.

{@linkplain}
Inserts an in-line link to another topic. The link is displayed in plain-text font. Otherwise, it
is similar to {@link}.

{@literal}
The {@literal} tag enables you to embed text into a comment. That text is then displayed
as-is, without any further processing, such as HTML rendering. It has the following syntax:

{@literal description}

Here, description is the text that is embedded.

@param
The @param tag documents a parameter. It has the following syntax:

@param parameter-name explanation

Here, parameter-name specifies the name of a parameter. The meaning of that parameter is
described by explanation. The @param tag can be used only in documentation for a method
or constructor, or a generic class or interface.

Appendix.indd 1237 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1238 PART V Applying Java

@return
The @return tag describes the return value of a method. It has the following syntax:

@return explanation

Here, explanation describes the type and meaning of the value returned by a method. The
@return tag can be used only in documentation for a method.

@see
The @see tag provides a reference to additional information. Two commonly used forms
are shown here:

@see anchor
@see pkg.class#member text

In the first form, anchor is a link to an absolute or relative URL. In the second form,
pkg.class#member specifies the name of the item, and text is the text displayed for that item.
The text parameter is optional, and if not used, then the item specified by pkg.class#member
is displayed. The member name, too, is optional. Thus, you can specify a reference to a
package, class, or interface in addition to a reference to a specific method or field. The
name can be fully qualified or partially qualified. However, the dot that precedes the
member name (if it exists) must be replaced by a hash character.

@serial
The @serial tag defines the comment for a default serializable field. It has the following syntax:

@serial description

Here, description is the comment for that field.

@serialData
The @serialData tag documents the data written by the writeObject() and writeExternal()
methods. It has the following syntax:

@serialData description

Here, description is the comment for that data.

@serialField
For a class that implements Serializable, the @serialField tag provides comments for an
ObjectStreamField component. It has the following syntax:

@serialField name type description

Here, name is the name of the field, type is its type, and description is the comment for that field.

@since
The @since tag states that an element was introduced in a specific release. It has the
following syntax:

@since release

Appendix.indd 1238 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Appendix Using Java’s Documentation Comments 1239

Pa
rt

 V

Here, release is a string that designates the release or version in which this feature became
available.

@throws
The @throws tag has the same meaning as the @exception tag.

{@value}
{@value} has two forms. The first displays the value of the constant that it precedes, which
must be a static field. It has this form:

{@value}

The second form displays the value of a specified static field. It has this form:

{@value pkg.class#field}

Here, pkg.class#field specifies the name of the static field.

@version
The @version tag specifies the version of a class or interface. It has the following syntax:

@version info

Here, info is a string that contains version information, typically a version number, such as
2.2. You will need to specify the -version option when executing javadoc in order for the
@version field to be included in the HTML documentation.

The General Form of a Documentation Comment
After the beginning /**, the first line or lines become the main description of your class,
interface, field, constructor, or method. After that, you can include one or more of the
various @ tags. Each @ tag must start at the beginning of a new line or follow one or more
asterisks (*) that are at the start of a line. Multiple tags of the same type should be grouped
together. For example, if you have three @see tags, put them one after the other. In-line
tags (those that begin with a brace) can be used within any description.

Here is an example of a documentation comment for a class:

/**
 * This class draws a bar chart.
 * @author Herbert Schildt
 * @version 3.2
*/

What javadoc Outputs
The javadoc program takes as input your Java program’s source file and outputs several
HTML files that contain the program’s documentation. Information about each class will
be in its own HTML file. javadoc will also output an index and a hierarchy tree. Other
HTML files can be generated.

Appendix.indd 1239 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1240 PART V Applying Java

An Example that Uses Documentation Comments
Following is a sample program that uses documentation comments. Notice the way each
comment immediately precedes the item that it describes. After being processed by
javadoc, the documentation about the SquareNum class will be found in SquareNum.html.

import java.io.*;
/**
 * This class demonstrates documentation comments.
 * @author Herbert Schildt
 * @version 1.2
*/
public class SquareNum {
 /**
 * This method returns the square of num.
 * This is a multiline description. You can use
 * as many lines as you like.
 * @param num The value to be squared.
 * @return num squared.
 */
 public double square(double num) {
 return num * num;
 }

 /**
 * This method inputs a number from the user.
 * @return The value input as a double.
 * @exception IOException On input error.
 * @see IOException
 */
 public double getNumber() throws IOException {
 // create a BufferedReader using System.in
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader inData = new BufferedReader(isr);
 String str;

 str = inData.readLine();
 return (new Double(str)).doubleValue();
 }
 /**
 * This method demonstrates square().
 * @param args Unused.
 * @exception IOException On input error.
 * @see IOException
 */

 public static void main(String args[])
 throws IOException
 {
 SquareNum ob = new SquareNum();
 double val;

Appendix.indd 1240 14/02/14 5:26 PM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Appendix Using Java’s Documentation Comments 1241

Pa
rt

 V

 System.out.println("Enter value to be squared: ");
 val = ob.getNumber();
 val = ob.square(val);

 System.out.println("Squared value is " + val);
 }
}

Appendix.indd 1241 14/02/14 5:26 PM

This page has been intentionally left blank

 1243

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

Index

&
bitwise AND, 66, 67, 68–69
Boolean logical AND, 75–76
and bounded type declarations, 349

&& (short-circuit AND), 75, 76–77
*

and glob syntax, 715–716
multiplication operator, 27, 61–62
regular expression quantifier, 995
used in import statement, 194, 333

** (glob syntax), 716
@

annotation syntax, 280
used with tags (javadoc), 1236, 1239

|
bitwise OR, 66, 67, 68–69
Boolean logical OR, 75–76

|| (short-circuit OR), 75, 76–77
[], 33, 51, 52, 54, 58

character class specification, 995, 999
^

bitwise exclusive OR (XOR), 66, 67, 68–69
Boolean logical exclusive OR (XOR), 75–76

: (used with a label), 105
::

constructor reference, 33, 404, 408
method reference, 33, 396, 402

, (comma), 33, 95, 387
format flag, 615, 617

{ }, 24, 25, 26, 30, 33, 45, 46, 53, 56, 81, 82, 89, 93, 217,
291, 388

used with javadoc tags, 1236
=, 27, 44, 74, 77
= = (Boolean logical operator), 75
= = (relational operator), 28, 74, 264, 269

versus equals(), 422–423
!, 75–76
!=, 74, 75
/, 61–62
/* */, 24
/** */, 33, 1235
//, 25
<, 28, 74

argument index syntax, 618–619
< >

diamond operator (type inference), 372–373
and generic type parameter, 340

<?>, 282, 283
<<, 66, 69–70

<=, 74
–, 61–62

format flag, 615
– > lambda expression arrow operator, 16, 61, 382
– –, 30, 61, 64–65
%

used in format conversion specifier syntax, 607
modulus operator, 61, 63

(format flag, 615, 617
(), 25, 33, 79, 114, 123

used in a lambda expression, 382, 383, 386
used to raise the precedence of operations, 33, 41,

79, 418
.

dot operator, 111, 117–118, 146, 170, 188, 194, 211
in import statement, 194
in multileveled package statement, 188
and nested interfaces, 200–201
regular expression wildcard character, 995, 998
separator, 33

... (variable-length argument syntax), 156, 159
+

addition operator, 61–62
concatenation operator, 27, 152–153, 417–418
format flag, 615, 616
regular expression quantifier, 995, 997–999
unary plus, 61, 62

++, 30, 61, 64–66
format flag, 615, 617
?

regular expression quantifier, 995, 998–999
wildcard argument specifier, 350, 353, 356, 370, 379

?: (ternary if-then-else operator), 75, 77–78
>, 28, 74
>>, 66, 70–72
>>>, 66, 72–73
>=, 74
; (semicolon), 26, 33, 90, 197

used in try-with-resources statement, 317, 650
~ (bitwise unary NOT operator), 66, 67, 68–69
_ (underscore), 32, 42, 43

A
abs(), 131–132, 478
Abstract method(s), 182–184

and lambda expressions, 382, 383, 384, 385
abstract type modifier, 182, 185, 199–200, 383

40-index.indd 1243 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1244 Index

Abstract Window Toolkit. See AWT
(Abstract Window Toolkit)

AbstractAction interface, 1091, 1092
AbstractButton class, 1045, 1047, 1048, 1070, 1073,

1078, 1081
AbstractCollection class, 511, 513, 520
AbstractList class, 511, 562
AbstractMap class, 537, 538, 539, 541
AbstractQueue class, 511, 519
AbstractSequentialList class, 511, 515
AbstractSet class, 511, 516, 518, 521
accept(), 526, 636, 646, 648, 716, 742, 972, 985, 987
Access control, 141–144

and default access, 190, 197
example program, 191–194
and inheritance, 142, 144, 163–164
and packages, 142, 187, 190–194

Access modifiers, 25, 142, 190–191
acos(), 477
acquire(), 918–921
Action (Swing), 1069, 1089–1094
Action interface, 1089
ActionEvent class, 772, 773, 836, 837, 847, 872, 1032,

1043, 1045, 1052, 1179
JavaFX, 1115, 1116, 1118

ActionListener interface, 782, 783, 836, 839, 847, 872,
1032, 1045, 1051, 1074, 1089

actionPerformed(), 783, 836, 837, 839, 1032, 1033,
1045, 1051, 1052, 1074, 1078, 1089, 1091–1092

adapt(), 962
Adapter classes, 791–793
add(), 502, 503, 504, 505, 516, 523, 588, 801, 834, 839,

844, 846, 858, 863, 871, 985, 1006, 1007, 1029, 1051,
1064, 1071, 1072, 1087, 1091, 1113, 1160, 1164, 1166,
1173, 1174, 1189

addActionListener(), 1032
addAll(), 502, 503, 504, 505, 551, 985, 1114, 1118,

1160, 1173, 1174, 1179
addCookie(), 1224, 1230
addElement(), 568
addEventFilter(), 1115
addExact(), 480
addFirst(), 509, 510, 515, 985
addImage(), 892, 893
addItem(), 1061
addKeyListener(), 770
addLast(), 509, 510, 515, 516
addListener(), 1139, 1160
addMouseListener(), 788, 793–794, 1084
addMouseMotionListener(), 770, 788
Address, Internet, 728, 729–731
addSeparator(), 1072
addSuppressed(), 228
addTab(), 1053, 1054
addTListener() 1202
addTypeListener(), 770, 771
AdjustmentEvent class, 772, 773–774, 850
AdjustmentListener interface, 782, 783, 850
adjustmentValueChanged(), 783
Affine class, 1166
Algorithms, collection, 499, 550–556, 561
ALIGN, 760, 761
allMatch(), 990

allocate(), 691, 701, 702, 720–721, 723
ALT, 760, 761
anchor constraint field, 866, 867–868
AND operator

bitwise (&), 66, 67, 68–69
Boolean logical (&), 75–76
and bounded type declarations (&), 349
short-circuit (&&), 75, 76–77

AnnotatedElement interface, 286–287, 288, 298, 496
Annotation interface, 280, 286, 496
Annotation(s), 13, 14, 279–299, 496

built-in, 290–292
container, 297, 298
declaration example, 280
marker, 288–289
member, default value for, 287–288
obtaining all, 285–286
reflection to obtain, using, 281–286
repeated, 287, 297–299
restrictions on, 299
retention policies, 281
single-member, 289–290
type, 292–297

annotationType(), 280
anyMatch(), 990
Apache Software Foundation, 1212
API library, compact profiles of the, 336
API packages, table of core Java, 991–993
append(), 435, 494, 671, 854
Appendable interface, 494, 608, 665, 670, 679
appendCodePoint(), 438
appendTo(), 465
Applet, 8, 16
Applet, AWT-based, 318–321, 747–767

architecture, 751, 756
basics, 747–750
colors, setting and obtaining, 754–755
event-driven nature of the, 751, 769
executing an, 320–321, 747–748, 751, 760
and the Internet, 8–9, 16, 318–319, 320, 748–749
local, 748
and main(), 26, 110, 320, 321, 748
outputting to console, 767
passing parameters to an, 761–764
request for repainting, 756–759
and security, 748–749
signed, 320, 748–749
skeleton, 751–754
and socket connections, 731
as source and listener for events, 788
string output to an, 319, 748, 754, 756
and uncaught exceptions, 762
viewer, 320–321, 747, 748, 751, 759, 760,

767, 798, 801
Applet class, 319, 747–765, 781, 788, 792, 793, 801,

886, 887, 1033, 1035
methods, table of, 749–750

applet package, 301, 319, 747
Applet, Swing, 747, 752, 754, 1025, 1030, 1033–1035
APPLET tag, HTML, 320, 321, 748

full syntax for, 760–761
AppletContext interface, 747, 761, 765–766

methods, table of, 765–766

40-index.indd 1244 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1245

AppletStub interface, 747, 767
appletviewer, 320, 747, 749, 752, 1034

status window, using, 759–760
Application class, 1107–1108, 1110
Application launcher (java), 24, 188, 189
 and main(), 25
apply(), 636, 637, 973, 978
applyAsDouble(), 636, 981
ARCHIVE, 761
AreaAveragingScaleFilter class, 899
areFieldsSet, 588
Argument(s), 116, 120

command-line, 25, 154–155
index, 618–619
passing, 136–138
type. See Type argument(s)
variable-length. See Varargs
wildcard. See Wildcard arguments

Arithmetic operators, 61–66
ArithmeticException, 215, 216, 226, 479
Array class, 496
Array(s), 25, 51–58, 147, 185

boundary checks, 53
and collections, 556
constructor reference for, 408
converting collections into, 503, 513–514
copying with arraycopy(), 467, 469–470
declaration syntax, alternative, 58
dynamic, 496, 511–514, 520, 562
and the for-each loop, 97–101
and generics, 377–379
implemented as objects, 147
indexes, 52
initializing, 53, 56–57
length instance variable of, 147–149
multidimensional, 54–58
one-dimensional, 51–54
and spliterators, 559
and the stream API, 969
of strings, 154
and valueOf(), 429
and varargs, 156

ArrayBlockingQueue class, 943
arraycopy(), 467, 469–470
ArrayDeque class, 511, 520–521, 568
ArrayIndexOutOfBoundsException, 219, 226, 557
ArrayList class, 511–514, 530, 562, 563, 969

example using an, 524–525
example using a stream API stream, 969–973,

978–982, 983–984, 986–989
Arrays class, 556–561, 969
ArrayStoreException, 226, 557, 558
arrive(), 930–931
arriveAndAwaitAdvance(), 930, 931, 933, 936
arriveAndDeregister(), 931, 933
Arrow operator (–>), 16, 61, 382
ASCII character set, 39, 40, 43, 424

and strings on the Internet, 415, 420
asin(), 477
asList(), 556
Assembly language, 4, 5
assert statement, 13, 328–331
Assertions, 328–331

AssertionError, 328, 329
Assignment operator

=, 27, 74, 77
arithmetic compound (op=), 61, 63–64
bitwise compound, 66, 73–74
Boolean logical, 75

atan(), 477
atan2(), 477
Atomic operations, 946–947
AtomicInteger class, 917, 946–947
AtomicLong class, 917, 946
AttributeView interface, 699
AudioClip interface, 747, 767
Autoboxing/unboxing, 14, 272, 274–279, 341–342

Boolean and Character values, 278
and the Collections Framework, 500, 514
definition of, 274
and error prevention, 278–279
and expressions, 276–277
and methods, 275–276
when to use, 279

AutoCloseable interface, 310, 316, 495, 619, 626, 648,
650, 651, 654, 665, 667, 668, 669, 670, 679, 683, 685,
691, 701, 714, 732, 743, 966

Automatic resource management (ARM), 214, 315–318,
495, 619, 734

available(), 651, 652–654, 685, 686
availableProcessors(), 958
await(), 923–925, 927, 944
awaitAdvance(), 936
awaitAdvanceInterruptibly(), 936
AWT (Abstract Window Toolkit), 301, 319, 747, 748,

797–798, 833, 1105
and applet architectural constraints, 756
classes, table of some, 798–800
color system, 815
controls. See Controls, AWT
creating stand-alone windows with, 809–810
and fonts, 819–825
layout managers. See Layout manager(s)
support for imaging, 885
support for text and graphics, 811
and Swing, 797, 1021–1022

AWTEvent class, 772, 798

B
B, 4
Base64 class, 635
BaseStream interface, 966–968, 975

methods, table of, 966
BASIC, 4
Basic multilingual plane (BMP), 458
BasicFileAttributes class, 698–699, 712

methods, table of, 698
BasicFileAttributeView interface, 699
BCP 47, 595
BCPL, 4
BeanInfo interface, 1200, 1202–1203, 1204
Beans, Java. See Java Beans
Bell curve, 596
Bell Laboratories, 6
Berkeley UNIX, 727

40-index.indd 1245 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1246 Index

Berners-Lee, Tim, 735
Beyond Photography, The Digital Darkroom (Holzmann), 895
BiConsumer functional interface, 636, 985
BiFunction functional interface, 636, 973
Binary

literals, 42
numbers and integers, 66–67

BinaryOperator<T> predefined functional interface,
409, 636, 973

binarySearch(), 551, 556–557
bitCount(), 450, 452
BitSet class, 581–583

methods, table of, 581–582
Bitwise operators, 66–74
Block lambdas, 382, 388–389. See also Lambda

expression(s)
BLOCKED, 260
Blocks of code. See Code blocks
Boolean, 35

literals, 43
logical operators, 75–77

Boolean class, 272, 273, 458–460
and autoboxing/unboxing, 278
methods, table of, 460

boolean data type, 35, 40–41, 43, 48
and relational operators, 40, 41, 74–75

booleanValue(), 273, 460
Border interface, 1040
BorderFactory class, 1040
BorderLayout class, 798, 858–859, 1032

example with insets, 860–861
BorderPane class, 1107, 1178, 1187

methods for positioning nodes within a, 1178
boxed(), 968
Boxing, 274
break statement, 84–86, 98–99, 102–106

and the for-each loop, 98–99
as form of goto, 104–106

Buffer class, 690–691
methods, table of, 690–691

Buffer, NIO, 690–691
BufferedInputStream class, 303, 659–661, 711
BufferedOutputStream class, 303, 659, 661–662, 711
BufferedReader class, 304, 305, 306–307, 676–677, 969
BufferedWriter class, 304, 678
Buffering, double, 889–892
bulkRegister(), 936
Button class

AWT, 798, 836
JavaFX, 1115, 1130, 1133

ButtonBase class, 1115, 1133, 1135
ButtonGroup class, 1041, 1051
ButtonModel interface, 1024, 1045
Buttons, 773, 782

JavaFX, 1115–1116, 1130–1142
push. See Push buttons
radio. See Radio buttons
Swing, 1032–1033, 1045–1053, 1070
toggle. See Toggle button, JavaFX;

Toggle button, Swing
ButtonUI, 1024
Byte class, 273, 447, 454

methods defined by, table of, 448

byte data type, 35, 36–37, 41
and automatic type conversion, 48
and automatic type promotion, 50, 69–70, 72–73

ByteArrayInputStream class, 303, 656–657
ByteArrayOutputStream class, 303, 658–659
ByteBuffer class, 691, 700, 701, 704, 720

get() and put() methods, table of, 692
Bytecode, 9–10, 12, 13, 16, 23–24, 325, 336, 481
BYTES, 443, 447, 455
byteValue(), 273, 442, 443, 444, 448, 449, 450, 452

C
C

history of, 4–5
and Java, 3, 5, 7, 11

C Programming Language, The (Kernighan
and Ritchie), 4

C++
history of, 5–6
and Java, 3, 7, 11

C# and Java, 8
Calendar class, 586, 587, 588–591, 592, 596, 1013

constants, 590
methods defined by, table of a sampling of,

588–589
Call-by-reference, 136, 137
Call-by-value, 136–137, 138
call(), 939, 962
Callable interface, 917, 939–942, 962
CallSite class, 496
cancel(), 602, 603, 961
Canvas class

AWT, 798, 801, 886, 1209
JavaFX, 1119–1123

capacity(), 433, 563, 690
capacityIncrement Vector data member, 563
Card layouts, 862–865
CardLayout class, 798, 862–863
CaretEvent class, 1043
Case sensitivity and Java, 23, 25, 32, 188
case statement, 84–87, 88–89
Casts, 48–50, 338, 341, 342, 344

and casting one instance of a generic class into
another, 370

and erasure, 341, 373
using instanceof with, 322–324

catch clause(s), 213, 214, 216–219, 222, 224, 232
displaying exception description within, 218
and the more precise (final) rethrow feature,

231, 232
multi-catch feature of, 231–232
using multiple, 218–219
and nested try statements, 217, 220

cbrt(), 478
ceil(), 478
CGI (Common Gateway Interface), 10, 1211–1212
changed(), 1139, 1161
ChangeListener interface, 1138–1139
Channel interface, 691–692
Channel(s), NIO, 690, 691–693. See also NIO and

channel-based I/O

40-index.indd 1246 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1247

char data type, 35, 39–40, 42, 61, 415
and automatic type conversion, 48
and automatic type promotion, 50

Character class, 272, 273, 455–458
and autoboxing/unboxing, 278
methods, table of various, 457, 459
support for 32–bit Unicode, 458

Character(s), 35, 39–40
basic multilingual plane (BMP), 458
changing case of, 429–430, 456, 457
classes (regular expressions), 995, 999
code point, 458
escape sequences, 43, 44
extraction from String objects, 419–420
formatting an individual, 609
literals, 43
supplemental, 458

Character.Subset class, 458
Character.UnicodeBlock class, 458
characteristics(), 527, 528
CharArrayReader class, 304, 674–675
CharArrayWriter class, 304, 675–676
charAt(), 153, 419, 434, 493
CharBuffer class, 691
chars(), 493
CharSequence interface, 413, 430, 435, 493, 994
Charsets, 416, 693
charValue(), 373, 455
Check boxes, 751

AWT, 776, 782, 840–843
JavaFX, 1142–1145
Swing, 1049–1051
and Swing menus, 1081, 1082–1083

checkAll(), 892
Checkbox class

AWT, 798, 840–842
JavaFX, 1142, 1145

CheckboxGroup class, 798, 842–843
CheckboxMenuItem class, 798, 870, 871, 872
checked... methods, 550, 551–552
checkedCollection(), 550, 551
checkedList(), 550, 551
checkedMap(), 550, 551
checkedSet(), 550, 551
checkID(), 892, 895
CheckMenuItem class, 1172, 1183
Choice class, 798, 844–846
Choice controls, 782, 844–848
ChoiceBox control, 1154
Class class, 281–282, 283, 285, 286, 340, 458, 460,

473–477, 699, 1001, 1002, 1003
methods, table of some, 474–475

.class filename extension, 24, 112
class keyword, 24, 109
CLASS retention policy, 281
Class(es), 109–128

abstract, 181–184, 185, 199–200
access levels of, 190–191
adapter, 791–793
anonymous, 16. See also Inner classes
character, regular expression, 995, 999
and code, 23, 109, 190

in collections, storing user-defined, 529–530
constructor. See Constructor
controlling access to. See Access control
as a data type, 109, 110, 113, 114, 116, 126
definition of, 19
encapsulation achieved through, 126–127
final, 185
general form of, 109–110
generic. See Generic class
inner. See Inner classes
instance of a, 19, 109, 111
and interfaces, 187, 196, 197–201, 361–362
libraries, 23, 34
literal, 283
member. See Member, class
name and source file name, 23, 24
nested, 149–151
packages as containers for, 187, 190, 194
public, 191
scope defined by a, 46
type for bounded types, using a, 347–349

ClassCastException, 226, 502, 504, 506, 508, 510, 531,
534, 542, 550, 557, 559

ClassDefinition class, 496
ClassFileTransformer interface, 496
ClassLoader class, 477
classModifiers(), 1005
ClassNotFoundException, 227, 685
CLASSPATH, 188, 189, 1008
–classpath option, 188, 189
ClassValue class, 493
clear(), 502, 503, 532, 570, 581, 588, 690, 1166
Client/server model, 8, 10, 727

and sockets, 731–734
clone(), 185, 471–473, 492, 563, 570, 581, 587, 588,

593, 1226
Cloneable interface, 471–473
CloneNotSupportedException, 227, 471
Cloning, potential dangers of, 471–472, 473
close(), 310, 312–314, 315, 316, 317, 318, 495, 606,

619, 621, 626, 630, 648, 649, 650, 651, 652, 656, 658,
667, 668, 671, 674, 675, 683, 684, 685, 686, 701, 732,
734, 743, 966

within a finally block, calling, 312–314, 649
Closeable interface, 310, 316, 626, 648, 651, 654, 665,

667, 668, 670, 679, 691
Closures, 382
COBOL, 4
CODE, 760, 761
Code base, 764
Code blocks, 28, 30–31, 45, 82–83

and the break statement, 104–106
and scopes, 45, 46–47
static, 145, 326
synchronized, 249–250

Code point, definition of, 458
Code, unreachable, 108, 219
CODEBASE, 760
codePointAt(), 431, 438, 458, 459
codePointBefore(), 431, 438, 459
codePointCount(), 431, 438
codePoints(), 493

40-index.indd 1247 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1248 Index

collect(), 967, 982–985
Collection interface, 501–504, 969, 971, 975

methods defined by, table of, 502–503
Collection-view, 499, 531, 571–572
Collection(s), 337, 497–577

algorithms, 499, 550–556, 561
into arrays, converting, 503, 513–514
and autoboxing, 500, 514
classes, 510–521
concurrent, 916, 943
cycling through, 499, 500, 521–529
dynamically typesafe view of a, 550
and the for-each version of the for loop, 97, 101,

500, 525–526
Framework. See Collections Framework
generic nature of, 500
interfaces, 499, 501–510
and iterators, 499, 500, 504, 521–529
and legacy classes and interfaces, 561–577
modifiable versus unmodifiable, 501
and primitive types, 442, 500, 514
random access to, 530
storing user-defined classes in, 529–530
and the stream API, 577, 965, 969
stream API stream to obtain a, using a, 982–985
and synchronization, 510, 550
and type safety, 500, 550
when to use, 577

Collections class, 403, 499, 550, 555, 561
algorithms defined by, table of, 551–555

Collections Framework, 97, 101, 274, 497–577
advantages of generics as applied to the, 337, 500
JDK 5 changes to, 500
legacy classes and interfaces, 561–577
and method inferences, 402
overview, 498–499

Collector interface, 982
Collectors class, 982
Color class, AWT, 798, 815–818, 1207, 1209

constants, 754–755
Color class, JavaFX, 1121, 1166
Combo box, JavaFX, 1151–1154

enabling users to edit a, 1151, 1153–1154
Combo boxes, Swing, 1061–1063
ComboBox class, 1151
ComboBoxBase class, 1151
ComboBoxModel interface, 1061
Comment, 24–25

documentation, 32–33, 1235–1241
Common Gateway interface (CGI), 10, 1211–1212
commonPool(), 951, 954
Compact profiles, 336
Comparable interface, 358, 361, 423, 493–494, 586, 645
Comparable<Path> interface, 694
Comparator interface, 403, 404, 501, 536, 539, 542, 971
comparator(), 506, 520, 534
Comparators, 518, 519, 520, 539, 540, 542–550

 using a lambda expression with, 546–547
compare(), 403–404, 443, 444, 448, 449, 450, 452, 460,

542, 544–545, 971
compareAndSet(), 917, 946

compareTo(), 269, 270, 423–424, 443, 445, 448, 449,
450, 452, 456, 460, 492, 493, 545, 587, 645

compareToIgnoreCase(), 424
compareUnsigned(), 450, 452
comparing(), 544
comparingByKey(), 536
comparingByValue(), 536
Compilation unit, 23
compile(), 994
Compiler class, 481
Compiler, Java, 23–24

and main(), 25
Component class, 749, 751, 754, 755, 757, 771, 781,

788, 798, 800–801, 805, 811, 822, 834, 856, 883, 886,
1024, 1025, 1028, 1029, 1036, 1037, 1071

ComponentAdapter class, 792
componentAdded(), 783
ComponentEvent class, 772, 774, 775, 781
componentHidden(), 783
ComponentListener interface, 782, 783, 792
componentMoved(), 783
componentRemoved(), 783
componentResized(), 783
Components, AWT, 1021–1022, 1024

lightweight versus heavyweight, 883
and overriding paint(), 882–883

Components, Swing, 1024–1025, 1041–1068
architecture, 1023–1024
class names for, table of, 1024–1025
heavyweight, 1025
lightweight, 1022, 1041
painting, 1036–1040
and pluggable look and feel, 1022–1023
and tabbed panes, 1053–1055

componentShown(), 783
ComponentUI, 1024
compute(), 949–950, 954, 958, 960, 963
concat(), 427
Concurrency utilities, 14, 915–964

versus traditional multithreading and
synchronization, 964

Concurrent API, 915–916
packages, 916–917

Concurrent collection classes, 916, 943
Concurrent program, definition of, 915
ConcurrentHashMap class, 917, 943
ConcurrentLinkedDeque, 943
ConcurrentLinkedQueue class, 917, 943
ConcurrentSkipListMap class, 943
ConcurrentSkipListSet class, 943
Condition class, 944
connect(), 732
Console class, 680–682

methods, table of, 681
Console I/O, 26, 93, 301, 305–309, 680–682
console(), 467, 680
const keyword, 34
Constants, 32
Constructor class, 282, 285, 286, 496, 1002
Constructor reference, 404–408

for an array, 408
to generic classes, 405–408

40-index.indd 1248 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1249

Constructor(s), 114, 121–124
in class hierarchy, order of execution of, 174–175
default, 114, 123
enumeration, 267–269
factory methods versus overloaded, 729
generic, 359
object parameters for, 135–136
overloading, 132–134
parameterized, 123–124
reference. See Constructor reference(s)
and super(), 167–170, 174, 336
this() and overloaded, 334–336

constructorModifiers(), 1005
Consumer<T> predefined functional interface, 409,

494, 526, 636, 972, 987
Container class, 749, 798, 801, 834, 856, 858, 860, 1024,

1025, 1029, 1037, 1071
Container, JavaFX, 1106–1107
Container(s), Swing, 1024

lightweight versus heavyweight, 1025
panes, 1025. See also Content pane
top-level, 1024, 1025

ContainerAdapter class, 792
ContainerEvent class, 772, 774–775
ContainerListener interface, 782, 783, 792
Containment hierarchy, 1024, 1025
contains(), 431, 502, 503, 516, 563, 570
containsAll(), 502, 503
Content pane, 1025, 1028–1029, 1033, 1040, 1054,

1056, 1064, 1067
default layout manager of JFrame, 1029, 1032

ContentDisplay enumeration, 1129–1130, 1133
contentEquals(), 431
Context switching, 233, 248, 261

rules for, 235
ContextMenu class, 1172–1173, 1185–1188
ContextMenuEvent class, 1188
continue statement, 106–107
Control class, 1107, 1112, 1115, 1170
Control statements. See Statements, control
Control(s), AWT, 833, 834–855

action events, using an anonymous inner class or
lambda expression to handle, 839–840

definition of an, 833
fundamentals, 834–835

Control(s), JavaFX, 1107, 1112, 1114, 1125–1170
adding an image to a, 1125, 1128–1133
adding a tooltip to a, 1170
disabling, 1170
and effects and transforms, 1164–1170

convert(), 942, 943
ConvolveOp built-in convolution filter, 910
Convolution filters, 902, 907, 910
Cookie class, 1222, 1224–1225, 1230, 1232

methods, table of, 1226
CookieHandler class, 741
CookieManager class, 741
CookiePolicy interface, 741
Cookies, 741, 1224–1225

example servlet using, 1230–1232
CookieStore interface, 741
copy(), 696, 708–709

copyOf(), 521, 522, 557
copyOfRange(), 557–558
CopyOnWriteArrayList class, 917, 943
CopyOnWriteArraySet class, 943
copySign(), 480
cos(), 38, 477
cosh(), 477
count(), 967, 973, 990
countDown(), 924–925
CountDownLatch class, 916, 917, 923–925
CountedCompleter class, 948
countStackFrames(), 482
createImage(), 886, 895, 896, 900
createLineBorder(), 1040
CropImageFilter class, 899, 900–901
Currency class, 604–605

methods, table of, 604
currentThread(), 237, 482
currentTimeMillis(), 467, 469
CustomMenuItem class, 1172
CyclicBarrier class, 916, 917, 925–927

D
Data types, 27. See also Type(s); Types, primitive
DatagramPacket class, 742, 743–745

methods, list of some, 744
Datagrams, 728, 742–745

server/client example, 744–745
DatagramSocket class, 692, 742–743, 744–745
DataInput interface, 667, 668, 669, 685
DataInputStream class, 303, 667, 668–669
DataOutput interface, 667, 668, 669, 683
DataOutputStream class, 303, 667–669
Date and time. See Time and date; Time and date API
Date class, 586–588, 1010

methods, table of, 587
DateFormat class, 587, 596, 1009–1011, 1015
DateTimeFormatter class, 1015–1017
Deadlock, 255–257, 482, 1030
decode(), 448, 449, 450, 452, 820
Decoder class, 635
Decrement operator (– –), 30, 61, 64–65
decrementAndGet(), 917, 946
decrementExact(), 480
deepEquals(), 558
deepHashCode(), 560
deepToString(), 560
default

clause for annotation member, 287–288
to declare a default interface method, using, 208
statement, 84–85

DefaultMutableTreeNode class, 1064
defaults Properties instance variable, 572–573
DelayQueue class, 943
Delegation event model, 770–771, 1115

and Beans, 1202
and event listeners, 770, 771, 782–785
and event sources, 770–771, 781–782
and Swing, 1030
using, 785–791

delete operator, 125

40-index.indd 1249 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1250 Index

delete(), 436–437, 644, 696
deleteCharAt(), 436–437
deleteOnExit(), 645
delimiter(), 629
Delimiters, 579–580

Scanner class, 621, 628–629
@Deprecated built-in annotation, 290, 292
Deque interface, 501, 509–510, 515, 520

methods, table of, 509–510
descendingIterator(), 507, 509, 510
destroy(), 461, 464, 482, 484, 749, 751, 753, 756, 1033,

1212, 1215, 1217
destroyForcibly(), 461
Destructors versus finalize(), 126
Dialog boxes, 876–882

file, 880–882
Dialog class, 798, 876
Diamond operator (<>), 372–373
Dictionary class, 498–499, 561, 568–569

abstract methods, table of, 569
digit(), 456
Dimension class, 798, 802, 814

reflection example using the, 1002–1003
Directories as File objects, 643, 645–646

creating, 648
Directory, listing the contents of a

using list(), 645–647
using listFiles(), 647–648
using NIO, 714–717

Directory tree, obtaining a list of files in a, 717–718
DirectoryStream<Path> class, 714
DirectoryStream.Filter interface, 716
dispose(), 876
distinct(), 990
divideUnsigned(), 450, 452
DLL (dynamic link library), 326, 328
do-while loop, 90–93
Document base, 764
Document interface, 1043
Document/view methodology, 601
@Documented built-in annotation, 290, 291
doDelete(), 1226, 1227
doGet(), 1226, 1227, 1228
doHead(), 1226, 1227
Domain name, 728, 729
Domain Naming Service (DNS), 728
doOptions(), 1226
doPost(), 1227, 1229
doPut(), 1227
DosFileAttributes class, 699, 714
DosFileAttributeView interface, 699
Dot operator (.), 111, 117–118, 146, 170, 188, 194, 211
doTrace(), 1227
Double buffering, 889–892
Double class, 272, 273, 442–446, 454

methods, table of, 444–446
double data type, 35, 38–39, 42

and automatic type conversion, 48
and automatic type promotion, 50–51

DoubleAccumulator class, 947
DoubleAdder class, 947
DoubleBinaryOperator functional interface, 560

DoubleBuffer class, 691
doubles(), 597–598
DoubleStream interface, 968, 969
DoubleSummaryStatistics class, 635
doubleToLongBits(), 445
doubleToRawLongBits(), 445
doubleValue(), 273, 347, 442, 443, 445, 448, 449,

450, 452
drawArc(), 812, 813–814
drawImage(), 887, 890, 891–892
drawLine(), 811, 813–814, 1036
drawOval(), 812, 813–814
drawPolygon(), 813–814
drawRect(), 812, 813–814, 1036
drawRoundRect(), 812, 813–814
drawString(), 319, 748, 754, 756, 767, 825, 832
Duration class, 1018
Dynamic link library (DLL), 325–326, 328
Dynamic method

dispatch, 178–181
lookup, 198
resolution, 196, 198, 199, 204

E
E (Math constant), 477
Early binding, 184
echoCharIsSet(), 852
Eclipse IDE, 1212, 1213
Edit control, 852
Effect class, 1165
Effects, 1165–1166

list of some built-in, 1165
program demonstrating, 1167–1170

element(), 508
elementAt(), 563
elementCount Vector data member, 563
elementData Vector data member, 563
elements(), 563, 569, 570
ElementType enumeration, 291, 496
ElementType.TYPE_USE, 293, 206
else, 81–84
empty(), 567, 584, 585
EMPTY_LIST static variable, 555
EMPTY_MAP static variable, 555
EMPTY_SET static variable, 555
EmptyStackException, 567, 568
Encapsulation, 5, 18–19, 20, 22–23, 126–127, 167

and access control, 141
and scope rules, 46

Encoder class, 635
end(), 994
endsWith(), 422, 694
ensureCapacity(), 433, 513, 563
entrySet(), 531, 532, 536, 539, 572
enum, 263, 492, 521, 541
Enum class, 269, 492

methods, table of, 492
EnumConstantNotPresentException, 226
enumerate(), 482, 485, 488
Enumeration interface, 561–562, 564–566, 568, 579,

580, 663

40-index.indd 1250 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1251

Enumeration(s), 14, 263–272, 492, 566
= = relational operator and, 264, 269
as a class type in Java, 263, 267–269
constants, 263, 264, 267, 268, 269
constructor, 267–269
restrictions, 269
values in switch statements, using, 264–265
variable, declaring an, 264

EnumMap class, 537, 541–542
EnumSet class, 511, 521

factory methods, table of, 522
Environment properties, list of, 470
equals(), 153, 185, 186, 269, 270, 280, 420, 443, 445,

448, 449, 450, 452, 458, 460, 471, 491, 492, 502, 504,
532, 537, 542, 545, 558, 569, 581, 584, 587, 588,
730, 820

versus = =, 422–423
equalsIgnoreCase(), 420
Erasure, 341, 373–376

and ambiguity errors, 375–377
bridge methods and, 374–375

err, 304, 305, 467
Error class, 214–215, 223, 230, 680
Errors

ambiguity, 375–376
assertions to check for, using, 328–330
autoboxing/unboxing and prevention of,

278–279
automatic type promotions and compile-time, 50
compile-time versus run-time, 344
generics and prevention of, 342–344
raw types and run-time, 364
run-time, 12, 213, 322. See also Exception

handling
unreachable code, 108, 219

Event
and applets, 751, 769
bubbling, 1115
change, 1138–1139, 1147, 1151, 1164
definition of an, 770
design patterns for a Java Bean, 1202
dispatch chain, 1115
dispatching thread and Swing, 1029–1030, 1033,

1034, 1035
driven programs, 769, 1029
filter, 1115
listeners, 770–771, 782–785
loop with polling, 234, 251
model, delegation. See Delegation event model
multicasting and unicasting, 771, 1202
sources, 770–771, 781–782
timestamp, 773

Event class, 1115
Event handling, 751, 769–795

and adapter classes, 791–793
event classes, 771–781
and inner classes, 151, 793–795, 839, 840
and JavaFX, 1112, 1114–1119
keyboard, 788–791
and lambda expressions, 839–840, 1033
mouse, 785–788
and Swing, 771, 1022, 1030–1033
See also Delegation event model

Event listener interfaces, 782–785
and adapter classes, 791–793
table of commonly used, 782

EventHandler interface, 1115, 1118, 1119
EventListener interface, 635
EventListenerProxy class, 635
EventObject class, 635, 771–772, 1115
EventSetDescriptor class, 1202, 1204, 1206
Exception, definition of an, 213
Exception class, 214–215, 227, 229, 230
Exception classes

and generics, 379
hierarchy of the built-in, 214–215

Exception handling, 12, 93, 102, 213–232, 312,
313–314, 315

block, general form of, 214
and chained exceptions, 13, 230–231
and creating custom exceptions, 227–229
and the default exception handler, 215–216, 222
and lambdas, 394–395
and the more precise (final) rethrow feature,

231, 232
multi-catch, 231–232
and suppressed exceptions, 228, 318
and uncaught exceptions, 215–216, 495, 762

Exceptions, built-in, 226–227
checked, table of, 227
run-time, constructors for, 223
unchecked, table of, 226

Exceptions, I/O, 649
exchange(), 927, 928–929
Exchanger class, 916, 917, 927–929
exec(), 460, 461–462, 464, 465
execute(), 937, 951, 960–961
Execution point, 491
Executor interface, 917, 937
Executors, 916

using, 937–939
Executors class, 917, 937
ExecutorService interface, 917, 937, 940
exists(), 643, 696, 712
exit(), 1078, 1180
exitValue(), 461, 464
exp(), 478
expm1(), 478
Expression lambda, 387. See also Lambda expression(s)
Expressions

and autoboxing/unboxing, 276–277
automatic type promotion in, 50–51
regular. See Regular expressions

extends, 161, 163, 206, 347, 352, 365
and bounded wildcard arguments, 353, 356

Externalizable interface, 683, 1203

F
false, 34, 40, 41, 43, 75, 76, 123
FALSE, 458
FAT file system, 699, 714
Field class, 282, 285, 286, 496, 1002
Field, final, 146–147
fieldModifiers(), 1005

40-index.indd 1251 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1252 Index

fields array, 588
File attribute(s)

File to access, using, 642–645
interfaces, 698–699
NIO to access, using, 699, 712–714
view interfaces, 699

File class, 620, 642–648, 665, 679, 712
instance into a Path instance, converting a,

645, 695
methods, 643–645, 652

file(), 465
File(s)

to a buffer, map a, 693, 704–705, 707–708,
721–723, 724–725

close() to close a, using, 310, 312–314, 315,
318, 656

I/O, 309–318, 642–648. See also NIO; NIO and
channel-based I/O

path to a, obtaining a, 698, 700
pointer, 699, 670
source, 23–24
system, accessing the, 700
try-with-resources to automatically close a, using,

310, 315–318, 656
FileChannel class, 692, 693, 701, 704, 705–706, 720
FileDialog class, 798, 880–882
FileFilter interface, 648
FileInputStream class, 303, 309–310, 652–654, 692, 720,

721, 722, 723
FilenameFilter interface, 646–647
FileNotFoundException, 310, 313, 649, 652, 654, 672
FileOutputStream class, 303, 309–310, 314, 654–656,

692, 723
FileReader class, 304, 620, 672
Files class, 642, 693, 695–697, 699, 708, 709, 712,

714, 717
methods, table of a sampling of, 696–697

FileStore class, 700
FileSystem class, 700
FileSystems class, 700
FileVisitor interface, 717–718
FileVisitResult enumeration, 718
FileWriter class, 304, 673–674
fill(), 552, 558
fillArc(), 812, 813–814
fillInStackTrace(), 228
fillOval(), 812, 813–814, 1120
fillPolygon(), 813
fillRect(), 812, 813–814, 1120
fillRoundRect(), 812, 813–814
fillText(), 1120
filter(), 584, 586, 967, 972–973, 980
FilteredImageSource class, 895, 899–900
FilterInputStream class, 303, 659, 668
FilterOutputStream class, 303, 659, 667
FilterReader class, 304
FilterWriter class, 304
final, 146–147

to prevent class inheritance, 185
to prevent method overriding, 184

Finalization, 126
finalize(), 126, 185, 471

finally block, 213, 214, 224–226, 312–313, 649
find(), 695, 994, 996–997, 998
findInLine(), 629–630
findWithinHorizon(), 630
Finger protocol, 735
fire(), 1136, 1138, 1139, 1175
first(), 506, 863
firstElement(), 563
firstKey(), 532
flatMap(), 584, 586, 982
flatMapToDouble(), 982
flatMapToInt(), 982
flatMapToLong(), 982
flip(), 581, 690, 707
Float class, 272, 273, 442–444, 446, 454

methods, table of, 443–444
float data type, 35, 38, 42

and type promotion, 50–51
Floating-point(s), 35, 38–39

literals, 42–43
FloatBuffer class, 691
floatValue(), 273, 442, 443, 445, 448, 449, 450, 452
floor(), 478, 507
floorDiv(), 478
floorMod(), 478
FlowLayout class, 799, 856–857, 1032
FlowPane class, 1107, 1110, 1111, 1118–1119, 1187
flush(), 606, 648, 652, 661, 671, 681, 683, 684
Flushable interface, 648, 651, 654, 665, 667, 670,

679, 680
FocusAdapter class, 792
FocusEvent class, 772, 774, 775
focusGained(), 783
FocusListener interface, 782, 783, 792
focusLost(), 783
Font class, AWT, 799, 820, 821, 822, 824

methods, table of some, 820
Font class, JavaFX, 1120
Font(s), 819–825

creating and selecting, 822–824
determining available, 821–822
information, obtaining, 824
metrics to manage text output, using, 825–832
terminology used to describe, 825

FontMetrics class, 799, 825–827
methods, table of some, 826

for loop, 29–30, 40, 93–102
enhanced. See For-each version of the for loop
variations, 96–97

For-each version of the for loop, 14, 93, 97–101
and arrays, 97–101
and the break statement, 98–99
and collections, 97, 101, 500, 501, 525–526
general form, 97
and the Iterable interface, 494, 500, 525
and maps, 531

forceTermination(), 936
forDigit(), 456
forEach(), 494, 532, 967, 968, 972, 977
forEachOrdered(), 977
forEachRemaining(), 522, 523, 526, 527–528, 988

40-index.indd 1252 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1253

Fork/Join Framework, 15, 235, 261, 636, 915–916, 917,
937, 947–964

advantages to using the, 947–948
classes, main, 948–951
tips for using the, 963–964

Fork/Join Framework divide-and-conquer strategy, 950,
951–954, 963

and the sequential processing threshold
interaction with the level of parallelism,
955–958

Fork/Join Framework tasks, 949
asynchronous execution of, 960–961
cancelling, 961
completion status of, 961
and the parallelism level, 950, 963
restarting, 961
starting, 951, 960–961
and subtasks, 952
that do not return a result, 948, 949, 958
that return a result, 948, 950, 958

fork(), 949, 951, 954, 958, 960, 962
ForkJoinPool class, 917, 937, 948, 949, 950–951, 952,

954, 955, 958, 960–961, 963
common pool, 950, 951, 954–955, 958, 963
and work stealing, 951, 962

ForkJoinTask class, 917, 948–949, 950, 951, 954, 955,
961, 962, 963–964

Format flags, 614–617
Format specifiers (conversions), 605, 605–619

argument index with, using an, 618–619
and format flags, 614–617
and specifying minimum field width, 612–613
and specifying precision, 614
suffixes for the time and date, table of, 611
table of, 607–608
uppercase versions of, 617–618

format(), 431, 606, 607–608, 618, 666, 667, 679, 680,
681, 1009–1010, 1015

FormatStyle enumeration, 1015, 1016
Formattable interface, 635
FormattableFlags class, 635
Formatted input, using Scanner to read, 620–630
Formatter class, 605–620, 666

closing an instance of the, 619–620
constructors, 605–606
methods, table of, 606
See also Format specifiers

forName(), 474, 1002
FORTRAN, 4, 5
Frame class, 799, 800, 801, 802, 803, 805
Frame window(s), 802–810

creating a stand-alone, 809–810
handling events in, 805–809
within an AWT-based applet, creating, 803–804

Frank, Ed, 6
freeMemory(), 462–563
from(), 465, 587, 592
FTP (File Transfer Protocol), 728, 735
Function<T,R> predefined functional interface, 409,

543, 637, 978
Functional interfaces, 16, 292, 382, 383–384, 386, 393

and their abstract methods, table of, 636–639
generic, 389–391
predefined, 408–409

@FunctionalInterface built-in annotation, 290, 292
Future interface, 917, 940–942
FXCollections class, 1146, 1151

G
Garbage collection, 12, 125, 126, 139, 462–463, 496

and images, 893
gc(), 462, 463, 467
Generic class

and casting, 370
example program with one type parameter,

338–342
example program with two type parameters,

345–346
general form of a, 346
hierarchies, 364–372
and instanceof, 368–370
overriding methods in a, 371–372
and raw types, 362–364
and type inference, 372–373

Generic constructors, 359
Generic interfaces, 338, 360–362

and classes, 361–362
Generic method, 338, 350, 356–359, 377
Generics, 13, 14, 274, 337–379

and annotations, 299
and ambiguity errors, 375–376
and arrays, 377–379
and casts, 338, 341, 344
and the Collections Framework, 337, 500
and compatibility with pre-generics code,

362–364, 373
and exception classes, 379
restrictions when using, 377–379
type checking and, 341, 342–344, 363, 379

GenericServlet class, 1215, 1217, 1220, 1225
get(), 504, 505, 516, 531, 532, 537, 568, 569, 570, 581,

584, 585, 589, 638, 698, 700, 704, 705, 723, 741, 940,
942, 946, 971, 972, 985

and buffers, 691, 692, 703, 721
getActionCommand(), 773, 837, 847, 1045, 1051,

1052, 1078
getActiveThreadCount(), 963
getAddListenerMethod(), 1206
getAddress(), 730, 744
getAdjustable(), 774
getAdjustmentType(), 774, 850
getAlignment(), 835
getAllByName(), 729, 730
getAllFonts(), 821
getAndSet(), 917, 946, 947
getAnnotation(), 282, 286, 297–298,

474, 489
getAnnotations(), 285–286, 474, 489
getAnnotationsByType(), 287, 298–299,

474, 489
getApplet(), 761, 765
getAppletContext(), 749, 765
getArrivedParties(), 936
getAsDouble(), 586
getAscent(), 826
getAsInt(), 586

40-index.indd 1253 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1254 Index

getAsLong(), 586
getAttribute(), 1218, 1219, 1225, 1232
getAttributeNames(), 1225, 1232
getAudioClip(), 749, 765, 767
getAvailableFontFamilyNames(), 821
getBackground(), 755
getBeanInfo(), 1206
getBlue(), 816
getButton(), 779
getByAddress(), 730
getByName(), 729
getBytes(), 420, 654
getCalendarType(), 592
getCause(), 228, 230–231
getChannel(), 692, 720, 721, 722, 723
getChars(), 419–420, 434–435, 673
getChild(), 775
getChildren(), 1112–1113, 1160, 1161
getClass(), 185, 186, 281–282, 340, 471, 473, 476, 1003
getClickCount(), 779
getCodeBase(), 749, 764
getColor(), 817
getCommonPoolParallelism(), 958
getComponent(), 774, 1084, 1085, 1086
getConstructor(), 282, 474
getConstructors(), 474, 1002
getContainer(), 775
getContentLengthLong(), 737, 738
getContentPane(), 1029, 1032
getContents(), 633
getContentType(), 737, 738
getCookies(), 1223, 1231
getDate(), 737, 738
getDateInstance(), 1009–1010
getDateTimeInstance(), 1011
getDeclaredAnnotation(), 286
getDeclaredAnnotations(), 286, 474, 489
getDeclaredAnnotationsByType(), 287, 298, 474, 489
getDeclaredMethods(), 475, 1003
getDefault(), 593, 595
getDescent(), 826
getDirectionality(), 458
getDirectory(), 881
getDisplayCountry(), 595
getDisplayLanguage(), 595
getDisplayName(), 595, 604
getDocumentBase(), 749, 764
getEchoChar(), 852
getErrorStream(), 461
getEventSetDescriptors(), 1202, 1209
getExpiration(), 737, 738
getExponent(), 480
GetField inner class, 685
getField(), 282, 475
GetFieldID(), 327
getFields(), 475, 1002
getFile(), 881
getFileAttributeView(), 699
getFiles(), 882
getFirst(), 509, 515
getFont(), 820, 824, 826, 1120
getForeground(), 755
getForkJoinTaskTag(), 962

getFreeSpace(), 645
getGraphics(), 757, 811, 890
getGraphicsContext2D(), 1120
getGreen(), 816
getHeaderField(), 737
getHeaderFields(), 737, 741
getHeight(), 826, 1037
getHostAddress(), 730
getHostName(), 731
getHour(), 1017
getHvalue(), 1158
getIcon(), 1042
getID(), 483, 593, 772
getImage(), 749, 765, 886–887
getInetAddress(), 732, 743
getInitParameter(), 1218
getInitParameterNames(), 1218
getInputStream(), 461, 464, 732, 737
getInsets(), 860, 1037
getInstance(), 589, 591, 604
getInteger(), 450
GetIntField(), 327
getItem(), 777, 844, 847, 872, 1048, 1050
getItemCount(), 844, 847
getItems(), 1174, 1179, 1189
getItemSelectable(), 777, 847
getKey(), 537, 539
getKeyChar(), 778
getKeyCode(), 778
getLabel(), 836, 840, 871
getLast(), 509, 515
getLastModified(), 737, 738, 1227
getLeading(), 826
getListenerType(), 1206
getLocale(), 632, 749
getLocalGraphicsEnvironment(), 821
getLocalHost(), 729
getLocalizedMessage(), 228
getLocalPort(), 732, 743
getLocationOnScreen(), 779
getLong(), 452
getMaximum(), 849
getMenuComponentCount(), 1073
getMenuComponents(), 1073
getMenuCount(), 1071
getMenus(), 1173
getMessage(), 223, 228
getMethod(), 282, 284–285, 475, 1206, 1223
getMethodDescriptors(), 1202
getMethods(), 475, 1002
getMinimum(), 849
getMinimumSize(), 856
getModifiers(), 773, 776, 1003
getModifiersEx(), 776
getMonth(), 1017
getN() getter method design pattern, 1200, 1201
getName(), 236, 238, 340, 475, 483, 485, 490, 643, 694,

712, 820, 1004, 1206, 1226, 1231
getNameCount(), 694
getNewState(), 781
GetObjectClass(), 327
getOffset(), 593, 744
getOldState(), 781

40-index.indd 1254 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1255

getOppositeComponent(), 775
getOppositeWindow(), 781
getOutputStream(), 461, 464, 732, 1219
getParallelism(), 958
getParameter(), 749, 761–762, 1219, 1221, 1228, 1229
getParameterNames(), 1219, 1221
getParent(), 485, 643, 694, 712, 936, 1161
getPath(), 1063–1064, 1226
getPhase(), 931
getPoint(), 778
getPoolSize(), 963
getPort(), 732, 743, 744
getPreciseWheelRotation(), 780
getPreferredSize(), 856
getPriority(), 236, 246, 483
getProperties(), 468, 572
getProperty(), 468, 470, 573, 574, 575
getPropertyDescriptors(), 1202, 1203, 1208, 1209
getQueuedTaskCount(), 962
getRed(), 816
getRegisteredParties(), 936
getRemoveListenerMethod(), 1206
getRGB(), 817
getRuntime(), 461, 462
getScreenX(), 1188
getScreenY(), 1188
getScript(), 595
getScrollAmount(), 780
getScrollType(), 780
getSecurityManager(), 490
getSelectedCheckbox(), 842
getSelectedIndex(), 844, 846, 1059
getSelectedIndexes(), 847
getSelectedItem(), 844, 846, 1062
getSelectedItems(), 847, 1150
getSelectedText(), 852, 854
getSelectedToggle(), 1142
getSelectedValue(), 1059
getSelectionModel(), 1147, 1160
getServletConfig(), 1217
getServletContext(), 1218
getServletInfo(), 1217
getServletName(), 1218
getSession(), 1223, 1232
getSize(), 802, 814, 820
getSource(), 772, 838, 1052, 1115
getStackTrace(), 228, 483, 491
getState(), 259–261, 483, 840, 871
getStateChange(), 777, 847
getSubElements(), 1072
getSuperclass(), 475, 476
getSuppressed(), 228, 318
getSurplusQueuedTaskCount(), 962
getTarget(), 1180
getText(), 835, 852, 854, 1042, 1044, 1045, 1050,

1154, 1180
getTimeInstance(), 1010–1011
getTransforms(), 1166
getUnarrivedParties(), 936
getTotalSpace(), 645
getUsableSpace(), 645
getValue(), 537, 539, 774, 849, 1226, 1231,

1151–1152, 1161

getVvalue(), 1158
getWheelRotation(), 780
getWhen(), 773
getWidth(), 1037
getWindow(), 781
getWriter(), 1215, 1219
getX(), 778, 1084, 1086
getXOnScreen(), 779, 1084, 1086
getY(), 778
getYear(), 1017
getYOnScreen(), 779
GIF image format, 885–886, 887
Glass pane, 1025
Glassfish, 1212, 1213
Glob, 715–716
Glow class, 1165

program demonstrating, 1167–1170
Gosling, James, 6
goto keyword, 34
Goto statement, using labeled break as form of,

104–106
grabPixels(), 897
Graphical User Interface. See GUI (Graphical User

Interface)
Graphics

and JavaFX retained mode, 1106, 1119
 context, 319, 753, 811
 sizing, 814–815

Graphics class, 319, 753, 754, 799, 811, 817, 824,
887, 890

drawing methods, 811–814
Graphics2D class, 811
GraphicsContext class, 1119–1123
GraphicsEnvironment class, 799, 821
GregorianCalendar class, 588, 591–592, 596, 1013
Grid bag layouts, 865–870
GridBagConstraints class, 799, 866–868

constraint fields, table of, 866–867
GridBagLayout class, 799, 865, 866, 868, 870
gridheight constraint field, 866, 868
GridLayout class, 799, 861–862
GridPane class, 1107
gridwidth constraint field, 866, 868
Group class, 1107
group(), 699, 994
GIU (Graphical User Interface), 301, 319, 321, 797, 833

applets based on the, 751
approaches to the, 1105
effects and transforms to customize the look of a

JavaFX, using, 1164–1170
programs, handling events generated by, 769–795

GZIP file format, 639

H
handle(), 1115, 1118, 1179
hasCharacteristics(), 527, 528
Hash code, 516
Hash table, 516
hashCode(), 185, 280, 443, 445, 448, 449, 450, 452,

458, 460, 471, 490, 491, 492, 502, 532, 537, 560, 569,
581, 584, 587, 820

40-index.indd 1255 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1256 Index

Hashing, 516, 517
HashMap class, 537–539, 540, 541, 569
HashSet class, 511, 516–517, 969

from a stream API stream, obtaining a, 985
Hashtable class, 511, 561, 569–572, 573

and iterators, 571–572
legacy methods, table of, 570

hasMoreElements(), 562, 580
hasMoreTokens(), 580
hasNext(), 522, 523, 986, 987
hasNextX() Scanner methods, 621, 624

table of, 622
Headers, 737
HeadlessException, 802, 835
headMap(), 534, 535
headSet(), 506, 507
HEIGHT, 760, 761
Hexadecimals, 41, 42–43

as character values, 43
Hierarchical abstraction and classification, 18

and inheritance, 19, 161
High surrogate char, 458
highestOneBit(), 450, 452
Histogram, 897–899
Hoare, C.A.R., 236
Holzmann, Gerard J., 895
HotSpot technology,10
HSB (hue-saturation-brightness) color model, 816
HSBtoRGB(), 816
HSPACE, 760, 761
HTML (Hypertext Markup Language), 1211, 1215

file for an applet, 320–321, 748, 760–761
and javadoc, 1235, 1236, 1239

HTMLEditor, 1156
HTTP, 728, 735

GET requests, handling, 1227–1228
and HttpURLConnection class, 739
port, 728
POST requests, handling, 1227, 1229–1230
requests, 1211, 1212, 1222, 1227
response, 1211, 1212, 1215, 1222, 1224
and URLConnection class, 737

HTTP session
stateful, 741
tracking, 1232–1233

HttpCookie class, 741
HttpServlet class, 1222, 1225, 1227

methods, table of, 1226
HttpServletRequest interface, 1222, 1228, 1229, 1232

methods, table of several, 1223
HttpServletResponse interface, 1222–1223, 1224

methods, table of, 1224
HttpSession interface, 1222, 1223, 1232

methods, table of several, 1225
HttpURLConnection class, 739–741

methods, sampling of, 739
hypot(), 480

I
Icon interface, 1042
Icons

Swing button, 1045
Swing label, 1042

Identifiers, 24, 32, 34, 44, 45
IdentityHashMap class, 537, 541
IEEEremainder(), 480
if statement, 28–29, 30, 40, 41, 81–84

boolean variable used to control the, 82, 278
nested, 83
and recursive methods, 140
switch statement versus, 88–89

if-else-if ladder, 83–84
IllegalAccessException, 224, 227
IllegalArgumentException, 226, 502, 504, 506, 508, 510,

521, 531, 534, 558
IllegalFormatException, 608
IllegalMonitorStateException, 226
IllegalStateException, 226, 502, 510, 994, 1223
IllegalThreadStateException, 226
Image class

AWT, 799, 885, 886–887, 890, 895, 897
JavaFX, 1225–1227

ImageConsumer interface, 897–899
ImageFilter class, 899
ImageIcon class, 1041, 1042
ImageObserver interface, 887, 888–889, 892
ImageProducer interface, 886, 895, 897, 899
imageUpdate(), 888–889

bit flags, table of, 889
Images, 885–913

creating, loading, displaying, 886–888
double buffering and, 889–892
file formats for web, 885–886
filters for, 899–912
stream model for, 899–900

Imaging, 885
ImageView class, 1125–1127, 1128, 1130
IMG tag, 761
implements clause, 197

and generic interfaces, 361, 362
import statement, 194–195

and static import, 331–334
in, 304, 305, 464, 467, 620, 680
Increment operator (++), 30, 61, 64–66
incrementExact(), 480
indexOf(), 424–426, 438–439, 504, 505, 563–564
IndexOutOfBoundsException, 226, 504
Inet4Address class, 731
Inet6Address class, 731
InetAddress class, 729–731, 742
InetSocketAddress class, 743
infinity (IEEE floating-point specification value), 446
inForkJoinPool(), 962
INHERIT, 465
InheritableThreadLocal class, 488
Inheritance, 5, 18, 19–21, 22–23, 142, 144, 161–186

and annotations, 299
and enumerations, 269
final and, 184–185
and interfaces, 187, 196, 206–207, 210–211, 212
multilevel, 171–174
and multiple superclasses, 163, 187

@Inherited built-in annotation, 290, 291
init(), 750, 751, 753, 755–756, 759, 788, 792, 793, 803,

832, 1212, 1215, 1217
and JavaFX, 1107, 1108, 1110
and Swing, 1033, 1035

40-index.indd 1256 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1257

initCause(), 228, 230
Inline method calls, 184
Inner classes, 149–151, 793–794

anonymous, 795, 839–840, 1052, 1071,
1085–1086, 1115, 1119

InnerShadow class, 1165
program demonstrating, 1167–1170

InputEvent class, 772, 775–776, 777, 778, 1079
InputMismatchException, 624
InputStream class, 302, 303, 305, 620, 650, 651, 652,

656, 659, 660, 662, 663, 668, 685, 688, 710, 1220
methods, table of, 651
objects, concatenating, 663

InputStreamReader class, 304, 305
insert(), 435–436, 854, 1072
insertSeparator(), 1042
Insets class, 799, 860–861, 1037
Instance of a class, 19, 109, 111, 114

See also Object(s)
Instance variables

accessing, 111, 116, 117–118, 120
default values of, 123
definition of, 19, 110
hiding, 125
and interfaces, 207
static, 145–146
as unique to their object, 111, 112–113
using super to access hidden, 170–171

instanceof operator, 322–324, 530
and generic classes, 368–370

Instant class, 587, 1018
InstantiationException, 227
Instrumentation interface, 496
int, 27, 35, 36, 37

and automatic type conversion, 48
and automatic type promotion, 50–51, 69–70, 72
and integer literals, 41

IntBuffer class, 691
Integer class, 272, 273, 274, 447, 454–455, 971

constructors, 273
methods, table of, 450–451

Integer(s), 35, 36–38, 66–67
literals, 41–42

interface keyword, 187, 196
and annotations, 280

Interface methods
default, 16, 197, 207–211, 381, 383
static, 211–212
traditional, 196, 197–198, 383

Interface(s), 187, 196–212
functional. See Functional interfaces
general form of, 196–197
generic. See Generic interfaces
implementing, 197–200
and the inheritance hierarchy, 196
inheritance of, 206–207, 211
member, 200
methods. See Interface methods
nested, 200–201
reference variables, 198–199, 204
types for bounded types, using, 349
variables, 197, 204–206

interfaceModifiers(), 1005

Internet, 3, 6, 7, 8, 12, 16, 727
addresses, obtaining, 729–731
addressing scheme, 728
and portability, 7, 8, 9
and security, 8–9

Internet Engineering Task Force (IETF) BCP 47, 595
Internet Protocol (IP)

addresses, 728
definition of, 727

InterNIC, 732, 734
InterruptedException, 227, 237–238, 897
Introspection, 1200–1203, 1206, 1209
Introspector class, 1205, 1206
ints(), 597–598
IntStream interface, 968, 969, 981
IntSummaryStatistics class, 635
intValue(), 273, 274, 442, 444, 445, 448, 449, 450, 452
InvalidPathException, 698
invoke(), 949, 951, 955, 960
invokeAll(), 949, 954, 958, 962
invokeAndWait(), 1030, 1035
invokeLater(), 1030, 1035
I/O, 26, 301–318, 641–688

and applets, 319, 321
channel-based, 13, 302, 689. See also NIO; NIO

and channel-based I/O
classes, list of, 641–642
console, 26, 93, 301, 305–309, 680–682
error handling, 312–315
exceptions, 649
file, 309–318, 642–648
formatted. See I/O, formatted
interfaces, list of, 642
new. See NIO
redirection, 465
streams. See Streams, I/O

I/O, formatted, 14
format specifiers. See Format specifiers
using Formatter, 605–620. See also Formatter class
using printf(), 155, 666–667, 680
using Scanner, 620–630. See also Scanner class

io package. See java.io package
IOError, 680
IOException, 93, 305, 310, 313, 314, 649, 651, 652,

656, 662, 670, 673, 683, 684, 685, 695, 714, 717, 732,
736, 742

ipadx constraint field, 866, 868
ipady constraint field, 866, 868
IPv4 (Internet Protocol, version 4), 728, 729, 730, 731
IPv6 (Internet Protocol, version 6), 728, 729, 730, 731
isAbsolute(), 644, 695
isAlive(), 236, 243–246, 461, 483
isAltDown(), 776
isAltGraphDown(), 776
isAnnotationPresent(), 286, 288, 490
isBound(), 732, 743, 1206
isCancelled(), 961
isClosed(), 732
isCompletedAbnormally(), 961
isCompletedNormally(), 961
isConnected(), 732, 743
isConstrained(), 1206
isControlDown(), 776

40-index.indd 1257 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1258 Index

isDigit(), 456, 457, 458
isDirectory(), 645–646, 696, 698
isEditable(), 852, 854
isEmpty(), 431, 502, 503, 532, 564, 568, 569, 570, 581
isEnabled(), 871, 1091
isExecutable(), 696, 712
isFile(), 644
isFinite(), 444, 445
isHidden(), 645, 696, 699, 712
isIndeterminate(), 1145
isInfinite(), 444, 445, 446–447
isLeapYear(), 592
isLetter(), 456, 457, 458
isLightweight(), 883
isLowercase(), 456, 457
isMetaDown(), 776
isMulticastAddress(), 731
isMultipleMode(), 882
isNaN(), 444, 445, 446–447
ISO-Latin-1 character set, 39, 43
isPopupTrigger(), 779, 1084, 1086
isPresent(), 584, 585, 971
isPropertyName(), 1201
isPublic(), 1003–1004
isQuiescent(), 963
isReadable(), 696, 712
isSelected(), 1048, 1050, 1052, 1072, 1134, 1135, 1145
isSet array, 588
isSet(), 589
isShiftDown(), 778
isShutdown(), 963
isTemporary(), 775
isTerminated(), 963
isTimeSet, 588
isUppercase(), 456, 457
isWhitespace(), 456, 457
isWritable(), 696, 699, 712
ItemEvent class, 772, 776–777, 839, 840, 844, 847, 872,

1048, 1050
ItemListener interface, 782, 783, 840, 844, 872,

1048, 1050
ItemSelectable interface, 777
itemStateChanged(), 783, 840, 844, 1048, 1050
Iterable interface, 431, 494, 500, 501, 525, 531, 562
Iterable<Path> interface, 694, 714
Iteration statements, 81, 89–102
Iterator, 499, 500, 504, 521–529

and maps, 531
obtaining an, 523, 524
and PriorityQueue, 520
and stream API streams, 986–987
and synchronized collections, 550

Iterator interface, 499, 501, 521, 523–525, 526, 562
methods, table of, 522

iterator(), 494, 502, 504, 523, 714, 966, 986

J
J2SE 5, new features of, 13, 14
JApplet class, 747, 1025, 1033, 1035
Java

API packages, table of core, 991–993
and C, 3, 5, 7, 11

and C++, 3, 7, 11
and C#, 8
design features (buzzwords), 10–13
history of, 3, 6–8, 13–16
and the Internet, 3, 6, 7–9, 12, 16, 727
as interpreted language, 9, 10, 12
keywords, 33–34
as a strongly typed language, 10, 11, 35, 41
versions of, 13–14
and the World Wide Web, 6, 7, 11

Java Archive (JAR) files, 639
Java Beans, 476, 496, 991, 1001, 1199–1209

advantages of, 1200
API, 1204–1206
customizers, 1203
demonstration program, 1206–1209
introspection, 1200–1203, 1206, 1209
properties. See Property, Java Bean
serialization, 1203

.java filename extension, 23
Java Community Process (JCP), 16
Java Control Panel, 748
Java EE SDK, 1212, 1216
Java Foundation Classes (JFC), 1022
java (Java application launcher). See Application

launcher (java)
Java Native Interface (JNI), 325
Java Network Launch Protocol (JNLP), 748, 760, 1111
java package, 188, 189, 194
Java SE 7, 14–16
Java SE 8, 15–16
Java Virtual Machine (JVM), 9–10, 12, 13, 16, 24, 25,

461, 496
java.applet package, 301, 319, 747
java.awt package, 769, 772, 798, 885, 886, 1032

classes, tables of some, 798–800
java.awt.Dimension class, reflection example using the,

1002–1003
java.awt.event package, 769, 771, 772, 782, 791,

1030, 1032
event classes, table of commonly used, 772
interfaces, table of commonly used, 772

java.awt.event.InputEvent class. See InputEvent class
java.awt.event.KeyEvent class. See KeyEvent class
java.awt.image package, 885, 895, 899, 910, 913
java.beans package, 1202, 1204–1206

classes, table of, 1204–1205
interfaces, tables of, 1204

java.io package, 301, 302–304, 310, 316, 641–642, 648,
689, 712

classes, list of, 641–642
interfaces, list of, 642

java.io.Externalizable interface, 683, 1203
java.io.IOException. See IOException
java.io.Serializable interface, 682–683, 687, 962, 1203
java.lang package, 194, 226, 281, 290, 304, 310, 316,

358, 361, 413, 441–495, 648
classes and interfaces, list of, 441
implicit importation of the, 194

java.lang.annotation package, 280, 290, 297, 495, 496
java.lang.annotation.RetentionPolicy enumeration,

281, 496
java.lang.image package, 897

40-index.indd 1258 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1259

java.lang.instrument package, 495, 496
java.lang.invoke package, 495, 496
java.lang.management package, 496
java.lang.ref package, 496
java.lang.reflect package, 281, 286, 496, 991, 992, 1001

classes, table of, 1002
java.net package, 727, 741

classes and interfaces, list of, 728–729
java.nio package, 302, 641, 645, 689, 690
java.nio.channels package, 689, 691, 693
java.nio.channels.spi package, 689
java.nio.charset package, 689, 693
java.nio.charset.spi package, 689
java.nio.file package, 689, 693, 694
java.nio.file.attribute package, 689, 693, 698
java.nio.file.spi package, 689, 693
java.nio.file.WatchService, 719
java.rmi package, 991, 992, 1006
java.text package, 991, 993, 1009
java.time package, 588, 991, 993, 1013, 1018
java.time.format package, 1013, 1015
java.util package, 497–498, 561, 579, 769, 771, 971, 986

classes, list of top-level, 497–498
interfaces defined by, list of, 498

java.util.concurrent package, 635, 636, 916–917,
942, 948

java.util.concurrent.atomic package, 635, 636, 916,
917, 946, 947

java.util.concurrent.locks package, 635, 636, 916, 917,
943, 944, 946

java.util.function package, 16, 408–409, 526, 543, 560,
579, 635, 636, 972, 973, 978, 985

functional interfaces defined by, table of, 636–639
java.util.jar package, 635, 639
java.util.List class. See List class
java.util.logging package, 635, 639
java.util.prefs package, 635, 639
java.util.regex package, 636, 639, 991, 993
java.util.spi package, 636, 639
java.util.stream package, 16, 636, 639, 966, 982
java.util.zip package, 636, 639
javac (Java compiler), 23–24, 188, 293, 364, 1112
javadoc, 1235–1241

tags, 1235–1239
utility program, 1235, 1239

JavaFX, 16, 301, 797, 833, 1105–1123
event handling, 1112, 1114–1119
images, support for, 1125–1127
launcher thread, 1112
layout panes, 1107, 1110, 1111, 1118–1119, 1178,

1187, 1196
menus. See Menus, JavaFX
nodes. See Node(s), JavaFX
packages, 1106
repainting, 1106, 1119, 1121
scene, 1106–1107, 1110, 1111, 1112
scene graph, 1107, 1112–1114, 1118, 1119, 1126,

1157, 1196
stage, 1106, 1107, 1110, 1112
versus Swing, 1106, 1119

JavaFX application
class, 1107–1108

compiling and running a, 1111–1112
launching a, 1108
skeleton, 1108–1111
thread, 1112

javafx.application package, 1106, 1107, 1110 1080
javafx.beans.value package, 1139
javafx.collections package, 1113, 1146
javafx.event package, 1115, 1116
javafx.geometry package, 1119
javafx.scene package, 1106, 1110
javafx.scene.canvas package, 1119
javafx.scene.control package, 1112, 1115, 1125, 1136,

1142, 1171
javafx.scene.effect package, 1196
javafx.scene.image package, 1125
javafx.scene.input package, 1181
javafx.scene.layout package, 1106, 1107, 1110
javafx.scene.paint package, 1121
javafx.scene.paint.Color class, 1121, 1166
javafx.scene.shape package, 1123
javafx.scene.text package, 1120, 1170
javafx.scene.transform package, 1166, 1196
javafx.stage package, 1106, 1110
javafx.stage.PopupWindow, 1185
javafxpackager tool, 1108, 1112
javah.exe, 326, 327
javap, 375
javax.imageio package, 913
javax.servlet package, 1215, 1216–1220

interfaces and classes, list of core, 1216–1217
javax.servlet.http package, 1216, 1222–1227

interfaces and classes, list of some, 1222
javax.swing package, 1024, 1026, 1027, 1041, 1063

classes, list of, 1024–1025
javax.swing.event package, 1030, 1043, 1058, 1063
javax.swing.table package, 1066, 1067
javax.swing.tree package, 1063
JButton class, 1025, 1032, 1041, 1045–1047, 1070, 1091
JCheckBox class, 1041, 1045, 1047, 1049–1951, 1091
JCheckBoxMenuItem class, 1070, 1081, 1082–1083
JComboBox class, 1041, 1061–1063
JComponent class, 1024, 1025, 1033, 1036, 1037, 1041,

1045, 1071, 1081
JDialog class, 1025, 1101
JDK 8 (Java SE 8 Development Kit), 15–16, 23
JFormattedTextField class, 1101
JFrame class, 1025, 1026, 1027, 1029, 1040, 1072, 1074
JIT (Just-In-Time) compiler, 10, 12
JLabel class, 1025, 1026, 1028, 1030, 1036,

1041–1043, 1074
JLayeredPane class, 1025
JList class, 1041, 1058–1060
JMenu class, 1070, 1071, 1072–1073, 1074

mnemonic, 1078
JMenuBar class, 1070, 1071–1072, 1074
JMenuItem class, 1070, 1071, 1072, 1073, 1074,

1081, 1082
accelerator key, 1079, 1080
action to create a, using an, 1091
and action events, 1073, 1074, 1077
mnemonic, 1078, 1079–1080

jni.h, 327, 328

40-index.indd 1259 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1260 Index

jni_md.h, 328
JNLP (Java Network Launch Protocol), 748, 760, 1111
join(), 236, 243–246, 430–431, 483, 949, 958, 960
JOptionPane class, 1101
Joy, Bill, 6
JPanel class, 1025, 1037, 1040, 1055, 1056
JPEG image file format, 886, 887
JPopupMenu class, 1070, 1083–1086, 1091

and mouse events, 1084, 1085–1086
JRadioButton class, 1041, 1045, 1047, 1051–1053, 1091
JRadioButtonMenuItem class, 1070, 1082–1083, 1091
JRootPane class, 1025
JScrollBar class, 1025
JSeparator class, 1070, 1072
JScrollPane class, 1041, 1056–1057, 1058, 1064,

1066, 1067
JSpinner class, 1101
JTabbedPane class, 1041, 1053–1055
JTable class, 1041, 1066–1068
JTextComponent class, 1043
JTextField class, 1041, 1043–1044
JToggleButton class, 1041, 1045, 1047–1049,1051
JToggleButton.ToggleButtonModel class, 1048
JToolbar class, 1069, 1087–1089

adding an action to a, 1091
JTree class, 1041, 1063–1066
Jump statements, 81, 102–108
Just In Time (JIT) compiler, 10, 12
JVM (Java Virtual Machine), 9–10, 12, 13, 16, 24, 25,

461, 482, 496
JWindow class, 1025

K
Kernighan, Brian, 4
Key codes, virtual, 777–778, 790
KeyAdapter class, 792
Keyboard events, handling, 788–791
KeyCombination class, 1181
keyCombination(), 1181
KeyEvent class, 772, 774, 775, 777–778, 1078, 1079
KeyListener interface, 782, 784, 788–791, 792
keyPressed(), 784, 788, 789
keyReleased(), 784, 788
keys(), 568, 569, 570
keySet(), 531, 532, 572, 632, 741
KeyStroke class, 1079
keyTyped(), 784, 788, 789
Keywords, table of Java, 33

L
Label

AWT standard control, 835–836
Swing, 1026, 1028, 1041–1043
used with break statement, 104–106
used with continue statement, 107

Label class
AWT, 799, 835
JavaFX, 1112, 1128

Label, JavaFX, 1112–1114
adding an image to a, 1128–1130

Labeled class, 1112, 1115
Lambda expression(s), 15–16, 381–396, 408–409

as arguments, passing, 391–394
block, 382, 387–389
body, 382, 387–388
and comparators, 546–547
definition of, 382
and exceptions, 394–395
and generics, 389
to handle action events, 839–840, 1033, 1052,

1071, 1115, 1119
parameters, 382–383
and the stream API, 965
target type, 382, 383, 384, 389–390, 391, 393, 395
and variable capture, 395–396

Lambda arrow operator (–>), 16, 61, 382
last(), 506, 863
lastElement(), 563, 564
lastIndexOf(), 424, 425–426, 438–439, 504, 505,

563, 564
lastKey(), 534
Late binding, 184
launch(), 1108, 1110
Layered pane, 1025
Layout managers, AWT, 801, 833, 855–870

default, 833, 855, 856
Layout panes, JavaFX, 1107, 1110, 1111, 1118–1119,

1178, 1187, 1196
LayoutManager interface, 856
Lazy behavior (stream API stream), 968
length instance variable of arrays, 147–149
length(), 153, 416, 433, 493, 581
Lexer (lexical analyzer), 579
Libraries, class, 23, 24
Library, compact profiles of the API, 336
Lindholm, Tim, 6
LineNumberInputStream deprecated class, 642
LineNumberReader class, 304
lines(), 676, 695, 969
LinkedBlockingDeque class, 943
LinkedBlockingQueue class, 943
LinkedHashMap class, 537, 540–541
LinkedHashSet class, 511, 517–518
LinkedList class, 511, 515–516

example program using the, 529–530
from a stream API stream, obtaining a, 985

LinkedTransferQueue, 943
List

controls, 846–848
items, 773, 776, 782

List class, 799, 846, 847, 1113, 1146, 1150, 1151
List interface, 501, 504, 511, 515, 516, 524, 556, 562,

563, 1173
from a stream API stream, obtaining a, 982–984
methods, table of, 505

List, Swing, 1058–1060
List view, 1146–1151

change events, handling, 1147
multiple selections in a, enabling, 1150–1151
scrollbars, 1149–1150

list(), 573, 695
and directories, 643, 645–647

40-index.indd 1260 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1261

list(), ThreadGroup, 485, 487
listFiles(), 647–648
ListIterator interface, 501, 521, 524–525, 526

methods, table of, 523
listIterator(), 505, 524
ListModel, 1058
ListResourceBundle class, 633
ListSelectionEvent class, 1058, 1059, 1067
ListSelectionListener interface, 1058, 1059
ListSelectionModel interface, 1058–1059, 1067
ListView class, 1146–1151
Literals, 32, 41–44

class, 283
regular expression, 995
string, 43–44, 416

load(), 462, 468, 573, 576–577
loadLibrary(), 326, 462, 468
LocalDate class, 1013, 1014, 1015, 1017, 1018
LocalDateTime class, 1013, 1014–1015, 1017–1018
Locale class, 430, 594–596, 1009, 1010
Locale Data Markup Language (LDML), 595
Locale.Builder class, 595
LocalTime class, 1013, 1014, 1017, 1018
Lock interface, 917, 944

methods, table of, 944
lock(), 917, 944
lockInterruptibly(), 944
Locks, 943–946
log()

math method, 478
servlet method, 1218, 1220

log10(), 478
log1p(), 478
Logical operators

bitwise, 67–69
Boolean, 75–77

long, 35, 36, 37–38
and automatic type conversion, 48
and automatic type promotion, 50
literal, 41–42

Long class, 272, 273, 447, 454–455
methods, table of, 452–453

LongAccumulator class, 947
LongAdder class, 947
longBitsToDouble(), 445
LongBuffer class, 691
longs(), 597–598
LongStream interface, 968, 969
longValue(), 273, 442, 444, 445, 448, 449, 450, 452
Look and feels, 1022–1023
lookup(), 1007
loop(), 767
Loop(s), 81

Boolean object to control, using a, 278
continue statement and, 106–107
do-while, 90–93
for. See for loop
infinite, 96–97, 103
nested, 102, 104, 105–106
with polling, event, 234, 251
while, 89–90

Low surrogate char, 458
lowestOneBit(), 450, 452

M
main(), 25–26, 110, 142, 145

and applets, 26, 110, 320, 321, 748
and the java application launcher, 25
and command-line arguments, 25, 154–155
and Swing programs, 1029–1030
and windowed applications, 809–810

main (default name of main thread), 238
makeGUI(), 1035
MalformedURLException, 735
Map interface, 531–533, 534, 536, 537, 538, 541, 568,

569, 570, 571–572
methods, table of, 532–533

map(), 584, 586, 693, 704, 705, 707, 722, 724
and stream API streams, 967, 978–981

Map(s), 499, 530–542
classes, 537–542
collection-view of a, obtaining a, 499, 531
flat, 982
interfaces, 531–537
and stream API streams, 978–982
submaps of, 534

Map.Entry interface, 531, 536, 539
methods, table of non-static, 537

MapMode.PRIVATE, 704
MapMode.READ_ONLY, 704
MapMode.READ_WRITE, 704, 707
MappedByteBuffer class, 691, 704
mapToDouble(), 981
mapToInt(), 981–982
mapToLong(), 981
mark(), 651, 652, 657, 660, 663, 671, 676, 691
markSupported(), 651, 660, 663, 670, 671, 676
Matcher class, 993, 994–995, 996, 997, 999, 1001
matcher(), 994
matches(), 431, 994, 996, 1001
Math class, 45, 131, 477–481

rounding methods, table of, 478–479
and static import example, 331–333

max(), 403–404, 444, 445, 450, 452, 479, 553, 556,
967, 972

MAX_EXPONENT, 443
MAX_PRIORITY, 246, 482
MAX_RADIX, 455
MAX_VALUE, 443, 447, 455
MediaTracker class, 799, 885, 892–895
Member, class, 19, 110

access and inheritance, 163–164
access, table of, 191
controlling access to, 141–144
static, 145–146

Member interface, 496, 1001
Memory

allocation using new, 52, 53, 113–114
deallocation, 125
leaks, 310, 315, 649
management, in Java, 11–12, 125
and the Runtime class, 462–463

MemoryImageSource class, 895–896, 897, 899
Menu bars and AWT menus, 833, 870–876

action command string of, 872
and events, 872

40-index.indd 1261 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1262 Index

Menu class
AWT, 799, 870, 871
JavaFX, 1172, 1173, 1174, 1175, 1179

Menu item as an event source, AWT, 773, 776, 782
Menu(s), JavaFX, 1171–1196

accelerator keys, 1171, 1180–1181
check menu items, 1172, 1183–1185
classes, table of core, 1172
context menu, 1171, 1172–1173, 1185–1188
demonstration program, 1191–1196
events, handling, 1172, 1175, 1179–1180
and images, 1174, 1182–1183
main, creating a, 1172, 1173–1174, 1175–1180
menu bar, 1171, 1173–1174, 1175
mnemonics, 1171, 1181
popup, 1172, 1185
radio menu items, 1172, 1183–1185
standard menu, 1171
and submenus, 1172, 1174, 1179
and toolbars, 1171, 1173, 1189–1190
and tooltips, 1189

Menu(s), Swing, 1069–1101
accelerator keys, 1069, 1078, 1079–1080, 1093
action command string, 1069–1070, 1078
action to manage multiple components of a,

using an, 1069, 1089–1094
and check boxes, 1081, 1082–1083
classes, interaction of core, 1069–1070
demonstration program, 1095–1101
events, 1069–1070, 1073, 1081, 1082, 1084,

1085–1086
and images, 1080–1081
main, creating a, 1074–1078
menu bar, 1069, 1071–1072, 1074
mnemonics, 1069, 1073, 1078, 1079–1080, 1093
popup, 1069, 1070, 1083–1086
and radio buttons, 1081, 1082–1083
and submenus, 1070, 1072, 1077
and toolbars, 1069, 1070, 1087–1089
and tooltips, 1081

MenuBar class
AWT, 799, 870, 871
JavaFX, 1172, 1173, 1175

MenuDragMouseEvent, 1071
MenuEvent, 1071
MenuItem class

AWT, 799, 870–871, 872, 1081
JavaFX, 1172, 1173, 1174–1175, 1179, 1180, 1183

MenuEvent, 1071
MenuKeyEvent, 1071
MenuListener, 1071
Metadata, 280. See also Annotation(s)
Method class, 282, 285, 286, 496, 1002, 1003, 1206
Method reference(s), 381, 396–404

and the Collections Framework, 402
and generics, 401–404
to instance methods, 397–401
to static methods, 396–397
to a superclass version of a method, 401

Method(s), 19, 110, 115–121
abstract. See Abstract method(s)
and annotations, 280, 299

and autoboxing/unboxing, 275–276
bridge, 374–375
calling, 117,118
default interface, 16, 197, 207–211, 381, 383
dispatch, dynamic, 178–181
and the dot (.) operator, 111, 117, 118
factory, 729
final, 147, 184
general form, 116
generic, 338, 350, 356–359, 377
getter, 1200
hidden, using super to access, 170–171, 176
inlining, 184
interface. See Interface methods
lookup, dynamic, 198
native, 325–328, 491
overloading, 129–134, 158–160, 177
overriding. See Overriding, method
and parameters, 116, 119–121
passing an object to, 137–138
recursive, 139–141
reference. See Method reference(s)
resolution, dynamic, 196, 198, 199, 204
returning an object from, 138–139
returning a value from, 118–119, 121
scope defined by, 46–48
setter, 1200
static, 145–146, 211–212, 332–333, 396–397
subclasser responsibility, 182
synchronized, 236, 247–249
type inference and, 358, 372–373
varargs. See Varargs
variable-arity, 155

MethodDescriptor class, 1202, 1205, 1206
MethodHandle class, 496
methodModifiers(), 1005
MethodType class, 496
MIME (Multipurpose Internet Mail Extensions),

1211, 1215
min(), 444, 445, 450, 452, 479, 553, 556, 967, 971, 972
minimumLayoutSize(), 856
MIN_EXPONENT, 443
MIN_NORMAL, 443
MIN_PRIORITY, 246, 482
MIN_RADIX, 455
MIN_VALUE, 443, 447, 455
mkdir(), 648
mkdirs(), 648
Model-Delegate component architecture, 1023–1024
Model-View-Controller (MVC) component

architecture, 1023
Modifier class, 1003, 1005

“is” methods, table of, 1004
Modulus operator (%), 61, 63
Monitor, 236, 247, 249, 251
Mouse events, handling, 785–788
MouseAdapter class, 792, 793, 794, 1084, 1085, 1207
mouseClicked(), 784, 792, 1084
mouseDragged(), 784, 791, 792, 891
mouseEntered(), 784, 1084
MouseEvent class, 772, 774, 775, 778–779, 1084
mouseExited(), 784, 1084

40-index.indd 1262 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1263

MouseListener interface, 782, 784, 785–788, 792, 793,
1084, 1085–1086

MouseMotionAdapter class, 791, 792
MouseMotionListener interface, 771, 782, 784,

785–788, 791, 792, 793
mouseMoved(), 784, 791, 891
mousePressed(), 784, 793–794, 1084, 1086, 1207
mouseReleased(), 784, 1084, 1086
MouseWheelEvent class, 772, 779–780
MouseWheelListener interface, 782, 784, 785, 792
mouseWheelMoved(), 784
Multi-core systems, 234–235, 261, 915, 916,

947–948, 952
MultipleSelectionModel class, 1147, 1149
multiplyExact(), 480
Multitasking, 233

preemptive, 235
Multithreaded programming, 7, 11, 12, 233–261

and context switching. See Context switching
effectively using, 261
and multi-core versus single-core systems, 234
and spurious wakeup, 251
and StringBuilder class, 439
and synchronization. See Synchronization
and threads. See Thread(s)
versus the concurrency utilities, traditional,

915, 964
and parallel programming, 948
versus single-threaded system, 234

MutableComboBoxModel, 1061
MutableTreeNode interface, 1064
MVC (Model-View-Controller) component

architecture, 1023

N
NAME, 760, 761
Name-space collisions

between instance variables and local
variables, 125

packages and, 187, 194, 334
Naming class, 1006, 1007
NaN, 443, 446
nanoTime(), 468, 469, 955
@Native built-in annotation, 290
native modifier, 325
Natural ordering, 494, 452
naturalOrder(), 543
Naughton, Patrick, 6
NavigableMap interface, 531, 534, 539

methods, table of, 535–536
NavigableSet interface, 501, 507–508, 518, 519

methods, table of, 507
negateExact(), 480
Negative numbers in Java, representation of, 66–67
NEGATIVE_INFINITY, 443
NegativeArraySizeException, 226, 557
.NET Framework, 8
NetBeans, 1112, 1212, 1213
Networking, 727–745

basics, 727–728
classes and interfaces, list of, 728–729

new, 52, 53, 113–114, 121, 123, 125, 139, 182, 222, 223
autoboxing and, 275
constructor reference and, 404, 408
and enumerations, 264, 267
and type inference, 372–373

NEW, 260
New I/O. See NIO
newByteChannel(), 693, 696, 701, 702, 703, 704, 705,

706, 707, 708
newCachedThreadPool(), 937
newCondition(), 944
newDirectoryStream(), 696, 714, 715–717
newFileSystem(), 700
newFixedThreadPool(), 937
newInputStream(), 697, 709, 710–711
Newline, inserting a, 612
newOutputStream(), 697, 709, 711
newScheduledThreadPool(), 937
next(), 522, 523, 623, 863, 986, 987
nextAfter(), 479
nextBoolean(), 596, 623
nextBytes(), 596
nextDouble(), 205, 596, 623, 625, 628
nextDown(), 479
nextElement(), 562, 580, 665
nextFloat(), 596, 623
nextGaussian(), 596
nextInt(), 596, 623, 628
nextLong(), 596, 623
nextToken(), 580
nextUp(), 479
nextX() Scanner methods, 621, 624, 625, 628

table of, 623
NIO, 641, 689–725

and directories, 714–719
packages, list of, 689
pre-JDK 7 NIO versus new, 720
reading a file using pre-JDK 7, 720–723
for path and file system operations, using,

712–719
and the stream API, 695
for stream-based I/O, using, 700, 709–711
writing to a file using pre-JDK 7, 723–725

NIO and channel-based I/O
copying a file using, 708–709
reading a file using, 701–705
writing to a file using, 705–708

NIO.2, 689, 700, 712
Node class, 1107, 1111, 1115, 1119, 1126, 1128, 1160,

1165, 1166, 1170, 1172, 1173, 1187
Node(s), JavaFX, 1107, 1110, 1111, 1113, 1118, 1119

disabling, 1170
effects and transforms to alter the look of, using,

1164–1170
hierarchy, 1107
scrolling capabilities to, adding, 1157–1159
text, 1170
tree, 1160–1161, 1164

noneMatch(), 990
NORM_PRIORITY, 246, 482
NoSuchElementException, 506, 508, 510, 534, 562,

624, 630
NoSuchFieldException, 227

40-index.indd 1263 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1264 Index

NoSuchMethodException, 227, 282
NOT operator

bitwise unary (~), 66, 67, 68–69
Boolean logical unary (!), 75–76

NotDirectoryException, 714
notepad, 464, 467
notify(), 185, 186, 251, 253–255, 258–259, 471, 915,

944, 964
notifyAll(), 185, 186, 251, 471
notifyObservers(), 598–599
NotSerializableException, 687
now(), 1014–1015
null, 34, 123

alternative to using, 584
Null statement, 90
NullPointerException, 223, 226, 502, 504, 506, 508,

510, 521, 531, 534, 557, 570, 631, 665
using Optional to prevent a, 584, 586

nullsFirst(), 543
nullsLast(), 543
Number class, 273, 347, 442
NumberFormatException, 226, 273, 762
numberOfLeadingZeros(), 450, 452
numberOfTrailingZeros(), 451, 453
Numbers, formatting, 609–610, 612–618

O
Oak, 6
Object class, 185–186, 338, 340, 373, 471–473

as a data type, problems with using the, 342–344
Object class methods

and functional interfaces, 382
table of, 185, 471

Object reference variables
and abstract classes, 182, 184
and argument passing, 136, 137–138
assigning, 115
declaring, 113
and cloning, 471–472
and dynamic method dispatch, 178–181
to superclass reference variable, assigning

subclass, 166, 170
OBJECT tag, 320, 748, 761
Object-oriented programming (OOP), 5, 6, 17–23, 109

model in Java, 11
Object(s), 19, 109, 114

bitwise copy (clone) of, 471
creating/declaring, 111, 113–114
initialization with a constructor, 121, 123–124
to a method, passing, 137–138
monitor, implicit, 236, 249
as parameters, 134–136
returning, 138–139
serialization of. See Serialization
type at run time, determining, 322–324

Object.notify(). See notify()
Object.wait(). See wait()
ObjectInput interface, 685

methods defined by, table of, 685
ObjectInputStream class, 303, 685

methods defined by, table of, 686

ObjectOutput interface, 683, 684
methods defined by, table of, 683

ObjectOutputStream class, 303, 684
methods defined by, table of, 684

Objects class, 635
Observable class, 598–601

methods, table of, 598
observableArrayList(), 1146, 1149, 1151
ObservableList, 1113, 1114, 1146, 1149, 1150, 1151, 1173
ObservableValue, 1139
Observer interface, 598–601
Octals, 41

as character values, 43
of(), 521, 522, 584, 585, 990
offer(), 508, 520
offerFirst(), 509, 510, 515
offerLast(), 509, 510, 515
offsetByCodePoints(), 431, 438
ofLocalizedDate(), 1015
ofLocalizedDateTime(), 1015
ofLocalizedTime(), 1015
ofNullable(), 585, 586
ofPattern(), 1016–1017

pattern letters, 1016–1017
onAdvance(), 933–934, 936
open(), 693
openConnection(), 736, 738–739
OpenOption interface, 695
Operator(s)

arithmetic, 61–66
assignment. See Assignment operator(s)
bitwise, 66–74
Boolean logical, 75–77
conditional-and, 77
conditional-or, 77
diamond (<>), 372–373
parentheses and, 41, 79
precedence, table of, 78
relational, 28, 40, 41, 74–75
ternary if-then-else (?:), 75, 77–78

Optional class, 584–586, 971, 972, 973
methods, table of, 584–585

OptionalDouble class, 584, 586
OptionalInt class, 584,586
OptionalLong class, 584, 586
OR operator

bitwise (|), 66, 67, 68–69
bitwise exclusive (^), 66, 67, 68–69
Boolean logical (|), 75–76
Boolean logical exclusive (^), 75–76

OR operator, short-circuit (||) Boolean logical,
75, 76–77

Oracle, 14, 1212
Ordinal value, enumeration constant’s, 269
ordinal(), 269, 270, 492
orElse(), 585
out output stream, 26, 34, 304, 305, 308, 309, 464, 467,

620, 665, 666, 680
out(), 606, 608
OutputStream class, 302, 303, 308, 650, 651, 654, 659,

661, 665, 667, 679, 684, 711, 1220
methods, table of, 652

OutputStreamWriter class, 304

40-index.indd 1264 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1265

Overloading methods, 129–134, 158–160, 177, 375–376
@Override, built-in annotation, 290, 292
Overriding, method, 175–181

and abstract classes, 181–184
and bridge methods, 374–375
and dynamic method dispatch, 178–181
final to prevent, using, 184
in a generic class, 371–372
and run-time polymorphism, 178, 179, 181

P
Package(s), 142, 187–196, 212

access to classes contained in, 190–194, 195
built-in standard Java classes and, 194
core Java API, table of, 991–993
the default, 188, 194
defining, 188
finding, 188–189
importing, 194–196
Swing, 1024
version data, obtaining, 489

Package class, 286, 489–490
methods, table of, 489–490

package statement, 188, 194
Paint class, 1121
Paint mode, setting, 818–819
paint(), 319, 751–752, 753, 754, 755–756, 757, 759,

786, 805, 811, 887, 891, 895, 1033, 1036, 1037
lightweight AWT components and overriding,

882–883
Paintable area, computing, 1037
paintBorder(), 1036
paintChildren(), 1036
paintComponent(), 1036, 1037, 1040
Painting in Swing, 1036–1040
Panel class, 749, 799, 800, 801, 863
Panes, Swing container, 1025. See also Content pane
Parallel processing, 16, 381, 526, 528

of a stream API stream, 965, 968, 969, 975–977,
984, 986, 987, 989

Parallel programming. See Programming, parallel
parallel(), 966, 975
parallelPrefix(), 560
parallelSetAll(), 560
parallelSort(), 559
parallelStream(), 502, 504, 969, 975, 976
PARAM NAME and VALUE, 760, 761
Parameter(s), 25, 116, 119–121

applets and, 761–764
and constructors, 123–124
final, 147
and lambda expressions, 382–383, 385–387, 395
objects as, 134–136
and overloaded constructors, 134
and overloaded methods, 129, 177
and the scope of a method, 46
servlet, reading, 1220–1222
type. See Type parameter(s)
variable-length (varargs), 157, 521

Parameterized types, 338, 340
parameterModifiers(), 1005

Parent class, 1007, 1111, 1115
parse(), 1017–1018
parseBoolean(), 460
parseByte(), 448, 454
parseDouble(), 445
parseFloat(), 444
parseInt(), 451, 454
parseLong(), 453, 454
parseShort(), 449, 454
parseUnsignedInt(), 451
parseUnsignedLong(), 453
Parsing, definition of, 579
Pascal, 4
PasswordField class, 1156
Passwords, reading, 680
Path interface, 642, 645, 694–695, 700, 701, 712,

714, 720
converting a File object into an instance of the,

645, 695, 712
instance for stream-based I/O, using a, 709–711
methods, table of a sampling of, 694–695
obtaining an instance of the, 698, 700, 701, 702,

703–704, 707
Paths class, 698, 700
Pattern class, 993–994, 997, 1000, 1001
Pattern matching, regular expressions, 995–1001
PatternSyntaxException, 995
Payne, Jonathan, 6
peek(), 508, 567
peekFirst(), 509, 515
peekLast(), 509, 515
Peers, native, 883, 1021–1022
Period class, 1018
Persistence (Java Beans), 1203
Phaser class, 916, 917, 930–936

compatibility with fork/join, 963
PI (Math constant), 477
PIPE, 465
Pipeline for actions on stream API streams, 16, 381,

968, 980
PipedInputStream class, 303
PipedOutputStream class, 303
PipedReader class, 304
PipedWriter class, 304
PixelGrabber class, 897–899
Platform class, 1180
Platform.exit(), 1180
play(), 750, 767
Pluggable look and feel (PLAF), 1022–1023, 1024
PNG file format, 886, 887
Point class, 778, 779, 799
Pointers, 59, 113
poll(), 508, 520
pollFirst(), 507, 509, 515
Polling, 234, 251
pollLast(), 507, 509, 515
Polygon class, 799, 813
Polymorphism, 5, 18, 21–23

and dynamic method dispatch, 178–181, 182
and interfaces, 196, 199, 204
and overloaded methods, 129, 131, 132

pop(), 509, 510, 567

40-index.indd 1265 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1266 Index

PopupControl class, 1173, 1185
PopupMenu class, 799, 876
PopupMenuEvent, 1071
Port, 727–728, 735
Portability problem, 6–7, 8, 9, 10, 12, 16

and data types, 36
and native methods, 328
and thread context switching, 235

Pos enumeration, 1119
POSITIVE_INFINITY, 443
PosixFileAttributes class, 699, 714
PosixFileAttributeView interface, 699
postVisitDirectory(), 718
pow(), 331–333, 478
Predicate<T> predefined functional interface, 409, 503,

638, 972
preferredLayoutSize(), 856
previous(), 523, 863
preVisitDirectory(), 718
PrimitiveIterator interface, 499, 986
PrimitiveIterator.OfDouble interface, 499, 986
PrimitiveIterator.OfInt interface, 499, 986
PrimitiveIterator.OfLong interface, 499, 986
print(), 27, 34, 308, 309, 418, 666, 680, 1220
printf()

function, C/C++, 605, 666
method, Java, 155, 620, 666–667, 679, 680, 681

println(), 26, 27, 34, 186, 308, 309, 418–419, 608, 665,
666, 679, 680, 1220

and applets, 748, 767
and Boolean output, 41
and String objects, 59

printStackTrace(), 228
PrintStream class, 303, 305, 308, 620, 665–667
PrintWriter class, 304, 308–309, 620, 679–680, 1215
PriorityBlockingQueue class, 943
PriorityQueue class, 511, 519–520
private access modifier, 25, 142–144, 190–191

and inheritance, 163–164
Process class, 460–461, 464, 465

methods, table of, 461
Process, definition of, 233, 460
Process-based versus thread-based multitasking, 233
ProcessBuilder class, 460, 465–467

methods, table of, 465–466
ProcessBuilder.Redirect class, 465
ProcessBuilder.Redirect.Type enumeration, 465
Program, creating a windowed, 809–810
Programming

multithreaded. See Multithreaded programming
object-oriented. See Object-oriented programming
process-oriented, 17, 18, 22
structured, 4, 5

Programming, parallel, 15, 235, 916, 917, 947–948, 975
and specifying the level of parallelism, 950,

955–958, 963
Project Coin, 14
Properties class, 498–499, 561, 572–577

methods, table of, 573–574
Properties, environment, 470
Property, Java Bean, 1208

bound and constrained, 1203, 1206
design patterns for, 1200–1201, 1203

PropertyChangeEvent, 1203
PropertyChangeListener interface, 1203, 1204
PropertyDescriptor class, 1202, 1205, 1206, 1208
PropertyPermission class, 635
PropertyResourceBundle class, 633
PropertyVetoException, 1203
protected access modifier, 126, 142, 190–191
Protocols, overview of networking, 727–728
Pseudorandom numbers, 596
public access modifier, 25, 142–144, 190–191
Push buttons, AWT, 751, 836–840

action command string of, 836, 838, 839
Push buttons, JavaFX, 1115–1119

adding an image to, 1130–1133
Push buttons, Swing, 1030–1033, 1045–1047

action command string of, 1045
push(), 510, 567
Pushback, 662
PushbackInputStream, 303, 659, 662–663
PushbackReader class, 304, 678–679
put(), 531, 533, 537, 539, 541, 568, 569, 570

and buffers, 691, 692, 706–707, 724
putAll(), 533, 541
PutField inner class, 684
putValue(), 1090–1091, 1092

Q
Query string, 1228
Queue interface, 501, 508, 515, 519, 520

methods, table of, 508
quietlyInvoke(), 962
quietlyJoin(), 962

R
Race condition, 248–249
Radio buttons, 842

JavaFX, 1135–1138, 1139–1142
Swing, 1051–1053
and Swing menus, 1082–1083

RadioButton class, 1135, 1136, 1142
RadioMenuItem class, 1172, 1183
Radix, 447
radix(), 630
Random class, 205, 596–598

methods, table of core, 596
random(), 480
RandomAccess interface, 501, 530
RandomAccessFile class, 669–670, 692, 724
range(), 521, 522
Raw types, 362–364
READ, 465
read(), 93, 303, 304, 305–306, 310–311, 495, 651, 660,

662, 671, 678, 685, 686, 693, 701, 702, 703, 710, 721
Readable interface, 495, 620, 626, 670
ReadableByteChannel interface, 620
readAttributes(), 697, 699, 712–714
readBoolean(), 668, 686
readDouble(), 668, 686
Reader class, 303–304, 305, 650, 670, 672, 674, 688

methods defined by, table of, 671

40-index.indd 1266 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1267

readExternal(), 683
readInt(), 668, 686
readLine(), 306–308, 454, 680, 681, 751, 1220
readObject(), 685, 686
readPassword(), 680, 681
ReadWriteLock interface, 946
Real numbers, 38
rebind(), 1006
receive(), 743
Recursion, 139–141

and the Fork/Join Framework divide-and-conquer
strategy, 951–952

RecursiveAction class, 917, 948, 949–950, 951, 952,
954, 958

RecursiveTask class, 917, 948, 950, 951
example program using, 958–960

Redirect class, 465
reduce(), 968, 973–977, 978–979
Reduction operations, 973–975

mutable, 985
ReentrantLock, 944
ReentrantReadWriteLock, 946
Reflection, 281, 496, 991, 1001–1005

and annotations, 281–286
ReflectiveOperationException, 227
Region class, 1107, 1115
regionMatches(), 421–422
register(), 930
Regular expressions, 432, 621, 628, 991, 993–1001

syntax, 995
wildcards and quantifiers, 993, 995, 997–999

reinitialize(), 961
Relational operators, 28, 40, 41, 74–75
Relative index, 618–619
release(), 918–921
remainderUnsigned(), 451, 453
Remote interface, 1006
Remote method invocation (RMI), 12, 682, 991,

1005–1009
RemoteException, 1006
remove(), 502, 503, 505, 508, 516, 521, 522, 523, 533,

568, 569, 570, 834, 1029, 1071, 1072, 1114, 1166,
1173, 1174

removeActionListener(), 1032
removeAll(), 502, 503, 834
removeAttribute(), 1225, 1232
removeEldestEntry(), 541
removeElement(), 563, 564
removeElementAt(), 563, 564
removeFirst(), 510, 515
removeIf(), 502, 503
removeKeyListener(), 771
removeLast(), 510, 515
removeTListener(), 1202
removeTypeListener(), 771
renameTo(), 644
repaint(), 756–759, 803, 1037, 1119, 1208
@Repeatable annotation, 290, 297, 298
replace(), 427, 437, 533
replaceAll(), 431, 504, 505, 533, 995, 999–1000
replaceFirst(), 431
replaceRange(), 854

ReplicateScaleFilter class, 899
reset(), 630, 651, 652, 657, 660–661, 663, 671, 676, 691
resolve(), 694, 695
Resource bundles, 630–634
ResourceBundle class, 630–633

methods, table of, 631–632
ResourceBundle.Control class, 631
resume(), 13, 257, 482, 488
retainAll(), 503
@Retention built-in annotation, 281, 290
RetentionPolicy enumeration, 281, 496
return statement, 108, 116

in a lambda expression, 388–389
reverse(), 436, 451, 453, 553
reverseBytes(), 449, 451, 453
reversed(), 542, 545–546
reverseOrder()

collection algorithm, 553, 555–556
Comparator method, 543

rewind(), 691, 703, 706, 707, 721, 724
RGB (red-green-blue) color model, 816–817

default, 895
RGBImageFilter class, 899, 902

example program demonstrating the, 902–912
RGBtoHSB(), 816
Richards, Martin, 4
rint(), 479
Ritchie, Dennis, 4
rmi protocol, 1007
RMI (Remote Method Invocation), 12, 682, 991,

1005–1009
rmic compiler, 1008
rmiregistry (RMI registry), 1008, 1009
Rotate class, 1166–1167

program demonstrating, 1167–1170
rotateLeft(), 451, 453
rotateRight(), 451, 453
round(), 479
Run-time

system, Java, 9. See also Java Virtual Machine (JVM)
type information, 13, 322, 368–370, 376

run(), 236, 239, 240, 382, 481, 483, 602, 603, 962, 1030
overriding, 241, 242, 602
using a flag variable with, 257–259, 759

RUNNABLE, 260
Runnable interface, 236, 238, 382, 481, 602, 758–759,

915, 961, 962, 1030
implementing the, 239–240, 242

Runtime class, 460, 461–464, 958
executing other programs and, 464
memory management and, 462–464
methods, table of some, 461–462

RUNTIME retention policy, 281, 282, 285
RuntimeException class, 214–215, 223, 226, 230
RuntimePermission class, 490

S
@SafeVarargs built-in annotation, 290, 292
SAM (Single Abstract Method) type, 382
save(), 573
scalb(), 478

40-index.indd 1267 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1268 Index

Scale class, 1166, 1167
program demonstrating, 1167–1170

Scanner, 579
Scanner class, 620–630

closing an instance of the, 626
constructors, 620, 621
delimiters, 621, 628–629
demonstration programs, 624–628
hasNextX() methods, table of, 622
how to use, 620–621, 623–624
methods, miscellaneous, 629–630
nextX() methods, table of, 623

Scene class, 1106, 1107, 1110, 1111
schedule(), 602, 603
ScheduledExecutorService interface, 937
ScheduledThreadPoolExecutor class, 917, 939
Scientific notation, 42, 607, 609–610
Scopes in Java, 45–48
Scroll bars, 773, 782, 849–851, 1056, 1149–1150,

1157–1159, 1160
Scroll pane, 1056–1057, 1157–1159
Scrollbar class, 799, 849
ScrollPane class, 1157–1159
search(), 567
Security manager, 310, 467, 490, 660, 1212
Security problem, 8, 9–10, 16

and native methods, 328
and servlets, 1212

SecurityException, 226, 310, 461, 467, 649, 666,
714, 717

SecurityManager class, 490
seek(), 670
SeekableByteChannel interface, 693, 701, 704, 705
select(), 844, 847, 852, 854
selectedItemProperty(), 1147, 1149, 1160
selectedToggleProperty(), 1139
Selection statements, 81–89
SelectionMode, 1150
SelectionModel class, 1147
Selectors, 693
Semaphore, 915, 916, 918–923

and setting initial synchronization state, 923
Semaphore class, 916, 917, 918
send(), 743
Separable Model architecture, 1023
Separator class, 1142
SeparatorMenuItem class, 1172, 1174
Separators, 33
SequenceInputStream class, 303, 663–665
sequential(), 966, 977
Serializable interface, 682–683, 687, 962, 1203
Serialization, 682–688

example program, 686–688
and Java Beans, 1203
and static variables, 683
and transient variables, 683, 687

Server, 727
ServerSocket class, 692, 731, 741–742
service(), 1212, 1215, 1217, 1221, 1227
ServiceLoader class, 635
Servlet interface, 1216, 1217, 1220

methods, table of, 1217

Servlet(s), 10, 16, 1211–1233
advantages of, 1212
API, 1216
development options, 1212–1214
example program for a simple, 1214–1216
life cycle of, 1212
parameters, reading, 1220–1222
and portability, 10
and security, 1212
and session tracking, 1232–1233
using Tomcat to develop, 1212, 1213–1216

ServletConfig interface, 1216, 1218, 1220
ServletContext interface, 1216, 1218

methods, table of various, 1218
ServletException class, 1217, 1220
ServletInputStream class, 1217, 1220
ServletOutputStream class, 1217, 1220
ServletRequest interface, 1215, 1216, 1218, 1220

methods, table of various, 1219
ServletResponse interface, 1215, 1216, 1218

methods, table of various, 1219
Session tracking, HTTP, 1232–1233
Set interface, 501, 504, 506, 516, 521, 531, 536

from a stream API stream, obtaining a, 982–984
Set-view, obtaining, 538–539, 571–572
set(), 504, 505, 516, 523, 582, 589, 946
setAccelerator(), 1079, 1181
setActionCommand(), 839, 872, 1045, 1052
setAlignment(), 835, 1119
setAll(), 560
setAllowIndeterminate(), 1145
setAngle(), 1166–1167
setAttribute(), 1218, 1225, 1232
setBackground(), 754–755, 816
setBlockIncrement(), 849
setBorder(), 1040
setBounds(), 801, 856
setChanged(), 598–599
setCharAt(), 434
setColor(), 817
setConstraints(), 866
setContent(), 1157
setContentDisplay(), 1129–1130, 1132–1133, 1190
setContentType(), 1215, 1219
setContextMenu(), 1186
setDefault(), 593, 595
setDefaultCloseOperation(), 1028
setDisable(), 1170, 1175
setDisabledIcon(), 1045, 1081
setEchoChar(), 852
setEditable(), 852, 854, 1153–1154
setEffect(), 1165
setEnabled(), 871, 1073, 1091
setFill(), 1120–1121
setFont(), 822
setForeground(), 754–755, 816
setForkJoinTaskTag(), 962
setGraphic(), 1130, 1174, 1183
setHorizontalTextPosition(), 1081
setHvalue(), 1157–1158
setIcon(), 1042, 1080–1081
SetIntField(), 327

40-index.indd 1268 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1269

setJMenuBar(), 1072, 1074
setLabel(), 836, 840, 871
setLastModified(), 645
setLayout(), 856, 1029
setLength(), 433–434, 670, 744
setLevel(), 1165
setLocation(), 801
setMaxAge(), 1226, 1232
setMnemonic(), 1078
setMnemonicParsing(), 1181
setMultipleMode(), 882
setN() setter method design pattern, 1200, 1201
setName(), 237, 238, 484
setOnAction(), 1116, 1118, 1119, 1175
setOnContextMenuRequested(), 1187–1188
setOrientation(), 1189
setPaintMode(), 818
setPannable(), 1157
setPivotX(), 1166–1167
setPivotY(), 1166–1167
setPrefColumnCount(), 1154
setPreferredSize(), 801, 850
setPrefHeight(), 1147
setPrefSize(), 1147
setPrefViewportHeight(), 1157
setPrefViewportWidth(), 1157
setPrefWidth(), 1142, 1147
setPressedIcon(), 1045
setPriority(), 246, 484
setPromptText(), 1154
setReadOnly(), 645
setRolloverIcon(), 1045
setRotate(), 1166
setScaleX(), 1166
setScaleY(), 1166
setScene(), 1111
setSelected(), 1136, 1139, 1183
setSelectedCheckbox(), 842
setSelectedIcon(), 1045
setSelectionMode(), 1058, 1150
setSize(), 564, 801, 802, 803, 1028
setStackTrace(), 228
setState(), 840, 871
setStroke(), 1120–1121
setText(), 835, 852, 854, 1042, 1045, 1118, 1154, 1174
setTitle(), 802, 1110
setToggleGroup(), 1136
setTooltip(), 1170, 1189
setToolTipText(), 1081
setTranslateX(), 1166
setTranslateY(), 1166
setUnitIncrement(), 849
setValue(), 537, 849, 1090, 1091, 1226, 1152
setValues(), 849
setVvalue(), 1157–1158
setVisible(), 802, 803, 1029
setX(), 1167
setXORMode(), 818–819
setY, 1167
Shear class, 1166
Sheridan, Mike, 6
Shift operators, bitwise, 66, 69–73
Short class, 272, 273, 447, 454

methods defined by, table of, 449

short data type, 35, 36, 37, 41
and automatic type conversion, 48
and automatic type promotion, 50, 69

ShortBuffer class, 691
shortValue(), 273, 442, 444, 446, 448, 449, 451, 453
show(), 863, 1084, 1085, 1086, 1111, 1188
showDocument(), 764, 765–766
showStatus(), 750, 759, 766, 792, 793–794
shuffle(), 553, 555–556
shutdown(), 937, 939, 951, 963
shutdownNow(), 963
Sign extension, 72–73
signal(), 944
signum(), 451, 453, 480
SimpleBeanInfo class, 1203, 1208, 1209
SimpleDateFormat class, 596, 1011–1013, 1017

formatting string symbols, table of, 1012
SimpleFileVisitor class, 718, 719
SimpleTimeZone class, 594
sin(), 38, 477
SingleSelectionModel, 1053
sinh(), 477
SIZE, 443, 447
size(), 503, 516, 533, 564, 568, 569, 570, 582, 697, 698,

705, 1173, 1174
skip(), 630, 651, 652–654, 660, 671, 685
SKIP_SIBLINGS, 718
SKIP_SUBTREE, 718
sleep(), 236, 237–238, 243, 484, 943
slice(), 691
Slider box, 849
Socket class, 692, 731–734, 741, 742
Socket(s)

datagram, 742–743, 744–745
overview, 727
TCP/IP client, 731–734
TCP/IP server, 731, 741–742

SocketAddress class, 742–743
SocketChannel class, 692, 693
SocketException, 743
sort(), 504, 505, 554, 558–559
sorted(), 968, 972
SortedMap interface, 531, 534

methods, table of, 534
SortedSet interface, 501, 506

methods, table of, 506
Source code file, naming a, 23
SOURCE retention policy, 281
split(), 431, 432, 1000–1001
Spliterator, 499, 504, 526–529

and arrays, 559
characteristics, 528

Spliterator interface, 495, 499, 501, 523, 526–529
methods declared by, table of, 527
and streamAPI streams, 986, 987–989

spliterator(), 494–495, 503, 504, 559, 966
Spliterator.OfDouble interface, 529
Spliterator.OfInt interface, 529
Spliterator.OfLong interface, 529
Spliterator.OfPrimitive interface, 529
sqrt(), 38, 45, 331–333, 478
Stack

definition of, 21, 127
ways to implement a, 201

40-index.indd 1269 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1270 Index

Stack class, 498–499, 511, 561, 566–568
methods, table of, 567

Stack frame, 491
Stack trace, 215–216, 222, 491
StackTraceElement class, 228, 491

methods, table of, 491
Stage class, 1106, 1107, 1110, 1111
StampedLock interface, 946
StandardCopyOption values, partial list of, 709
StandardOpenOption class, 695, 710, 711

enumeration, table of values for the, 697
StandardOpenOption.CREATE, 697, 705, 711
StandardOpenOption.READ, 697, 708, 710
StandardOpenOption.TRUNCATE_EXISTING, 697, 711
StandardOpenOption.WRITE, 697, 705, 711
Standard Template Library (STL), 499
start(), 236, 239, 240, 241, 460, 466, 467, 484, 750, 751,

753, 755, 759, 803, 994, 997, 1033, 1035, 1107, 1108,
1110, 1111

startsWith(), 422, 695
State enumeration, 259
Statements, 26

null, 90
Statements, control, 28, 40

iteration, 81, 89–102
jump, 81, 102–108
selection, 81–89

static, 25, 145–146, 149, 325, 331, 332–333
member restrictions, 377

Static import, 14, 331–334
stop(), 13, 257, 482, 750, 751, 753, 756, 759, 767, 803,

1033, 1107, 1108, 1110, 1111, 1180
store(), 573, 576–577
Stream API, 16, 965–990

and collections, 577, 965
interfaces, 966–968
and lambda expressions, 965
and NIO, 695

Stream interface, 504, 559, 676, 695, 967–968, 989, 990
methods, table of some, 967–968

Stream, intermediate operations on a stream API, 968
to create a pipeline of actions, 968, 980
lazy behavior of, 968
stateless versus stateful, 968

Stream, stream API
collection from a, obtaining a, 982–985
definition of a, 965–966
iterators and a, 986–989
mapping a, 978–982
obtaining a, 969
operations on a, terminal versus

intermediate, 968
ordered versus unordered, 977
parallel processing of a, 965, 968, 969, 975–977,

984, 986, 987, 989
parallel, using a, 975–977, 989
reduction operations, 973–975

stream(), 503, 504, 559, 582, 969, 971, 976, 981
Stream(s), byte, 302–303, 305, 309, 650, 651–670

classes in java.io, table of, 303
Stream(s), character, 302, 303–304, 305, 309, 650,

670–680
classes in java.io, table of, 304

Stream(s), I/O
benefits, 688
buffered, 659–663, 676–678
classes, top-level, 650
closing, 649–650
concatenating input to, 663–665
definition of, 302, 641
filtered, 659, 688
flushing, 648
and NIO, 709–711
predefined, 304–305

strictfp, 324
StrictMath class, 481
String class, 25, 58–59, 152–154, 413, 493, 620, 761, 994

constructors, 414–416
methods, table of some, 431–432

String(s)
arrays of, 58, 154
changing case of characters in, 429–430, 456, 457
comparison, 153, 420–424
concatenating, 152–153, 417–418, 427, 435
constants, 58, 152
converting data into a, 418–419, 428–429
creating, 152, 414–416
extracting characters from, 419–420
formatted, creating a, 607–608
formatting a, 609, 614
immutability of, 152, 413, 426, 432
joining, 430–431
length, obtaining, 153, 416
literals, 43–44, 416
modifiable, creating and working with, 432–439
modifying, 426–428
numbers to and from, converting, 454–455
as objects, 44, 58–59, 152, 413
parsing a formatted input, 579
reading, 306–308
searching, 424–426

StringBuffer class, 152, 413, 415, 426, 432–439, 493
methods, table of some, 439

StringBufferInputStream deprecated class, 642
StringBuilder class, 152, 413, 415–416, 426, 439,

493, 606
and synchronization, 439

StringIndexOutOfBounds exception, 226
StringJoiner class, 635
StringReader class, 304
StringTokenizer class, 579–580, 832

methods, table of, 580
stringWidth(), 826
StringWriter class, 304
strokeLine(), 1120
strokeOval(), 1120
strokeRect(), 1120
strokeText(), 1120
Stroustrup, Bjarne, 6
Stubs (RMI), 1007–1008
Subclass, 20, 161–164, 179
subList(), 504, 505
subMap(), 534, 536
submit(), 940
subSequence(), 432, 438, 493
subSet(), 506, 507, 519

40-index.indd 1270 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1271

substring(), 426–427, 437
subtractExact(), 480
sum(), 444, 446, 451, 453
Sun Microsystems, 6, 14
super, 145, 167

and bounded wildcard arguments, 356
and interface default methods, 211
and method references, 401
and methods or instance variables, 170–171, 176

super(), 336
and superclass constructors, 167–170, 174

Superclass, 20, 161–164, 179, 187
abstract, 181–184

Supplemental character, definition of, 458
Supplier<T> predefined functional interface, 409,

638, 985
@SuppressWarnings built-in annotation, 290, 292
suspend(), 13, 257, 482, 488
Swing, 13, 16, 301, 319, 747, 797, 833, 1021–1068, 1105

applet, example of a simple, 1033–1035
application, example of a simple, 1026–1030
and the AWT, 797, 1021–1022
component classes, list of, 1024–1025
components. See Components, Swing
event handling, 1030–1033
history of, 1021–1022
and JavaFX, 1106, 1119
menus. See Menu(s), Swing
and MVC architecture, 1023
packages, list of, 1026
and painting, 1033, 1036–1040
threading issues, 1029–1030, 1033

Swing: A Beginner’s Guide (Schildt), 1021
SwingConstants interface, 1042
SwingUtilities class, 1030
switch statement, 84–89

and auto-unboxing, 277
nested, 88
using enumeration constants to control a, 84,

264–265
using a String to control a, 15, 84–85, 87–88
versus the if statement, 88–89

Synchronization, 12, 235–236, 247–250
and atomic operations, 946–947
and collections, 510, 550
and deadlock, 255–257
and interprocess communication, 251–257
objects, using, 917–936
race condition and, 248–249
and StringBuilder class, 439
via synchronized block, 249–250, 550
via synchronized method, 236, 247–249
versus concurrency utilities, traditional, 915, 964

synchronized modifier, 247, 915, 943, 964
used with a method, 247–249
used with an object, 249–250

synchronizedList(), 550, 554
synchronizedSet(), 550, 554
Synchronizers, 915, 916–917
SynchronousQueue class, 943
System class, 26, 34, 304, 467–470

methods, table of, 467–468
System.console(), 467, 680

System.err standard error stream, 304, 305, 467
System.exit(), 1078, 1180
System.getProperties(), 468, 572
System.getProperty(), 468, 470
System.in standard input stream, 304, 305, 464, 467,

620, 680
System.in.read(), 93
System.nanoTime(), 468, 469, 955
System.out standard output stream, 26, 34, 304, 305,

308, 309, 464, 467, 620, 665, 666, 680
and static import, 333, 334

System.out.println() and applets, 748, 767

T
Tabbed panes, 1053–1055
Table, Swing, 1066–1068
TableColumnModel, 1067
TableModel, 1067
TableModelEvent class, 1067
tailMap(), 534, 536
tailSet(), 506, 507
tan(), 477
tanh(), 477
@Target built-in annotation, 290, 291
TCP/IP, 12, 728

client sockets, 731–734
disadvantages of, 742
server sockets, 731, 741–742
See also Transmission Control Protocol (TCP)

TERMINATE, 718
TERMINATED, 260
Ternary if-then-else operator (?:), 75, 77–78
test(), 638, 972
Text area, 780, 854–855
Text class, 1170
Text components as an event source, 782
Text fields, 780

AWT, 852–854
Swing, 1043–1044

Text formatting using java.text classes, 991, 1009–1013
Text output using font metrics, managing, 825–832
TextArea class

AWT, 800, 854–855
JavaFX, 1156

TextComponent class, 800, 852, 854
TextEvent class, 772, 780, 854
TextField class

AWT, 800, 852
JavaFX, 1154–1156

TexInputControl, 1154
TextListener interface, 782, 784
textValueChanged(), 784
thenComparing(), 543–544, 548–550
thenComparingDouble(), 544
thenComparingInt(), 544
thenComparingLong(), 544
this, 124–125, 145

and lambda expressions, 395
and type annotations, 292, 293, 296

this(), 334–336
Thompson, Ken, 4

40-index.indd 1271 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1272 Index

Thread class, 13, 236, 237, 481, 482–484, 602, 759, 915
constructors, 239, 242, 482
extending, 241–242
methods, table of, 482–484

Thread(s)
creating, 238–243
daemon, 602, 951, 961
and deadlock, 255–257, 482, 1030
definition of, 233
executors to manage, using, 917, 937–942
group, 238, 484–488
JavaFX, 1112
local variables, 488
main, 236–238, 240, 242, 243, 244
messaging, 236, 251–255
pool, 937–939, 949, 950, 951, 954–955, 958, 963
priorities, 235, 246, 482
resuming, 257–261, 486–488
and spurious wakeup, 251
states of, possible, 235, 259–261
stopping, 257
suspending, 236, 237–238, 257–261, 486–488
and Swing, event dispatching, 1029–1030, 1033,

1034, 1035
synchronization. See Synchronization

Thread.UncaughtExceptionHandler interface, 495
ThreadGroup class, 481, 484–488, 495

methods, table of, 484–485
ThreadLocal class, 488
ThreadPoolExecutor class, 917, 937
throw, 213, 222–223, 232
Throwable class, 214–215, 218, 222, 223, 227, 230, 318,

379, 490, 491
methods defined by, table of, 228
obtaining an object of the, 222–223

throws, 213, 223–224, 226
Thumb, 849
time, 588
Time and date

formatting, 610–612, 1009–1013, 1015–1017
java.util classes that deal with, 586–596
strings, parsing, 1017–1018

Time and Date API, 1009, 1013–1018
packages, list of, 1013

timedJoin(), 943
timedWait(), 943
TIMED_WAITING, 260
Timer class, 602–604

methods, table of, 603
TimerTask class, 602–604

methods, table of, 602
Timestamp, event, 773
TimeUnit enumeration, 917, 923–924, 940, 942–943
TimeZone class, 593, 594

methods defined by, table of some, 593
to(), 465
toAbsolutePath(), 695, 712
toArray(), 504–504, 513–514, 968
toBinaryString(), 451, 453, 455
toCharArray(), 420
toDays(), 943
toDegrees(), 480, 481

ToDoubleFunction functional interface, 636, 981
toFile(), 695
Toggle button, JavaFX, 1133–1135

adding an image to a, 1133
Toggle button, Swing, 1047–1049
Toggle interface, 1133, 1135, 1142
Toggle group, 1136, 1138

handling change events in a, 1138–1139
and RadioMenuItems, 1183

ToggleButton class, 1133–1135
ToggleGroup class, 1136, 1138, 1142
toHexString(), 444, 446, 451, 453, 455
toHours(), 943
toIntExact(), 480
Tokens, 579, 620–621, 628
toLanguageTag(), 595
toList(), 982, 984
toLocalDate(), 1015
toLocalTime(), 1015
toLowerCase(), 429–430, 457, 458
Tomcat, 1212, 1213–1216
toMicros(), 942
toMillis(), 942
toMinutes(), 943
toNanos(), 943
toOctalString(), 451, 453, 455
Toolbar class, 1173, 1189
Toolbars, 1069, 1070, 1087–1089, 1171, 1173,

1189–1190
Tooltip class, 1170
Tooltips, 1081, 1087, 1088–1089, 1170, 1189–1190
TooManyListenersException, 1202
toPath(), 645, 695, 712
toRadians(), 480, 481
toSeconds(), 943
toSet(), 982
toString(), 185, 186, 218, 227, 228, 230, 273, 280, 286,

309, 418–419, 429, 444, 446, 448, 449, 451, 453, 454,
460, 471, 475, 484, 485, 490, 491, 492, 493, 513, 560,
564, 570, 582, 583, 585, 587, 604, 606, 608, 666, 680,
694, 695, 731, 772, 820, 826, 963, 1064

totalMemory(), 462–463
toUnsignedInt(), 448, 449
toUnsignedLong(), 448, 449, 451
toUnsignedString(), 451, 453
toUpperCase(), 429–430, 457
toZonedDateTime(), 592
transient modifier, 322, 1203
Transform class, 1166
Transforms, 1166–1167

program demonstrating, 1167–1170
Translate class, 1166
translatePoint(), 779
Transmission Control Protocol (TCP)

definition of, 727
and stream-based I/O, 728
See also TCP/IP

TreeExpansionEvent class, 1063
TreeExpansionListener interface, 1063
TreeItem class, 1160, 1161, 1164
TreeMap class, 537 539–540, 542, 577

example using a comparator, 549–550

40-index.indd 1272 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

 Index 1273

TreeModel, 1063
TreeModelEvent class, 1063
TreeModelListener interface, 1063
TreeNode interface, 1064
TreePath class, 1064
Trees

JavaFX, 1160–1164
Swing, 1063–1066

TreeSelectionEvent class, 1063
TreeSelectionListener interface, 1063, 1064
TreeSelectionModel, 1063
TreeSet class, 511, 517, 518–519, 542, 577
TreeView class, 1160–1163
trim(), 428
trimToSize(), 438, 513, 564
true, 34, 40, 41, 43, 75, 76
TRUE, 458
True and false in Java, 43, 75
Truncation, 49
try block(s), 213, 214, 216–222, 224–225, 232

nested, 220–222
try-with-resources statement, 15, 214, 231, 310, 315–318,

495, 619, 626, 648, 649–650, 656, 692, 694, 701, 714,
720, 732, 734, 743, 966

advantages to using, 650
tryAdvance(), 526, 527–528, 987
tryLock(), 917, 944
trySplit(), 988–989
tryUnfork(), 962
Two’s complement, 66–67
TYPE, 443, 447, 455, 458, 460
Type argument(s), 340, 342, 346

and bounded types, 347–349
and generic class hierarchies, 364
and type inference, 358, 372–373

Type conversion
automatic, 35, 48, 130–131
narrowing, 48
widening, 48

Type enumeration, 465
Type interface, 496
Type parameter(s)

and bounded types, 346–349, 361–362
cannot create an instance of a, 377
and class hierarchies, 365–368
and erasure, 341, 373
and primitive types, 342
and static members, 377
and type safety, 342
used with a class, 340, 345–346, 347
used with a method, 340, 356–359

Type safety
and collections, 500, 550
and generic methods, 359
and generics, 337, 338, 341, 342–344, 500
and raw types, 362–364
and wildcard arguments, 349–352, 353

type(), 465
Type(s), 27

annotations, 16, 292–297
bounded, 347–349
casting, 48–49, 50

checking, 10, 11, 35, 341, 342–344, 363, 379
class as a data, 109, 110, 113, 114, 116, 126
inference, 358, 372–373, 383, 386, 395
non-reifiable, 292
parameterized, 338, 340
promotion, 37, 50–51, 69–70
raw, 362–364
simple, 35

TypeNotPresentException, 226
Types, primitive (simple), 35–36, 114, 136, 272, 342

autoboxing/unboxing and, 274–277, 279, 500,
514

and collections, 500, 514
iterators for, 499
to a string representation, converting, 417, 418,

428–429
to or from a sequence of bytes, converting, 667–

669
wrappers for, 272–274, 279, 342, 442–460

Typesafe view of a collection, obtaining a dynamically,
550

U
UDP protocol, 727, 728, 742
UI delegate, 1023, 1024
ulp(), 478, 479
UnaryOperator functional interface, 504, 639
UnavailableException, 1217, 1220
Unboxing, 274
uncaughtException(), 495
UncaughtExceptionHandler interface, 495
Unchecked warnings and raw types, 364
UnicastRemoteObject, 1006
Unicode, 39, 40, 43, 302, 303, 415, 416, 420, 458, 670

code points, table of some Character methods
providing support for, 459

support for 32–bit, 458
Unicode Technical Standard (UTS) 35, 595
Uniform Resource Identifier (URI), 741
Uniform Resource Locator (URL). See URL (Uniform

Resource Locator)
UNIX, 4, 727
UnknownHostException, 729, 730
unlock(), 917, 944
unmodifiable... collections methods, 554–555
unordered(), 966, 977
Unreachable code, 108, 219
unread(), 662, 678
UnsupportedOperationException, 226, 501, 502, 504,

521, 531, 550, 699
update(), 598, 599, 754, 756, 757, 811, 832

overriding, 754
URI (Uniform Resource Identifier), 741
URI class, 741
URL (Uniform Resource Locator), 735, 741, 760, 1211

specification format, 735
URL class, 735–736, 738, 739, 766

methods, list of some, 737
URLConnection class, 736–739, 741
useDelimiter(), 628–629
User Datagram Protocol (UDP), 727, 728, 742

40-index.indd 1273 19/02/14 10:38 AM

CompRef_2010 / Java The Complete Reference, Ninth Edition /Schildt / 007180 855-8

1274 Index

useRadix(), 630
UTS 35, 595
UUID class, 635

V
value (annotation member name), 289, 290
valueChanged(), 1058, 1059, 1063, 1064
valueOf(), 266–267, 418, 428–429, 444, 446, 448, 449,

451, 453, 460, 492, 582
values(), 266–267, 531, 533
van Hoff, Arthur, 6
Varargs, 14, 155–160

and ambiguity, 159–160
methods, overloading, 158–159
and Java’s printf(), 155
parameter, 157, 521

Variable(s), 44–48
capture, 395–396
declaration, 27, 29, 44–45, 46–48
definition of, 26, 44
dynamic initialization of, 45
effectively final, 395–396
enumeration, 264
final, 147, 263
instance. See Instance variables
interface, 197, 204–206
interface reference, 198–199, 204
object reference. See Object reference variables
scope and lifetime of, 45–48

Vector class, 498–499, 511, 530, 561, 562–566
legacy methods, table of, 563–564

VetoableChangeListener interface, 1203, 1204
Viewport, scroll pane, 1056, 1157
visitFile(), 718, 719
void, 25, 116
Void class, 460
volatile modifier, 322
VSPACE, 760, 761

W
wait(), 185, 186, 251, 253–255, 258–259, 471, 915, 943,

944, 964
waitFor(), 461, 464
WAITING, 260
WALL_TIME, 594
walk(), 695
walkFileTree(), 717–718
Warth, Chris, 6
Watchable interface, 694
WeakHashMap class, 537
Web browser, 767

executing applet in, 320, 321, 747–748, 751, 753,
759, 760, 761, 766, 801

using status window of, 759
Web server and servlets, 1211, 1212
WebView class, 1196
weightx constraint field, 867, 868
weighty constraint field, 867, 868
while loop, 89–90

Whitespace, 32, 82
from a string, removing, 428

whois, 728, 732–734, 735
WIDTH, 760, 761
Wildcard arguments, 349–356, 370

bounded, 352–356
used in creating an array, 379

Window, AWT-based
displaying information within an, 811
as an event source, 780–781, 782
frame. See Frame window
fundamentals, 800–801
and graphics, 811
status, using, 759–760

Window class, 781, 800, 801, 876
Window, Swing JFrame, 1028
windowActivated(), 785
WindowAdapter class, 792
windowClosed(), 785
windowClosing(), 785, 803
WindowConstants interface, 1028
windowDeactivated(), 785
windowDeiconified(), 785
WindowEvent class, 772, 774, 780–781
WindowFocusListener interface, 782, 785, 792
windowGainedFocus(), 785
windowIconified(), 785
WindowListener interface, 782, 785, 792, 803
windowLostFocus(), 785
windowOpened(), 785
WindowStateListener interface, 792
Work stealing, 951, 962
World Wide Web (WWW), 6, 7, 11, 735
wrap(), 691
Wrappers, primitive type, 272–274, 279, 342, 442–460
WRITE, 465
write(), 303, 304, 308, 314–315, 652, 672, 683, 684, 693,

706, 707, 711, 723, 724
writeBoolean(), 668, 684
writeDouble(), 668, 684
Writer class, 303–304, 650, 670, 673, 688

methods defined by, table of, 671–672
writeExternal(), 683
writeInt(), 668, 684
writeObject(), 683, 686
writeTo(), 659

X
XOR (exclusive OR) operator (^)

bitwise, 66, 67,68–69
Boolean logical, 75–76

Y
Yellin, Frank, 6

Z
Zero crossing, 67
ZIP file format, 639

40-index.indd 1274 19/02/14 10:38 AM

40-index.indd 1275 19/02/14 10:38 AM

START TODAY

cert i f ication.oracle.com

Your Future.
Fast-track your career with an Oracle Certification.

Over 1.5 million
certifications testify to

the importance of these
top industry-recognized
credentials as one of the
best ways to get ahead.

Our Technology.

AND STAY THERE.

40-index.indd 1276 19/02/14 10:38 AM

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 123022

You Need an Oracle ACE
Oracle partners, developers, and customers look to
Oracle ACEs and Oracle ACE Directors for focused
product expertise, systems and solutions discussion,
and informed opinions on a wide range of data center
implementations.

Their credentials are strong as Oracle product and
technology experts, community enthusiasts, and
solutions advocates.

And now is a great time to learn more about this
elite group—or nominate a worthy colleague.

For more information about the
Oracle ACE program, go to:
oracle.com/technetwork/oracleace

Need help? Need consultation?
Need an informed opinion?

Stay Connected

oracle.com/technetwork/oracleace

 oracleaces

 @oracleace

 blogs.oracle.com/oracleace B

40-index.indd 1277 19/02/14 10:38 AM

Reach More than 700,000 Oracle Customers
with Oracle Publishing Group

Connect with the Audience
that Matters Most to Your Business

Oracle Magazine
The Largest IT Publication in the World
Circulation: 550,000
Audience: IT Managers, DBAs, Programmers, and Developers

Profit
Business Insight for Enterprise-Class Business Leaders to
Help Them Build a Better Business Using Oracle Technology
Circulation: 100,000
Audience: Top Executives and Line of Business Managers

Java Magazine
The Essential Source on Java Technology, the Java
Programming Language, and Java-Based Applications
Circulation: 125,000 and Growing Steady
Audience: Corporate and Independent Java Developers,
Programmers, and Architects

For more information
or to sign up for a FREE
subscription:
Scan the QR code to visit
Oracle Publishing online.

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. 113940

40-index.indd 1278 19/02/14 10:38 AM

	Cover
	About the Author
	About the Technical Editor

	Title Page
	Copyright Page
	Contents at a Glance
	Contents
	Preface
	A Book for All Programmers
	What’s Inside
	Don’t Forget: Code on the Web
	Special Thanks
	For Further Study

	Part I: The Java Language
	Chapter 1: The History and Evolution of Java
	Java’s Lineage
	The Birth of Modern Programming: C
	C++: The Next Step
	The Stage Is Set for Java

	The Creation of Java
	The C# Connection

	How Java Changed the Internet
	Java Applets
	Security
	Portability

	Java’s Magic: The Bytecode
	Servlets: Java on the Server Side
	The Java Buzzwords
	Simple
	Object-Oriented
	Robust
	Multithreaded
	Architecture-Neutral
	Interpreted and High Performance
	Distributed
	Dynamic

	The Evolution of Java
	Java SE 8
	A Culture of Innovation

	Chapter 2: An Overview of Java
	Object-Oriented Programming
	Two Paradigms
	Abstraction
	The Three OOP Principles

	A First Simple Program
	Entering the Program
	Compiling the Program
	A Closer Look at the First Sample Program

	A Second Short Program
	Two Control Statements
	The if Statement
	The for Loop

	Using Blocks of Code
	Lexical Issues
	Whitespace
	Identifiers
	Comments
	Separators
	The Java Keywords

	The Java Class Libraries

	Chapter 3: Data Types, Variables, and Arrays
	Java Is a Strongly Typed Language
	Booleans

	The Primitive Types
	Integers
	byte
	short
	int
	long

	Floating-Point Types
	float
	double

	Characters
	A Closer Look at Literals
	Integer Literals
	Floating-Point Literals
	Boolean Literals
	Character Literals
	String Literals

	Variables
	Declaring a Variable
	Dynamic Initialization
	The Scope and Lifetime of Variables

	Type Conversion and Casting
	Java’s Automatic Conversions
	Casting Incompatible Types

	Automatic Type Promotion in Expressions
	The Type Promotion Rules

	Arrays
	One-Dimensional Arrays
	Multidimensional Arrays
	Alternative Array Declaration Syntax

	A Few Words About Strings
	A Note to C/C++ Programmers About Pointers

	Chapter 4: Operators
	Arithmetic Operators
	The Basic Arithmetic Operators
	The Modulus Operator
	Arithmetic Compound Assignment Operators
	Increment and Decrement

	The Bitwise Operators
	The Bitwise Logical Operators
	The Left Shift
	The Right Shift
	The Unsigned Right Shift
	Bitwise Operator Compound Assignments

	Relational Operators
	Boolean Logical Operators
	Short-Circuit Logical Operators

	The Assignment Operator
	The ? Operator
	Operator Precedence
	Using Parentheses

	Chapter 5: Control Statements
	Java’s Selection Statements
	if
	switch

	Iteration Statements
	while
	do-while
	for
	The For-Each Version of the for Loop
	Nested Loops

	Jump Statements
	Using break
	Using continue

	Chapter 6: Introducing Classes
	Class Fundamentals
	The General Form of a Class
	A Simple Class

	Declaring Objects
	A Closer Look at new

	Assigning Object Reference Variables
	Introducing Methods
	Adding a Method to the Box Class
	Returning a Value
	Adding a Method That Takes Parameters

	Constructors
	Parameterized Constructors

	The this Keyword
	Instance Variable Hiding

	Garbage Collection
	The finalize() Method
	A Stack Class

	Chapter 7: A Closer Look at Methods and Classes
	Overloading Methods
	Overloading Constructors

	Using Objects as Parameters
	A Closer Look at Argument Passing
	Returning Objects
	Recursion
	Introducing Access Control
	Understanding static
	Introducing final
	Arrays Revisited
	Introducing Nested and Inner Classes
	Exploring the String Class
	Using Command-Line Arguments
	Varargs: Variable-Length Arguments
	Overloading Vararg Methods
	Varargs and Ambiguity

	Chapter 8: Inheritance
	Inheritance Basics
	Member Access and Inheritance
	A More Practical Example
	A Superclass Variable Can Reference a Subclass Object

	Using super
	Using super to Call Superclass Constructors
	A Second Use for super

	Creating a Multilevel Hierarchy
	When Constructors Are Executed
	Method Overriding
	Dynamic Method Dispatch
	Why Overridden Methods?
	Applying Method Overriding

	Using Abstract Classes
	Using final with Inheritance
	Using final to Prevent Overriding
	Using final to Prevent Inheritance

	The Object Class

	Chapter 9: Packages and Interfaces
	Packages
	Defining a Package
	Finding Packages and CLASSPATH
	A Short Package Example

	Access Protection
	An Access Example

	Importing Packages
	Interfaces
	Defining an Interface
	Implementing Interfaces
	Nested Interfaces
	Applying Interfaces
	Variables in Interfaces
	Interfaces Can Be Extended

	Default Interface Methods
	Default Method Fundamentals
	A More Practical Example
	Multiple Inheritance Issues

	Use static Methods in an Interface
	Final Thoughts on Packages and Interfaces

	Chapter 10: Exception Handling
	Exception-Handling Fundamentals
	Exception Types
	Uncaught Exceptions
	Using try and catch
	Displaying a Description of an Exception

	Multiple catch Clauses
	Nested try Statements
	throw
	throws
	finally
	Java’s Built-in Exceptions
	Creating Your Own Exception Subclasses
	Chained Exceptions
	Three Recently Added Exception Features
	Using Exceptions

	Chapter 11: Multithreaded Programming
	The Java Thread Model
	Thread Priorities
	Synchronization
	Messaging
	The Thread Class and the Runnable Interface

	The Main Thread
	Creating a Thread
	Implementing Runnable
	Extending Thread
	Choosing an Approach

	Creating Multiple Threads
	Using isAlive() and join()
	Thread Priorities
	Synchronization
	Using Synchronized Methods
	The synchronized Statement

	Interthread Communication
	Deadlock

	Suspending, Resuming, and Stopping Threads
	Obtaining A Thread’s State
	Using Multithreading

	Chapter 12: Enumerations, Autoboxing, and Annotations (Metadata)
	Enumerations
	Enumeration Fundamentals
	The values() and valueOf() Methods
	Java Enumerations Are Class Types
	Enumerations Inherit Enum
	Another Enumeration Example

	Type Wrappers
	Character
	Boolean
	The Numeric Type Wrappers

	Autoboxing
	Autoboxing and Methods
	Autoboxing/Unboxing Occurs in Expressions
	Autoboxing/Unboxing Boolean and Character Values
	Autoboxing/Unboxing Helps Prevent Errors
	A Word of Warning

	Annotations (Metadata)
	Annotation Basics
	Specifying a Retention Policy
	Obtaining Annotations at Run Time by Use of Reflection
	The AnnotatedElement Interface
	Using Default Values
	Marker Annotations
	Single-Member Annotations
	The Built-In Annotations

	Type Annotations
	Repeating Annotations
	Some Restrictions

	Chapter 13: I/O, Applets, and Other Topics
	I/O Basics
	Streams
	Byte Streams and Character Streams
	The Predefined Streams

	Reading Console Input
	Reading Characters
	Reading Strings

	Writing Console Output
	The PrintWriter Class
	Reading and Writing Files
	Automatically Closing a File
	Applet Fundamentals
	The transient and volatile Modifiers
	Using instanceof
	Strictfp
	Native Methods
	Problems with Native Methods
	Using assert
	Assertion Enabling and Disabling Options

	Static Import
	Invoking Overloaded Constructors Through this()
	Compact API Profiles

	Chapter 14: Generics
	What Are Generics?
	A Simple Generics Example
	Generics Work Only with Reference Types
	Generic Types Differ Based on Their Type Arguments
	How Generics Improve Type Safety

	A Generic Class with Two Type Parameters
	The General Form of a Generic Class
	Bounded Types
	Using Wildcard Arguments
	Bounded Wildcards

	Creating a Generic Method
	Generic Constructors

	Generic Interfaces
	Raw Types and Legacy Code
	Generic Class Hierarchies
	Using a Generic Superclass
	A Generic Subclass
	Run-Time Type Comparisons Within a Generic Hierarchy
	Casting
	Overriding Methods in a Generic Class

	Type Inference with Generics
	Erasure
	Bridge Methods

	Ambiguity Errors
	Some Generic Restrictions
	Type Parameters Can’t Be Instantiated
	Restrictions on Static Members
	Generic Array Restrictions
	Generic Exception Restriction

	Untitled
	Chapter 15: Lambda Expressions
	Introducing Lambda Expressions
	Lambda Expression Fundamentals
	Functional Interfaces
	Some Lambda Expression Examples

	Block Lambda Expressions
	Generic Functional Interfaces
	Passing Lambda Expressions as Arguments
	Lambda Expressions and Exceptions
	Lambda Expressions and Variable Capture
	Method References
	Method References to static Methods
	Method References to Instance Methods
	Method References with Generics

	Constructor References
	Predefined Functional Interfaces

	Bookmark_Wildcard
	Part II: The Java Library
	Chapter 16: String Handling
	The String Constructors
	String Length
	Special String Operations
	String Literals
	String Concatenation
	String Concatenation with Other Data Types
	String Conversion and toString()

	Character Extraction
	charAt()
	getChars()
	getBytes()
	toCharArray()

	String Comparison
	equals() and equalsIgnoreCase()
	regionMatches()
	startsWith() and endsWith()
	equals() Versus ==
	compareTo()

	Searching Strings
	Modifying a String
	substring()
	concat()
	replace()
	trim()

	Data Conversion Using valueOf()
	Changing the Case of Characters Within a String
	Joining Strings
	Additional String Methods
	StringBuffer
	StringBuffer Constructors
	length() and capacity()
	ensureCapacity()
	setLength()
	charAt() and setCharAt()
	getChars()
	append()
	insert()
	reverse()
	delete() and deleteCharAt()
	replace()
	substring()
	Additional StringBuffer Methods

	StringBuilder

	Chapter 17: Exploring java.lang
	Primitive Type Wrappers
	Number
	Double and Float
	Understanding isInfinite() and isNaN()
	Byte, Short, Integer, and Long
	Character
	Additions to Character for Unicode Code Point Support
	Boolean

	Void
	Process
	Runtime
	Memory Management
	Executing Other Programs

	ProcessBuilder
	System
	Using currentTimeMillis() to Time Program Execution
	Using arraycopy()
	Environment Properties

	Object
	Using clone() and the Cloneable Interface
	Class
	ClassLoader
	Math
	Trigonometric Functions
	Exponential Functions
	Rounding Functions
	Miscellaneous Math Methods

	StrictMath
	Compiler
	Thread, ThreadGroup, and Runnable
	The Runnable Interface
	Thread
	ThreadGroup

	ThreadLocal and InheritableThreadLocal
	Package
	RuntimePermission
	Throwable
	SecurityManager
	StackTraceElement
	Enum
	ClassValue
	The CharSequence Interface
	The Comparable Interface
	The Appendable Interface
	The Iterable Interface
	The Readable Interface
	The AutoCloseable Interface
	The Thread.UncaughtExceptionHandler Interface
	The java.lang Subpackages
	java.lang.annotation
	java.lang.instrument
	java.lang.invoke
	java.lang.management
	java.lang.ref
	java.lang.reflect

	Chapter 18: java.util Part 1: The Collections Framework
	Collections Overview
	JDK 5 Changed the Collections Framework
	Generics Fundamentally Changed the Collections Framework
	Autoboxing Facilitates the Use of Primitive Types
	The For-Each Style for Loop

	The Collection Interfaces
	The Collection Interface
	The List Interface
	The Set Interface
	The SortedSet Interface
	The NavigableSet Interface
	The Queue Interface
	The Deque Interface

	The Collection Classes
	The ArrayList Class
	The LinkedList Class
	The HashSet Class
	The LinkedHashSet Class
	The TreeSet Class
	The PriorityQueue Class
	The ArrayDeque Class
	The EnumSet Class

	Accessing a Collection via an Iterator
	Using an Iterator
	The For-Each Alternative to Iterators

	Spliterators
	Storing User-Defined Classes in Collections
	The RandomAccess Interface
	Working with Maps
	The Map Interfaces
	The Map Classes

	Comparators
	Using a Comparator

	The Collection Algorithms
	Arrays
	The Legacy Classes and Interfaces
	The Enumeration Interface
	Vector
	Stack
	Dictionary
	Hashtable
	Properties
	Using store() and load()

	Parting Thoughts on Collections

	Chapter 19: java.util Part 2: More Utility Classes
	StringTokenizer
	BitSet
	Optional, OptionalDouble, OptionalInt, and OptionalLong
	Date
	Calendar
	GregorianCalendar
	TimeZone
	SimpleTimeZone
	Locale
	Random
	Observable
	The Observer Interface
	An Observer Example

	Timer and TimerTask
	Currency
	Formatter
	The Formatter Constructors
	The Formatter Methods
	Formatting Basics
	Formatting Strings and Characters
	Formatting Numbers
	Formatting Time and Date
	The %n and %% Specifiers
	Specifying a Minimum Field Width
	Specifying Precision
	Using the Format Flags
	Justifying Output
	The Space, +, 0, and (Flags
	The Comma Flag
	The # Flag
	The Uppercase Option
	Using an Argument Index
	Closing a Formatter
	The Java printf() Connection

	Scanner
	The Scanner Constructors
	Scanning Basics
	Some Scanner Examples
	Setting Delimiters
	Other Scanner Features

	The ResourceBundle, ListResourceBundle, and PropertyResourceBundle Classes
	Miscellaneous Utility Classes and Interfaces
	The java.util Subpackages
	java.util.concurrent, java.util.concurrent.atomic, and java.util.concurrent.locks
	java.util.function
	java.util.jar
	java.util.logging
	java.util.prefs
	java.util.regex
	java.util.spi
	java.util.stream
	java.util.zip

	Chapter 20: Input/Output: Exploring java.io
	The I/O Classes and Interfaces
	File
	Directories
	Using FilenameFilter
	The listFiles() Alternative
	Creating Directories

	The AutoCloseable, Closeable, and Flushable Interfaces
	I/O Exceptions
	Two Ways to Close a Stream
	The Stream Classes
	The Byte Streams
	InputStream
	OutputStream
	FileInputStream
	FileOutputStream
	ByteArrayInputStream
	ByteArrayOutputStream
	Filtered Byte Streams
	Buffered Byte Streams
	SequenceInputStream
	PrintStream
	DataOutputStream and DataInputStream
	RandomAccessFile

	The Character Streams
	Reader
	Writer
	FileReader
	FileWriter
	CharArrayReader
	CharArrayWriter
	BufferedReader
	BufferedWriter
	PushbackReader
	PrintWriter

	The Console Class
	Serialization
	Serializable
	Externalizable
	ObjectOutput
	ObjectOutputStream
	ObjectInput
	ObjectInputStream
	A Serialization Example

	Stream Benefits

	Chapter 21: Exploring NIO
	The NIO Classes
	NIO Fundamentals
	Buffers
	Channels
	Charsets and Selectors

	Enhancements Added to NIO by JDK 7
	The Path Interface
	The Files Class
	The Paths Class
	The File Attribute Interfaces
	The FileSystem, FileSystems, and FileStore Classes

	Using the NIO System
	Use NIO for Channel-Based I/O
	Use NIO for Stream-Based I/O
	Use NIO for Path and File System Operations

	Pre-JDK 7 Channel-Based Examples
	Read a File, Pre-JDK 7
	Write to a File, Pre-JDK 7

	Chapter 22: Networking
	Networking Basics
	The Networking Classes and Interfaces
	InetAddress
	Factory Methods
	Instance Methods

	Inet4Address and Inet6Address
	TCP/IP Client Sockets
	URL
	URLConnection
	HttpURLConnection
	The URI Class
	Cookies
	TCP/IP Server Sockets
	Datagrams
	DatagramSocket
	DatagramPacket
	A Datagram Example

	Chapter 23: The Applet Class
	Two Types of Applets
	Applet Basics
	The Applet Class

	Applet Architecture
	An Applet Skeleton
	Applet Initialization and Termination
	Overriding update()

	Simple Applet Display Methods
	Requesting Repainting
	A Simple Banner Applet

	Using the Status Window
	The HTML APPLET Tag
	Passing Parameters to Applets
	Improving the Banner Applet

	getDocumentBase() and getCodeBase()
	AppletContext and showDocument()
	The AudioClip Interface
	The AppletStub Interface
	Outputting to the Console

	Chapter 24: Event Handling
	Two Event Handling Mechanisms
	The Delegation Event Model
	Events
	Event Sources
	Event Listeners

	Event Classes
	The ActionEvent Class
	The AdjustmentEvent Class
	The ComponentEvent Class
	The ContainerEvent Class
	The FocusEvent Class
	The InputEvent Class
	The ItemEvent Class

	The KeyEvent Class
	The MouseEvent Class
	The MouseWheelEvent Class
	The TextEvent Class
	The WindowEvent Class

	Sources of Events
	Event Listener Interfaces
	The ActionListener Interface
	The AdjustmentListener Interface
	The ComponentListener Interface
	The ContainerListener Interface
	The FocusListener Interface
	The ItemListener Interface
	The KeyListener Interface
	The MouseListener Interface
	The MouseMotionListener Interface
	The MouseWheelListener Interface
	The TextListener Interface
	The WindowFocusListener Interface
	The WindowListener Interface

	Using the Delegation Event Model
	Handling Mouse Events
	Handling Keyboard Events

	Adapter Classes
	Inner Classes
	Anonymous Inner Classes

	Chapter 25: Introducing the AWT: Working with Windows, Graphics, and Text
	AWT Classes
	Window Fundamentals
	Component
	Container
	Panel
	Window
	Frame
	Canvas

	Working with Frame Windows
	Setting the Window’s Dimensions
	Hiding and Showing a Window
	Setting a Window’s Title
	Closing a Frame Window

	Creating a Frame Window in an AWT-Based Applet
	Handling Events in a Frame Window

	Creating a Windowed Program
	Displaying Information Within a Window
	Introducing Graphics
	Drawing Lines
	Drawing Rectangles
	Drawing Ellipses and Circles
	Drawing Arcs
	Drawing Polygons
	Demonstrating the Drawing Methods
	Sizing Graphics

	Working with Color
	Color Methods
	Setting the Current Graphics Color
	A Color Demonstration Applet

	Setting the Paint Mode
	Working with Fonts
	Determining the Available Fonts
	Creating and Selecting a Font
	Obtaining Font Information

	Managing Text Output Using FontMetrics
	Displaying Multiple Lines of Text
	Centering Text
	Multiline Text Alignment

	Chapter 26: Using AWT Controls, Layout Managers, and Menus
	AWT Control Fundamentals
	Adding and Removing Controls
	Responding to Controls
	The HeadlessException

	Labels
	Using Buttons
	Handling Buttons

	Applying Check Boxes
	Handling Check Boxes

	CheckboxGroup
	Choice Controls
	Handling Choice Lists

	Using Lists
	Handling Lists

	Managing Scroll Bars
	Handling Scroll Bars

	Using a TextField
	Handling a TextField

	Using a TextArea
	Understanding Layout Managers
	FlowLayout
	BorderLayout
	Using Insets
	GridLayout
	CardLayout
	GridBagLayout

	Menu Bars and Menus
	Dialog Boxes
	FileDialog
	A Word About Overriding paint()

	Chapter 27: Images
	File Formats
	Image Fundamentals: Creating, Loading, and Displaying
	Creating an Image Object
	Loading an Image
	Displaying an Image

	ImageObserver
	Double Buffering
	MediaTracker
	ImageProducer
	MemoryImageSource

	ImageConsumer
	PixelGrabber

	ImageFilter
	CropImageFilter
	RGBImageFilter

	Additional Imaging Classes

	Chapter 28: The Concurrency Utilities
	The Concurrent API Packages
	java.util.concurrent
	java.util.concurrent.atomic
	java.util.concurrent.locks

	Using Synchronization Objects
	Semaphore
	CountDownLatch
	CyclicBarrier
	Exchanger

	Phaser
	Using an Executor
	A Simple Executor Example
	Using Callable and Future

	The TimeUnit Enumeration
	The Concurrent Collections
	Locks
	Atomic Operations
	Parallel Programming via the Fork/Join Framework
	The Main Fork/Join Classes
	The Divide-and-Conquer Strategy
	A Simple First Fork/Join Example
	Understanding the Impact of the Level of Parallelism
	An Example that Uses RecursiveTask<V>
	Executing a Task Asynchronously
	Cancelling a Task
	Determining a Task’s Completion Status
	Restarting a Task
	Things to Explore
	Some Fork/Join Tips

	The Concurrency Utilities Versus Java’s Traditional Approach

	Chapter 29: The Stream API
	Stream Basics
	Stream Interfaces
	How to Obtain a Stream
	A Simple Stream Example

	Reduction Operations
	Using Parallel Streams
	Mapping
	Collecting
	Iterators and Streams
	Use an Iterator with a Stream
	Use Spliterator

	More to Explore in the Stream API

	Chapter 30: Regular Expressions and Other Packages
	The Core Java API Packages
	Regular Expression Processing
	Pattern
	Matcher
	Regular Expression Syntax
	Demonstrating Pattern Matching
	Two Pattern-Matching Options
	Exploring Regular Expressions

	Reflection
	Remote Method Invocation (RMI)
	A Simple Client/Server Application Using RMI

	Formatting Date and Time with java.text
	DateFormat Class
	SimpleDateFormat Class

	The Time and Date API Added by JDK 8
	Time and Date Fundamentals
	Formatting Date and Time
	Parsing Date and Time Strings
	Other Things to Explore in java.time

	Part III: Introducing GUI Programming with Swing
	Chapter 31: Introducing Swing
	The Origins of Swing
	Swing Is Built on the AWT
	Two Key Swing Features
	Swing Components Are Lightweight
	Swing Supports a Pluggable Look and Feel

	The MVC Connection
	Components and Containers
	Components
	Containers
	The Top-Level Container Panes

	The Swing Packages
	A Simple Swing Application
	Event Handling
	Create a Swing Applet
	Painting in Swing
	Painting Fundamentals
	Compute the Paintable Area
	A Paint Example

	Chapter 32: Exploring Swing
	JLabel and ImageIcon
	JTextField
	The Swing Buttons
	JButton
	JToggleButton
	Check Boxes
	Radio Buttons
	JTabbedPane

	JScrollPane
	JList
	JComboBox
	Trees
	JTable

	Chapter 33: Introducing Swing Menus
	Menu Basics
	An Overview of JMenuBar, JMenu, and JMenuItem
	JMenuBar
	JMenu
	JMenuItem

	Create a Main Menu
	Add Mnemonics and Accelerators to Menu Items
	Add Images and Tooltips to Menu Items
	Use JRadioButtonMenuItem and JCheckBoxMenuItem
	Create a Popup Menu
	Create a Toolbar
	Use Actions
	Put the Entire MenuDemo Program Together
	Continuing Your Exploration of Swing

	Part IV: Introducing GUI Programming with JavaFX
	Chapter 34: Introducing JavaFX GUI Programming
	JavaFX Basic Concepts
	The JavaFX Packages
	The Stage and Scene Classes
	Nodes and Scene Graphs
	Layouts
	The Application Class and the Life-cycle Methods
	Launching a JavaFX Application

	A JavaFX Application Skeleton
	Compiling and Running a JavaFX Program
	The Application Thread
	A Simple JavaFX Control: Label
	Using Buttons and Events
	Event Basics
	Introducing the Button Control
	Demonstrating Event Handling and the Button

	Drawing Directly on a Canvas

	Chapter 35: Exploring JavaFX Controls
	Using Image and ImageView
	Adding an Image to a Label
	Using an Image with a Button

	ToggleButton
	RadioButton
	Handling Change Events in a Toggle Group
	An Alternative Way to Handle Radio Buttons

	CheckBox
	ListView
	ListView Scrollbars
	Enabling Multiple Selections

	ComboBox
	TextField
	ScrollPane
	TreeView
	Introducing Effects and Transforms
	Effects
	Transforms
	Demonstrating Effects and Transforms

	Adding Tooltips
	Disabling a Control

	Chapter 36: Introducing JavaFX Menus
	Menu Basics
	An Overview of MenuBar, Menu, and MenuItem
	MenuBar
	Menu
	MenuItem

	Create a Main Menu
	Add Mnemonics and Accelerators to Menu Items
	Add Images to Menu Items
	Use RadioMenuItem and CheckMenuItem
	Create a Context Menu
	Create a Toolbar
	Put the Entire MenuDemo Program Together
	Continuing Your Exploration of JavaFX

	Part V: Applying Java
	Chapter 37: Java Beans
	What Is a Java Bean?
	Advantages of Java Beans
	Introspection
	Design Patterns for Properties
	Design Patterns for Events
	Methods and Design Patterns
	Using the BeanInfo Interface

	Bound and Constrained Properties
	Persistence
	Customizers
	The Java Beans API
	Introspector
	PropertyDescriptor
	EventSetDescriptor
	MethodDescriptor

	A Bean Example

	Chapter 38: Introducing Servlets
	Background
	The Life Cycle of a Servlet
	Servlet Development Options
	Using Tomcat
	A Simple Servlet
	Create and Compile the Servlet Source Code
	Start Tomcat
	Start a Web Browser and Request the Servlet

	The Servlet API
	The javax.servlet Package
	The Servlet Interface
	The ServletConfig Interface
	The ServletContext Interface
	The ServletRequest Interface
	The ServletResponse Interface
	The GenericServlet Class
	The ServletInputStream Class
	The ServletOutputStream Class
	The Servlet Exception Classes

	Reading Servlet Parameters
	The javax.servlet.http Package
	The HttpServletRequest Interface
	The HttpServletResponse Interface
	The HttpSession Interface
	The Cookie Class
	The HttpServlet Class

	Handling HTTP Requests and Responses
	Handling HTTP GET Requests
	Handling HTTP POST Requests

	Using Cookies
	Session Tracking

	Appendix: Using Java’s Documentation Comments
	The javadoc Tags
	@author
	{@code}
	@deprecated
	{@docRoot}
	@exception
	{@inheritDoc}
	{@link}
	{@linkplain}
	{@literal}
	@param
	@return
	@see
	@serial
	@serialData
	@serialField
	@since
	@throws
	{@value}
	@version

	The General Form of a Documentation Comment
	What javadoc Outputs
	An Example that Uses Documentation Comments

	Index
	Bookmark_Functional Interfaces
	Bookmark_Optional
	Bookmark_stream
	Bookmark_spliterator
	Bookmark_default Interface

