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Introduction

Once upon a time, you loved numbers. This isn’t the first line of a fairy
tale. Once upon a time, you really did love numbers. Remember?

Maybe you were 3 and your grandparents were visiting. You sat next to them
on the couch and recited the numbers from 1 to 10. They were proud of you
and — be honest — you were proud of yourself, too. Or maybe you were
5 and discovering how to write numbers, trying hard not to get your bs and
as backwards.

Learning was fun. Numbers were fun. So what happened? Maybe the trouble
started with long division. Or sorting out how to change fractions to decimals.
Could it have been figuring out how to add 8 percent sales tax to the cost of a
purchase? Reading a graph? Converting miles to kilometers? Trying to find
that most dreaded value of x? Wherever it started, you began to suspect that
math didn’t like you — and you didn’t like math very much, either.

Why do people often enter preschool excited about learning how to count
and leave high school as young adults convinced that they can’t do math?
The answer to this question would probably take 20 books this size, but 
solving the problem can begin right here.

I humbly ask you to put aside any doubts. Remember, just for a moment, an
innocent time — a time before math inspired panic attacks or, at best, induced
irresistible drowsiness. In this book, I take you from an understanding of the
basics to the place where you’re ready to enter any algebra class and succeed.

About This Book
Somewhere along the road from counting to algebra, most people experience
the Great Math Breakdown. This feels something like when your car begins
smoking and sputtering on a 110-degree highway somewhere between
Noplace and Not Much Else!

Please consider this book your personal roadside helper, and think of me as
your friendly math mechanic (only much cheaper!). Stranded on the inter-
state, you may feel frustrated by circumstances and betrayed by your vehi-
cle, but for the guy holding the toolbox, it’s all in a day’s work. The tools for
fixing the problem are in this book.
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Not only does this book help you with the basics of math, but it also helps you
get past any aversion you may feel toward math in general! I’ve broken down
the concepts into easy-to-understand sections. And because Basic Math & 
Pre-Algebra For Dummies is a reference book, you don’t have to read the chap-
ters or sections in order — you can look over only what you need. So feel free
to jump around. Whenever I cover a topic that requires information from ear-
lier in the book, I refer you to that section or chapter in case you want to
refresh yourself on the basics.

Here are two pieces of advice I give all the time — remember them as you
work your way through the concepts in this book:

� Take frequent study breaks. Every 20 to 30 minutes, stand up and push in
your chair. Then feed the cat, do the dishes, take a walk, juggle tennis balls,
try on last year’s Halloween costume — do something to distract yourself
for a few minutes. You’ll come back to your books more productive than if
you were to just sit there hour after hour with your eyes glazing over.

� After you’ve read through an example and think you understand it,
copy the problem, close the book, and try to work it through. If you
get stuck, steal a quick look — but later, try that same example again to
see whether you can get through without opening the book. (Remember
that on any tests you’re preparing for, peeking is probably not allowed!)

Conventions Used in This Book
To help you navigate your way through this book, I use the following 
conventions:

� Italicized text highlights new words and defined terms.

� Boldfaced text indicates keywords in bulleted lists and the action part
of numbered steps.

� Monofont text highlights Web addresses.

� Variables, such as x and y, are in italics.

What You’re Not to Read
Although every author secretly (or not-so-secretly) believes that each word
he pens is pure gold, you don’t have to read every word in this book unless
you really want to. Feel free to skip over sidebars (those shaded gray boxes)
where I go off on a tangent — unless you find tangents interesting, of course.
Paragraphs labeled with the Technical Stuff icon are also nonessential.

2 Basic Math & Pre-Algebra For Dummies 
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Foolish Assumptions
If you’re planning to read this book, you’re likely

� A student who wants a solid understanding of the basics of math for a
class or test you’re taking

� An adult who wants to improve skills in arithmetic, fractions, decimals,
percentages, weights and measures, geometry, algebra, and so on for
when you have to use math in the real world

� Someone who wants a refresher so you can help another person under-
stand math

My only assumption about your skill level is that you can add, subtract, 
multiply, and divide. So to find out whether you’re ready for this book, take
this simple test:

5 + 6 = __

10 – 7 = __

3 × 5 = __

20 ÷ 4 = __

If you can answer these four questions, you’re ready to begin.

How This Book Is Organized
This book is organized into six parts, starting you off at the very beginning of
math — with topics such as counting and the number line — and taking you
all the way into algebra.

Part I: Arming Yourself with 
the Basics of Basic Math
In Part I, I take what you already know about math and put it in perspective. 

Chapter 1 gives you a brief history of what numbers are and where they came
from. I discuss how number sequences arise. I show you how important sets
of numbers — such as the counting numbers, the integers, and the rational
numbers — all fit together on the number line. I also show you how to use
the number line to perform basic arithmetic.

3Introduction
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Chapter 2 discusses how digits are the building blocks of numbers, much the
same as letters are the building blocks of words. I show you how the number
system you use every day — the Hindu-Arabic number system (also called
decimal numbers) — uses place value based on the number 10 to build digits
into numbers.

Finally, Chapter 3 focuses on what I call the Big Four operations — adding,
subtracting, multiplying, and dividing. I give you a refresher on how to do
column addition with carrying, subtraction with borrowing, multiplication of
large numbers, and the ever-dreaded long division.

Part II: Getting a Handle 
on Whole Numbers
In Part II, you take a leap forward in your understanding of how to work
with the Big Four operations. In Chapter 4, I cover inverse operations, the
commutative, associative, and distributive properties, and working with neg-
ative numbers. You discover how to use inequalities such as greater than (>)
and less than (<). I also introduce you to more-advanced operations, such as
powers (exponents), square roots, and absolute value.

Chapter 5 introduces what I call the three Es of math: expressions, equations,
and evaluation. The rest of the chapter focuses on an all-important skill: evalu-
ating mathematical expressions using the order of operations. In Chapter 6,
you discover how to solve word problems (also called story problems) by creat-
ing word equations. 

Chapter 7 takes a detailed look at divisibility. I show you a bunch of tricks for
finding out whether one number is divisible by another. I also discuss prime
numbers and composite numbers. Finally, Chapter 8 discusses factors and
multiples, showing you how these two concepts are connected. I show you
how to decompose a number to its prime factors. I also show you how to find
the greatest common factor (GCF) and least common multiple (LCM) of two
or more numbers.

Part III: Parts of the Whole: Fractions,
Decimals, and Percents
Part III focuses on how mathematics represents parts of the whole as fractions,
decimals, and percents and on how these three ideas are connected. 

Chapters 9 and 10 focus on fractions, including increasing and reducing the
terms of fractions. From there, I show you how to multiply and divide fractions,

4 Basic Math & Pre-Algebra For Dummies 
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plus a variety of ways to add and subtract fractions. Finally, I show you how to
work with mixed numbers. In Chapter 11, the topic is decimals. I show you how
to add, subtract, multiply, and divide decimals and how to convert fractions to
decimals and vice versa. I also give you an understanding of repeating decimals.

Chapter 12 discusses percentages. I show you how to convert percentages 
to both fractions and decimals, and vice versa. I follow up with a variety of
ways for finding percentages, including a simple but powerful tool called the
percent circle. Finally, Chapter 13 focuses on solving word problems that
involve fractions, decimals, and percents.

Part IV: Picturing and Measuring —
Graphs, Measures, Stats, and Sets
Part IV contains a variety of topics that build upon the skills you gain in the
first three parts of the book.

In Chapter 14, I show you how scientific notation makes very large and very
small numbers more manageable by combining decimals and powers of ten.
In Chapter 15, I discuss two important systems of weights and measures: the
English system (used mostly in the United States) and the metric system
(used throughout the world). I give you a variety of conversion equations and
show you how to convert units of measurement. I also give you a few rules of
thumb for estimating metric units.

Chapter 16 discusses geometry, giving you a variety of formulas to find the
perimeter and area of basic shapes and the surface area and volume of a few
important solids.

Chapter 17 introduces you to graphing, first showing you three important
types of graphs — the bar graph, the pie chart, and the line graph. I also give
you the basics of the most common graphing method used in math, the
Cartesian graph. I show you how to plot points, draw lines, and solve problems
using this graph. Chapter 18 gives you still more practice solving word prob-
lems, especially those focusing on geometry and on weights and measures.

Chapter 19 introduces you to statistics and probability. You discover the dif-
ference between qualitative data and quantitative data and how to calculate
both the mean average and the median average. I also show you how to cal-
culate probability by counting possible outcomes and favorable outcomes.

In Chapter 20, I give you the basics of set theory, including how to define a
set, identify elements and subsets, and understand the empty set. I also show
you how to perform some basic operations on sets, including the union and
the intersection of sets. 

5Introduction
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Part V: The X-Files: Introduction to Algebra
Part V is your introduction to algebra. Chapter 21 provides an overview of
algebra, showing you the basics of declaring a variable (such as x) and then
using it in expressions, making connections with what you already know
about expressions from Chapter 5.

Chapter 22 gives you a variety of ways to solve algebraic equations. Finally,
Chapter 23 puts it all together, showing you how to solve algebra word prob-
lems from beginning to end.

Part VI: The Part of Tens
Just for fun, this part of the book includes a few top-ten lists on a variety of
topics, including key math concepts and number sets.

Icons Used in This Book
Throughout the book, I use four icons to highlight what’s hot and what’s not:

This icon points out key ideas that you need to know. Make sure you under-
stand before reading on! Remember this info even after you close the book.

Tips are helpful hints that show you the quick and easy way to get things
done. Try them out, especially if you’re taking a math course.

Warnings flag common errors that you want to avoid. Get clear about where
these little traps are hiding so you don’t fall in.

This icon points out interesting trivia that you can read or skip over as
you like.

6 Basic Math & Pre-Algebra For Dummies 
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Where to Go from Here
You can use this book in a few ways. If you’re reading this book without imme-
diate time pressure from a test or homework assignment, you can certainly
start at the beginning and keep on going through to the end. The advantage to
this method is that you realize how much math you do know — the first few
chapters go very quickly. You gain a lot of confidence as well as some practi-
cal knowledge that can help you later on, because the early chapters also set
you up to understand what follows.

Or how about this: When you’re ready to work, read up on the topic you’re
studying. Leave the book on your nightstand and, just before bed, spend a few
minutes reading the easy stuff from the early chapters. You’d be surprised how
a little refresher on simple stuff can suddenly cause more-advanced concepts
to click.

If your time is limited — especially if you’re taking a math course and you’re
looking for help with your homework or an upcoming test — skip directly to
the topic you’re studying. Wherever you open the book, you can find a clear
explanation of the topic at hand, as well as a variety of hints and tricks. Read
through the examples and try to do them yourself, or use them as templates
to help you with assigned problems.

Here’s a short list of topics that tend to back students up:

� Negative numbers (Chapter 4)

� Order of operations (Chapter 5)

� Word problems (Chapters 6, 13, 18, and 23)

� Factoring numbers (Chapter 8)

� Fractions (Chapters 9 and 10)

Most of these topics are in Parts II and III, but they’re foundational to what’s cov-
ered later in the book. Generally speaking, any time you spend building these
five skills is like money in the bank as you proceed in math, so you may want to
visit these sections several times. As soon as you feel comfortable adding nega-
tive numbers or multiplying fractions, your confidence soars. Moreover, every-
thing that I cover in the rest of the book should seem much simpler.

If you get stuck along the way, take a break and come back to the problem; you
may find that the answer suddenly clicks for you as soon as you read it again
with a refreshed mind. If you still feel stuck, you may need to drop back a few
pages and read from the beginning of the section or chapter. Sometimes, work-
ing through a few easier examples is the best way to prepare for when the
going gets tough.

7Introduction
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Part I
Arming Yourself

with the Basics of
Basic Math
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In this part . . .
You already know more about math than you think

you know. Here, you review and gain perspective on
basic math ideas such as number patterns, the number
line, how place value based on the number ten turns
digits into numbers, and how zero functions as a place-
holder. I also reintroduce you to what I call the Big 
Four operations (adding, subtracting, multiplying, and
dividing).
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Chapter 1

Playing the Numbers Game
In This Chapter
� Finding out how numbers were invented

� Looking at a few familiar number sequences

� Examining the number line

� Understanding four important sets of numbers

One of the useful things about numbers is that they’re conceptual, which
means that in an important sense, they’re all in your head. (This fact,

however, probably won’t get you out of having to know about them —
nice try!)

For example, you can picture three of anything: three cats, three baseballs,
three cannibals, three planets. But just try to picture the concept of three all
by itself, and you find it’s impossible. Oh, sure, you can picture the numeral
3, but the threeness itself — much like love or beauty or honor — is beyond
direct understanding. But after you have the concept of three (or four, or a
million), you have access to an incredibly powerful system for understanding
the world: mathematics. 

In this chapter, I give you a brief history of how numbers came into being.
I discuss a few common number sequences and show you how these connect
with simple math operations like addition, subtraction, multiplication, and
division.

After that, I describe how some of these ideas come together with a simple
yet powerful tool – the number line. I discuss how numbers are arranged
on the number line, and I also show you how to use the number line as a cal-
culator for simple arithmetic.

Finally, I describe how the counting numbers (1, 2, 3, . . .) sparked the inven-
tion of more unusual types of numbers such as negative numbers, fractions, and
irrational numbers. I also show you how these sets of numbers are nested — that
is, how one set of numbers fits inside another, which fits inside another.
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Inventing Numbers 
Historians believe that the first number systems came into being at the
same time as agriculture and commerce. Before that, people in prehistoric,
hunter-gatherer societies were pretty much content to identify bunches of
things as “a lot” or “a little.” 

But as farming developed and trade between communities began, more preci-
sion was needed. So people began using stones, clay tokens, and similar
objects to keep track of their goats, sheep, oil, grain, or whatever commodity
they had. These tokens could be exchanged for the objects they represented
in a one-to-one exchange.

Eventually, traders realized that they could draw pictures instead of using
tokens. Those pictures evolved into tally marks and, in time, into more complex
systems. Whether they realized it or not, their attempts to keep track of com-
modities had led these early humans to invent something entirely new: numbers.

Throughout the ages, the Babylonians, Egyptians, Greeks, Romans, Mayans,
Arabs, and Chinese (to name just a few) all developed their own systems of
writing numbers. 

Although Roman numerals gained wide currency as the Roman Empire
expanded throughout Europe and parts of Asia and Africa, the more advanced
system that the Arabs invented turned out to be more useful. Our own number
system, the Hindu-Arabic numbers (also called decimal numbers), is closely
derived from these early Arabic numbers. 

Understanding Number Sequences
Although numbers were invented for counting commodities, as I explain in
the preceding section, they were soon put to a wide range of applications.
Numbers could be useful for measuring distances, counting money, amassing
an army, levying taxes, building pyramids, and lots more. 

But beyond their many uses for understanding the external world, numbers
also have an internal order all their own. So, numbers are not only an invention,
but also equally a discovery: a landscape that seems to exist independently,
with its own structure, mysteries, and even perils.

One path into this new and often strange world is the number sequence: an
arrangement of numbers according to a rule. In the following sections I intro-
duce you to a variety of number sequences that are useful for making sense
of numbers.

12 Part I: Arming Yourself with the Basics of Basic Math 
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Evening the odds
One of the first things you probably heard about numbers is that all of them
are either even or odd. For example, you can split an even number of marbles
evenly into two equal piles. But when you try to divide an odd number of
marbles the same way, you always have one odd, leftover marble. Here are
the first few even numbers:

2 4 6 8 10 12 14 16 ...

You can easily keep the sequence of even numbers going as long as you like.
Starting with the number 2, keep adding 2 to get the next number.

Similarly, here are the first few odd numbers:

1 3 5 7 9 11 13 15 ...

The sequence of odd numbers is just as simple to generate. Starting with the
number 1, keep adding 2 to get the next number.

Patterns of even or odd numbers are the simplest number patterns around,
which is why kids often figure out the difference between even and odd num-
bers soon after learning to count.

Counting by threes, fours, fives, and so on
After you get used to the concept of counting by numbers greater than one,
you can run with it. For example, here’s what counting by threes looks like:

3 6 9 12 15 18 21 24 ...

This time, the pattern is generated by starting with 3 and continuing to add 3.

Similarly, here’s how to count by fours:

4 8 12 16 20 24 28 32 ...

And here’s how to count by fives:

5 10 15 20 25 30 35 40 ...

13Chapter 1: Playing the Numbers Game
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Counting by a given number is a good way to begin learning the multiplica-
tion table for that number, especially for the numbers you’re kind of sketchy
on. (In general, people seem to have the most trouble multiplying by 7, but 8
and 9 are also unpopular.) In Chapter 3, I show you a few tricks for memoriz-
ing the multiplication table once and for all.

These types of sequences are also useful for understanding factors and multi-
ples, which you get a look at in Chapter 8.

Getting square with square numbers
When you study math, sooner or later you probably want to use visual aids
to help you see what numbers are telling you. (Later in this book, I show you
how one picture can be worth a thousand numbers when I discuss geometry
in Chapter 16 and graphing in Chapter 17.) 

The tastiest visual aids you’ll ever find are those little square cheese-flavored
crackers. (You probably have a box sitting somewhere in the pantry. If not,
saltine crackers or any other square food works just as well.) Shake a bunch
out of a box and place the little squares together to make bigger squares.
Figure 1-1 shows the first few.

Voila! The square numbers:

1 4 9 16 25 36 49 64 ...

You get a square number by multiplying a number by itself, so knowing the
square numbers is another handy way to remember part of the multiplication
table. Although you probably remember without help that 2 × 2 = 4, you may
be sketchy on some of the higher numbers, such as 7 × 7 = 49. Knowing the
square numbers gives you another way to etch that multiplication table for-
ever into your brain, as I show you in Chapter 3.

Square numbers are also a great first step on the way to understanding expo-
nents, which I introduce later in this chapter and explain in more detail in
Chapter 4.

1
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Figure 1-1:
Square

numbers.
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Composing yourself with composite numbers
Some numbers can be placed in rectangular patterns. Mathematicians prob-
ably should call numbers like these “rectangular numbers,” but instead they
chose the term composite numbers. For example, 12 is a composite number
because you can place 12 objects in rectangles of two different shapes, as
shown in Figure 1-2.

As with square numbers, arranging numbers in visual patterns like this tells
you something about how multiplication works. In this case, by counting the
sides of both rectangles, you find out the following:

3 × 4 = 12

2 × 6 = 12

Similarly, other numbers such as 8 and 15 can also be arranged in rectangles,
as shown in Figure 1-3.

As you can see, both of these numbers are quite happy being placed in boxes
with at least two rows and two columns. And these visual patterns show this:

2 × 4 = 8

3 × 5 = 15

Figure 1-3:
Composite

numbers,
such as 8

and 15,
can form

rectangles.

Figure 1-2:
The number

12 laid out
in two

rectangular
patterns.
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The word composite means that these numbers are composed of smaller num-
bers. For example, the number 15 is composed of 3 and 5 — that is, when you
multiply these two smaller numbers, you get 15. Here are all the composite
numbers between 1 and 16: 

4 6 8 9 10 12 14 15 16

Notice that all the square numbers (see “Getting square with square num-
bers”) also count as composite numbers because you can arrange them in
boxes with at least two rows and two columns. Additionally, lots of other non-
square numbers are also composite numbers.

Stepping out of the box with prime numbers
Some numbers are stubborn. Like certain people you may know, these 
numbers — called prime numbers — resist being placed in any sort of a box.
Look at how the number 13 is depicted in Figure 1-4, for example.

Try as you may, you just can’t make a rectangle out of 13 objects. (That may
be one reason the number 13 got a bad reputation as unlucky.) Here are all
the prime numbers less than 20:

2 3 5 7 11 13 17 19

As you can see, the list of prime numbers fills the gaps left by the composite
numbers (see the preceding section). Therefore, every counting number is
either prime or composite. The only exception is the number 1, which is nei-
ther prime nor composite. In Chapter 8, I give you a lot more information
about prime numbers and show you how to decompose a number — that is,
break a composite number down to its prime factors.

Figure 1-4:
Unlucky 13,

a prime
example of

a number
that refuses

to fit in a
box.
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Multiplying quickly with exponents 
Here’s an old question that still causes surprises: Suppose you took a job that
paid you just 1 penny the first day, 2 pennies the second day, 4 pennies the
third day, and so on, doubling the amount every day, like this:

1 2 4 8 16 32 64 128 256 512 ...

As you can see, in the first ten days of work, you would’ve earned a little
more than $10 (actually, $10.23 — but who’s counting?). How much would
you earn in 30 days? Your answer may well be, “I wouldn’t take a lousy job
like that in the first place.” At first glance, this looks like a good answer, but
here’s a glimpse at your second ten days’ earnings:

... 1,024 2,048 4,096 8,192 16,384 32,768 65,536
131,072 262,144 524,288 ...

By the end of the second 10 days, your total earnings would be over $10,000.
And by the end of the third week, your earnings would top out around
$10,000,000! How does this happen? Through the magic of exponents (also
called powers). Each new number in the sequence is obtained by multiplying
the previous number by 2:

21 = 2 = 2

22 = 2 × 2 = 4

23 = 2 × 2 × 2 = 8

24 = 2 × 2 × 2 × 2 = 16

As you can see, the notation 24 means multiply 2 by itself 4 times. 

You can use exponents on numbers other than 2. Here’s another sequence
you may be familiar with:

1 10 100 1,000 10,000 100,000 1,000,000...

In this sequence, every number is 10 times greater than the number before it.
You can also generate these numbers using exponents:

101 = 10 = 10

102 = 10 × 10 = 100

103 = 10 × 10 × 10 = 1,000

104 = 10 × 10 × 10 × 10 = 10,000

17Chapter 1: Playing the Numbers Game
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This sequence is important for defining place value, the basis of the decimal
number system, which I discuss in Chapter 2. It also shows up when I discuss
decimals in Chapter 11 and scientific notation in Chapter 15. You find out
more about exponents in Chapter 5.

Looking at the Number Line
As kids outgrow counting on their fingers (and use them only when trying to
remember the names of all seven dwarfs), teachers often substitute a picture
of the first ten numbers in order, like the one shown in Figure 1-5.

This way of organizing numbers is called the number line. People often see their
first number line — usually made of brightly colored construction paper —
pasted above the blackboard in school. The basic number line provides a visual
image of the counting numbers (also called the natural numbers), the numbers
greater than 0. You can use it to show how numbers get bigger in one direction
and smaller in the other. 

In this section, I show you how to use the number line to understand a few
basic but important ideas about numbers.

Adding and subtracting on the number line
You can use the number line to demonstrate simple addition and subtraction.
These first steps in math become a lot more concrete with a visual aid. Here’s
the main thing to remember:

� As you go right, the numbers go up, which is addition (+).

� As you go left, the numbers go down, which is subtraction (–).

For example, 2 + 3 means you start at 2 and jump up 3 spaces to 5, as illus-
trated in Figure 1-6.

1 2 3 4 5 6 7 8 9 10

Figure 1-5:
Basic

number line.
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As another example, 6 – 4 means start at 6 and jump down 4 spaces to 2. That
is, 6 – 4 = 2. See Figure 1-7.

You can use these simple up and down rules repeatedly to solve a longer
string of added and subtracted numbers. For example, 3 + 1 – 2 + 4 – 3 – 2
means 3, up 1, down 2, up 4, down 3, and down 2. In this case, the number line
would show you that 3 + 1 – 2 + 4 – 3 – 2 = 1.

I discuss addition and subtraction in greater detail in Chapter 3.

Getting a handle on nothing, or zero
An important addition to the number line is the number 0, which means 
nothing, zilch, nada. Step back a moment and consider the bizarre concept of
nothing. For one thing — as more than one philosopher has pointed out — by
definition, nothing doesn’t exist! Yet, we routinely label it with the number 0,
as shown in Figure 1-8.

Actually, mathematicians have an even more precise labeling of nothing than
zero. It’s called the empty set, which is sort of the mathematical version of a
box containing nothing. I introduce you to some basic set theory in Chapter 20.

1 2 3 4 5 6 7 8 9 10

Figure 1-7:
Moving

through the
number line

from right
to left.

1 2 3 4 5 6 7 8 9 10

Figure 1-6:
Moving

through the
number line

from left
to right.
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Nothing sure is a heavy trip to lay on little kids, but they don’t seem to mind.
They understand quickly that when you have three toy trucks and someone
else takes away all three of them, you’re left with zero trucks. That is, 3 – 3 =
0. Or, placing this on the number line, 3 – 3 means start at 3 and go down 3, as
shown in Figure 1-9.

In Chapter 2, I show you the importance of 0 as a placeholder in numbers and
discuss how leading zeros can be attached to a number without changing its
value.

0 1 2 3 4 5 6 7 8 9 10

Figure 1-9:
Starting at 3
and moving
down three.

0 1 2 3 4 5 6 7 8 9 10

Figure 1-8:
The number
line starting

at 0 and
continuing

with 1, 2, 
3, . . . 10.
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Infinity: Imagining a never-ending story
The arrows at the ends of the number line point
onward to a place called infinity, which isn’t
really a place at all, just the idea of foreverness,
because the numbers go on forever. But what
about a million billion trillion quadrillion — do the
numbers go even higher than that? The answer
is yes, because for any number you name, you
can add 1 to it.

The wacky symbol ∞ represents infinity.
Remember, though, that ∞ isn’t really a number
but the idea that the numbers go on forever.

Because ∞ isn’t a number, you can’t technically
add the number 1 to it, any more than you can
add the number 1 to a cup of coffee or your Aunt
Louise. But even if you could, ∞ + 1 would
equal ∞.
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Taking a negative turn: Negative numbers
When people first find out about subtraction, they often hear that you can’t
take away more than you have. For example, if you have four pencils, you can
take away one, two, three, or even all four of them, but you can’t take away
more than that.

It isn’t long, though, before you find out what any credit card holder knows
only too well: You can, indeed, take away more than you have — the result is
a negative number. For example, if you have $4 and you owe your friend $7,
you’re $3 in debt. That is, 4 – 7 = –3. The minus sign in front of the 3 means
that the number of dollars you have is three less than 0. Figure 1-10 shows
how you place negative whole numbers on the number line.

Adding and subtracting on the number line works pretty much the same with
negative numbers as with positive numbers. For example, Figure 1-11 shows
how to subtract 4 – 7 on the number line.

You find out all about working with negative numbers in Chapter 4.

Placing 0 and the negative counting numbers on the number line expands the
set of counting numbers to the set of integers. I discuss the integers in further
detail later in this chapter.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 1-11:
Subtracting
4 – 7 on the

number line.

−5 −4 −3 −2 −1 0 1 2 3 4 5

Figure 1-10:
Negative

whole
numbers

on the
number line.
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Multiplying the possibilities
Suppose you start at 0 and circle every other number on a number line, as
shown in Figure 1-12. As you can see, all the even numbers are now circled. In
other words, you’ve circled all the multiples of two. (You can find out more
about multiples in Chapter 8.) You can now use this number line to multiply
any number by two. For example, suppose you want to multiply 5 × 2. Just
start at 0 and jump 5 circled spaces to the right.

This number line shows you that 5 × 2 = 10.

Similarly, to multiply –3 × 2, start at 0 and jump 3 circled spaces to the left
(that is, in the negative direction). Figure 1-13 shows you that –3 × 2 = –6.
What’s more, you can now see why multiplying a negative number by a posi-
tive number always gives you a negative result. (I talk about multiplying by
negative numbers in Chapter 4.)

Multiplying on the number line works no matter what number you count off
by. For example, in Figure 1-14 I count off by 5s.

0 5 10 15 20 25 30 35 40 45 50

Figure 1-14:
Number line
counted off

by 5s.

1 2 3 4−6 −5 −4 −3 −2 −1 0

Figure 1-13:
–3 × 2 = –6,
as depicted

on the
number line.

0 1 2 3 4 5 6 7 8 9 10

Figure 1-12:
Multiplying
5 × 2 using

the number
line.
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This time, the only numbers I’ve marked are the multiples of 5, so I can use
this number line to multiply any number by 5. For example, Figure 1-15 shows
how to multiply 2 × 5.

So 2 × 5 = 10, the same result as when you multiply 5 × 2. This result is an
example of the commutative property of multiplication — you can reverse the
order of any multiplication problem and still get the same answer. (I discuss
the commutative property in Chapter 4.)

Dividing things up
You can also use the number line to divide. For example, suppose you want
to divide 6 by some other number. First, draw a number line that begins at 0
and ends at 6, as in Figure 1-16.

Now, to find the answer to 6 ÷ 2, just split this number line into two equal
parts, as shown in Figure 1-17. This split (or division) occurs at 3, showing
you that 6 ÷ 2 = 3.

30 1 2 4 5 6

Figure 1-17:
Getting the
answer to

6 ÷ 2 by
splitting the

number line.

0 1 2 3 4 5 6

Figure 1-16:
Number line

from 0 to 6.

0 5 10 15 20 25 30 35 40 45 50

Figure 1-15:
Multiplying

2 × 5 with
the number

line.
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Similarly, to divide 6 ÷ 3, split the same number line into three equal parts, as
in Figure 1-18. This time you have two splits, so use the one closest to 0. This
number line shows you that 6 ÷ 3 = 2.

But suppose you want to use the number line to divide a small number by a
larger number. For example, maybe you want to know the answer to 3 ÷ 4.
Following the method I show you earlier, first draw a number line from 0 to 3.
Then split it into four equal parts. Unfortunately, none of these splits has
landed on a number. That’s not a mistake. You just have to add some new
numbers to the number line, as you can see in Figure 1-19.

Welcome to the world of fractions. With the number line labeled properly, you
can see that the split closest to 0 is 3⁄4. This image tells you that 3 ÷ 4 = 3⁄4.

The similarity of the expression 3 ÷ 4 and the fraction 3⁄4 is no accident. Division
and fractions are closely related. When you divide, you cut things up into equal
parts, and fractions are often the result of this process. (I explain the connec-
tion between division and fractions in more detail in Chapters 9 and 10.)

Discovering the space 
in between: Fractions
Fractions help you fill in a lot of the spaces on the number line that fall
between the counting numbers. For example, Figure 1-20 shows a close-up of
a number line from 0 to 1.

2º1½¾0 1 2 3

Figure 1-19:
Fractions on
the number

line.

2 430 1 5 6

Figure 1-18:
Dividing 

6 ÷ 3 with
the number

line.
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This number line may remind you of a ruler or a tape measure, with lots of tiny
fractions filled in. And in fact, rulers and tape measures really are portable
number lines that allow carpenters, engineers, and savvy do-it-yourselfers to
measure the length of objects with precision.

The addition of fractions to the number line expands the set of integers to
the set of rational numbers. I discuss the rational numbers in greater detail in
Chapter 25.

In fact, no matter how small things get in the real world, you can always find a
tiny fraction to approximate it as closely as you need. Between any two frac-
tions on the number line, you can always find another fraction. Mathematicians
call this trait the density of fractions on the real number line, and this type of
density is a topic in a very advanced area of math called real analysis.

Four Important Sets of Numbers
In the preceding section, you see how the number line grows in both the posi-
tive and negative directions and fills in with lots of numbers in between. In
this section, I provide a quick tour of how numbers fit together as a set of
nested systems, one inside the other.

When I talk about a set of numbers, I’m really just talking about a group of
numbers. You can use the number line to deal with four important sets
of numbers:

� Counting numbers (also called natural numbers): The set of numbers
beginning 1, 2, 3, 4 ... and going on infinitely

� Integers: The set of counting numbers, zero, and negative counting 
numbers

� Rational numbers: The set of integers and fractions

� Real numbers: The set of rational and irrational numbers

¾ 1½¼0

Figure 1-20:
Number line

depicting
some

fractions
from 0 to 1.
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The sets of counting numbers, integers, rational, and real numbers are nested,
one inside another. This nesting of one set inside another is similar to the way
that a city (for example, Boston) is inside a state (Massachusetts), which is
inside a country (the United States), which is inside a continent (North
America). The set of counting numbers is inside the set of integers, which is
inside the set of rational numbers, which is inside the set of real numbers.

Counting on the counting numbers 
The set of counting numbers is the set of numbers you first count with, start-
ing with 1. Because they seem to arise naturally from observing the world,
they’re also called the natural numbers:

1 2 3 4 5 6 7 8 9 ...

The counting numbers are infinite, which means they go on forever. 

When you add two counting numbers, the answer is always another counting
number. Similarly, when you multiply two counting numbers, the answer is
always a counting number. Another way of saying this is that the set of count-
ing numbers is closed under both addition and multiplication. 

Introducing integers
The set of integers arises when you try to subtract a larger number from a
smaller one. For example, 4 – 6 = –2. The set of integers includes the following:

� The counting numbers 

� Zero

� The negative counting numbers

Here’s a partial list of the integers:

... –4 –3 –2 –1 0 1 2 3 4 ...

Like the counting numbers, the integers are closed under addition and multi-
plication. Similarly, when you subtract one integer from another, the answer
is always an integer. That is, the integers are also closed under subtraction. 
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Staying rational
Here’s the set of rational numbers:

� Integers

• Counting numbers

• Zero

• Negative counting numbers

� Fractions

Like the integers, the rational numbers are closed under addition, subtraction,
and multiplication. Furthermore, when you divide one rational number by
another, the answer is always a rational number. Another way to say this is
that the rational numbers are closed under division. 

Getting real
Even if you filled in all the rational numbers, you’d still have points left unla-
beled on the number line. These points are the irrational numbers.

An irrational number is a number that’s neither a whole number nor a fraction.
In fact, an irrational number can only be approximated as a non-repeating deci-
mal. In other words, no matter how many decimal places you write down, you
can always write down more; furthermore, the digits in this decimal never
become repetitive or fall into any pattern. (For more on repeating decimals,
see Chapter 11.)

The most famous irrational number is π (you find out more about π when I
discuss the geometry of circles in Chapter 17.):

π = 3.14159265358979323846264338327950288419716939937510 ...

Together, the rational and irrational numbers make up the real numbers,
which comprise every point on the number line. In this book, I don’t spend
too much time on irrational numbers, but just remember that they’re there
for future reference.
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Chapter 2

It’s All in the Fingers —
Numbers and Digits

In This Chapter
� Understanding how place value turns digits into numbers

� Distinguishing whether zeros are important placeholders or meaningless leading zeros

� Reading and writing long numbers

� Understanding how to round numbers and estimate values 

When you’re counting, ten seems to be a natural stopping point — a
nice, round number. The fact that our ten fingers are matched up

so nicely with numbers may seem like a happy accident. But of course, it’s
no accident at all. Fingers were the first calculator that humans possessed.
Our number system — Hindu-Arabic numbers — is based on the number ten
because humans have ten fingers rather than eight or twelve. In fact, the very
word digit has two meanings: numerical symbol and finger.

In this chapter, I show you how place value turns digits into numbers. I also
show you when 0 is an important placeholder in a number and why leading
zeros don’t change the value of a number. And I show you how to read and
write long numbers. After that, I discuss two important skills: rounding num-
bers and estimating values. I also note when estimating is likely to result in a
misleading answer and show you how to avoid bad estimates and make
better ones.
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Knowing Your Place Value
The number system you’re most familiar with — Hindu-Arabic numbers —
has ten familiar digits:

0 1 2 3 4 5 6 7 8 9

Yet with only ten digits, you can express numbers as high as you care to go.
In this section, I show you how it happens.

Counting to ten and beyond
The ten digits in our number system allow you to count from 0 to 9. All higher
numbers are produced using place value. Place value assigns a digit a greater
or lesser value depending on where it appears in a number. Each place in a
number is ten times greater than the place to its immediate right. 

To understand how a whole number gets its value, suppose you write the
number 45,019 all the way to the right in Table 2-1, one digit per cell, and add
up the numbers you get.

30 Part I: Arming Yourself with the Basics of Basic Math 

Telling the difference between numbers and digits
Sometimes, people confuse numbers and digits.
For the record, here’s the difference: 

� A digit is a single numerical symbol, from 0
to 9. 

� A number is a string of one or more digits. 

For example, 7 is both a digit and a number. In
fact, it’s a one-digit number. However, 15 is a
string of two digits, so it’s a number — a two-digit
number. And 426 is a three-digit number. You get
the idea.

In a sense, a digit is like a letter of the alphabet.
By themselves, the uses of 26 letters, A through
Z, are limited. (How much can you do with a
single letter such as K or W?) Only when you
begin using strings of letters as building blocks
to spell words does the power of letters become
apparent. Similarly, the ten digits, 0 through 9,
have a limited usefulness until you begin build-
ing strings of digits — that is, numbers.
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Table 2-1 45,019 Displayed in a Place-Value Chart
Millions Thousands Ones

Hundred Ten Mil- Hundred Ten Thou- Thou- Hun- Tens Ones
Millions Millions lions Thousands sands sands dreds

4 5 0 1 9

You have 4 ten thousands, 5 thousands, 0 hundreds, 1 ten, and 9 ones. The
chart shows you that the number breaks down as follows:

45,019 = 40,000 + 5,000 + 0 + 10 + 9

In this example, notice that the presence of the digit 0 in the hundreds place
means that zero hundreds are added to the number.

Telling placeholders from leading zeros
Although the digit 0 adds no value to a number, it acts as a placeholder to
keep the other digits in their proper places. For example, the number
5,001,000 breaks down into 5,000,000 + 1,000. Suppose, however, you decide
to leave all the 0s out of the chart. Table 2-2 shows what you’d get.

Table 2-2 5,001,000 Displayed Incorrectly
without Place-Holding Zeros

Millions Thousands Ones

Hundred Ten Mil- Hundred Ten Thou- Thou- Hun- Tens Ones
Millions Millions lions Thousands sands sands dreds

5 1

The chart tells you that 5,001,000 = 50 + 1. Clearly, this answer is wrong!

As a rule, when a 0 appears to the right of at least one digit other than 0, it’s a
placeholder. Place-holding zeros are important — always include them when
you write a number. However, when a 0 appears to the left of every digit
other than 0, it’s a leading zero. Leading zeros serve no purpose in a number,
so dropping them is customary. For example, place the number 003,040,070
on the chart (see Table 2-3).
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Table 2-3 3,040,070 Displayed with Two Leading Zeros
Millions Thousands Ones

Hundred Ten Mil- Hundred Ten Thou- Thou- Hun- Tens Ones
Millions Millions lions Thousands sands sands dreds

0 0 3 0 4 0 0 7 0

The first two 0s in the number are leading zeros because they appear to the left
of the 3. You can drop these 0s from the number, leaving you with 3,040,070.
The remaining 0s are all to the right of the 3, so they’re placeholders — be sure
to write them in.

Reading long numbers
When you write a long number, you use commas to separate periods. Periods
are simply groups of three numbers. They help make long numbers more
readable. For example, here’s about as long a number as you’ll ever see:

234,845,021,349,230,467,304

Table 2-4 shows a larger version of the place-value chart.

Table 2-4 A Place-Value Chart Separated into Periods
Quintillions Quadrillions Trillions Billions Millions Thousands Ones

234 845 021 349 230 467 304

This version of the chart helps you read the number. Begin all the way to the
left and read, “Two hundred thirty-four quintillion, eight hundred forty-five
quadrillion, twenty-one trillion, three hundred forty-nine billion, two hundred
thirty million, four hundred sixty-seven thousand, three hundred four.”

When you read and write whole numbers, don’t say the word and. In math,
the word and means you have a decimal point. That’s why when you write a
check, you save the word and for the number of cents, which is expressed as
a decimal or fraction. (I discuss decimals in Chapter 11.)
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Close Enough for Rock ’n’ Roll:
Rounding and Estimating

As numbers get longer, calculations become tedious, and you’re more likely
to make a mistake or just give up. When you’re working with long numbers,
simplifying your work by rounding numbers and estimating values is some-
times helpful. At other times, you may want to round off an answer after you
do your calculations.

When you round a number, you change some of its digits to place-holding
zeros. Rounding numbers allows you to change a difficult number to an easier
one. And when you estimate a value, you work with rounded numbers to find
an approximate answer to a problem. In this section, you build both skills. I
also show you when you’re likely to make a bad estimate and how to avoid it.

Rounding numbers
Rounding numbers makes long numbers easier to work with. In this section,
I show you how to round numbers to the nearest ten, hundred, thousand, and
beyond.

Rounding numbers to the nearest ten
The simplest kind of rounding you can do is with two-digit numbers. When
you round a two-digit number to the nearest ten, you simply bring it up or
down to the nearest number that ends in 0. For example,

39 → 40 51 → 50 73 → 70

Even though numbers ending in 5 are in the middle, always round them up to
the next-highest number that ends in 0:

15 → 20 35 → 40 85 → 90

Numbers in upper 90s get rounded up to 100:

99 → 100 95 → 100 94 → 90

After you know how to round a two-digit number, you can round just about
any number. For example, to round most longer numbers to the nearest ten,
just focus on the ones and tens digits:

734 → 730 1,488 → 1,490 12,345 → 12,350
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Occasionally, a small change to the ones and tens digits affects the other
digits. (This is a lot like when the odometer in your car rolls a bunch of 9s
over to 0s.) For example:

899 → 900 1,097 → 1,100 9,995 → 10,000

Rounding numbers to the nearest hundred and beyond 
To round numbers to the nearest hundred, or thousand, or beyond, focus
only on two digits: the digit in the place you’re rounding to and the digit to its
immediate right. Change all other digits to the right of these two digits to 0s.
For example, suppose you want to round 642 to the nearest hundred. Focus
on the hundreds digit (6) and the digit to its immediate right (4):

642

I’ve underlined these two digits. Now, just round these two digits as if you were
rounding to the nearest ten, and change the digit to the right of them to a 0:

642 → 600 

Here are a few more examples of rounding numbers to the nearest hundred:

7,891 → 7,900 15,753 → 15,800 99,961 → 100,000

When rounding numbers to the nearest thousand, underline the thousands
digit and the digit to its immediate right. Round the number by focusing only
on the two underlined digits and, when you’re done, change all digits to the
right of these to 0s: 

4,984 → 5,000 78,521 → 79,000 1,099,304 → 1,099,000

Even when rounding to the nearest million, the same rules apply:

1,234,567 → 1,000,000 78,883,958 → 79,000,000

Estimating value to make problems easier
After you know how to round numbers, you can use this skill in estimating
values. Estimating saves you time by allowing you to avoid complicated com-
putations and still get an approximate answer to a problem.

When you get an approximate answer, you don’t use an equal sign; instead,
you use this wavy symbol, which means is approximately equal to: ≈.
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Suppose you want to add these numbers: 722 + 506 + 383 + 1,279 + 91 + 811.
This computation is tedious, and you may make a mistake. But you can make
the addition easier by first rounding all the numbers to the nearest hundred
and then adding:

≈ 700 + 500 + 400 + 1300 + 100 + 800 = 3,800

The approximate answer is 3,800. This answer isn’t very far off from the exact
answer, which is 3,792.

Similarly, suppose you want to multiply 879 × 618. Again, this computation
doesn’t look like a lot of fun. Instead, you can round these numbers to the
nearest hundred:

≈ 900 × 600 = 540,000

This time, the approximate answer is 540,000, and the exact answer is
543,222. Again, not a bad estimate.

Estimating is useful, but it can also lead to results that aren’t very close to
the right answer. You’re most likely to arrive at a bad estimate when you

� Round numbers that are close to the middle of the range

� Round too many numbers in the same direction (either up or down)

� Multiply or divide rounded numbers

For example, suppose you want to multiply 349 × 243. You start by rounding
both of these numbers:

≈ 300 × 200 = 60,000

Your estimate is 60,000, but the actual answer is 84,807 — not a very good
approximation. What happened? First, notice that 349 is very close to the
middle of the range between 300 and 400. And 247 is close to the middle of
the range between 200 and 300. So when you rounded these numbers, you
changed their values a lot. Second, you rounded both numbers down to lower
values. That’s why the estimate ended up so much lower than the real
answer. Third, you multiplied. In general, multiplying and dividing throw off
estimates more than addition and subtraction do.
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Chapter 3

The Big Four:
Addition, Subtraction,

Multiplication, and Division
In This Chapter
� Reviewing addition 

� Understanding subtraction

� Viewing multiplication as a fast way to do repeated addition

� Getting clear on division

When most folks think of math, the first thing that comes to mind is four
little (or not-so-little) words: addition, subtraction, multiplication, and

division. I call these operations the Big Four all through the book.

In this chapter, I introduce you (or reintroduce you) to these little gems.
Although I assume you’re already familiar with the Big Four, this chapter
reviews these operations, taking you from what you may have missed to what
you need to succeed as you move onward and upward in math.

Adding Things Up
Addition is the first operation you find out about, and it’s almost everybody’s
favorite. It’s simple, friendly, and straightforward. No matter how much you
worry about math, you probably never lost a minute of sleep over addition.
Addition is all about bringing things together, which is a positive thing. For
example, suppose you and I are standing in line to buy tickets for a movie.
I have $15 and you have only $5. I could lord it over you and make you feel
crummy that I can go to the movies and you can’t. Or instead, you and I can
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join forces, adding together my $15 and your $5 to make $20. Now, not only can
we both see the movie, but we may even be able to buy some popcorn, too.

Addition uses only one sign — the plus sign (+): Your equation may read 
2 + 3 = 5 or 12 + 2 = 14 or 27 + 44 = 71, but the plus sign always means the
same thing.

When you add two numbers together, those two numbers are called addends,
and the result is called the sum. So in the first example, the addends are 2 and
3, and the sum is 5.

In line: Adding larger numbers in columns
When you want to add larger numbers, stack them on top of each other so
that the ones digits line up in a column, the tens digits line up in another
column, and so on. (Chapter 1 has the scoop on digits and place value.)
Then add column by column, starting from the ones column on the right.
Not surprisingly, this method is called column addition. Here’s how you add
55 + 31 + 12. First add the ones column:

55
31

+ 12
8

Next, move to the tens column:

55
31

+ 12
98

This problem shows you that 55 + 31 + 12 = 98.

Carry on: Dealing with two-digit answers
Sometimes when you’re adding a column, the sum is a two-digit number. In
that case, you need to write down the ones digit of that number and carry
the tens digit over to the next column to the left — that is, write this digit
above the column so you can add it with the rest of the numbers in that
column. For example, suppose you want to add 376 + 49 + 18. In the ones
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column, 6 + 9 + 8 = 23, so write down the 3 and carry the 2 over to the top
of the tens column:

2
376
49

+ 18
3

Now continue by adding the tens column. In this column, 2 + 7 + 4 + 1 = 14, so
write down the 4 and carry the 1 over to the top of the hundreds column:

12
376
49

+ 18
43

Continue adding in the hundreds column:

12
376

49
+ 18
443

This problem shows you that 376 + 49 + 18 = 443.

Take It Away: Subtracting
Subtraction is usually the second operation you discover, and it’s not much
harder than addition. Still, there’s something negative about subtraction —
it’s all about who has more and who has less. Suppose you and I have been
running on treadmills at the gym. I’m happy because I ran 3 miles, but then
you start bragging that you ran 10 miles. You subtract and tell me that I
should be very impressed that you ran 7 miles farther than I did. (But with an
attitude like that, don’t be surprised if you come back from the showers to
find your running shoes filled with liquid soap!)

As with addition, subtraction has only one sign: the minus sign (–). You end
up with equations such as 4 – 1 = 3 and 14 – 13 = 1 and 93 – 74 = 19.
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When you subtract one number from another, the result is called the difference.
This term makes sense when you think about it: When you subtract, you find
out the difference between a higher number and a lower one.

In subtraction, the first number is called the subtrahend, and the second
number is called the minuend. But almost nobody ever remembers which is
which, so when I talk about subtraction, I prefer to say the first number and
the second number.

One of the first things you probably heard about subtraction is that you can’t
take away more than you start with. In that case, the second number can’t
be larger than the first. And if the two numbers are the same, the result is
always 0. For example, 3 – 3 = 0 and 11 – 11 = 0 and 1776 – 1776 = 0. Later,
someone breaks the news that you can take away more than you have. When
you do, though, you need to place a minus sign in front of the difference to
show that you have a negative number, a number below 0:

4 – 5 = –1

10 – 13 = –3

88 – 99 = –11

When subtracting a larger number from a smaller number, remember the
words switch and negate. That is, switch the order of the two numbers and do
the subtraction as you normally would, but at the end negate the result by
attaching a minus sign. For example, to find 10 – 13, you switch the order of
these two numbers, giving you 13 – 10, which equals 3; then negate this result
to get –3. That’s why 10 – 13 = –3.

The minus sign gets double duty, so don’t get confused. When you stick a
minus sign between two numbers, it means the first number minus the second
number. But when you attach it to the front of a number, it means that this
number is a negative number.

Flip to Chapter 1 to see how negative numbers work on the number line.
I also go into more detail on negative numbers and the Big Four operations
in Chapter 4.

Columns and stacks: Subtracting
larger numbers
To subtract larger numbers, stack one on top of the other as you do with
addition. (For subtraction, however, don’t stack more than two numbers —
put the larger number on top and the smaller under it.) For example, suppose

40 Part I: Arming Yourself with the Basics of Basic Math 

07_135372 ch03.qxd  8/28/07  6:39 PM  Page 40



you want to subtract 386 – 54. To start out, stack the two numbers and begin
subtracting in the ones column: 6 – 4 = 2:

386
– 54

2

Next, move to the tens column and subtract 8 – 5 to get 3:

386
– 54

32

Finally, move to the hundreds column. This time, 3 – 0 = 3:

386
– 54
332

This problem shows you that 386 – 54 = 332.

Can you spare a ten? Borrowing 
to subtract
Sometimes, the top digit in a column is smaller than the bottom digit in that
column. In that case, you need to borrow from the next column to the left.
Borrowing is a two-step process:

1. Subtract 1 from the top number in the column directly to the left.

Cross out the number you’re borrowing from, subtract 1, and write the
answer above the number you crossed out.

2. Add 10 to the top number in the column you were working in.

For example, suppose you want to subtract 386 – 94. The first step is to sub-
tract 4 from 6 in the ones column, which gives you 2:

386
– 94

2
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When you move to the tens column, however, you find that you need to sub-
tract 8 – 9. Because 8 is smaller than 9, you need to borrow from the hun-
dreds column. First, cross out the 3 and replace it with a 2, because 3 – 1 = 2:

2
386
– 94

2

Next, place a 1 in front of the 8, changing it to an 18, because 8 + 10 = 18:

2
3 18 6
–  9 4

2

Now you can subtract in the tens column: 18 – 9 = 9:

2 18 6
–  9 4

9 2

The final step is simple: 2 – 0 = 2:

2 18 6
–  9 4
2 9 2

Therefore, 386 – 94 = 292.

In some cases, the column directly to the left may not have anything to lend.
Suppose, for instance, you want to subtract 1,002 – 398. Beginning in the ones
column, you find that you need to subtract 2 – 8. Because 2 is smaller than 8,
you need to borrow from the next column to the left. But the digit in the tens
column is a 0, so you can’t borrow from there because the cupboard is bare,
so to speak:

1,002
– 398

When borrowing from the next column isn’t an option, you need to borrow
from the nearest non-zero column to the left.
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In this example, the column you need to borrow from is the thousands
column. First, cross out the 1 and replace it with a 0. Then place a 1 in front
of the 0 in the hundreds column:

0
1 10 0 2

– 3 9 8

Now, cross out the 10 and replace it with a 9. Place a 1 in front of the 0 in the
tens column:

0 9
1 10 10 2

– 3   9 8

Finally, cross out the 10 in the tens column and replace it with a 9. Then place
a 1 in front of the 2:

0 9 9
1 10 10 12

– 3   9   8

At last, you can begin subtracting in the ones column: 12 – 8 = 4:

0 9 9
1 10 10 12

– 3   9   8
4

Then subtract in the tens column: 9 – 9 = 0:

0 9 9
1 10 10 12
– 3   9   8

0   4

Then subtract in the hundreds column: 9 – 3 = 9:

0 9 9
1 10 10 12
– 3   9   8

6 0 4

Because nothing is left in the thousands column, you don’t need to subtract
anything else. Therefore, 1,002 – 398 = 604.
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Multiplying
Multiplication is often described as a sort of shorthand for repeated addition.
For example,

4 × 3 means add 4 to itself 3 times: 4 + 4 + 4 = 12

9 × 6 means add 9 to itself 6 times: 9 + 9 + 9 + 9 + 9 + 9 = 54

100 × 2 means add 100 to itself 2 times: 100 + 100 = 200

Although multiplication isn’t as warm and fuzzy as addition, it’s a great 
timesaver. For example, suppose you coach a Little League baseball team and
you’ve just won a game against the toughest team in the league. As a reward,
you promised to buy three hot dogs for each of the nine players on the team.
To find out how many hot dogs you need, you could add 3 together 9 times.
Or you can save time by multiplying 3 times 9, which gives you 27. Therefore,
you need 27 hot dogs (plus a whole lot of mustard and sauerkraut).

When you multiply two numbers, the two numbers that you’re multiplying
are called factors, and the result is the product.

In multiplication, the first number is also called the multiplicand and the
second number is the multiplier. But almost nobody ever remembers
these words.

Signs of the times
When you’re first introduced to multiplication, you use the times sign (×).
However, algebra uses the letter x a lot, which looks similar to the times sign,
so people often choose to use other multiplication symbols for clarity. As you
move onwards and upwards on your math journey, you should be aware of
the conventions I discuss in the following sections.

Arriving on the dot
In math beyond arithmetic, the symbol ⋅ replaces ×. For example,

4 ⋅ 2 = 8 means 4 × 2 = 8

6 ⋅ 7 = 42 means 6 × 7 = 42

53 ⋅ 11 = 583 means 53 × 11 = 583
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That’s all there is to it: Just use the ⋅ symbol anywhere you would’ve used the
standard times sign (×).

Speaking parenthetically
In math beyond arithmetic, using parentheses without another operator
stands for multiplication. The parentheses can enclose the first number,
the second number, or both numbers. For example,

3(5) = 15 means 3 × 5 = 15

(8)7 = 56 means 8 × 7 = 56

(9)(10) = 90 means 9 × 10 = 90

However, notice that when you place another operator between a number
and a parenthesis, that operator takes over. For example,

3 + (5) = 8 means 3 + 5 = 8

(8) – 7 = 1 means 8 – 7 = 1

(9) ⋅ (10) = 90 means 9 × 10 = 90

Note: In the third example, you don’t really need the ⋅, but it isn’t doing any
harm, either.

Memorizing the multiplication table
You may consider yourself among the multiplicationally challenged. That is,
you consider being called upon to remember 9 × 7 a tad less appealing than
being dropped from an airplane while clutching a parachute purchased from
the trunk of some guy’s car. If so, then this section is for you.

Looking at the old multiplication table
One glance at the old multiplication table, Table 3-1, reveals the problem. If
you saw the movie Amadeus, you may recall that Mozart was criticized for
writing music that had “too many notes.” Well, in my humble opinion, the
multiplication table has too many numbers.
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Table 3-1 The Monstrous Standard Multiplication Table
0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 10 12 14 16 18

3 0 3 6 9 12 15 18 21 24 27

4 0 4 8 12 16 20 24 28 32 36

5 0 5 10 15 20 25 30 35 40 45

6 0 6 12 18 24 30 36 42 48 54

7 0 7 14 21 28 35 42 49 56 63

8 0 8 16 24 32 40 48 56 64 72

9 0 9 18 27 36 45 54 63 72 81

I don’t like the multiplication table any more than you do. Just looking at it
makes my eyes glaze over. With 100 numbers to memorize, no wonder so
many folks just give up and carry a calculator.

Introducing the short multiplication table
If the multiplication table from Table 3-1 were smaller and a little more manage-
able, I’d like it a lot more. So here’s my short multiplication table, in Table 3-2.

Table 3-2 The Short Multiplication Table

3 4 5 6 7 8

3

4

5

6

7

8

9

9 12

16

15

20

25

18

24

30

36

21

28

35

42

49

24

32

40

48

56

64

9

27

36

45

54

63

72

81
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As you can see, I’ve gotten rid of a bunch of numbers. In fact, I’ve reduced the
table from 100 numbers to 28. I’ve also shaded 11 of the numbers I’ve kept.

Is just slashing and burning the sacred multiplication table wise? Is it even
legal? Well, of course it is! After all, the table is just a tool, like a hammer. If a
hammer’s too heavy to pick up, then you ought to buy a lighter one. Similarly,
if the multiplication table is too big to work with, then you need a smaller one.
Besides, I’ve removed only the numbers you don’t need. For example, the con-
densed table doesn’t include rows or columns for 0, 1, or 2. Here’s why:

� Any number multiplied by 0 is 0 (people call this trait the zero property
of multiplication).

� Any number multiplied by 1 is that number itself (which is why mathe-
maticians call 1 the multiplicative identity).

� Multiplying by 2 is fairly easy; if you can count by 2s — 2, 4, 6, 8, 10, and
so forth — you can multiply by 2.

The rest of the numbers I’ve gotten rid of are redundant. (And not just redun-
dant, but also repeated, extraneous, and unnecessary!) For example, any way
you slice it, 3 × 5 and 5 × 3 are both 15 (you can switch the order of the factors
because multiplication is commutative — see Chapter 4 for details). In my
condensed table, I’ve simply removed the clutter.

So what’s left? Just the numbers you need. These numbers include a gray row
and a gray diagonal. The gray row is the 5 times table, which you probably
know pretty well. (In fact, they may evoke a childhood memory of running to
find a hiding place on a warm spring day while one of your friends counted in
a loud voice: 5, 10, 15, 20, ...)

The numbers on the gray diagonal are the square numbers. As I discuss in
Chapter 1, when you multiply any number by itself, the result is a square
number. You probably know these numbers better than you think.

Getting to know the short multiplication table
In about an hour, you can make huge strides in memorizing the multiplication
table. To start out, make a set of flash cards that give a multiplication prob-
lem on the front and the answer on the back. They may look like Figure 3-1.
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Remember, you need to make only 28 flash cards — one for every example in
Table 3-2. Split these 28 into two piles — a “gray” pile with 11 cards and a
“white” pile with 17. (You don’t have to color the cards gray and white; just
keep track of which pile is which according to the colors in Table 3-2.) Then
begin:

1. 5 minutes: Work with the gray pile, going through it one card at a time. If
you get the answer right, put that card on the bottom of the pile. If you
get it wrong, put it in the middle so you get another chance at it more
quickly.

2. 10 minutes: Switch to the white pile and work with it in the same way. 

3. 15 minutes: Repeat Steps 1 and 2.

Now take a break. Really — the break is important to rest your brain. Come
back later in the day and do the same thing.

After you’re done with this exercise, you should find going through all 28
cards with almost no mistakes to be fairly easy. At this point, feel free to
make cards for the rest of the standard times table — you know, the cards
with all the 0, 1, 2 times tables on them and the redundant problems — mix
all 100 cards together, and amaze your family and friends.

7
× 6

4242Figure 3-1:
Both sides

of a flash
card, with

7 × 6 on the
front and 42
on the back.
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Double digits: Multiplying larger numbers
The main reason to know the multiplication table is so you can more easily
multiply larger numbers. For example, suppose you want to multiply 53 × 7.
Start by stacking these numbers one on top of another with a line under-
neath, and then multiply 3 by 7. Because 3 × 7 = 21, write down the 1 and
carry the 2:

2
53

× 7
1

Next, multiply 7 by 5. This time, 5 × 7 is 35. But you also need to add the 2
that you carried over, which makes the result 37. Because 5 and 7 are the last
numbers to multiply, you don’t have to carry, so write down the 37 — you
find that 53 × 7 = 371:

2
53

× 7
371

When multiplying larger numbers, the idea is similar. For example, suppose
you want to multiply 53 by 47. (The first few steps — multiplying by the 
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To the nines: A slick trick
Here’s a trick to help you remember the 9 times
table. To multiply any one-digit number by 9,

1. Subtract 1 from the number and jot down the
answer.

For example, suppose you want to multiply
7 × 9. Here, 7 – 1 = 6.

2. Jot down a second number so that, together,
the two numbers you wrote add up to 9.
You’ve just written the answer you were
looking for.

Adding, you get 6 + 3 = 9. So 7 × 9 = 63.

As another example, suppose you want to mul-
tiply 8 × 9:

8 – 1 = 7

7 + 2 = 9

So 8 × 9 = 72. This trick works for every one-digit
number except 0 (but you already know that 
0 × 9 = 0).
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7 in 47 — are the same, so I pick up with the next step.) Now you’re ready to
multiply by the 4 in 47. But remember that this 4 is in the tens column, so it
really means 40. So to begin, put a 0 directly under the 1 in 371:

53
× 47
371

0

This 0 acts as a placeholder so that this row is arranged properly. (See
Chapter 1 for more about placeholding zeros.)

When multiplying by larger numbers with two digits or more, use one place-
holding zero when multiplying by the tens digit, two placeholding zeros when
multiplying the hundreds digit, three zeros when multiplying by the thousands
digit, and so forth.

Now you multiply 3 × 4 to get 12, so write down the 2 and carry the 1:

1
53

× 47
371
20

Continuing, multiply 5 × 4 to get 20 and then add the 1 that you carried over,
giving a result of 21:

1
53

× 47
371

2120

To finish up, add the two products (the multiplication results):

53
× 47
371

+  2120
2,491

So 53 × 47 = 2,491.
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Doing Division Lickety-Split
The last of the Big Four operations is division. Division literally means split-
ting things up. For example, suppose you’re a parent on a picnic with your
three children. You’ve brought along 12 pretzel sticks as snacks and want
to split them fairly so that each child gets the same number (don’t want to
cause a fight, right?). 

Each child gets four pretzel sticks. This problem tells you that

12 ÷ 3 = 4

As with multiplication, division also has more than one sign: the division sign
(÷) and the fraction slash (/) or fraction bar (—). So some other ways to write
the same information are

12⁄3 = 4 and 3
12 4=

Whichever way you write it, the idea is the same: When you divide 12 pretzel
sticks equally among three people, each person gets four of them.

When you divide one number by another, the first number is called the dividend,
the second is called the divisor, and the result is the quotient. For example, in the
division from the earlier example, the dividend is 12, the divisor is 3, and the
quotient is 4.
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Whatever happened to the division table?
Considering how much time teachers spend on
the multiplication table, you may wonder why
you’ve never seen a division table. For one
thing, the multiplication table focuses on multi-
plying all the one-digit numbers by each other.
This focus wouldn’t work too well for division,
because division usually involves at least one
number that has more than one digit.

Besides, you can use the multiplication table for
division, too, by reversing the way you normally

use the table. For example, the multiplication
table tells you that 6 × 7 = 42. You can reverse this
equation to give you these two division problems:

42 ÷ 6 = 7

42 ÷ 7 = 6

Using the multiplication table in this way takes
advantage of the fact that multiplication and
division are inverse operations. I discuss this
important idea further in Chapter 4.
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Making short work of long division
In the olden days, knowing how to divide large numbers — for example,
62,997 ÷ 843 — was important. People used long division, an organized
method for dividing a large number by another number. The process involved
dividing, multiplying, subtracting, and dropping numbers down.

But face it — one of the main reasons the pocket calculator was invented was
to save 21st-century humans from ever having to do long division again.

Having said that, I need to add that your teacher and math-crazy friends may
not agree. Perhaps they just want to make sure you’re not completely help-
less if your calculator disappears somewhere in your backpack or your desk
drawer or the Bermuda Triangle. But if do you get stuck doing page after
page of long division against your will, you have my deepest sympathy.

I will go this far, however: Understanding how to do long division with some
not-too-horrible numbers is a good idea. In this section, I give you a good
start with long division, and with luck, your instructor won’t hammer it home
with a vengeance!

One-digit divisors
Recall that the divisor in a division problem is the number that you’re dividing
by. When you’re doing long division, the size of the divisor is your main con-
cern: Small divisors are easy to work with, and large ones are a royal pain. So
I start with a nice, small, one-digit divisor. Suppose you want to find 860 ÷ 5.
Start off by writing the problem like this:

5 860g

Unlike the other Big Four operations, long division moves from left to right. In
this case, you start with the number in the hundreds column (8). To begin,
ask how many times 5 goes into 8 — that is, what’s 8 ÷ 5? The answer is 1
(with a little bit left over), so write 1 directly above the 8. Now multiply 1 × 5
to get 5, place the answer directly below the 8, and draw a line beneath it:

5 860
5

1
g

Subtract 8 – 5 to get 3. (Note: After you subtract, the result should always be
smaller than the divisor. If not, you need to write a higher number above the
division symbol.) Then bring down the 6 to make the new number 36:

5 860
1

5
36

-
g
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These steps are one complete cycle, and to complete the problem you just
need to repeat them. Now ask how many times 5 goes into 36 — that is,
what’s 36 ÷ 5? The answer is 7 (with a little left over). Write 7 just above the 6,
and then multiply 7 × 5 to get 35; write the answer under 36:

5 860
17

5
36
35

-
g

Now subtract to get 36 – 35 = 1; bring down the 0 next to the 1 to make the
new number 10:

5 860
17

5
36
35
10

-

-

g

Another cycle is complete, so begin the next cycle by asking how many times
5 goes into 10 — that is, 10 ÷ 5. The answer this time is 2. Write down the 2 in
the answer above the 0. Multiply to get 2 × 5 = 10, and write this answer
below the 10:

5 860
172

5
36
35
10
10

-
g

Now subtract 10 – 10 = 0. Because you have no more numbers to bring down,
you’re finished, and here’s the answer (that is, the quotient):

5 860
172

5
36
35
10
10
0

-

-

Quotient!

g

So 860 ÷ 5 = 172.
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This problem divides evenly, but many don’t. The following sections tell you
what to do when you run out of numbers to bring down, and Chapter 11
explains how to get a decimal answer.

Getting leftovers: Division with a remainder
Division is different from addition, subtraction, and multiplication in that
having a remainder is possible. A remainder is simply a portion left over from
the division.

The letter r indicates that the number that follows is the remainder.

For example, suppose you want to divide seven candy bars between two
people without breaking any candy bars into pieces (too messy). So each
person receives three candy bars, and one candy bar is left over. This prob-
lem shows you the following:

7 ÷ 2 = 3 with a remainder of 1, or 3 r 1

In long division, the remainder is the number that’s left when you no longer
have numbers to bring down. The following equation shows that 47 ÷ 3 = 15 r 2:

2

3 47
15

3
17
15

-

-

Remainder!

Quotient!

g

Note that when you’re doing division with a small dividend and a large divisor,
you always get a quotient of 0 and a remainder of the number you started with:

1 ÷ 2 = 0 r 1

14 ÷ 23 = 0 r 14

2,000 ÷ 2,001 = 0 r 2,000
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Part II
Getting a Handle

on Whole
Numbers
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In this part . . .

I introduce a whole host of new concepts related to the
Big Four operations (adding, subtracting, multiplying,

and dividing). I discuss inverse operations, the commuta-
tive and associative properties, negative numbers, and
inequalities. I tell you all about the three E’s of math —
expressions, equations, and evaluation. I also show you
how to use order of precedence to turn complex-looking
math expressions into a single number. You discover how
to solve word problems (also called story problems) by
writing word equations that make sense of what you’re
reading. I also give you a bunch of tricks for deciding
whether one number is divisible by another and show you
how to find the greatest common factor (GCF) and least
common multiple (LCM) of two numbers.
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Chapter 4

Putting the Big Four
Operations to Work

In This Chapter
� Identifying which operations are inverses of each other

� Knowing the operations that are commutative, associative, and distributive

� Performing the Big Four operations on negative numbers

� Using four symbols for inequality

� Understanding exponents, roots, and absolute values

W hen you understand the Big Four operations that I cover in Chapter 3 —
adding, subtracting, multiplying, and dividing — you can begin to look

at math on a whole new level. In this chapter, you extend your understanding
of the Big Four operations and move beyond them. I begin by focusing on
four important properties of the Big Four operations: inverse operations,
commutative operations, associative operations, and distribution. Then I
show you how to perform the Big Four on negative numbers.

I continue by introducing you to some important symbols for inequality.
Finally, you’re ready to move beyond the Big Four by discovering three more-
advanced operations: exponents (also called powers), square roots (also
called radicals), and absolute values.

Knowing Properties of the 
Big Four Operations

When you know how to do the Big Four operations — add, subtract, multiply,
and divide — you’re ready to grasp a few important properties of these impor-
tant operations. Properties are features of the Big Four operations that
always apply no matter what numbers you’re working with.
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In this section, I introduce you to four important ideas: inverse operations,
commutative operations, associative operations, and the distributive property.
Understanding these properties can show you hidden connections among the
Big Four operations, save you time when calculating, and get you comfort-
able working with more-abstract concepts in math.

Inverse operations
Each of the Big Four operations has an inverse — an operation that undoes it.
Addition and subtraction are inverse operations because addition undoes
subtraction, and vice versa. For example, here are two inverse equations:

1 + 2 = 3

3 – 2 = 1

In the first equation, you start with 1 and add 2 to it, which gives you 3. In the
second equation, you have 3 and take away 2 from it, which brings you
back to 1. The main idea here is that you’re given a starting number — in
this case, 1 — and when you add a number and then subtract the same
number, you end up again with the starting number. This shows you that 
subtraction undoes addition.

Similarly, addition undoes subtraction — that is, if you subtract a number
and then add the same number, you end up where you started. For example,

184 – 10 = 174

174 + 10 = 184

This time, in the first equation, you start with 184 and take away 10 from it,
which gives you 174. In the second equation, you have 174 and add 10 to it,
which brings you back to 184. In this case, starting with the number 184, when
you subtract a number and then add the same number, the addition undoes
the subtraction and you end up back at 184.

In the same way, multiplication and division are inverse operations. For
example,

4 ⋅ 5 = 20

20 ÷ 5 = 4

This time, you start with the number 4 and multiply it by 5 to get 20. And
then you divide 20 by 5 to return to where you started at 4. So division
undoes multiplication. Similarly,

30 ÷ 10 = 3

3 ⋅ 10 = 30
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Here, you start with 30, divide by 10, and multiply by 10 to end up back at 30.
This shows you that multiplication undoes division.

Commutative operations
Addition and multiplication are both commutative operations. Commutative
means that you can switch around the order of the numbers without chang-
ing the result. This property of addition and multiplication is called the com-
mutative property. Here’s an example of how addition is commutative:

3 + 5 = 8 is the same as 5 + 3 = 8

If you start out with 5 books and add 3 books, the result is the same as if you
start with 3 books and add 5. In each case, you end up with 8 books.

And here’s an example of how multiplication is commutative:

2 ⋅ 7 = 14 is the same as 7 ⋅ 2 = 14

If you have two children and want to give them each seven flowers, you need
to buy the same number of flowers as someone who has seven children and
wants to give them each two flowers. In both cases, someone buys 14 flowers.

In contrast, subtraction and division are noncommutative operations. When
you switch around the order of the numbers, the result changes.

Here’s an example of how subtraction is noncommutative:

6 – 4 = 2 but 4 – 6 = –2

Subtraction is noncommutative, so if you have $6 and spend $4, the result is
not the same as if you have $4 and spend $6. In the first case, you still have $2
left over. In the second case, you owe $2. That is, switching the numbers
around turns the result into a negative number. (I discuss negative numbers
later in this chapter.)

And here’s an example of how division is noncommutative:

5 ÷ 2 = 2 r 1 but 2 ÷ 5 = 0 r 2 

For example, when you have five dog biscuits to divide between two dogs,
each dog gets two biscuits and you have one biscuit left over. But, when you
switch the numbers around and try to divide two biscuits among five dogs,
you don’t have enough biscuits to go around, so each dog gets none and you
have two left over.
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Associative operations
Addition and multiplication are both associative operations, which means that
you can group them differently without changing the result. This property of
addition and multiplication is also called the associative property. Here’s an
example of how addition is associative. Suppose you want to add 3 + 6 + 2.
You can solve this problem in two ways:

(3 + 6) + 2 3 + (6 + 2)

= 9 + 2 = 3 + 8

= 11 = 11

In the first case, I start by adding 3 + 6 and then add 2. In the second case,
I start by adding 6 + 2 and then add 3. Either way, the sum is 11.

And here’s an example of how multiplication is associative. Suppose you
want to multiply 5 ⋅ 2 ⋅ 4. You can solve this problem in two ways:

(5 ⋅ 2) ⋅ 4 5 ⋅ (2 ⋅ 4)

= 10 ⋅ 4 = 5 ⋅ 8

= 40 = 40

In the first case, I start by multiplying 5 ⋅ 2 and then multiply by 4. In the
second case, I start by multiplying 2 ⋅ 4 and then multiply by 5. Either way,
the product is 40. In contrast, subtraction and division are nonassociative
operations. This means that grouping them in different ways changes the
result.

Don’t confuse the commutative property with the associative property. The
commutative property tells you that it’s okay to switch around two numbers
that you’re adding or multiplying. The associative property tells you that
it’s okay to regroup three numbers using parentheses.

Taken together, the commutative and associative properties allow you to com-
pletely rearrange and regroup a string of numbers that you’re adding or multi-
plying without changing the result. You’ll find that the freedom to rearrange
expressions as you like to be very useful as you move on to algebra in Part V.
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Distributing to lighten the load
If you’ve ever tried to carry a heavy bag of groceries, you may have found
that distributing the contents into two smaller bags to be helpful. This same
concept also works for multiplication. 

In math, distribution (also called the distributive property of multiplication over
addition) allows you to split a large multiplication problem into two smaller
ones and add the results to get the answer.

For example, suppose you want to multiply these two numbers: 

17 × 101

You can multiply them out, but distribution provides a different way to think
about the problem that you may find easier. Because 101 = 100 + 1, you can
split this problem into two easier problems as follows:

= 17 × (100 + 1)

= (17 × 100) + (17 × 1) 

You take the number outside the parentheses, multiply it by each number
inside the parentheses one at a time, then add the products. At this point,
you may be able to solve the two multiplications in your head and then add
them up easily:

= 1,700 + 17 = 1,717

Distribution becomes even more useful when you get to algebra in Part VI.

Big Four Operations with 
Negative Numbers

In Chapter 2, I show you how to use the number line to understand how nega-
tive numbers work. In this section, I give you a closer look at how to perform
the Big Four operations with negative numbers. Negative numbers occur
when you subtract a larger number from a smaller one. For example,

5 – 8 = –3
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In real-world applications, negative numbers are used to represent debt. For
example, if you have only five chairs to sell but a customer pays for eight of
them, you owe her three more chairs. Even though you may have trouble pic-
turing –3 chairs, you still need to account for this debt, and negative numbers
are the right tool for the job.

Addition and subtraction 
with negative numbers
The great secret to adding and subtracting negative numbers is to turn every
problem into a series of ups and downs on the number line. After you know
how to do this, you find that all these problems are quite simple.

So in this section, I explain how to add and subtract negative numbers on the
number line. Don’t worry about memorizing every little bit of this procedure.
Instead, just follow along so you get a sense of how negative numbers fit onto
the number line. (If you need a quick refresher on how the number line
works, see Chapter 1.)

Starting with a negative number
When adding and subtracting on the number line, starting with a negative
number isn’t much different from starting with a positive number.  For exam-
ple, suppose you want to solve –3 + 4. Using the up and down rules, you get
the following:

Start at –3, up 4

So –3 + 4 = 1.

Similarly, suppose you want to solve –2 – 5. Again, the up and down rules
help you out. You’re subtracting, so move to the left:

Start at –2, down 5

So –2 – 5 = –7.

–9 –8 –7 –6 –5 –4 –3 –2 –1 0

–5 –4 –3 –2 –1 0 1 2 3 4 5
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Adding a negative number
Suppose you want to solve –2 + –4. You already know to start at –2, but where
do you go from there? Here’s the up and down rule for adding a negative
number:

Adding a negative number is the same as subtracting a positive number — that
is, go down on the number line.

By this rule, –2 + –4 is the same as –2 – 4, so

Start at –2, down 4

So –2 + (–4) = –6.

If you rewrite a subtraction problem as an addition problem — for instance,
rewriting 3 – 7 as 3 + (–7) — you can use the commutative and associative
properties of addition, which I discuss earlier in this chapter. Just remember to
keep the negative sign attached to the number when you rearrange: (–7) + 3.

Subtracting a negative number
The last rule you need to know is how to subtract a negative number. For
example, suppose you want to solve 2 – (–3). Here’s the up and down rule:

Subtracting a negative number is the same as adding a positive number —
that is, up on the number line.

This rule tells you that 2 – (–3) is the same as 2 + 3, so

Start at 2, up 3

So 2 – (–3) = 5.

When subtracting negative numbers, you can think of the two minus signs
canceling each other out to create a positive.

–2 –1 0 1 2 3 4 5 6 7

–8 –7 –6 –5 –4 –3 –2 –1 0 1 2
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Multiplication and division 
with negative numbers
Multiplication and division with negative numbers is virtually the same as 
it is with positive numbers. The presence of one or more minus signs (–)
doesn’t change the numerical part of the answer. The only question is whether
the sign is positive or negative:

Just remember that when you multiply or divide two numbers,

� If the numbers have the same sign, the result is always positive.

� If the numbers have opposite signs, the result is always negative.

For example,

2 ⋅ 3 = 6 2 ⋅ –3 = –6

–2 ⋅ –3 = 6 –2 ⋅ 3 = –6

As you can see, the numerical portion of the answer is always 6. The only
question is whether the complete answer is 6 or –6. That’s where the rule of
same or opposite signs comes in.

Another way of thinking of this rule is that the two negatives cancel each
other out to make a positive.

Similarly, look at these four division equations:

10 ÷ 2 = 5 10 ÷ –2 = –5

–10 ÷ –2 = 5 –10 ÷ 2 = –5

In this case, the numerical portion of the answer is always 5. When the signs
are the same, the result is positive, and when the signs are different, the
result is negative.

Understanding Units 
Anything that can be counted is a unit. That’s a pretty large category, because
almost anything that you can name can be counted. You discover more about
units of measurement in Chapter 15. For now, just understand that all units can
be counted, which means that you can apply the Big Four operations to units.
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Adding and subtracting units
Adding and subtracting units isn’t very different from adding and subtracting
numbers. Just remember that you can only add or subtract when the units
are the same. For example,

3 chairs + 2 chairs = 5 chairs

4 oranges – 1 orange = 3 oranges

What happens when you try to add or subtract different units? Here’s an
example:

3 chairs + 2 tables = ?

The only way you can complete this addition is to make the units the same:

3 pieces of furniture + 2 pieces of furniture = 5 pieces of furniture 

Multiplying and dividing units
You can always multiply and divide units by a number. For example, suppose
you have four chairs and but find that you need twice as many for a party.
Here’s how you represent this idea in math:

4 chairs ⋅ 2 = 8 chairs

Similarly, suppose you have 20 cherries and want to split them among four
people. Here’s how you represent this idea: 

20 cherries ÷ 4 = 5 cherries

But you have to be careful when multiplying or dividing units by units. For
example:

2 apples ⋅ 3 apples = ? WRONG!

12 hats ÷ 6 hats = ? WRONG!

Neither of these equations makes any sense. In these cases, multiplying or
dividing by units is meaningless. 
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In many cases, however, multiplying and dividing units is okay. For example,
multiplying units of length (such as inches, miles, or meters) results in square
units. For example,

3 inches ⋅ 3 inches = 9 square inches

10 miles ⋅ 5 miles = 50 square miles

100 meters ⋅ 200 meters = 20,000 square meters

You find out more about units of length in Chapter 15. Similarly, here are
some examples of when dividing units makes sense:

12 slices of pizza ÷ 4 people = 3 slices of pizza/person

140 miles ÷ 2 hours = 70 miles/hour

In these cases, you read the fraction slash (/) as per: slices of pizza per person
or miles per hour. You find out more about multiplying and dividing by units in
Chapter 15, when I show you how to convert from one unit of measurement to
another.

Understanding Inequalities
Sometimes, you want to talk about when two quantities are different. These
statements are called inequalities. In this section, I discuss four types of
inequalities: ≠ (doesn’t equal), < (less than), > (greater than), and ≈ (approxi-
mately equals).

Doesn’t equal (≠)
The simplest inequality is ≠, which you use when two quantities are not
equal. For example,

2 + 2 ≠ 5

3 × 4 ≠ 34

999,999 ≠ 1,000,000

You can read ≠ as “doesn’t equal” or “is not equal to.” Therefore, read 
2 + 2 ≠ 5 as “two plus two doesn’t equal five.”
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Less than (<) and greater than (>)
The symbol < means less than. For example, the following statements are true: 

4 < 5

100 < 1,000

2 + 2 < 5

Similarly, the symbol > means greater than. For example,

5 > 4

100 > 99

2 + 2 > 3

The two symbols < and > are similar and easily confused. Here are two simple
ways to remember which is which:

� Notice that the < looks sort of like an L. This L should remind you that it
means less than.

� Remember that in any true statement, the large open mouth of the symbol
is on the side of the greater amount, and the small point is on the side of
the lesser amount.

Approximately equals (≈)
In Chapter 2, I show you how rounding numbers makes large numbers easier
to work with. In that chapter, I also introduce ≈, which means approximately
equals.

For example,

49 ≈ 50

1,024 ≈ 1,000

999,999 ≈ 1,000,000

You can also use ≈ when you estimate the answer to a problem:

1,000,487 + 2,001,932 + 5,000,032

≈ 1,000,000 + 2,000,000 + 5,000,000 = 8,000,000
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Beyond the Big Four: Exponents, Square
Roots, and Absolute Value

In this section, I introduce you to three new operations that you need as you
move on with math: exponents, square roots, and absolute value. As with the
Big Four operations, these three operations take numbers and tweak them in
various ways. 

To tell the truth, these three operations have fewer everyday applications
than the Big Four. But you’ll be seeing a lot more of them as you progress in
your study of math. Fortunately, they aren’t difficult, so this is a good time to
become familiar with them. 

Understanding exponents
Exponents (also called powers) are shorthand for repeated multiplication. For
example, 23 means to multiply 2 by itself 3 times. To do that, use the following
notation:

23 = 2 ⋅ 2 ⋅ 2 = 8

In this example, 2 is the base number and 3 is the exponent. You can read 23 as
“2 to the third power” or “2 to the power of 3” (or even “2 cubed,” which has
to do with the formula for finding the value of a cube — see Chapter 16 for
details).

Here’s another example:

105 means to multiply 10 by itself 5 times

That works out like this:

105 = 10 ⋅ 10 ⋅ 10 ⋅ 10 ⋅ 10 = 100,000

This time, 10 is the base number and 5 is the exponent. Read 105 as “10 to the
fifth power” or “10 to the power of 5.”

When the base number is 10, figuring out any exponent is easy. Just write
down a 1 and that many 0s after it:

102 = 100 (1 with two 0s)

107 = 10,000,000 (1 with seven 0s)

1020 = 100,000,000,000,000,000,000 (1 with twenty 0s)
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Exponents with a base number of 10 are very important in scientific notation,
which I cover in Chapter 14.

The most common exponent is the number 2. When you take any whole
number to the power of 2, the result is a square number. (For more informa-
tion on square numbers, see Chapter 1.) For this reason, taking a number to
the power of 2 is called squaring that number. You can read 32 as “three
squared,” 42 as “four squared,” and so forth. Here are some squared numbers:

32 = 3 ⋅ 3 = 9

42 = 4 ⋅ 4 = 16

52 = 5 ⋅ 5 = 25

Any number raised to the 0 power equals 1. So 10, 370, and 999,9990 are 
equivalent, or equal.

Discovering your roots
Earlier in this chapter, in “Knowing Properties of the Big Four Operations,”
I show you how addition and subtraction are inverse operations. I also show
you how multiplication and division are inverse operations. In a similar way,
roots are the inverse operation of exponents. 

The most common root is the square root. A square root undoes an exponent
of 2. For example,

32 = 3 ⋅ 3 = 9, so 9 = 3

42 = 4 ⋅ 4 = 16, so 16 = 4

52 = 5 ⋅ 5 = 25, so 25 = 5

You can read the symbol either as “the square root of” or as “radical.” So, 
read 9 as either “the square root of 9” or “radical 9.”

As you can see, when you take the square root of any square number, the
result is the number that you multiplied by itself to get that square number 
in the first place. For example, to find 100, you ask the question, “What
number when multiplied by itself equals 100?” The answer in this case is 10,
because

10 ⋅ 10 = 100, so 100 = 10

You probably won’t use square roots too much until you get to algebra, but at
that point they become very handy.
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Figuring out absolute value
The absolute value of a number is the positive value of that number. It tells
you how far away from 0 a number is on the number line. The symbol for
absolute value is a set of vertical bars.

Taking the absolute value of a positive number doesn’t change that number’s
value. For example,

|3| = 3

|12| = 12

|145| = 145

However, taking the absolute value of a negative number changes it to a posi-
tive number:

|–5| = 5

|–10| = 10

|–212| = 212
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Chapter 5

A Question of Values: Evaluating
Arithmetic Expressions

In This Chapter
� Understanding the Three E’s of math — equations, expressions, and evaluation

� Using order of precedence to evaluate expressions containing the Big Four operations

� Working with expressions that contain exponents

� Evaluating expressions with parentheses

In this chapter, I introduce you to what I call the Three E’s of math: equa-
tions, expressions, and evaluation. 

The Three E’s of Math: Equations,
Expressions, and Evaluations

You should find the Three E’s of math very familiar because whether you real-
ize it or not, you’ve been using them for a long time. Whenever you add up the
cost of several items at the store, balance your checkbook, or figure out the
area of your room, you’re evaluating expressions and setting up equations.
In this section, I shed light on this stuff and give you a new way to look at it.

You probably already know that an equation is a mathematical statement that
has an equal sign (=) — for example, 1 + 1 = 2. An expression is a string of
mathematical symbols that can be placed on one side of an equation — for
example, 1 + 1. And evaluation is finding out the value of an expression as
a number — for example, finding out that the expression 1 + 1 is equal to
the number 2.
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Throughout the rest of the chapter, I show you how to turn expressions into
numbers using a set of rules called the order of operations (or order of prece-
dence). These rules look complicated, but I break them down so you can see
for yourself what to do next in any situation.

Equality for All: Equations
An equation is a mathematical statement that tells you that two things have
the same value — in other words, it’s a statement with an equal sign. The
equation is one of the most important concepts in mathematics because it
allows you to boil down a bunch of complicated information into a single
number. 

Mathematical equations come in lots of varieties: arithmetic equations, 
algebraic equations, differential equations, partial differential equations,
Diophantine equations, and many more. In this book, I look at only two types:
arithmetic equations and algebraic equations.

In this chapter, I discuss only arithmetic equations, which are equations
involving numbers, the Big Four operations, and the other basic operations I
introduce in Chapter 4 (absolute values, exponents, and roots). In Part V, I
introduce you to algebraic equations. Here are a few examples of simple
arithmetic equations:

2 + 2 = 4

3 ⋅ 4 = 12

20 ÷ 2 = 10
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Three properties of equality
Three properties of equality are called reflexiv-
ity, symmetry, and transitivity:

� Reflexivity says that everything is equal to
itself. For example,

1 = 1 23 = 23 1,000,007 = 1,000,007

� Symmetry says that you can switch around
the order in which things are equal. For
example,

4 ⋅ 5 = 20, so 20 = 4 ⋅ 5

� Transitivity says that if something is equal
to two other things, then those two other
things are equal to each other. For example, 

3 + 1 = 4 and 4 = 2 ⋅ 2, so 3 + 1 = 2 ⋅ 2

Because equality has all three of these proper-
ties, mathematicians call equality an equiva-
lence relation. The inequalities that I introduce
in Chapter 4 (≠, >, <, and ≈) don’t necessarily
share all these properties.
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And here are a few examples of more-complicated arithmetic equations:

1,000 – 1 – 1 – 1 = 997

(1 ⋅ 1) + (2 ⋅ 2) = 5

42 – 256 = (791 – 842) ⋅ 0

Hey, it’s just an expression
An expression is any string of mathematical symbols that can be placed on
one side of an equation. Mathematical expressions, just like equations, come
in a lot of varieties. In this chapter, I focus only on arithmetic expressions,
which are expressions that contain numbers, the Big Four operations, and a
few other basic operations (see Chapter 4). In Part V, I introduce you to alge-
braic expressions. Here are a few examples of simple expressions:

2 + 2

–17 + (–1)

14 ÷ 7

And here are a few examples of more-complicated expressions:

(88 – 23) ÷ 13

100 + 2 – 3 ⋅ 17

441 + |–23|

Evaluating the situation
At the root of the word evaluation is the word value. In other words, when
you evaluate something, you find its value. Evaluating an expression is also
referred to as simplifying, solving, or finding the value of an expression. The
words may change, but the idea is the same — boiling a string of numbers
and math symbols down to a single number.

When you evaluate an arithmetic expression, you simplify it to a single
numerical value — that is, you find the number that it’s equal to. For example,
evaluate the following arithmetic expression:

7 ⋅ 5
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How? Simplify it to a single number:

35

Putting the Three E’s together
I’m sure you’re dying to know how the Three E’s — equality, expressions, and
evaluation — are all connected. Evaluation allows you to take an expression
containing more than one number and reduce it down to a single number.
Then, you can make an equation, using an equal sign to connect the expression
and the number. For example, here’s an expression containing four numbers:

1 + 2 + 3 + 4

When you evaluate it, you reduce it down to a single number:

10

And now, you can make an equation by connecting the expression and the
number with an equal sign:

1 + 2 + 3 + 4 = 10

Introducing Order of Operations
When you were a kid, did you ever try putting on your shoes first and then
your socks? If you did, you probably discovered this simple rule:

1. Put on socks.

2. Put on shoes.

Thus you have an order of operations: The socks have to go on your feet
before your shoes; so in the act of putting on your shoes and socks, your
socks have precedence over your shoes. A simple rule to follow, right? 

In this section, I outline a similar set of rules for evaluating expressions called
the order of operations (sometimes called order of precedence). Don’t let the
long name throw you. Order of operations is just a set of rules to make sure
you get your socks and shoes on in the right order, mathematically speaking,
so you always get the right answer.

74 Part II: Getting a Handle on Whole Numbers 

10_135372 ch05.qxd  8/28/07  6:47 PM  Page 74



Note: Through most of this book, I introduce overarching themes at the
beginning of each section and then explain them later in the chapter instead
of building them and finally revealing the result. But order of operations is a
bit too confusing to present that way. Instead, I start with a list of four rules
and go into more detail about them later in the chapter. Don’t let the com-
plexity of these rules scare you off before you work through them!

Evaluate arithmetic expressions from left to right according to the following
order of operations:

1. Parentheses

2. Exponents

3. Multiplication and division

4. Addition and subtraction

Don’t worry about memorizing this list right now. I break it to you slowly in
the remaining sections of this chapter, starting from the bottom and working
toward the top, as follows:

� In “Applying order of operations to Big Four expressions,” I show Steps 3
and 4 — how to evaluate expressions with any combination of addition,
subtraction, multiplication, and division.

� In “Using order of operations in expressions with exponents,” I show you
how Step 2 fits in — how to evaluate expressions with Big Four operations
plus exponents, square roots, and absolute value.

� In “Understanding order of operations in expressions with parentheses,”
I show you how Step 1 fits in — how to evaluate all the expressions I
explain plus expressions with parentheses.

Applying order of operations
to Big Four expressions
As I explain earlier in this chapter, evaluating an expression is just simplifying
it down to a single number. Now, I get you started on the basics of evaluating
expressions that contain any combination of the Big Four operations —
adding, subtracting, multiplying, and dividing. (For more on the Big Four,
see Chapter 3.) Generally speaking, the Big Four expressions come in the
three types outlined in Table 5-1.
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Table 5-1 The Three Types of Big Four Expressions
Expression Example Rule

Contains only addition 12 + 7 – 6 – 3 + 8 Evaluate left to right.
and subtraction

Contains only multiplication 18 ÷ 3 ⋅ 7 ÷ 14 Evaluate left to right.
and division

Mixed-operator expressions: 9 + 6 ÷ 3 1. Evaluate multiplication 
contains a combination of and division left to right.
addition/subtraction and 2. Evaluate addition and 
multiplication/division subtraction left to right.

In this section, I show you how to identify and evaluate all three types of
expressions.

Expressions with only addition and subtraction
Some expressions contain only addition and subtraction. When this is the
case, the rule for evaluating the expression is simple.

When an expression contains only addition and subtraction, evaluate it step
by step from left to right. For example, suppose you want to evaluate this
expression:

17 – 5 + 3 – 8

Because the only operations are addition and subtraction, you can evaluate
from left to right, starting with 17 – 5:

= 12 + 3 – 8

As you can see, the number 12 replaces 17 – 5. Now the expression has three
numbers rather than four. Next, evaluate 12 + 3:

= 15 – 8

This breaks the expression down to two numbers, which you can evaluate
easily:

= 7

So 17 – 5 + 3 – 8 = 7.
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Expressions with only multiplication and division
Some expressions contain only multiplication and division. When this is the
case, the rule for evaluating the expression is pretty straightforward.

When an expression contains only multiplication and division, evaluate 
it step by step from left to right. Suppose you want to evaluate this 
expression:

9 ⋅ 2 ÷ 6 ÷ 3 ⋅ 2

Again, the expression contains only multiplication and division, so you can
move from left to right, starting with 9 ⋅ 2:

= 18 ÷ 6 ÷ 3 ⋅ 2

= 3 ÷ 3 ⋅ 2

= 1 ⋅ 2

= 2

Notice that the expression shrinks one number at a time until all that’s left is 2.
So 9 ⋅ 2 ÷ 6 ÷ 3 ⋅ 2 = 2.

Here’s another quick example:

–2 ⋅ 6 ÷ –4

Even though this expression has some negative numbers, the only operations
it contains are multiplication and division. So you can evaluate it in two steps
from left to right (remembering the rules for multiplying and dividing with
negative numbers that I show you in Chapter 4):

= –12 ÷ –4

= 3

Thus, –2 ⋅ 6 ÷ –4 = 3.

Mixed-operator expressions
Often, an expression contains

� At least one addition or subtraction operator

� At least one multiplication or division operator

I call these mixed-operator expressions. To evaluate them, you need some
stronger medicine. Here’s the rule you want to follow.
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Evaluate mixed-operator expressions as follows:

1. Evaluate the multiplication and division from left to right.

2. Evaluate the addition and subtraction from left to right.

For example, suppose you want to evaluate the following expression:

5 + 3 ⋅ 2 + 8 ÷ 4

As you can see, this expression contains addition, multiplication, and 
division, so it’s a mixed-operator expression. To evaluate it, start out by
underlining the multiplication and division in the expression:

5 + 3 ⋅ 2 + 8 ÷ 4

Now, evaluate what you underlined from left to right:

= 5 + 6 + 8 ÷ 4

= 5 + 6 + 2

At this point, you’re left with an expression that contains only addition, so
you can evaluate it from left to right:

= 11 + 2

= 13

Thus, 5 + 3 ⋅ 2 + 8 ÷ 4 = 13.

Using order of operations in 
expressions with exponents
Here’s what you need to know to evaluate expressions that have exponents
(see Chapter 4 for info on exponents).

Evaluate exponents from left to right before you begin evaluating Big Four
operations (adding, subtracting, multiplying, and dividing).

The trick here is to turn the expression into a Big Four expression and 
then use what I show you earlier in “Applying order of operations to 
Big Four expressions.” For example, suppose you want to evaluate the 
following:

3 + 52 – 6
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First, evaluate the exponent:

= 3 + 25 – 6

At this point, the expression contains only addition and subtraction, so you
can evaluate it from left to right in two steps:

= 28 – 6

= 22

So 3 + 52 – 6 = 22.

Understanding order of precedence
in expressions with parentheses
In math, parentheses — ( ) — are often used to group together parts of an
expression. When it comes to evaluating expressions, here’s what you need
to know about parentheses.

To evaluate expressions that contain parentheses,

1. Evaluate the contents of parentheses, from the inside out.

2. Evaluate the rest of the expression.

Big Four expressions with parentheses
Similarly, suppose you want to evaluate (1 + 15 ÷ 5) + (3 – 6) ⋅ 5. This expres-
sion contains two sets of parentheses, so evaluate these from left to right.
Notice that the first set of parentheses contains a mixed-operator expression,
so evaluate this in two steps starting with the division:

= (1 + 3) + (3 – 6) ⋅ 5

= 4 + (3 – 6) ⋅ 5

Now evaluate the contents of the second set of parentheses:

= 4 + –3 ⋅ 5

Now you have a mixed-operator expression, so evaluate the multiplication
(–3 ⋅ 5) first:

= 4 + –15
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Finally, evaluate the addition:

= –11

So (1 + 15 ÷ 5) + (3 – 6) ⋅ 5 = –11.

Expressions with exponents and parentheses
As another example, try this out:

1 + (3 – 62 ÷ 9) ⋅ 22

Start out by working only with what’s inside the parentheses. The first thing
to evaluate there is the exponent, 62:

= 1 + (3 – 36 ÷ 9) ⋅ 22

Continue working inside the parentheses by evaluating the division 36 ÷ 9:

= 1 + (3 – 4) ⋅ 22

Now you can get rid of the parentheses altogether:

= 1 + –1 ⋅ 22

At this point, what’s left is an expression with an exponent. This expression
takes three steps, starting with the exponent:

= 1 + –1 ⋅ 4

= 1 + –4

= –3

So 1 + (3 – 62 ÷ 9) ⋅ 22 = –3.

Expressions with parentheses raised to an exponent
Sometimes, the entire contents of a set of parentheses are raised to an expo-
nent. In this case, evaluate the contents of the parentheses before evaluating
the exponent, as usual. Here’s an example:

(7 – 5)3

First, evaluate 7 – 5:

= 23
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With the parentheses removed, you’re ready to evaluate the exponent:

= 8

Once in a rare while, the exponent itself contains parentheses. As always,
evaluate what’s in the parentheses first. For example,

21(19 + 3 ⋅ –6)

This time, the smaller expression inside the parentheses is a mixed-operator
expression. I underlined the part that you need to evaluate first:

= 21(19 + –18)

Now you can finish off what’s inside the parentheses:

= 211

At this point, all that’s left is a very simple exponent:

= 21

So 21(19 + 3 ⋅ –6) = 21.

Note: Technically, you don’t need to put parentheses around the exponent. If
you see an expression in the exponent, treat it as though it had parentheses
around it. In other words, 2119 + 3 ⋅ –6 means the same thing as 21(19 + 3 ⋅ –6).

Expressions with nested parentheses
Occasionally, an expression has nested parentheses: one or more sets
of parentheses inside another set. Here, I give you the rule for handling
nested parentheses.

When evaluating an expression with nested parentheses, evaluate what’s
inside the innermost set of parentheses first and work your way toward the
outermost parentheses.

For example, suppose you want to evaluate the following expression:

2 + (9 – (7 – 3))

I underlined the contents of the innermost set of parentheses, so evaluate
these contents first:

= 2 + (9 – 4)
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Next, evaluate what’s inside the remaining set of parentheses:

= 2 + 5

Now you can finish things off easily:

= 7

So 2 + (9 – (7 – 3)) = 7

As a final example, here’s an expression that requires everything from this
chapter:

4 + (–7 ⋅ (2(5 – 1) – 4 ⋅ 6))

This expression is about as complicated as you’re ever likely to see in pre-
algebra: one set of parentheses containing another set, which contains a
third set. To start you off, I underlined what’s deep inside this third set of
parentheses. This is where you begin evaluating:

= 4 + (–7 ⋅ (24 – 4 ⋅ 6))

Now, what’s left is one set of parentheses inside another set. Again, work
from the inside out. The smaller expression here is 24 – 4 ⋅ 6, so evaluate the
exponent first, then the multiplication, and finally the subtraction:

= 4 + (–7 ⋅ (16 – 4 ⋅ 6))

= 4 + (–7 ⋅ (16 – 24))

= 4 + (–7 ⋅ –8)

Only one more set of parentheses to go:

= 4 + 56

At this point, finishing up is easy:

= 60

Therefore, 4 + (–7 ⋅ (2(5 – 1) – 4 ⋅ 6)) = 60.

As I say earlier in this section, this problem is about as hard as they come at
this stage of math. Copy it down and try solving it step by step with the book
closed.
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Chapter 6

Say What? Turning Words
into Numbers

In This Chapter
� Dispelling myths about word problems

� Knowing the four steps to solving a word problem

� Jotting down simple word equations that condense the important information

� Writing more complex word equations

� Plugging numbers into the word equations to solve the problem

� Attacking more-complex word problems with confidence

The very mention of word problems — or story problems, as they’re some-
times called — is enough to send a cold shiver of terror into the bones

of the average math student. Many would rather swim across a moat full of
hungry crocodiles than “figure out how many bushels of corn Farmer Brown
picked” or “help Aunt Sylvia decide how many cookies to bake.” But word
problems help you understand the logic behind setting up equations in real-
life situations, making math actually useful — even if the scenarios in the
word problems you practice on are pretty far-fetched.

In this chapter, I dispel a few myths about word problems. Then, I show you
how to solve a word problem in four simple steps. After you understand the
basics, I show you how to solve more-complex problems. Some of these prob-
lems have longer numbers to calculate, and others may have more compli-
cated stories. In either case, you can see how to work through them step
by step.
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Dispelling Two Myths about
Word Problems

Here are two common myths about word problems:

� Word problems are always hard.

� Word problems are only for school — after that, you don’t need them.

Both of these ideas are untrue. But they’re so common that I want to address
them head-on.

Word problems aren’t always hard
Word problems don’t have to be hard. For example, here’s a word problem
that you may have run into in first grade:

Adam had 4 apples. Then Brenda gave him 5 more apples. How many
apples does Adam have now?

You can probably do the math in your head, but when you were starting out
in math you may have written down:

4 + 5 = 9

Finally, if you had one of those teachers who made you write out your answer
in complete sentences, you wrote “Adam has 9 apples.” (Of course, if you were
the class clown, you probably wrote, “Adam doesn’t have any apples because
he ate them all.”)

Word problems seem hard when they get too complex to solve in your head
and you don’t have a system for solving them. In this chapter, I give you a
system and show you how to apply it to problems of increasing difficulty. And
in Chapters 13, 18, and 24, I give you further practice solving more difficult
word problems. 

Word problems are useful
In the real world, math rarely comes in the form of equations. It comes in the
form of situations that are very similar to word problems.
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Whenever you paint a room, prepare a budget, bake a double batch of oat-
meal cookies, estimate the cost of a vacation, buy wood to build a shelf, do
your taxes, or weigh out the pros and cons of buying a car or leasing one, you
need math. And the math skill you need most is understanding how to turn
the situation you’re facing into numbers that you calculate.

Word problems give you practice turning situations — that is, stories — into
numbers.

Solving Basic Word Problems
Generally speaking, solving a word problem involves four steps:

1. Read through the problem and set up word equations — that is, 
equations that contain words as well as numbers.

2. Plug in numbers in place of words wherever possible to set up a regu-
lar math equation.

3. Use math to solve the equation.

4. Answer the question that the problem asks.

Most of this book is about Step 3. This chapter and Chapters 13, 18, and 24
are all about Steps 1 and 2. I show you how to break down a word problem
sentence by sentence, jot down the information you need to solve the prob-
lem, and then substitute numbers for words to set up an equation.

When you know how to turn a word problem into an equation, the hard part is
done. Then you can use the rest of what you find in this book to figure out how
to do Step 3 — solve the equation. From there, Step 4 is usually pretty easy,
though at the end of each example, I make sure you understand how to do it.

Turning word problems 
into word equations
The first step to solving a word problem is reading it and putting the informa-
tion you find into a useful form. In this section, I show you how to squeeze
the juice out of a word problem and leave the pits behind!
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Jotting down information as word equations
Most word problems give you information about numbers, telling you exactly
how much, how many, how fast, how big, and so forth. Here are some examples:

Nunu is spinning 17 plates.

The width of the house is 80 feet.

If the local train is going 25 miles per hour . . .

You need this information to solve the problem. And paper is cheap, so don’t
be afraid to use it. (If you’re concerned about trees, write on the back of all
that junk mail you get.) Have a piece of scrap paper handy and jot down a few
notes as you read through a word problem.

For example, here’s how you can jot down “Nunu is spinning 17 plates”:

Nunu = 17

Here’s how to note that “. . . the width of the house is 80 feet”:

Width = 80

The third example tells you, “If the local train is going 25 miles per hour. . . .”
So you can jot down the following:

Local = 25

Don’t let the word if confuse you. When a problem says “If so-and-so were
true . . .” and then asks you a question, assume it is true and use this informa-
tion to answer the question.

When you jot down information this way, you’re really turning words into a
more useful form called a word equation. A word equation has an equal sign
like a math equation, but it contains both words and numbers.

Writing relationships: Turning more-complex statements 
into word equations
When you start doing word problems, you notice that certain words and
phrases show up over and over again. For example,

Bobo is spinning five fewer plates than Nunu.

The height of a house is half as long as its width.

The express train is moving three times faster than the local train.
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You’ve probably seen statements such as these in word problems since you
were first doing math. Statements like these look like English, but they’re really
math, so spotting them is important. You can represent each of these types of
statements as a word equations that also use Big Four operations. Look again
at the first example:

Bobo is spinning five fewer plates than Nunu.

You don’t know the number of plates that either Bobo or Nunu is spinning.
But you know that these two numbers are related. 

You can express this relationship like this:

Bobo = Nunu – 5

This word equation is shorter than the statement it came from. And, as you
see in the next section, word equations are easy to turn into the math that
you need to solve the problem.

Here’s another example:

The height of a house is half as long as its width.

You don’t know the width or height of the house, but you know that these
numbers are connected. 

You can express this relationship between the width and height of the house
as the following word equation:

Height = width ÷ 2

With the same type of thinking, you can express The express train is moving
three times faster than the local train as this word equation:

Express = 3 ⋅ local

As you can see, each of the examples allows you to set up a word equation
using one of the Big Four operations — adding, subtracting, multiplying, and
dividing.

Figuring out what the problem’s asking
The end of a word problem usually contains the question that you need to
answer to solve the problem. You can use word equations to clarify this ques-
tion so you know right from the start what you’re looking for.
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For example, you can write the question, “All together, how many plates are
Bobo and Nunu spinning?” as

Bobo + Nunu = ?

You can write the question “How tall is the house” as:

Height = ?

Finally, you can rephrase the question “What’s the difference in speed
between the express train and the local train?” in this way:

Express – Local = ?

Plugging in numbers for words
After you’ve written out a bunch of word equations, you have the facts you
need in a form you can use. Now, you can often solve the problem by plug-
ging numbers from one word equation into another. In this section, I show
you how to use the word equations you built in the last section to solve three
problems. 

Example: Send in the clowns
Some problems involve simple addition or subtraction. Here’s an example:

Bobo is spinning five fewer plates than Nunu (Bobo dropped a few). Nunu
is spinning 17 plates. All together, how many plates are Bobo and Nunu
spinning?

Here’s what you have already, just from reading the problem:

Nunu = 17

Bobo + 5 = Nunu

Plugging in the information gives you the following:

Bobo + 5 = Nunu 17

If you see how many plates Bobo is spinning, feel free to jump ahead. If not,
here’s how you rewrite the addition equation as a subtraction equation (see
Chapter 4 for details):

Bobo = 17 – 5 = 12
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The problem wants you to find out how many plates the two clowns are spin-
ning together. That is, you need to find out the following:

Bobo + Nunu = ?

Just plug in the numbers, substituting 12 for Bobo and 17 for Nunu:

Bobo 12 + Nunu 17 = 29

So Bobo and Nunu are spinning 29 plates.

Example: Our house in the middle of our street
At times, a problem may note relationships that require you to use multiplica-
tion or division. Here’s an example:

The height of a house is half as long as its width, and the width of the
house is 80 feet. How tall is the house?

You already have a head start from what you determined earlier:

Width = 80

Height = Width ÷ 2

You can plug in information as follows, substituting 80 for the word width:

Height = Width 80 ÷ 2 = 40

So you know that the height of the house is 40 feet.

Example: I hear the train a comin’
Pay careful attention to what the question is asking. You may have to set up
more than one equation. Here’s an example:

The express train is moving three times faster than the local train. If the
local train is going 25 miles per hour, what’s the difference in speed between
the express train and the local train?

Here’s what you have so far:

Local = 25

Express = 3 ⋅ Local
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So plug in the information you need:

Express = 3 ⋅ 25 Local = 75

In this problem, the question at the end asks you to find the difference in
speed between the express train and the local train. Finding the difference
between two numbers is subtraction, so here’s what you want to find:

Express – Local = ?

You can get what you need to know by plugging in the information you’ve
already found:

Express 75 – Local 25 = 50

Therefore, the difference in speed between the express train and the local
train is 50 miles per hour.

Solving More-Complex Word Problems
The skills I show you previously in “Solving Basic Word Problems” are impor-
tant for solving any word problem because they streamline the process and
make it simpler. And what’s more, you can use those same skills to find your
way through more complex problems. Problems become more complex when:

� The calculations become harder. (For example, instead of a dress cost-
ing $30, now it costs $29.95.)

� The amount of information in the problem increases. (For example,
instead of two clowns, now there are five.)

Don’t let problems like these scare you. In this section, I show you how to use
your new problem-solving skills to solve more difficult word problems.

When numbers get serious
A lot of problems that look tough aren’t much more difficult than the prob-
lems I show you in the previous sections. For example, consider this problem:

Aunt Effie has $732.84 hidden in her pillowcase, and Aunt Jezebel has
$234.19 less than Aunt Effie has. How much money do the two women
have all together?
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One question you may have is how these women ever get any sleep with all
that change clinking around under their heads. But moving on to the math,
even though the numbers are larger, the principle is still the same as in prob-
lems in the earlier sections. Start reading from the beginning: “Aunt Effie
has $732.84. . . .” This text is just information to jot down as a simple word
equation:

Effie = $732.84

Continuing, you read: “. . . Aunt Jezebel has $234.19 less than Aunt Effie has.”
It’s another statement you can write as a word equation:

Jezebel = Effie – $234.19

Now you can plug in the number $732.84 where you see Aunt Effie’s name in
the equation:

Jezebel = Effie $732.84 – $234.19

So far, the big numbers haven’t been any trouble. At this point, though, you
probably need to stop to do the subtraction:

$732.84

– $234.19 

$498.65

Now you can jot this information down as always:

Jezebel = $498.65

The question at the end of the problem asks you to find out how much
money the two women have all together. Here’s how to represent this ques-
tion as an equation:

Effie + Jezebel = ?

You can plug information into this equation:

Effie $732.84 + Jezebel $498.65 = ?

Again, because the numbers are large, you probably have to stop to do the
math:

$732.84 

+ $498.65

$1,231.49
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So, all together, Aunt Effie and Aunt Jezebel have $1,231.49.

As you can see, the procedure for solving this problem is basically the same
as for the simpler problems in the earlier sections. The only difference is that
you have to stop to do some addition and subtraction.

Too much information
When the going gets tough, knowing the system for writing word equations
really becomes helpful. Here’s a word problem that’s designed to scare you
off — but with your new skills, you’re ready for it:

Four women collected money to save the endangered Salt Creek tiger
beetle. Keisha collected $160, Brie collected $50 more than Keisha, Amy
collected twice as much as Brie, and together Amy and Sophia collected
$700. How much money did the four women collect all together?

If you try to do this problem all in your head, you’ll probably get confused.
Instead, take it line by line and just jot down word equations as I discuss ear-
lier in this chapter.

First, “Keisha collected $160.” So jot down the following:

Keisha = 160

Next, “Brie collected $50 dollars more than Keisha,” so write

Brie = Keisha + 50

After that, “Amy collected twice as much as Brie”:

Amy = Brie ⋅ 2

And finally, “together, Amy and Sophia collected $700”:

Amy + Sophia = 700

That’s all the information that the problem gives you, so now you can start
working with it. Keisha collected $160, so you can plug in 160 anywhere you
find Keisha’s name:

Brie = Keisha 160 + 50 = 210
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Now you know how much Brie collected, so you can plug this information
into the next equation:

Amy = Brie 210 ⋅ 2 = 420

This equation tells you how much Amy collected, so you can plug this
number into the last equation:

Amy 420 + Sophia = 700

To solve this problem, change it from addition to subtraction using inverse
operations, as I show you in Chapter 4:

Sophia = 700 – 420 = 280

Now that you know how much money each woman collected, you can answer
the question at the end of the problem:

Keisha + Brie + Amy + Sophia = ?

You can plug in this information easily:

Keisha 160 + Brie 210 + Amy 420 + Sophia 280 = 1,070

So you can conclude that the four women collected $1,070 all together.

Putting it all together
Here’s one final example putting together everything from this chapter. Try
writing down this problem and working it through step by step on your own. If
you get stuck, come back here. When you can solve it from beginning to end
with the book closed, you’ll have a good grasp of how to solve word problems:

On a recent shopping trip, Travis bought six shirts for $19.95 each and
two pairs of pants for $34.60 each. He then bought a jacket that cost
$37.08 less than he paid for both pairs of pants. If he paid the cashier
with three $100 bills, how much change did he receive?

On the first read-through, you may wonder how Travis found a store that
prices jackets that way. Believe me — it was quite a challenge. Anyway, back
to the problem. You can jot down the following word equations:

Shirts = $19.95 ⋅ 6

Pants = $34.60 ⋅ 2

Jacket = Pants – $37.08
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The numbers in this problem are probably longer than you can solve in your
head, so they require some attention:

$19.95 $34.60 

×      6 ×       2

$119.70 $69.20

With this done, you can fill in some more information:

Shirts = $119.70

Pants = $69.20

Jacket = Pants – $37.08

Now you can plug in $69.20 for pants:

Jacket = Pants $69.20 – $37.08

Again, because the numbers are long, you need to solve this equation 
separately:

$69.20 

– $37.08

$32.12

This equation gives you the price of the jacket:

Jacket = $32.12

Now that you have the price of the shirts, pants, and jacket, you can find out
how much Travis spent:

Amount Travis spent = Shirts $119.70 + Pants $69.20 + Jacket $32.12

Again, you have another equation to solve:

$119.70

$  69.20 

+ $  32.12

$221.02
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So you can jot down the following:

Amount Travis spent = $221.02

The problem is asking you to find out how much change Travis received from
$300, so jot this down:

Change = $300 – Amount Travis spent

You can plug in the amount that Travis spent:

Change = $300 – $221.02

And do just one more equation:

$300.00

– $221.02

$  78.98

So you can jot down the answer:

Change = $78.98

Therefore, Travis received $78.98 in change.
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Chapter 7

Divisibility
In This Chapter
� Finding out whether a number is divisible by 2, 3, 5, 9, 10, or 11 

� Seeing the difference between prime numbers and composite numbers 

When one number is divisible by another, you can divide the first
number by the second number without getting a remainder (see

Chapter 3 for details on division). In this chapter, I explore divisibility from
a variety of angles. 

To start out, I show you a bunch of handy tricks for discovering whether one
number is divisible by another without actually doing the division. (In fact,
there’s no long division anywhere in this chapter!) After that, I talk about prime
numbers and composite numbers (which I introduce briefly in Chapter 1). 

This discussion, plus what follows in Chapter 8, can help make your
encounter with fractions in Part III a lot friendlier. 

Knowing the Divisibility Tricks
As you begin to work with fractions in Part III, the question of whether one
number is divisible by another comes up a lot. In this section, I give you a
bunch of time-saving tricks for finding out whether one number is divisible by
another without actually making you do the division.

Counting everyone in: Numbers 
you can divide everything by
Every number is divisible by 1. As you can see, when you divide any number
by 1, the answer is the number itself, with no remainder:
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2 ÷ 1 = 2

17 ÷ 1 = 17

431 ÷ 1 = 431

Similarly, every number (except 0) is divisible by itself. Clearly, when you
divide any number by itself, the answer is 1:

5 ÷ 5 = 1

28 ÷ 28 = 1

873 ÷ 873 = 1

You can’t divide any number by 0. Mathematicians say that dividing by 0 is
undefined.

In the end: Looking at the final digits
You can tell whether a number is divisible by 2, 5, 10, 100, or 1,000 simply by
looking at how the number ends. No calculations required.

Divisible by 2
Every even number — that is, every number that ends in 2, 4, 6, 8, or 0 — is
divisible by 2. For example, the following bolded numbers are divisible by 2:

6 ÷ 2 = 3 538 ÷ 2 = 269 77,144 ÷ 2 = 38,572

22 ÷ 2 = 11 6,790 ÷ 2 = 3,395 212,116 ÷ 2 = 106,058

Divisible by 5
Every number that ends in either 5 or 0 is divisible by 5. The following bolded
numbers are divisible by 5:

15 ÷ 5 = 3 6,970 ÷ 5 = 1,394 511,725 ÷ 5 = 102,345

625 ÷ 5 = 125 44,440 ÷ 5 = 8,888 9,876,630 ÷ 5 = 1,975,326

Divisible by 10, 100, or 1,000 
Every number that ends in 0 is divisible by 10. The following bolded numbers
are divisible by 10:

20 ÷ 10 = 2 170 ÷ 10 = 17 56,720 ÷ 10 = 5,672
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Every number that ends in 00 is divisible by 100:

300 ÷ 100 = 3 8,300 ÷ 100 = 83 634,900 ÷ 100 = 6,349

And every number that ends in 000 is divisible by 1,000: 

6,000 ÷ 1,000 = 6 99,000 ÷ 1,000 = 99 1,234,000 ÷ 1,000 = 1,234

In general, every number that ends with a string of 0s is divisible by the
number you get when you write 1 followed by that many 0s. For example,

900,000 is divisible by 100,000

235,000,000 is divisible by 1,000,000

820,000,000,000 is divisible by 10,000,000,000

When numbers start to get this large, mathematicians usually switch over to
scientific notation to write them more efficiently. In Chapter 14, I show you all
about how to work with scientific notation.

Add it up: Checking divisibility 
by adding up digits
Sometimes you can check divisibility by adding up all or some of the digits in
a number. The sum of a number’s digits is called its digital roots. Finding the
digital root of a number is easy, and it’s a handy thing to know.

To find the digital root of a number, just add up the digits and repeat this
process until you get a one-digit number. Here are some examples:

The digital root of 24 is 6 because 2 + 4 = 6.

The digital root of 143 is 8 because 1 + 4 + 3 = 8. 

The digital root of 51,111 is 9 because 5 + 1 + 1 + 1 + 1 = 9.

Sometimes, you need to do this process more than once. Here’s how to find the
digital root of the number 87,482. You have to repeat the process three times,
but eventually you find that the digital root of 87,482 is 2:

8 + 7 + 4 + 8 + 2 = 29

2 + 9 = 11

1 + 1 = 2
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Read on to find out how sums of digits can help you check for divisibility by
3, 9, or 11.

Divisible by 3
Every number whose digital root is 3, 6, or 9 is divisible by 3.

First find the digital root of a number by adding its digits until you get a
single-digit number. Here are the digital roots of 18, 51, and 975:

18: 1 + 8 = 9

51: 5 + 1 = 6

975: 9 + 7 + 5 = 21; 2 + 1 = 3

With the numbers 18 and 51, adding the digits leads immediately to digital
roots 9 and 6, respectively. With 975, when you add up the digits, you first get
21, so you then add up the digits in 21 to get the digital root 3. Thus, these
three numbers are all divisible by 3. If you do the actual division, you find
that 18 ÷ 3 = 6, 51 ÷ 3 =17, and 975 ÷ 3 = 325, so the method checks out.

However, when the digital root of a number is anything other than 3, 6, or 9,
the number isn’t divisible by 3:

1,037: 1 + 0 + 3 + 7 = 11; 1 + 1 = 2

Because the digital root of 1,037 is 2, 1,037 isn’t divisible by 3. If you try to
divide by 3, you end up with 345 r 2.

Divisible by 9
Every number whose digital root is 9 is divisible by 9.

To test whether a number is divisible by 9, find its digital root by adding up
its digits until you get a one-digit number. Here are some examples:

36: 3 + 6 = 9

243: 2 + 4 + 3 = 9

7,587: 7 + 5 + 8 + 7 = 27; 2 + 7 = 9

With the numbers 36 and 243, adding the digits leads immediately to digital
roots of 9 in both cases. With 7,587, however, when you add up the digits, you
get 27, so you then add up the digits in 27 to get the digital root 9. Thus, all
three of these numbers are divisible by 9. You can verify this by doing the
division: 36 ÷ 9 = 4, 243 ÷ 9 = 27, and 7,857 ÷ 9 = 873.
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However, when the digital root of a number is anything other than 3, 6, or 9,
the number isn’t divisible by 3. Here’s an example:

706: 7 + 0 + 6 = 13; 1 + 3 = 4

Because the digital root of 706 is 4, 706 isn’t divisible by 9. If you try to divide
706 by 9, you get 78 r 4.

Divisible by 11
Two-digit numbers that are divisible by 11 are hard to miss because they
simply repeat the same digit twice. Here are all the numbers less than 100
that are divisible by 11:

11 22 33 44 55 66 77 88 99

For numbers between 100 and 200, use this rule: Every three-digit number
whose first and third digits add up to its second digit is divisible by 11. For
example, suppose you want to decide whether the number 154 is divisible
by 11. Just add up the first and third digit:

1 + 4 = 5

Because these two numbers add up to the second digit, 5, the number 154 is
divisible by 11. If you divide, you get 154 ÷ 11 = 14, a whole number.

Now suppose you want to figure out whether 136 is divisible by 11. Add the
first and third digits:

1 + 6 = 7

Because the first and third digits add up to 7 instead of 3, the number 136
isn’t divisible by 11. You can find that 136 ÷ 11 = 12 r 4.

For numbers of any length, the rule is slightly more complicated, but it’s still
often easier than doing long division. A number is divisible by 11 when its
alternate digits

� Add up to the same number or

� Add up to two numbers that, when one is subtracted from the other,
result in a number that’s divisible by 11

For example, suppose you want to discover whether the number 15,983 is
divisible by 11. To start out, underline alternate digits (every other digit):

15,983
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Now add up the underlined digits and the non-underlined digits:

1 + 9 + 3 = 13

15,983
Ê
‰

5 + 8 = 13

Because these two sets of digits both add up to 13, the number 15,983 is
divisible by 11. If you check the division, 15,983 ÷ 11 = 1,453.

Now suppose you want to find out whether 9,181,909 is divisible by 11. Again,
underline alternate digits and add up the two groups:

9 + 8 + 9 + 9 = 35

9,181,909
Ê
‰

1 + 1 + 0 = 2

Obviously, 35 and 2 aren’t equal. But notice that 35 – 2 = 33. Because 33 is
divisible by 11, the number 9,181,909 is also divisible by 11. The actual
answer is 9,181,909 ÷ 11 = 834,719

Identifying Prime and Composite Numbers
In the earlier section titled “Counting everyone in: Numbers you can divide
everything by,” I show you that every number (except 0 and 1) is divisible by
at least two numbers: 1 and itself. In this section, I explore prime numbers
and composite numbers (which I introduce you to in Chapter 1).

In Chapter 8, you need to know how to tell prime numbers from composite in
order to break a number down into its prime factors. This, in turn, is impor-
tant when you begin working with fractions.

A prime number is divisible by exactly two positive whole numbers: 1 and the
number itself. A composite number is divisible by at least three numbers.

For example, 2 is a prime number because when you divide it by any number
but 1 and 2, you get a remainder. So there’s only one way to multiply two 
counting numbers together and get 2 as a product:

1 ⋅ 2 = 2
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Similarly, 3 is prime because when you divide by any number but 1 or 3,
you get a remainder. So the only way to multiply two numbers together and
get 3 as a product is the following:

1 ⋅ 3 = 3

On the other hand, 4 is a composite number because it’s divisible by three
numbers: 1, 2, and 4. In this case, you have two ways to multiply two counting
numbers and get a product of 4:

1 ⋅ 4 = 4

2 ⋅ 2 = 4

But 5 is a prime number, because it’s divisible only by 1 and 5. Here’s the only
way to multiply two counting numbers together and get 5 as a product:

1 ⋅ 5 = 5

And 6 is a composite number because it’s divisible by 1, 2, 3, and 6. Here are
two ways to multiply two counting numbers and get a product of 6:

1 ⋅ 6 = 6

2 ⋅ 3 = 6

Every counting number except 1 is either prime or composite. The reason 1 is
neither is that it’s divisible by only one number, which is 1.

Here’s a list of the prime numbers that are less than 30:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29

Remember the first four prime numbers: 2, 3, 5, and 7. Every composite
number less than 100 is divisible by at least one of these numbers. This fact
makes it easy to test whether a number under 100 is prime: Simply test it
for divisibility by 2, 3, 5, and 7. If it’s divisible by any of these numbers, it’s
composite — if not, it’s prime.

For example, suppose you want to find out whether the number 79 is prime
or composite without actually doing the division. Here’s how you think it out,
using the tricks I show you earlier in “Knowing the Divisibility Tricks”:

� 79 is an odd number, so it isn’t divisible by 2. 

� 79 has a digital root of 8 (because 7 + 9 = 16; 1 + 6 = 7), so it isn’t divisible
by 3.
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� 79 doesn’t end in 5 or 0, so it isn’t divisible by 5.

� Even though there’s no trick for divisibility by 7, you know that 77 is
divisible by 7. So 79 ÷ 7 would leave remainder of 2, which tells you that
79 isn’t divisible by 7.

Because 79 is less than 100 and isn’t divisible by 2, 3, 5, or 7, you know that 79
is a prime number.

Now test whether 93 is prime or composite:

� 93 is an odd number, so it isn’t divisible by 2. 

� 93 has a digital root of 3 (because 9 + 3 = 12 and 1 + 2 = 3), so 93 is divis-
ible by 3.

You don’t need to look further. Because 93 is divisible by 3, you know it’s
composite.
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Chapter 8

Fabulous Factors and
Marvelous Multiples

In This Chapter
� Understanding how factors and multiples are related 

� Listing all the factors of a number

� Breaking a number down into its prime factors

� Generating multiples of a number

� Finding the greatest common factor (GCF) and least common multiple (LCM)

In Chapter 2, I introduce you to sequences of numbers based on the multi-
plication table. In this chapter, I tell you about two important ways to

think about these sequences: as factors and as multiples. Factors and multi-
ples are really two sides of the same coin. Here I show you what you need to
know about these two important concepts.

For starters, I show you how to decompose (split up) any number into its
prime factors. Along the way, I give you a bunch of handy tricks for finding out
whether a number is a factor of another number. To finish up on factors, I show
you how to find the greatest common factor (GCF) of any set of numbers. After
that, I tackle multiples, showing you a couple of ways to find the least
common multiple of a set of numbers. 

Knowing Six Ways to Say 
the Same Thing

In this section, I introduce you to factors and multiples, and I show you how
these two important concepts are connected. As I discuss in Chapter 4, 
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multiplication and division are inverse operations. For example, the following
equation is true:

5 ⋅ 4 = 20

So this inverse equation is also true:

20 ÷ 4 = 5

You may have noticed that in math, you tend to run into the same ideas over
and over again. For example, mathematicians have six different ways to talk
about this relationship.

The following three statements all focus on the relationship between 5 and 20
from the perspective of multiplication:

� 5 multiplied by some number is 20

� 5 is a factor of 20

� 20 is a multiple of 5

In two of the examples, you can see this relationship reflected in the words
multiplied and multiple. For the remaining example, keep in mind that two fac-
tors are multiplied to equal a product.

Similarly, the following three statements all focus on the relationship between
5 and 20 from the perspective of division:

� 20 divided by some number is 5

� 20 is divisible by 5

� 5 is a divisor of 20

Why do mathematicians need all these words for the same thing? Maybe for
the same reason that Eskimos need a bunch of words for snow. In any case,
in this chapter, I focus on the words factor and multiple. When you under-
stand the concepts, which word you choose doesn’t matter a whole lot.

Connecting Factors and Multiples
When one number is a factor of a second number, the second number is a
multiple of the first number. For example, 20 is divisible by 5, so

� 5 is a factor of 20

� 20 is a multiple of 5
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Don’t mix which number is the factor and which is the multiple. The factor is
always the lower number and the multiple is always the higher number.

If you have trouble remembering which number is the factor and which is the
multiple, jot them down in order from lowest to highest and write the letters
F and M in alphabetical order under them.

For example, 10 divides 40 evenly, so jot down:

10 40

F M

This setup should remind you that 10 is a factor of 40 and that 40 is a multiple
of 10.

Fabulous Factors
In this section, I introduce you to factors. First, I show you how to find out
whether one number is a factor of another. Then I show you how to list a
number’s factors. After that, I introduce the key idea of a number’s prime fac-
tors. This information all leads up to an essential skill: finding the greatest
common factor (GCF) of a set of numbers.

Deciding when one number 
is a factor of another
You can easily tell whether a number is a factor of a second number: Just
divide the second number by the first. If it divides evenly (with no remainder),
the number is a factor; otherwise, it’s not a factor.

For example, suppose you want to know whether 7 is a factor of 56. Here’s
how you find out:

56 ÷ 7 = 8

Because 7 divides 56 without leaving a remainder, 7 is a factor of 56.

And here’s how you find out whether 4 is a factor of 34:

34 ÷ 4 = 8 r 2
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Because 4 divides 34 with a remainder of 2, 4 isn’t a factor of 34.

This method works no matter how large the numbers are. 

Some teachers use factoring problems to test you on long division. For a
refresher on how to do long division, see Chapter 3.

Generating a number’s factors
The greatest factor of any number is the number itself, so you can always list
all the factors of any number because you have a stopping point. Here’s how
to list all the factors of a number:

1. Begin the list with 1, leave some space for other numbers, and end the
list with the number itself.

2. Test whether 2 is a factor — that is, see whether the number is divisible
by 2 (for tricks on testing for divisibility, see Chapter 7).

If it is, add 2 to the list, along with the original number divided by 2 as
the second-to-last number on the list.

3. Test the number 3 in the same way.

4. Continue testing numbers until the beginning of the list meets the end
of the list.

An example should help make this clear. Suppose you want to list all the 
factors of the number 18. According to Step 1, begin the list with 1 and end
it with 18:

1 ... 18

Remember from Chapter 7 that every number — whether prime or
composite — is divisible by itself and 1. So automatically, 1 and 18 are
both factors of 18.

Next, test whether the number 2 is a factor of 18:

18 ÷ 2 = 9

Because 2 divides 18 without a remainder, 2 is a factor of 18. (For a bunch of
easy divisibility tricks, check out Chapter 3.) So both 2 and 9 are factors of 18,
and you can add them both to the list:

1 2 ... 9 18
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Notice that I add 9 as the second-to-last number of the list. Doing this
reminds you that you don’t have to check any number higher than 9.

Now test 3 in the same way:

18 ÷ 3 = 6

So both 3 and 6 are factors of 18:

1 2 3 ... 6 9 18

At this point, you’re almost done. You have to check only the numbers
between 3 and 6 — that is, the numbers 4 and 5:

18 ÷ 4 = 4 r 2

18 ÷ 5 = 3 r 3

Thus, neither 4 nor 5 is a factor of 18, so this is a complete list of the factors
of 18:

1 2 3 6 9 18

Prime factors
In Chapter 7, I discuss prime numbers and composite numbers. A prime
number is divisible only by 1 and itself — for example, the number 7 is divisi-
ble only by 1 and 7. On the other hand, a composite number is divisible by
at least one number other than 1 and itself — for example, the number 9 is
divisible not only by 1 and 9 but also by 3.

A number’s prime factors are the set of prime numbers (including repeats)
that equal that number when multiplied together. For example, here are the
prime factors of the numbers 10, 30, and 72:

10 = 2 ⋅ 5

30 = 2 ⋅ 3 ⋅ 5

72 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3

In the last example, the prime factors of 72 include the number 2 repeated
three times and the number 3 repeated twice.
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The best way to break a composite number down into its prime factors is
using a factorization tree. Here’s how it works:

1. Split the number into any two factors and check off the original
number.

2. If either of these factors is prime, circle it.

3. Repeat steps 1 and 2 for any number that is neither circled nor checked.

4. When every number in the tree is either checked or circled, the tree
is finished, and the circled numbers are the prime factors of the origi-
nal number.

For example, to break down the number 56 into its prime factors, start by
finding two numbers (other than 1 or 56) that, when multiplied, give you a
product of 56. In this case, remember that 7 ⋅ 8 = 56. See Figure 8-1.

As you can see, I break 56 down into two factors and check it off. I also circle 7
because it’s a prime number. Now 8 is a neither checked nor circled, so I repeat
the process, as shown in Figure 8-2.

This time, I break 8 into two factors (2 ⋅ 4 = 8) and check it off. This time, 2 is
prime, so I circle it. But 4 remains unchecked and uncircled, so I continue
with Figure 8-3.

At this point, every number in the tree is either circled or checked, so the
tree is finished. The four circled numbers — 2, 2, 2, and 7 — are the prime
factors of 56. To check this result, just multiply the prime factors together:

2 ⋅ 2 ⋅ 2 ⋅ 7 = 56

56 ✓

7 8

4

✓

2

Figure 8-2:
Continuing

the number
breakdown

with 8.

56 ✓

7 8

Figure 8-1:
Finding two

factors of 56;
7 is prime.
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You can see why this is called a tree: Starting at the top, the numbers tend to
branch off like an upside-down tree.

What happens when you try to build a tree starting with a prime number —
for example, 7? Well, you don’t have to go very far (see Figure 8-4). 

That’s it — you’re done! This example shows you that every prime number is
its own prime factor.

Here’s a list of numbers less than 20 with their prime factorizations. (As you
find out in Chapter 2, 1 is neither prime nor composite, so it doesn’t have a
prime factorization.)

2 8 = 2 ⋅ 2 ⋅ 2 14 = 2 ⋅ 7

3 9 = 3 ⋅ 3 15 = 3 ⋅ 5

4 = 2 ⋅ 2 10 = 2 ⋅ 5 16 = 2 ⋅ 2 ⋅ 2 ⋅ 2

5 11 17

6 = 2 ⋅ 3 12 = 2 ⋅ 2 ⋅ 3 18 = 2 ⋅ 3 ⋅ 3

7 13 19

As you can see, the eight prime numbers that I list here are their own prime
factorizations. The remaining numbers are composite, so they can all be
broken down into smaller prime factors.

7

Figure 8-4:
Starting

with a prime
number.

56 ✓

✓7 8

✓42

22

Figure 8-3:
The finished

tree,
completed

from
Figure 8-1.
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Every number has a unique prime factorization. This fact is important — so
important that it’s called the Fundamental Theorem of Arithmetic. In a way, a
number’s prime factorization is like its fingerprint — a unique and foolproof
way to identify a number.

Knowing how to break a number down to its prime factorization is a handy
skill to have. Using the factorization tree allows you to factor out one number
after another until all you’re left with are primes.

Finding prime factorizations for numbers 100 or less
When you build a factorization tree, the first step is usually the hardest.
That’s because as you proceed, the numbers get smaller and easier to work
with. With fairly small numbers, the factorization tree is usually easy to use.

As the number you’re trying to factor increases, you may find the first step to
be a little more difficult. This is especially true when you don’t recognize the
number from the multiplication table. The trick is to find someplace to start.

Whenever possible, factor out 5s and 2s first. As I discuss in Chapter 7, you
can easily tell when a number is divisible by 2 or by 5.

For example, suppose you want the prime factorization of the number 84.
Because you know that 84 is divisible by 2, you can factor out a 2, as shown
in Figure 8-5.

At this point, you should recognize 42 from the multiplication table (6 ⋅ 7 = 42).

This tree is now easy to complete (see Figure 8-6).

84 ✓

2 42 ✓

6 7✓

2 3

Figure 8-6:
Completing

the factoring
of 84.

84 ✓

2 42

Figure 8-5:
Factoring

out 2
from 84.
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The resulting prime factorization for 84 is as follows:

84 = 2 ⋅ 7 ⋅ 2 ⋅ 3

If you like, though, you can rearrange the factors from lowest to highest:

84 = 2 ⋅ 2 ⋅ 3 ⋅ 7

By far, the most difficult situation occurs when you’re trying to find the prime
factors of a prime number but don’t know it. For example, suppose you want
to find the prime factorization for the number 71. This time, you don’t recog-
nize the number from the multiplication tables and it isn’t divisible by 2 or 5.
What next?

If a number that’s less than 100 (actually, less than 121) isn’t divisible by 2, 3, 5,
or 7, it’s a prime number.

Testing for divisibility by 3 by finding the digital root of 71 (that is, by adding
the digits) is easy. As I explain in Chapter 7, numbers divisible by 3 have digital
roots of 3, 6, or 9.

7 + 1 = 8

Because the digital root of 71 is 8, 71 isn’t divisible by 3. Divide to test whether
71 is divisible by 7:

71 ÷ 7 = 10 r 1

So now you know that 71 isn’t divisible by 2, 3, 5, or 7. Therefore, 71 is a
prime number, so you’re done.

Finding prime factorizations for numbers greater than 100
Most of the time, you don’t have to worry about finding the prime factoriza-
tions of numbers greater than 100. Just in case, though, here’s what you need
to know.

As I mention in the preceding section, factor out the 5s and 2s first. A special
case is when the number you’re factoring ends in one or more 0s. In this case,
you can factor out a 10 for every 0. For example, Figure 8-7 shows the first step.

700 ✓

10 10 7

Figure 8-7:
The first

step in
factoring

700.
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After you do the first step, the rest of the tree becomes very easy (see
Figure 8-8):

This shows that the prime factorization of 700 is

700 = 2 ⋅ 2 ⋅ 5 ⋅ 5 ⋅ 7

If the number isn’t divisible by either 2 or 5, use your divisibility trick for 3
(see Chapter 7) and factor out as many 3s as you can. Then factor out 7s if
possible (sorry, I don’t have a trick for 7s) and finally 11s.

If a number that’s less than 289 isn’t divisible by 2, 3, 5, 7, 11, or 13, it’s prime.
As always, every prime number is its own prime factorization, so when you
know that a number is prime, you’re done. Most of the time, with larger num-
bers, a combination of tricks can handle the job.

Finding the greatest common factor (GCF)
After you understand how to find the factors of a number (see “Generating a
number’s factors”), you’re ready to move on to the main event: finding the
greatest common factor of several numbers.

The greatest common factor (GCF) of a set of numbers is the largest number
that’s a factor of all those numbers. For example, the GCF of the numbers 4
and 6 is 2 because 2 is the greatest number that’s a factor of both 4 and 6. In
this section, I show you two ways to find the GCF.

Using a list of factors to find the GCF
The first method for finding the GCF is quicker when you’re dealing with
smaller numbers.

700 ✓

✓10 10✓ 7

52 52

Figure 8-8:
Completing

the factoring
of 700.
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To find the GCF of a set of numbers, list all the factors of each number, as I
show you in “Generating a number’s factors.” The greatest factor appearing
on every list is the GCF. For example, to find the GCF of 6 and 15, first list all
the factors of each number. 

Factors of 6: 1, 2, 3, 6

Factors of 15: 1, 3, 5, 15

Because 3 is the greatest factor that appears on both lists, 3 is the GCF of 6
and 15.

As another example, suppose you want to find the GCF of 9, 20, and 25. Start
by listing the factors of each:

Factors of 9: 1, 3, 9

Factors of 20: 1, 2, 4, 5, 10, 20

Factors of 25: 1, 5, 25

In this case, the only factor that appears on all three lists is 1, so 1 is the GCF
of 9, 20, and 25.

Using prime factorization to find the GCF
You can use prime factorization to find the GCF of a set of numbers. This often
works better for large numbers, where generating lists of all factors can be
time-consuming.

Here’s how to find the GCF of a set of numbers using prime factorization:

1. List the prime factors of each number (see the earlier “Prime factors”
section).

2. Circle every common prime factor — that is, every prime factor that’s
a factor of every number in the set.

3. Multiply all the circled numbers.

The result is the GCF.

For example, suppose you want to find the GCF of 28, 42, and 70. Step 1 says to
list the prime factors of each number. Step 2 says to circle every prime factor
that’s common to all three numbers (as shown in Figure 8-9).

28 = 2 ⋅ 2 ⋅ 7

42 = 2 ⋅ 3 ⋅ 7

70 = 2 ⋅ 5 ⋅ 7

Figure 8-9:
Finding the
GCF of 28,
42, and 70.
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As you can see, the numbers 2 and 7 are common factors of all three numbers.
Multiply these circled numbers together:

2 ⋅ 7 = 14

Thus, the GCF of 28, 42, and 70 is 14.

Knowing how to find the GCF of a set of numbers is important when you
begin reducing fractions to lowest terms. (For more on reducing fractions,
see Chapter 9.)

Marvelous Multiples
Even though multiples tend to be larger numbers than factors, most students
find them easier to work with. Read on.

Generating multiples
The preceding section, “Fabulous Factors,” tells you how to find all the fac-
tors of a number. Finding all the factors is possible because factors of a
number are always less than or equal to the number itself. So no matter how
large a number is, it always has a finite (limited) number of factors.

Unlike factors, multiples of a number are greater than or equal to the number
itself. (The only exception to this is 0, which is a multiple of every number.)
Because of this, the multiples of a number go on forever — that is, they’re infi-
nite. Nevertheless, generating a partial list of multiples for any number is simple.

To list multiples of any number, write down that number and then multiply it
by 2, 3, 4, and so forth.

For example, here are the first few positive multiples of 7:

7 14 21 28 35 42

As you can see, this list of multiples is simply part of the multiplication table
for the number 7. (For the multiplication table up to 9 ⋅ 9, see Chapter 3.)

Finding the least common multiple (LCM)
The least common multiple (LCM) of a set of numbers is the lowest positive
number that’s a multiple of every number in that set.
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For example, the LCM of the numbers 2, 3, and 5 is 30 because

� 30 is a multiple of 2 (2 ⋅ 15 = 30)

� 30 is a multiple of 3 (3 ⋅ 10 = 30)

� 30 is a multiple of 5 (5 ⋅ 6 = 30)

� No number lower than 30 is a multiple of all three numbers

In this section, I give you two ways to find the LCM of two or more numbers.

Using the multiplication table to find the LCM
To find the LCM of a set of numbers, take each number in the set and jot
down a list of the first several multiples in order. The LCM is the first number
that appears on every list.

When looking for the LCM of two numbers, start by listing multiples of the
higher number, but stop this list when the number of multiples you’ve writ-
ten down equals the lower number. Then start listing multiples of the lower
number until one of them matches the first list.

For example, suppose you want to find the LCM of 4 and 6. Begin by listing
multiples of the higher number, which is 6. In this case, list only four of these
multiples because the lower number is 4. 

Multiples of 6: 6, 12, 18, 24, ...

Now, start listing multiples of 4:

Multiples of 4: 4, 8, 12, ...

Because 12 is the first number to appear on both lists of multiples, 12 is the
LCM of 4 and 6.

This method works especially well when you want to find the LCM of two
numbers, but it may take longer if you have more numbers. When working
with three numbers, first multiply the two lowest numbers. For the second-
highest number, find the product of the other two numbers and list that many
multiples. Repeat for the lowest number.

Suppose, for instance, you want to find the LCM of 2, 3, and 5. Again, start
with the highest number — in this case, 5 — listing six numbers (the product
of the other two numbers, 2 ⋅ 3 = 6):

Multiples of 5: 5, 10, 15, 20, 25, 30, ...
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Next, list multiples of 3, listing ten of them (because 2 ⋅ 5 = 10):

Multiples of 3: 3, 6, 9, 12, 15, 18, 21, 24, 27, 30, ...

The only numbers repeated on both lists are 15 and 30. In this case, you can
save yourself the trouble of making the last list because 30 is obviously a mul-
tiple of 2, and 15 isn’t. So 30 is the LCM of 2, 3, and 5.

Using prime factorization to find the LCM
A second method for finding the LCM of a set of numbers is to use the prime
factorizations of those numbers. Here’s how:

1. List the prime factors of each number.

I show you how to find the prime factors of a number earlier in this
chapter, in “Prime factors.”

Suppose you want to find the LCM of 18 and 24. List the prime factors of
each number:

18 = 2 ⋅ 3 ⋅ 3

24 = 2 ⋅ 2 ⋅ 2 ⋅ 3

2. For each prime number listed, underline the most repeated occurrence
of this number in any prime factorization.

The number 2 appears once in the prime factorization of 18 but three
times in that of 24, so underline the three 2s:

18 = 2 ⋅ 3 ⋅ 3

24 = 2 ⋅ 2 ⋅ 2 ⋅ 3

Similarly, the number 3 appears twice in the prime factorization of 18
but only once in that of 24, so underline the two 3s:

18 = 2 ⋅ 3 ⋅ 3

24 = 2 ⋅ 2 ⋅ 2 ⋅ 3

3. Multiply all the underlined numbers.

Here’s the product:

2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3 = 72

So the LCM of 18 and 24 is 72. This checks out because

18 ⋅ 4 = 72

24 ⋅ 3 = 72
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Part III
Parts of the

Whole: Fractions,
Decimals, and

Percents
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In this part . . .

Math represents parts of the whole as fractions, deci-
mals, and percents. Even though they may look 

different, all three of these concepts are closely related
to division. In these chapters, you see how to apply the
Big Four operations (adding, subtracting, multiplying,
and dividing) to fractions, decimals, and percents. I discuss
proper and improper fractions, how to reduce and increase
the terms of fractions, and how to work with mixed num-
bers. I also talk about terminating, non-terminating, and
repeating decimals. I show you how to use the percent
circle to solve three common types of percent problems.
I also explain how to translate fractions, decimals, and 
percents into each of the other two forms.
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Chapter 9

Fooling with Fractions
In This Chapter
� Looking at basic fractions

� Knowing the numerator from the denominator

� Understanding proper fractions, improper fractions, and mixed numbers

� Increasing and reducing the terms of fractions

� Converting between improper fractions and mixed numbers

� Using cross-multiplication to compare fractions 

Suppose that today is your birthday and your friends are throwing you a
surprise party. After opening all your presents, you finish blowing out

the candles on your cake, but now you have a problem: Eight of you want
some cake, but you have only one cake. Several solutions are proposed:

� You could all go into the kitchen and bake seven more cakes.

� Instead of eating cake, everyone could eat celery sticks.

� Because it’s your birthday, you could eat the whole cake and everyone
else could eat celery sticks. (That was your idea.)

� You could cut the cake into eight equal slices so that everyone can
enjoy it.

After careful consideration, you choose the last option. With that decision,
you’ve opened the door into the exciting world of fractions. Fractions repre-
sent parts of a thing that can be cut into pieces. In this chapter, I give you
some basic information about fractions that you need to know, including the
three basic types of fractions: proper fractions, improper fractions, and mixed
numbers. 

I move on to increasing and reducing the terms of fractions, which you need
when you begin applying the Big Four operations to fractions in Chapter 10.
I also show you how to convert between improper fractions and mixed num-
bers. Finally, I show you how to compare fractions using cross-multiplication.
By the time you’re done with this chapter, you’ll see how fractions really can
be a piece of cake!
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Slicing a Cake into Fractions
Here’s a simple fact: When you cut a cake into two equal pieces, each piece is
half of the cake. As a fraction, you write that as 1⁄2. In Figure 9-1, the shaded
piece is half of the cake. 

Every fraction is made up of two numbers separated by a line, or a fraction
bar. The line can be either diagonal or horizontal — so you can write this
fraction in either of the following two ways:

2
1 1⁄2

The number above the line is called the numerator. The numerator tells you
how many pieces you have. In this case, you have one dark-shaded piece of
cake, so the numerator is 1.

The number below the line is called the denominator. The denominator tells
you how many equal pieces the whole cake has been cut up into. In this case,
the denominator is 2.

Similarly, when you cut a cake into three equal slices, each piece is a third of
the cake (see Figure 9-2).

This time, the shaded piece is one-third (1⁄3) of the cake. Again, the numerator
tells you how many pieces you have, and the denominator tells you how
many equal pieces the whole cake has been cut up into.

Figure 9-2:
Cake cut

into thirds.

Figure 9-1:
Two halves

of a cake.
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Figure 9-3 shows a few more examples of ways to represent parts of the
whole with fractions.

In each case, the numerator tells you how many pieces are shaded, and the
denominator tells how many pieces there are altogether.

The fraction bar can also mean a division sign. In other words, 3⁄4 signifies 
3 ÷ 4. If you take three cakes and divide them among four people, each
person gets 3⁄4 of a cake.

Knowing the Fraction Facts of Life
Fractions have their own special vocabulary and a few important properties
that are worth knowing right from the start. When you know them, you find
working with fractions a lot easier.

Telling the numerator from the denominator
The top number in a fraction is called the numerator, and the bottom number
is called the denominator. For example, look at the following fraction:

4
3

A.

B.

C.

D.

Figure 9-3:
Cakes cut

and shaded
into (A) 3⁄4,

(B) 2⁄5, (C) 1⁄10,
and (D) 7⁄10.
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In this example, the number 3 is the numerator, and the number 4 is the
denominator. Similarly, look at this fraction:

89
55

The number 55 is the numerator, and the number 89 is the denominator.

Flipping for reciprocals
When you flip a fraction over, you get its reciprocal. For example, the following
numbers are reciprocals:

3
2 and 2

3

14
11 and 11

14

19
19 is its own reciprocal

Using ones and zeros
When the denominator (bottom number) of a fraction is 1, the fraction is
equal to the numerator by itself. Or conversely, you can turn any whole
number into a fraction by drawing a line and placing the number 1 under it.
For example,

1
2 2= 1

9 9= 1
157 157=

When the numerator and denominator match, the fraction equals 1. That’s
because if you cut a cake into eight pieces and you keep all eight of them, you
have the entire cake. Here are some fractions that equal 1:

8
8 1= 11

11 1= 365
365 1=

When the numerator of a fraction is 0, the fraction is equal to 0. For example,

1
0 0= 12

0 0= 113
0 0=
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The denominator of a fraction can never be 0. Fractions with 0 in the denomi-
nator are undefined — that is, they have no mathematical meaning.

Remember from earlier in this chapter that placing a number in the denomi-
nator is similar to cutting a cake up into that number of pieces. You can cut
a cake into two, or ten, or even a million pieces. You can even cut it into one
piece (that is, don’t cut it at all). But you can’t cut a cake into zero pieces. For
this reason, putting 0 in the denominator — much like lighting an entire book
of matches on fire — is something you should never, never do.

Mixing things up
A mixed number is a combination of a whole number and a proper fraction
added together. Here are some examples:

1 2
1 5 4

3 99 100
44

A mixed number is always equal to the whole number plus the fraction
attached to it. That is, 11⁄2 means 1 + 1⁄2, 53⁄4 means 5 + 3⁄4, and so on.

Knowing proper from improper
When the numerator and the denominator are equal, the fraction equals 1:

2
2 1= 5

5 1= 78
78 1=

When the numerator (top number) is less than the denominator (bottom
number), the fraction is less than 1:

<2
1 1 <5

3 1 <73
63 1

Fractions like these are called are called proper fractions. Positive proper frac-
tions are always between 0 and 1. However, when the numerator is greater than
the denominator, the fraction is greater than 1. Take a look:

>2
3 1 >4

7 1 >97
98 1

Any fraction that’s greater than 1 is called an improper fraction. It’s customary
to convert an improper fraction to a mixed number, especially when it’s the
final answer to a problem.
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An improper fraction is always top heavy, as if it’s unstable and wants to fall
over. To stabilize it, convert it to a mixed number. On the other hand, proper
fractions are always stable.

Later in this chapter, I discuss improper fractions in more detail when I show
you how to convert between improper fractions and mixed numbers.

Increasing and Reducing 
Terms of Fractions

Take a look at these three fractions:

2
1

4
2

6
3

If you cut three cakes (as I do earlier in this chapter) into these three fractions,
exactly half of the cake will be shaded just like in Figure 9-1, no matter how you
slice it. (Get it? No matter how you slice it? You may as well laugh at the bad
jokes, too — they’re free.) The important thing here isn’t the humor, or the lack
of it, but the idea about fractions.

The fractions 1⁄2, 2⁄4, and 3⁄6 are all equal in value. In fact, you can write down
lots of fractions that are also equal to these. As long as the numerator is
exactly half the denominator, the fractions are all equal to 1⁄2 — for example,

22
11

200
100

, ,
, ,

2 000 000
1 000 000

These fractions are equal to 1⁄2, but their terms (the numerator and denomina-
tor) are different. In this section, I show you how to both increase and reduce
the terms of a fraction without changing its value.

Increasing the terms of fractions
To increase the terms of a fraction by a certain number, multiply both the
numerator and the denominator by that number.

For example, to increase the terms of the fraction 3⁄4 by 2, multiply both the
numerator and the denominator by 2:

4
3

4 2
3 2

8
6

= =$
$
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Similarly, to increase the terms of the fraction 5⁄11 by 7, multiply both the
numerator and the denominator by 7:

11
5

11 7
5 7

77
35

= =$
$

Increasing the terms of a fraction doesn’t change its value. Because you’re
multiplying the numerator and denominator by the same number, you’re
essentially multiplying the fraction by a fraction that equals 1.

One key thing to know is how to increase the terms of a fraction so that the
denominator becomes a preset number. Here’s how you do it:

1. Divide the new denominator by the old denominator.

To keep the fractions equal, you have to multiply the numerator and
denominator of the old fraction by the same number. This first step tells
you what the old denominator was multiplied by to get the new one.

For example, suppose you want to raise the terms of the fraction 4⁄7 so
that the denominator is 35. That is, you’re trying to fill in the question
mark here:

?
7
4

35=

Divide 35 by 7, which tells you that the denominator was multiplied by 5. 

2. Multiply this result by the old numerator to get the new numerator.

You now know how the two denominators are related. The numerators
need to have the same relationship, so multiply the old numerator by
the number you found in Step 1.

Multiply 5 by 4, which gives you 20. So here’s the answer:

7
4

7 5
4 5

35
20

= =$
$

Reducing fractions to lowest terms
Reducing fractions is similar to increasing fractions, except it involves division
rather than multiplication. But because you can’t always divide, reducing
takes a bit more finesse.

In practice, reducing fractions is similar to factoring numbers. For this reason,
if you’re not up on factoring, you may want to review this topic in Chapter 8.

In this section, I show you the formal way to reduce fractions, which works in
all cases. Then I show you a more informal way that you can use after you’re
more comfortable.
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Reducing fractions the formal way
Reducing fractions the formal way relies on an understanding of how to break
down a number into its prime factors. I discuss this in detail in Chapter 8, so
if you’re shaky on this concept, you may want to review it first.

Here’s how to reduce a fraction:

1. Break down both the numerator (top number) and denominator
(bottom number) into their prime factors.

For example, suppose you want to reduce the fraction 12⁄30. Break down
both 12 and 30 into their prime factors:

30
12

2 3 5
2 2 3

= $ $
$ $

2. Cross out any common factors.

As you can see, I cross out a 2 and a 3, because they’re common factors —
that is, they appear in both the numerator and denominator:

30
12

2 3 5
2 2 3

= $ $
$ $

3. Multiply the remaining numbers to get the reduced numerator and
denominator.

This shows you that the fraction 12⁄30 reduces to 2⁄5:

30
12

2 3 5
2 2 3

5
2

= =$ $
$ $

As another example, here’s how you reduce the fraction 32⁄100:

100
32

2 2 5 5
2 2 2 2 2

25
8

= =$ $ $
$ $ $ $

This time, cross out two 2s from both the top and the bottom as common fac-
tors. The remaining 2s on top, and the 5s on the bottom, aren’t common fac-
tors. So the fraction 32⁄100 reduces to 8⁄25.

Reducing fractions the informal way
Here’s an easier way to reduce fractions after you get comfortable with the
concept:

1. If the numerator (top number) and denominator (bottom number) are
both divisible by 2 — that is, if they’re both even — divide both by 2.

For example, suppose you want to reduce the fraction 24⁄60. The numera-
tor and the denominator are both even, so divide them both by 2:

60
24

30
12

=
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2. Repeat Step 1 until the numerator or denominator (or both) is no
longer divisible by 2.

In the resulting fraction, both numbers are still even, so repeat the first
step again:

30
12

15
6

=

3. Repeat Step 1 using the number 3, and then 5, and then 7, continuing
testing prime numbers until you’re sure that the numerator and
denominator have no common factors.

Now, the numerator and the denominator are both divisible by 3 (see
Chapter 7 for easy ways to tell if one number is divisible by another), so
divide both by 3:

15
6

5
2

=

Neither the numerator nor the denominator is divisible by 3, so this step
is complete. At this point, you can move on to test for divisibility by 5, 7,
and so on, but you really don’t need to. The numerator is 2, and it obvi-
ously isn’t divisible by any larger number, so you know that the fraction
24⁄60 reduces to 2⁄5.

Converting Between Improper Fractions
and Mixed Numbers

In “Knowing the fraction facts of life,” I tell you that any fraction whose
numerator is greater than its denominator is an improper fraction. Improper
fractions are very useful and easy to work with, but for some reason, people
just don’t like them. (The word improper should’ve tipped you off.) Teachers
especially don’t like them, and they really don’t like an improper fraction to
appear as the answer to a problem. However, they love mixed numbers. One
reason they love them is that estimating the approximate size of a mixed
number is easy.

For example, if I tell you to put 31⁄3 of a gallon of gasoline in my car, you’d prob-
ably find it hard to estimate roughly how much that is: 5 gallons, 10 gallons,
20 gallons?

But if I tell you to get 101⁄3 gallons of gasoline, you know immediately that this
amount is a little more than 10 but less than 11 gallons. Although 101⁄3 is the
same as 31⁄3, knowing the mixed number is a lot more helpful in practice. For
this reason, you often have to convert improper fractions to mixed numbers.
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Knowing the parts of a mixed number
Every mixed number has both a whole number part and a fractional part. So
the three numbers in a mixed number are

� The whole number

� The numerator

� The denominator

For example, in the mixed number 31⁄2, the whole number part is 3 and the
fractional part is 1⁄2. So this mixed number is made up of three numbers:
the whole number (3), the numerator (1), and the denominator (2). Knowing
these three parts of a mixed number is helpful for converting back and forth
between mixed numbers and improper fractions.

Converting a mixed number 
to an improper fraction
To convert a mixed number to an improper fraction,

1. Multiply the denominator of the fractional part by the whole number,
and add the result to the numerator.

For example, suppose you want to convert the mixed number 52⁄3 to an
improper fraction. First, multiply 3 by 5 and add 2:

(3 ⋅ 5) + 2 = 17

2. Use this result as your numerator, and place it over the denominator
you already have.

Place this result over the denominator:

3
17

So the mixed number 52⁄3 equals the improper fraction 17⁄3. This method
works for all mixed numbers. Furthermore, if you start with the frac-
tional part reduced, the answer will also be reduced (see the earlier
“Increasing and Reducing Terms of Fractions” section).
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Converting an improper fraction 
to a mixed number
To convert an improper fraction to a mixed number, divide the numerator
by the denominator (see Chapter 3). Then write the mixed number in
this way:

� The quotient (answer) is the whole-number part.

� The remainder is the numerator.

� The denominator of the improper fraction is the denominator.

For example, suppose you want to write the improper fraction 19⁄5 as a mixed
number. First, divide 19 by 5:

19 ÷ 5 = 3 r 4

Then write the mixed number as follows:

3 5
4

This method works for all improper fractions. And, as is true of conversions
in the other direction, if you start with a reduced fraction, you don’t have to
reduce your answer (see “Increasing and reducing terms of fractions”).

Understanding Cross-multiplication
Cross-multiplication is a handy little thing to know. You can use it in a few differ-
ent ways, so I explain it here, and then I show you an immediate application.

To cross-multiply two fractions,

1. Multiply the numerator of the first fraction by the denominator of the
second fraction and jot down the answer.

2. Multiply the numerator of the second fraction by the denominator of
the first fraction and jot down the answer.
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For example, suppose you have these two fractions:

9
2

7
4

When you cross-multiply, you get these two numbers:

2 ⋅ 7 = 14 4 ⋅ 9 = 36

You can use cross-multiplication to compare fractions and find out which is
greater. When you do so, make sure that you start with the numerator of the
first fraction.

To find out which of two fractions is larger, cross-multiply and place the two
numbers you get, in order, under the two fractions. The larger number is
always under the larger fraction.

For example, suppose you want to find out which of the following three frac-
tions is the greatest:

5
3

9
5

11
6

Cross-multiplication works only with two fractions at a time, so pick the
first two:

5
3

9
5

3 ⋅ 9 = 27 5 ⋅ 5 = 25

Because 27 is greater than 25, you know now that 3⁄5 is greater than 5⁄9. So you
can throw out 5⁄9.

Now do the same thing for 3⁄5 and 6⁄11:

5
3

11
6

3 ⋅ 11 = 33 6 ⋅ 5 = 30

Because 33 is greater than 30, 3⁄5 is greater than 6⁄11. Pretty straightforward,
right? And that’s all you have to know for now. I show you a bunch of great
things you can do with this simple skill in the next chapter.
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Chapter 10

Parting Ways: Fractions and
the Big Four Operations

In This Chapter
� Looking at multiplication and division of fractions

� Adding and subtracting fractions in a bunch of different ways

� Applying the four operations to mixed numbers

In this chapter, the focus is on applying the Big Four operations to fractions.
I start out by showing you how to multiply and divide fractions, which isn’t

much more difficult than multiplying whole numbers. Surprisingly, adding and
subtracting fractions is a bit trickier. I show you a variety of methods, each
with its own strengths and weaknesses, and I recommend how to choose which
method will work best depending on the problem you have to solve.

Later in the chapter, I move on to mixed numbers. Again, multiplication and
division shouldn’t pose too much of a problem because the process in each
case is almost the same as multiplying and dividing fractions. I save adding
and subtracting mixed numbers for the very end. By then, you should be
much more comfortable with fractions and ready to tackle the challenge.

Multiplying and Dividing Fractions
One of the odd little ironies of life is that multiplying and dividing fractions
is easier than adding or subtracting them — just two easy steps and you’re
done! For this reason, I show you how to multiply and divide fractions before
I show you how to add or subtract them. In fact, you may find multiplying
fractions easier than multiplying whole numbers because the numbers you’re
working with are usually small. More good news is that dividing fractions is
nearly as easy as multiplying them. So I’m not even wishing you good luck —
you don’t need it!
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Multiplying numerators and denominators
straight across
Everything in life should be as simple as multiplying fractions. All you need for
multiplying fractions is a pen or pencil, something to write on (preferably not
your hand), and a basic knowledge of the multiplication table. (See Chapter 3
for a multiplication refresher.)

Here’s how to multiply two fractions:

1. Multiply the numerators (the numbers on top) together to get the
numerator of the answer.

2. Multiply the denominators (the numbers on the bottom) together to
get the denominator of the answer.

For example, here’s how to multiply 2⁄5 ⋅ 3⁄7:

5
2

7
3

5 7
2 3

35
6

= =$ $
$

Sometimes, when you multiply fractions, you may have an opportunity to
reduce to lowest terms. (For more on when and how to reduce a fraction, see
Chapter 9.) As a rule, math people are crazy about reduced fractions, and
teachers sometimes take points off a right answer if you could’ve reduced it
but didn’t. Here’s a multiplication problem that ends up with an answer that’s
not in its lowest terms:

5
4

8
7

5 8
4 7

40
28

= =$ $
$

Because the numerator and the denominator are both even numbers, this
fraction can be reduced. Start by dividing both numbers by 2:

40 2
28 2

20
14

'
'

=

Again, the numerator and the denominator are both even, so do it again:

20 2
14 2

10
7

'
'

=

This fraction is now fully reduced.

When multiplying fractions, you can often make your job easier by canceling
out equal factors in the numerator and denominator. Canceling out equal fac-
tors makes the numbers that you’re multiplying smaller and easier to work
with, and it also saves you the trouble of reducing at the end. Here’s how it
works:
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� When the numerator of one fraction and the denominator of the other
are the same, change both of these numbers to 1s. (See the nearby side-
bar for why this works.)

� When the numerator of one fraction and the denominator of the other
are divisible by the same number, factor this number out of both. In
other words, divide the numerator and denominator by that common
factor. (For more on how to find factors, see Chapter 8.)

For example, suppose you want to multiply the following two numbers:

13
5

20
13$

You can make this problem easier by canceling out the number 13 as follows:

1 13
5

20
13 1

1 20
5 1

20
5

= =$ $
$

You can make it even easier by noticing that 20 = 5 4$ , so you can factor out
the number 5 as follows:

1
1 5

20 4
1

1 4
1 1

4
1

= =$ $
$
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One is the easiest number
With fractions, the relationship between the
numbers, not the actual numbers themselves,  is
most important. Understanding how to multiply
and divide fractions can give you a deeper
understanding of why you can increase or
decrease the numbers within a fraction without
changing the value of the whole fraction.

When you multiply or divide any number by 1,
the answer is the same number. This rule also
goes for fractions, so

8
3 1 8

3
8
3 1 8

3and '= =$

13
5 1 13

5
13
5 1 13

5and '= =$

70
67 1 70

67
70
67 1 70

67and '= =$

And as I discuss in Chapter 9, when a fraction
has the same number in both the numerator and

the denominator, its value is 1. In other words,
the fractions 2⁄2, 3⁄3, and 4⁄4 are all equal to 1. Look
what happens you multiply the fraction 3⁄4 by 2⁄2:

4
3

2
2

4 2
3 2

8
6

= =$ $
$

The net effect is that you’ve increased the terms
of the original fraction by 2. But all you’ve done
is multiply the fraction by 1, so the value of the
fraction hasn’t changed. The fraction 6⁄8 is equal
to 3⁄4.

Similarly, reducing the fraction 6⁄9 by a factor of
3 is the same as dividing that fraction by 3⁄3
(which is equal to 1):

9
6

3
3

9 3
6 3

3
2'

'
'

= =

So 6⁄9 is equal to 2⁄3.
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Doing a flip to divide fractions
Dividing fractions is just as easy as multiplying them. In fact, when you divide
fractions, you really turn the problem into multiplication.

To divide one fraction by another, multiply the first fraction by the reciprocal
of the second. (As I discuss in Chapter 9, the reciprocal of a fraction is simply
that fraction turned upside down.)

For example, here’s how you turn fraction division into multiplication:

3
1

5
4

3
1

4
5' = $

As you can see, I turn 4⁄5 into its reciprocal — 5⁄4 — and change the division
sign to a multiplication sign. After that, just multiply the fractions as I
describe in “Multiplying numerators and denominators straight across”:

3
1

4
5

3 4
1 5

12
5

= =$ $
$

As with multiplication, in some cases you may have to reduce your result at the
end. But you can also make your job easier by canceling out equal factors. (See
the preceding section.)

All Together Now: Adding Fractions
When you add fractions, one important thing to notice is whether their
denominators (the numbers on the bottom) are the same. If they’re the
same — woohoo! Adding fractions that have the same denominator is a walk
in the park. But when fractions have different denominators, adding them
becomes a tad more complex.

To make matters worse, many teachers make adding fractions even more dif-
ficult by requiring you to use a long and complicated method when, in many
cases, a short and easy one will do.

In this section, I first show you how to add fractions with the same denomina-
tor. Then I show you a foolproof method for adding fractions when the
denominators are different. It always works, and it’s usually the simplest way
to go. After that, I show you a quick method that you can use only for certain
problems. Finally, I show you the longer, more complicated way to add frac-
tions that usually gets taught.
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Finding the sum of fractions 
with the same denominator
To add two fractions that have the same denominator (bottom number), add
the numerators (top numbers) together and leave the denominator unchanged. 

For example, consider the following problem:

5
1

5
2

5
1 2

5
3

+ =
+

=

As you can see, to add these two fractions, you add the numerators (1 + 2)
and keep the denominator (5).

Why does this work? Chapter 9 tells you that you can think about fractions
as pieces of cake. The denominator in this case tells you that the entire cake
has been cut into five pieces. So when you add 1⁄5 + 2⁄5, you’re really adding one
piece plus two pieces. The answer, of course, is three pieces — that is, 3⁄5.

Even if you have to add more than two fractions, as long as the denominators
are all the same, you just add the numerators and leave the denominator
unchanged:

17
1

17
3

17
4

17
6

17
1 3 4 6

17
14

+ + + =
+ + +

=

Sometimes, when you add fractions with the same denominator, you may
have to reduce it to lowest terms (to find out more about reducing, flip to
Chapter 9). Take this problem for example:

4
1

4
1

4
1 1

4
2

+ =
+

=

The numerator and the denominator are both even, so you know they can be
reduced:

4
2

2
1

=

In other cases, the sum of two proper fractions is an improper fraction. You
get a numerator that’s larger than the denominator when the two fractions
add up to more than 1, as in this case:

7
3

7
5

7
8

+ =

If you have more work to do with this fraction, leave it as an improper frac-
tion so that it’s easier to work with. But if this is your final answer, you may
need to turn it into a mixed number (I cover mixed numbers in Chapter 9):

7
8 8 7 1 1 1 7

1r'= = =
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When two fractions have the same numerator, don’t add them by adding the
denominators and leaving the numerator unchanged.

Adding fractions with different 
denominators
When the fractions that you want to add have different denominators, adding
them isn’t quite as easy. At the same time, it doesn’t have to be as hard as
most teachers make it.

Now, I’m shimmying out onto a brittle limb here, but this needs to be said:
There’s a very simple way to add fractions. It always works. It makes adding
fractions only a little more difficult than multiplying them. And as you move
up the math food chain into algebra, it becomes the most useful method.

So why doesn’t anybody talk about it? I think it’s a clear case of tradition
being stronger than common sense. The traditional way to add fractions is
more difficult, more time-consuming, and more likely to cause an error. But
generation after generation has been taught that it’s the right way to add frac-
tions. It’s a vicious cycle.

But in this book, I’m breaking with tradition. I first show you the easy way to
add fractions. Then I show you a quick trick that works in a few special cases.
And finally, I show you the traditional way to add fractions.

Using the easy way
At some point in your life, I bet some teacher somewhere told you these golden
words of wisdom: “You can’t add two fractions with different denominators.”
Your teacher was wrong! Here’s the way to do it:

1. Cross-multiply the two fractions and add the results together to get
the numerator of the answer.

Suppose you want to add the fractions 1⁄3 and 2⁄5. To get the numerator of
the answer, cross-multiply. In other words, multiply the numerator of
each fraction by the denominator of the other:

3
1 + 5

2

1 ⋅ 5 = 5

2 ⋅ 3 = 6

Add the results to get the numerator of the answer:

5 + 6 = 11
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2. Multiply the two denominators together to get the denominator of the
answer.

To get the denominator, just multiply the denominators of the two 
fractions:

3 ⋅ 5 = 15

The denominator of the answer is 15.

3. Write your answer as a fraction.

3
1

5
2

15
11

+ =

As you discover in the earlier section “Finding the sum of fractions with the
same denominator,” when you add fractions, you sometimes need to reduce
the answer that you get. Here’s an example:

8
5

10
3

8 10
5 10 3 8

80
50 24

80
74

+ =
+

=
+

=$
$ $

Because the numerator and the denominator are both even numbers, you
know that the fraction can be reduced. So try dividing both numbers by 2:

80 2
74 2

40
37

'
'

=

This fraction can’t be reduced further, so 37⁄40 is the final answer.

As you also discover in “Finding the sum of fractions with the same denomi-
nator,” sometimes when you add two proper fractions, your answer is an
improper fraction:

5
4

7
3

5 7
4 7 3 5

35
28 15

35
43

+ =
+

=
+

=$
$ $

If you have more work to do with this fraction, leave it as an improper frac-
tion so that it’s easier to work with. But if this is your final answer, you may
need to turn it into a mixed number (see Chapter 9 for details).

35
43 43 35 1 8 1 35

8r'= = =

In some cases, you may have to add more than one fraction. The method is
similar, with one small tweak. For example, suppose you want to add 1⁄2 + 3⁄5 + 4⁄7:

1. Start out by multiplying the numerator of the first fraction by the
denominators of all the other fractions.

2
3 41
5 7+ +

(1 ⋅ 5 ⋅ 7) = 35
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2. Do the same with the second fraction and add this value to the first.

1
5

4
2

3
7+ +

35 + (3 ⋅ 2 ⋅ 7) = 35 + 42

3. Do the same with the remaining fraction(s).

1 3
72 5
4

+ +

35 + 42 + (4 ⋅ 2 ⋅ 5) = 35 + 42 + 40 = 117

When you’re done, you have the numerator of the answer.

4. To get the denominator, just multiply all the denominators together:

1 3 4
2 5 7+ +

= 2 5 7
35 42 40

70
117+ +

=$ $
As usual, you may need to reduce or change an improper fraction to a
mixed number. In this example, you just need to change to a mixed
number (see Chapter 9 for details):

70
117 117 70 1 47 1 70

47r'= = =

Trying a quick trick
I show you a way to add fractions with different denominators in the preceding
section. It always works and it’s easy. So why do I want to show you another
way? It feels like déjà vu.

In some cases, you can save yourself a lot of effort with a little bit of smart
thinking. You can’t always use this method, but you can use it when one
denominator is a multiple of the other. (For more on multiples, see Chapter 8.)
Look at the following problem:

12
11

24
19

+

First, I solve it the way I show you in the preceding section:

12
11

24
19

12 24
11 24 19 12

288
264 228

288
492

+ =
+

=
+

=$
$ $

Those are some big numbers, and I’m still not done because the numerator is
larger than the denominator. The answer is an improper fraction. Worse yet,
the numerator and denominator are both even numbers, so the answer still
needs to be reduced.

With certain fraction addition problems, I can give you a smarter way to
work. The trick is to turn a problem with different denominators into a much
easier problem with the same denominator.
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Before you add two fractions with different denominators, check the denomi-
nators to see whether one is a multiple of the other (for more on multiples,
flip to Chapter 8). If it is, you can use the quick trick:

1. Increase the terms of the fraction with the smaller denominator so
that it has the larger denominator.

Look at the earlier problem in this new way:

12
11

24
19

+

As you can see, 12 divides into 24 without a remainder. In this case, you
want to raise the terms of 11⁄12 so that the denominator is 24:

?
12
11

24=

I show you how to do this kind of problem in Chapter 9. To fill in the
question mark, the trick is to divide 24 by 12 to find out how the denomi-
nators are related; then multiply the result by 11:

? = (24 ÷ 12) ⋅ 11 = 22

So 11⁄12 = 22⁄24.

2. Rewrite the problem, substituting this increased version of the frac-
tion, and add as I show you earlier in “Finding the sum of fractions
with the same denominator.”

Now you can rewrite the problem this way:

24
22

24
19

24
41

+ =

As you can see, the numbers in this case are much smaller and easier to
work with. The answer here is an improper fraction; changing it into a
mixed number is easy:

24
41 41 24 1 17 1 24

17r'= = =

Relying on the traditional way
In the two preceding sections, I show you two ways to add fractions with differ-
ent denominators. They both work great depending on the circumstances. So
why do I want to show you yet a third way? It feels like déjà vu all over again.

The truth is that I don’t want to show you this way. But they’re forcing me to.
And you know who they are, don’t you? The man — the system — the powers
that be. The ones who want to keep you down in the mud, groveling at
their feet. Okay, so I’m exaggerating a little. But let me impress on you that
you don’t have to add fractions this way unless you really want to (or unless
your teacher insists on it).
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Here’s the traditional way to add fractions with two different denominators:

1. Find the least common multiple (LCM) of the two denominators (for
more on finding the LCM of two numbers, see Chapter 8).

Suppose you want to add the fractions 3⁄4 + 7⁄10. First find the LCM of the
two denominators, 4 and 10. Here’s how to find the LCM using the multi-
plication table method:

• Multiples of 10: 10, 20, 30, 40

• Multiples of 4: 4, 8, 12, 16, 20

So the LCM of 4 and 10 is 20.

2. Increase the terms of each fraction so that the denominator of each
equals the LCM (for more on how to do this, see Chapter 9).

Increase each fraction to higher terms so that the denominator of each
is 20.

4
3

4 5
3 5

20
15

= =$
$ and 10

7
10 2
7 2

20
14

= =$
$

3. Substitute these two new fractions for the original ones and add as I
show you earlier in “Finding the sum of fractions with the same
denominator.”

At this point, you have two fractions that have the same denominator:

20
15

20
14

20
29

+ =

When the answer is an improper fraction, you still need to change it to a
mixed number:

20
29 29 20 1 9 1 20

9r'= = =

As another example, suppose you want to add the numbers 5⁄6 + 3⁄10 + 2⁄15.

1. Find the LCM of 6, 10, and 15.

This time, I use the prime factorization method (see Chapter 8 for details
on how to do this). Start by decomposing the three denominators down
to their prime factors:

6 = 2 ⋅ 3

10 = 2 ⋅ 5

15 = 3 ⋅ 5

These denominators have a total of three different prime factors — 2, 3,
and 5. Each prime factor appears only once in any decomposition, so the
LCM of 6, 10, and 15 is

2 ⋅ 3 ⋅ 5 = 30
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2. You need to increase the terms of all three fractions so that their
denominators are 30:

6
5

6 5
5 5

30
25

= =$
$

10
3

10 3
3 3

30
9

= =$
$

15
2

15 2
2 2

30
4

= =$
$

3. Simply add the three new fractions:

30
25

30
9

30
4

30
38

+ + =

Again, you need to change this improper fraction to a mixed number:

30
38 38 30 1 8 1 30

8r'= = =

Because both numbers are divisible by 2, you can reduce the fraction:

1 30
8 1 15

4
=

Pick your trick: Choosing the best method
As I say earlier in this chapter, I think that the traditional way to add fractions
is more difficult than either the easy way or the quick trick. Your teacher may
require you to use the traditional way, and after you get the hang of it, you’ll
get good at it. But given the choice, here’s my recommendation:

� Use the easy way when the numerators and denominators are small
(say, 15 or under).

� Use the quick trick with larger numerators and denominators when one
denominator is a multiple of the other.

� Use the traditional way only when you can’t use either of the other meth-
ods (or when you know the LCM just by looking at the denominators).

Take It Away: Subtracting Fractions
Subtracting fractions isn’t really much different from adding them. As with
addition, when the denominators are the same, subtraction is easy. And when
the denominators are different, the methods I show you for adding fractions
can be tweaked for subtracting them.

So to figure out how to subtract fractions, you can read the section “All
Together Now: Adding Fractions” and substitute a minus sign (–) for every
plus sign (+). But it’d be just a little chintzy if I expected you to do that. So in
this section, I show you four ways to subtract fractions that mirror what I dis-
cuss earlier in this chapter about adding them.
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Subtracting fractions with 
the same denominator
As with addition, subtracting fractions with the same denominator is always
easy. When the denominators are the same, you can just think of the frac-
tions as pieces of cake.

To subtract one fraction from another when they both have the same denom-
inator (bottom number), subtract the numerator (top number) of the second
from the numerator of the first and keep the denominator the same. For
example:

5
3

5
2

5
3 2

5
1

- =
-

=

Sometimes, as when you add fractions, you may have to reduce:

10
3

10
1

10
3 1

10
2

- =
-

=

Because the numerator and denominator are both even, you can reduce this
fraction by a factor of 2:

10
2

10 2
2 2

5
1

'
'

= =

Unlike addition, when you subtract one proper fraction from another, you
never get an improper fraction.

Subtracting fractions with 
different denominators
Just as with addition, you have a choice of methods when subtracting frac-
tions. These three methods are similar to the methods I show you for adding
fractions: the easy way, the quick trick, and the traditional way.

The easy way always works, and I recommend this method for most of your
fraction subtracting needs. The quick trick is a great timesaver, so use it
when you can. And as for the traditional way — well, even if I don’t like it,
your teacher and other math purists probably do.

Knowing the easy way
This way of subtracting fractions works in all cases, and it’s easy. (In the next
section, I show you a quick way to subtract fractions when one denominator
is a multiple of the other.) Here’s the easy way to subtract fractions that have
different denominators:
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1. Cross-multiply the two fractions and subtract the second number from
the first to get the numerator of the answer.

For example, suppose you want to subtract 6⁄7 – 2⁄5. To get the numerator,
cross-multiply the two fractions and then subtract the second number
from the first number (see Chapter 9 for info on cross-multiplication):

7
6 – 5

2

(6 ⋅ 5) – (2 ⋅ 7) = 30 – 14 = 16

After you cross-multiply, be sure to subtract in the correct order. (The
first number is the numerator of the first fraction times the denominator
of the second.)

2. Multiply the two denominators together to get the denominator of the
answer.

7 ⋅ 5 = 35

3. Putting the numerator over the denominator gives you your answer.

35
16

Here’s another example to work with:

10
9

6
5

-

This time, I put all the steps together:

10
9

6
5

10 6
9 6 5 10

- =
-
$

$ $

With the problem set up like this, you just have to simplify the result:

60
54 50

60
4

=
-

=

In this case, you can reduce the fraction:

60
4

15
1

=

Cutting it short with a quick trick
The easy way I show you in the preceding section works best when the
numerators and denominators are small. When they’re larger, you may be
able to take a shortcut.

Before you subtract fractions with different denominators, check the denomi-
nators to see whether one is a multiple of the other (for more on multiples,
see Chapter 8). If it is, you can use the quick trick:
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1. Increase the terms of the fraction with the smaller denominator so
that it has the larger denominator.

For example, suppose you want to find 17⁄20 – 31⁄80. If you cross-multiply these
fractions, your results are going to be much bigger than you want to work
with. But fortunately, 80 is a multiple of 20, so you can use the quick way.

First, increase the terms of 17⁄20 so that the denominator is 80 (for more on
increasing the terms of fractions, see Chapter 9):

?
20
17

80=

? = 80 ÷ 20 ⋅ 17 = 68

So 17⁄20 = 68⁄80.

2. Rewrite the problem, substituting this increased version of the frac-
tion, and subtract as I show you earlier in “Subtracting fractions with
the same denominator.”

Here’s the problem as a subtraction of fractions with the same denomi-
nator, which is much easier to solve:

80
68

80
31

80
37

- =

In this case, you don’t have to reduce to lowest terms, although in other
problems you may have to. (See Chapter 9 for more on reducing fractions.)

Keeping your teacher happy with the traditional way
As I describe earlier in this chapter in “All Together Now: Adding Fractions,”
you should use the traditional way only as a last resort. I recommend that you
use it only when the numerator and denominator are too large to use the easy
way and when you can’t use the quick trick.

To use the traditional way to subtract fractions with two different denomina-
tors, follow these steps:

1. Find the least common multiple (LCM) of the two denominators (for
more on finding the LCM of two numbers, see Chapter 8).

For example, suppose you want to subtract 7⁄8 – 11⁄14. Here’s how to find
the LCM of 8 and 14 using the prime factorization method:

8 = 2 ⋅ 2 ⋅ 2

14 = 2 ⋅ 7

I underline the case where each prime factor appears most often: 2
appears three times, and 7 appears once. So the LCM of 8 and 14 is

2 ⋅ 2 ⋅ 2 ⋅ 7 = 56
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2. Increase each fraction to higher terms so that the denominator of
each equals the LCM (for more on how to do this, see Chapter 9).

The denominators of both should be 56:

8
7

8 7
7 7

56
49

= =$
$

14
11

14 4
11 4

56
44

= =$
$

3. Substitute these two new fractions for the original ones and subtract as I
show you earlier in “Subtracting fractions with the same denominator.”

56
49

56
44

56
5

- =

This time, you don’t need to reduce, because 5 is a prime number and 56
isn’t divisible by 5. In some cases, however, you have to reduce the
answer to lowest terms. 

Working Properly with Mixed Numbers
All the methods I describe earlier in this chapter work for both proper and
improper fractions. Unfortunately, mixed numbers are ornery little critters,
and you need to figure out how to deal with them on their own terms. (For
more on mixed numbers, flip to Chapter 9.)

Multiplying and dividing mixed numbers
I can’t give you a direct method for multiplying and dividing mixed numbers.
The only way is to convert the mixed numbers to improper fractions and
multiply or divide as usual. Here’s how to multiply or divide mixed numbers:

1. Convert all mixed numbers to improper fractions (see Chapter 9 for
details).

For example, suppose you want to multiply 13⁄5 ⋅ 21⁄3. First convert 13⁄5 and
21⁄3 to improper fractions:

1 5
3

5
5 1 3

5
8

=
+

=$

2 3
1

3
3 2 1

3
7

=
+

=$
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2. Multiply these improper fractions (as I show you earlier in this chapter,
in “Multiplying and Dividing Fractions).

5
8

3
7

5 3
8 7

15
56

= =$ $
$

3. If the answer is an improper fraction, convert it back to a mixed
number (see Chapter 9).

15
56 56 15 3 11 3 15

11r'= = =

In this case, the answer is already in lowest terms, so you don’t have to
reduce it. 

As a second example, suppose you want to divide 32⁄3 by 14⁄7.

1. Convert 32⁄3 and 14⁄7 to improper fractions:

3 3
2

3
3 3 2

3
11

=
+

=$

1 7
4

7
7 1 4

7
11

=
+

=$

2. Divide these improper fractions.

Divide fractions by multiplying the first fraction by the reciprocal of the
second (see the earlier “Multiplying and Dividing Fractions” section):

3
11

7
11

3
11

11
7' = $

In this case, before you multiply, you can cancel out factors of 11 in the
numerator and denominator:

3
111

111
7

3 1
1 7

3
7

= =$ $
$

3. Convert the answer to a mixed number.

3
7 7 3 2 1 2 3

1r'= = =

Adding and subtracting mixed numbers
One way to add and subtract mixed numbers is to convert them to improper
fractions, much as I describe earlier in this chapter in “Multiplying and divid-
ing mixed numbers,” and then to add or subtract them using a method from
the “All Together Now: Adding Fractions” or “Take It Away: Subtracting
Fractions” section. Doing so is a perfectly valid way of getting the right
answer without learning a new method.

Unfortunately, teachers just love to make people add and subtract mixed
numbers in their own special way. The good news is that a lot of folks find
this way easier than all the converting stuff.
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In pairs: Adding two mixed numbers
Adding mixed numbers looks a lot like adding whole numbers: You stack
them up one on top of the other, draw a line, and add. For this reason, some
students feel more comfortable adding mixed numbers than adding fractions.
Here’s how to add two mixed numbers:

1. Add the fractional parts using any method you like, and if necessary,
change this sum to a mixed number and reduce it.

2. If the answer you found in Step 1 is an improper fraction, change it to
a mixed number, write down the fractional part, and carry the whole
number part to the whole number column.

3. Add the whole number parts (including any number carried).

Your answer may also need to be reduced to lowest terms (see Chapter 9). In
the examples that follow, I show you everything you need to know.

Summing up mixed numbers when the denominators are the same
As with any problem involving fractions, adding is always easier when the
denominators are the same. For example, suppose you want to add 31⁄3 + 51⁄3.
Doing mixed number problems is often easier if you place one number above
the other:

3

5

1
3

1
3+

As you can see, this arrangement is similar to how you add whole numbers,
but it includes an extra column for fractions. Here’s how you add these two
mixed numbers step by step:

1. Add the fractions.

3
1

3
1

3
2

+ =

2. Switch improper fractions to mixed numbers; write down your
answer.

Because 2⁄3 is a proper fraction, you don’t have to change it.

3. Add the whole number parts.

3 + 5 = 8

Here’s how your problem looks in column form:

3

5

8

1
3

1
3

2
3

+
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This problem is about as simple as they get. In this case, all three steps are
pretty easy. But sometimes, Step 2 requires more attention. For example, sup-
pose you want to add 83⁄5 + 64⁄5. Here’s how you do it:

1. Add the fractions.

5
3

5
4

5
7

+ =

2. Switch improper fractions to mixed numbers, write down the frac-
tional part, and carry over the whole number.

Because the sum is an improper fraction, convert it to the mixed
number 12⁄5 (flip to Chapter 9 for more on converting improper fractions
to mixed numbers). Write down 2⁄5 and carry the 1 over to the whole-
number column.

3. Add the whole number parts, including any whole numbers you carried
over when you switched to a mixed number.

1 + 8 + 6 = 15

Here’s how the solved problem looks in column form. (Be sure to line up the
whole numbers in one column and the fractions in another.)

1

8

6

15

3
5

4
5

2
5

+

As with any other problems involving fractions, sometimes you need to reduce
at the end of Step 1. 

The same basic idea works no matter how many mixed numbers you want to
add. For example, suppose you want to add 54⁄9 + 117⁄9 + 38⁄9 + 15⁄9:

1. Add the fractions.

9
4

9
7

9
8

9
5

9
24

+ + + =

2. Switch improper fractions to mixed numbers, write down the frac-
tional part, and carry over the whole number.

Because the result is an improper fraction, convert it to the mixed
number 26⁄9 and then reduce it to 22⁄3 (for more on converting and reduc-
ing fractions, see Chapter 9). I recommend doing these calculations on a
piece of scrap paper.

Write down 2⁄3 and carry the 2 to the whole-number column.

3. Add the whole numbers.

2 + 5 + 11 + 3 + 1 = 22
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Here’s how the problem looks after you solve it:

2

5

11

3

1

22

4
9

7
9

8
9

5
9

2
3

+

Summing up mixed numbers when the denominators are different
The most difficult type of mixed number addition is when the denominators
of the fractions are different. This difference doesn’t change Steps 2 or 3, but
it does make Step 1 tougher.

For example, suppose you want to add 163⁄5 and 77⁄9. 

1. Add the fractions.

Add 3⁄5 and 7⁄9. You can use any method from earlier in this chapter. Here,
I use the easy way:

5
3

9
7

5 9
3 9 7 5

45
27 35

45
62

+ =
+

=
+

=$
$ $

2. Switch improper fractions to mixed numbers, write down the frac-
tional part, and carry over the whole number.

This fraction is improper, so change it to the mixed number 117⁄45.
Fortunately, the fractional part of this mixed number isn’t reducible.

Write down the 17⁄45 and carry over the 1 to the whole-number column.

3. Add the whole numbers.

1 + 16 + 7 = 24

Here’s how the completed problem looks:

1

16

7

24

3
5

7
9

17
45

+

Subtracting mixed numbers
The basic way to subtract mixed numbers is close to the way you add them.
Again, the subtraction looks more like what you’re used to with whole num-
bers. Here’s how to subtract two mixed numbers:

1. Find the difference of the fractional parts using any method you like.

2. Find the difference of the two whole number parts.
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Along the way, though, you may encounter a couple more twists and turns.
I keep you on track so that by the end of this section, you can do any mixed-
number subtraction problem.

Taking away mixed numbers when the denominators are the same
As with addition, subtraction is much easier when the denominators are the
same. For example, suppose you want to subtract 73⁄5 – 31⁄5. Here’s what the
problem looks like in column form:

7

3

4

3
5

1
5

2
5

-

In this problem, I subtract 3⁄5 – 1⁄5 = 2⁄5. Then I subtract 7 – 3 = 4. Not too terrible,
agreed?

One complication arises when you try to subtract a larger fractional part
from a smaller one. Suppose you want to find 111⁄6 – 25⁄6. This time, if you try to
subtract the fractions, you get

1⁄6 – 5⁄6 = –4⁄6

Obviously, you don’t want to end up with a negative number in your answer.
You can handle this problem by borrowing from the column to the left. This
idea is very similar to the borrowing that you use in regular subtraction, with
one key difference.

When borrowing in mixed-number subtraction,

1. Borrow 1 from the whole-number portion and add it to the fractional
portion, turning the fraction into a mixed number.

To find 111⁄6 – 25⁄6, borrow 1 from the 11 and add it to 1⁄6, making it the
mixed number 11⁄6:

111⁄6 = 10 + 11⁄6

2. Change this new mixed number into an improper fraction.

Here’s what you get when you change 11⁄6 into an improper fraction:

10 1 6
1 10 6

7
+ =

The result is 107⁄6. This answer is a weird cross between a mixed number
and an improper fraction, but it’s what you need to handle the job.

3. Use the result in your subtraction.

10

2

8

7
6

5
6

2
6

-
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In this case, you have to reduce the fractional part of the answer:

82⁄6 = 81⁄3

Subtracting mixed numbers when the denominators are different
Subtracting mixed numbers when the denominators are different is just about
the hairiest thing you’re ever going to have to do in pre-algebra. Fortunately,
though, if you work through this chapter, you have all the skills you need.

Suppose you want to subtract 154⁄11 – 123⁄7. Because the denominators are differ-
ent, subtracting the fractions becomes more difficult. But you have another
question to think about: In this problem, do you need to borrow? If 4⁄11 is greater
than 3⁄7, you don’t have to borrow. But if 4⁄11 is less than 3⁄7, you do. (For more on
borrowing in mixed number subtraction, see the preceding section.)

In Chapter 9, I show you how to test two fractions to see which is greater by
cross-multiplying:

11
4

7
3

4 ⋅ 7 = 28 3 ⋅ 11 = 33

Because 28 is less than 33, 4⁄11 is less than 3⁄7, so you do have to borrow. I get
the borrowing out of the way first:

15 11
4 14 1 11

4 14 11
15

= + =

Now the problem looks like this:

14 11
15 12 7

3
-

The first step, subtracting the fractions, is going to be the most time-consuming,
so as I show you earlier in “Subtracting fractions with different denominators,”
you can take care of that on the side:

11
15

7
3

11 7
15 7 3 11

77
105 33

77
72

- =
-

=
-

=$
$ $

The good news is that this fraction can’t be reduced. (They can’t be reduced
because 72 and 77 have no common factors: 72 = 2 ⋅ 2 ⋅ 2 ⋅ 3 ⋅ 3, and 77 = 7 ⋅ 11.)
So the hard part of the problem is done, and the rest follows easily:

14

12

2

15
11

3
7

72
77

-

This problem is about as difficult as a mixed-number subtraction problem
gets. Take a look over it step by step. Or better yet, copy the problem and
then close the book and try to work through the steps on your own. If you get
stuck, that’s okay. Better now than on an exam!
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Chapter 11

Dallying with Decimals
In This Chapter
� Understanding the decimal basics

� Applying decimals to the Big Four operations

� Looking at decimal and fraction conversions

� Making sense of repeating decimals

Because early humans used their fingers for counting, the number
system is based on the number 10. That’s why numbers come in ones,

tens, hundreds, thousands, and so on. A decimal — with its handy decimal
point — allows people to work with numbers smaller than one: tenths, hun-
dredths, thousandths, and the like.

Here’s some lovely news: Decimals are much easier to work with than frac-
tions (which I discuss in Chapters 9 and 10). Decimals look and feel more like
whole numbers than fractions do, so when working with decimals, you don’t
have to worry about reducing and increasing terms, improper fractions,
mixed numbers, and a lot of other stuff.

Performing the Big Four operations — addition, subtraction, multiplication,
and division — on decimals is very close to performing them on whole num-
bers (which I cover in Part II of the book). The numerals 0 through 9 work
just like they usually do. As long as you get the decimal point in the right
place, you’re home free.

In this chapter, I show you all about working with decimals. I also show you
how to convert fractions to decimals and decimals to fractions. Finally, I give
you a peek into the strange world of repeating decimals.
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Basic Decimal Stuff
The good news about decimals is that they look a lot more like whole numbers
than fractions do. So, a lot of what you find out about whole numbers in
Chapter 2 applies to decimals as well. In this section, I introduce you to deci-
mals, starting with place value.

When you understand place value of decimals, a lot falls into place. Then I
discuss trailing zeros, and what happens when you move the decimal point
either to the left or to the right. 

Counting dollars and decimals
You use decimals all the time when you count money. And a great way to
begin thinking about decimals is as dollars and cents. For example, you know
that $0.50 is half of a dollar (see Figure 11-1), so this information tells you:

0.5 = 1⁄2

Notice that in the decimal 0.5, I drop the zero at the end. This is a common
practice with decimals.

You also know that $0.25 is a quarter — that is, one-fourth of a dollar (see
Figure 11-2) — so:

0.25 = 1⁄4

F 2 8 5 9 3 7 4 4 8 B

6

6

NGTON

1

Figure 11-1:
One half
(0.5) of a

dollar bill.
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Similarly, you know that $0.75 is three quarters, or three-fourths of a dollar
(see Figure 11-3), so:

0.75 = 3⁄4

Taking this idea even further, you can use the remaining denominations of
coins — dimes, nickels, and pennies — to make further connections between
decimals and fractions.

A dime = $0.10 = 1⁄10 of a dollar, so 1⁄10 = 0.1

A nickel = $0.05 = 1⁄20 of a dollar, so 1⁄20 = 0.05

A penny = $0.01 = 1⁄100 of a dollar, so 1⁄100 = 0.01

Notice that I again drop the zero in the decimal 0.1, but that I keep the zeros in
the decimals 0.05 and 0.01. You can drop zeros from the end of a decimal, but
you can’t drop zeros that fall between the decimal point and another digit.

F 2 8 5 9 3 7 4 4 8 B

9 3 7 4 4 8 B
6

6

6

WASHINGTON

1
Figure 11-3:

Three-
fourths

(0.75) of a
dollar bill.

4 4 8 B

6

1

Figure 11-2:
One-fourth

(0.25) of a
dollar bill.
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Decimals are just as good for cutting up cake as for cutting up money.
Figure 11-4 gives you a look at the four cut-up cakes that I show you in
Chapter 9. This time, I give you the decimals that tell you how much cake
you have. Fractions and decimals accomplish the same task: allowing you to
cut a whole object into pieces and talk about how much you have.

Place value of decimals
In Chapter 2, you find out about the place value of whole numbers. For exam-
ple, Table 11-1 shows how the whole number 4,672 breaks down in terms
of place value.

Table 11-1 Breaking Down 4,672 in Terms of Place Value
Thousands Hundreds Tens Ones

4 6 7 2

This number means 4,000 + 600 + 70 + 2.

With decimals, this idea is extended. First, a decimal point is placed to the
right of the ones place in a whole number. Then, more numbers are appended
to the right of the decimal point.

A.

B.

C.

D.

Figure 11-4:
Cakes cut

and shaded
into .75 (A),

.4 (B), .1 (C),
and .7 (D).
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For example, the decimal 4,672.389 breaks down as shown in Table 11-2.

Table 11-2 Breaking Down the Decimal 4,672.389
Thousands Hundreds Tens Ones Decimal Tenths Hun- Thou-

Point dredths sandths

4 6 7 2 . 3 8 9

This decimal means 4,000 + 600 + 70 + 2 + 3⁄10 + 8⁄100 + 9⁄1,000.

The connection between fractions and decimals becomes obvious when you
look at place value. Decimals really are a shorthand notation for fractions.
You can represent any fraction as a decimal.

Knowing the decimal facts of life
After you understand how place value works in decimals (as I explain in the
previous section), a whole lot of facts about decimals begin to make sense.
Two key ideas are trailing zeros and what happens when you move a decimal
point left or right.

Trailing zeros
You probably know that you can attach zeros to the beginning of a whole
number without changing its value. For example, these three numbers are all
equal in value:

27 027 0,000,027

The reason for this becomes clear when you know about place value of whole
numbers. See Table 11-3.

Table 11-3 Example of Attaching Leading Zeros
Millions Hundred Ten Thousands Hundreds Tens Ones

Thousands Thousands

0 0 0 0 0 2 7
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As you can see, 0,000,027 simply means 0 + 0 + 0 + 0 + 0 + 20 + 7. No matter
how many zeros you add on to the beginning of a number, the number 27
doesn’t change.

Zeros attached to the beginning of a number in this way are called leading zeros.

In decimals, this idea of zeros that don’t add value to a number can be
extended to trailing zeros.

A trailing zero is any zero that appears to the right of both the decimal point
and every digit other than zero.

For example:

34.8 34.80 34.8000

All three of these numbers are the same. The reason becomes clear when you
understand how place value works in decimals. See Table 11-4.

Table 11-4 Example of Attaching Trailing Zeros
Tens Ones Decimal Tenths Hundredths Thousandths Ten 

Point Thousandths

3 4 . 8 0 0 0

In this example, 34.8000 means 30 + 4 + 8⁄10 + 0 + 0 + 0

You can attach or remove as many trailing zeros as you want to without
changing the value of a number.

When you understand trailing zeros, you can see that every whole number
can be changed to a decimal easily. Just attach a decimal point and a 0 to the
end of it. For example:

4 = 4.0

20 = 20.0

971 = 971.0

Make sure that you don’t attach or remove any nonleading or nontrailing
zeros, because doing this changes the value of the decimal.

For example, look at this number:

0450.0070
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In this number, you can remove the leading and trailing zeros without chang-
ing the value, as follows:

450.007

The remaining zeros, however, need to stay where they are as placeholders
between the decimal point and digits other than zero. See Table 11-5.

Table 11-5 Example of Zeros as Placeholders
Thou- Hun- Tens Ones Decimal Tenths Hun- Thou- Ten Thou-
sands dreds Point dredths sandths sandths

0 4 5 0 . 0 0 7 0

I continue to discuss zeros as placeholders in the next section.

Moving the decimal point
When you’re working with whole numbers, you can multiply any number by
10 just by adding a zero to the end of it. For example:

45,971 ⋅ 10 = 459,710

To see why this answer is so, again think about the place value of digits and
look at Table 11-6.

Table 11-6 Example, Decimal Points and Place Value of Digits
Millions Hundred Ten Thousands Hundreds Tens Ones

Thousands Thousands

4 5 9 7 1

4 5 9 7 1 0

Here’s what these two numbers really mean:

45,971 = 40,000 + 5,000 + 900 + 70 + 1

459,710 = 400,000 + 50,000 + 9,000 + 700 + 10 + 0

As you can see, that little zero makes a big difference, because it causes the
rest of the numbers to shift over one place.
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This concept makes even more sense when you think about the decimal
point. See Table 11-7. 

Table 11-7 Example, Numbers Shifting Over One Place
Hundred Ten Thou- Thou- Hun- Tens Ones Decimal Tenths Hun-
Thousands sands sands dreds Point dredths

4 5 9 7 1 . 0 0

4 5 9 7 1 0 . 0 0

In effect, adding a 0 to the end of a whole number moves the decimal point one
place to the right. So, for any decimal, when you move the decimal point one
place to the right, you multiply that number by 10. This becomes clear when
you start with a simple number like 7:

In this case, the net effect is that you moved the decimal point three places to
the right, which is the same as multiplying 7 by 1,000.

Similarly, to divide any number by 10, move the decimal point one place to
the left. For example:

7.0

0.7

0.07

0.007

This time, the net effect is that you moved the decimal point three places to
the left, which is the same as dividing 7 by 1,000.

Rounding decimals
Rounding decimals works almost exactly the same as rounding numbers.
You’ll use this skill when dividing decimals later in the chapter. Most 

7.0

70.0

700.0

7,000.0
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commonly, you need to round a decimal either to a whole number or to one
or two decimal places. 

To round a decimal to a whole number, focus on the ones digit and the tenths
digit. Round the decimal either up or down to the nearest whole number,
dropping the decimal point:

7.1 -> 7 32.9 -> 33 184.3 -> 184

When the tenths digit is 5, round the decimal up:

83.5 -> 84 296.5 -> 297 1,788.5 -> 1,789

If the decimal has other decimal digits, just drop them:

18.47 -> 18 21.618 -> 22 3.1415927 -> 3

Occasionally, a small change to the ones digits affects the other digits. (This
may remind you of when the odometer in your car rolls a bunch of 9s over to
0s):

99.9 -> 100 999.5 -> 1,000 99,999.712 -> 100,000

The same basic idea applies to rounding a decimal to any number of places.
For example, to round a decimal to one decimal place, focus on the first and
second decimal places (that is, the tenths and hundredths places):

76.543 -> 76.5 100.6822 -> 100.7 10.10101 -> 10.1

To round a decimal to two decimal places, focus on the second and third dec-
imal places (that is, the hundredths and thousandths places):

444.4444 -> 444.44 26.55555 -> 26.56 99.997 -> 100.00

Performing the Big Four with Decimals
Everything you already know about adding, subtracting, multiplying, and
dividing whole numbers (see Chapter 3) carries over when you work with
decimals. In fact, in each case, there’s really only one key difference: how to
handle that pesky little decimal point. In this section, I show you how to per-
form the Big Four math operations with decimals.
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The most common use of adding and subtracting decimals is when you’re
working with money — for example, balancing your checkbook. Later in this
book, you find that multiplying and dividing by decimals is useful for calculat-
ing percentages (see Chapter 12), using scientific notation (see Chapter 14),
and measuring with the metric system (see Chapter 15).

Adding decimals
Adding decimals is almost as easy as adding whole numbers. As long as you
set up the problem correctly, you’re in good shape. To add decimals, follow
these steps:

1. Line up the decimal points.

2. Add as usual from right to left, column by column.

3. Place the decimal point in the answer in line with the other decimal
points in the problem.

For example, suppose you want to add the numbers 14.5 and 1.89. Line up the
decimal points neatly as follows:

14.5

+ 1.89

Begin adding from the right-hand column. Treat the blank space after 14.5 as
a 0 — you can write this in as a trailing 0 (see earlier in this chapter to see
why adding zeros to the end of a decimal doesn’t change its value). Adding
this column gives you 0 + 9 = 9:

14.50

+ 1.89

9

Continuing to the left, 5 + 8 = 13, so put down the 3 and carry the 1:

1
14.50

+ 1.89

39
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Complete the problem column by column, and at the end, put the decimal
point directly below the others in the problem:

14.50

+ 1.89

16.39

When adding more than one decimal, the same rules apply. For example, sup-
pose you want to add 15.1 + 0.005 + 800 + 1.2345. The most important idea is
lining up the decimal points correctly:

15.1

0.005

800.0

+  1.2345

To avoid mistakes, be especially neat when adding a lot of decimals.

Because the number 800 isn’t a decimal, I place a decimal point and a 0 at the
end of it to be clear about how to line it up. If you like, you can make sure all
numbers have the same number of decimal places (in this case, four) by
adding trailing zeros. After you properly set up the problem, the addition is
no more difficult than in any other addition problem:

15.1000

0.0050

800.0000

+  1.2345

816.3395

Subtracting decimals
Subtracting decimals uses the same trick as adding them (which I talk about
in the preceding section). Here’s how you subtract decimals:

1. Line up the decimal points.

2. Subtract as usual from right to left, column by column.

3. When you’re done, place the decimal point in the answer in line with
the other decimal points in the problem.
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For example, suppose you want to figure out 144.87 – 0.321. First, line up the
decimal points:

144.870

– 0.321

In this case, I add a zero at the end of the first decimal. This placeholder
reminds you that in the right-hand column, you need to borrow to get the
answer to 0 – 1:

6

1 4 4. 8 7 10

–     0. 3 2   1

4   9

The rest of the problem is very straightforward. Just finish the subtraction
and drop the decimal point straight down:

6 

1 4 4. 8 7 10

–     0. 3 2   1

1 4 4. 5 4   9

As with addition, the decimal point in the answer goes directly below where
it appears in the problem.

Multiplying decimals
Multiplying decimals is different from adding and subtracting them in that
you don’t have to worry about lining up the decimal points (see the preced-
ing sections). In fact, the only difference between multiplying whole numbers
and decimals comes at the very end.

Here’s how to multiply decimals:

1. Perform the multiplication as you would for whole numbers.

2. When you’re done, count the number of digits to the right of the deci-
mal point in each factor and add the result.

3. Place the decimal point in your answer so that your answer has the
same number of digits after the decimal point.
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This process sounds tricky, but multiplying decimals can actually be simpler
than adding or subtracting them. Suppose, for instance, you want to multiply
23.5 by 0.16. The first step is to pretend that you’re multiplying numbers
without decimal points:

23.5

× 0.16

1410

2350

3760

This answer isn’t complete, though, because you still need to find out where
the decimal point goes. To do this, notice that 23.5 has one digit after the 
decimal point and that 0.16 has two digits after the decimal point. Because
1 + 2 = 3, place the decimal point in the answer so that it has three digits after
the decimal point. (You can put your pencil at the 0 at the end of 3760 and
move the decimal point three places to the left.)

23.5 1 digit after the decimal point

× 0.16 2 digits after the decimal point

1410

 2350

3.760 1 + 2 = 3 digits after the decimal point

Even though the last digit in the answer is a 0, you still need to count this as a
digit when placing the decimal point. After the decimal point is in place, you
can drop trailing zeros (flip to “Basic Decimal Stuff” earlier in this chapter to
see why the zeros at the end of a decimal that don’t change the value of the
number).

So the answer is 3.760, which is equal to 3.76.

Dividing decimals
Long division has never been a crowd pleaser. Dividing decimals is almost
the same as dividing whole numbers, which is why lots of people don’t par-
ticularly like dividing decimals, either.

167Chapter 11: Dallying with Decimals

17_135372 ch11.qxd  8/28/07  7:28 PM  Page 167



But at least you can take comfort in the fact that when you know how to do
long division (which I cover in Chapter 3), figuring out how to divide deci-
mals is easy. The main difference comes at the beginning, before you start
dividing.

Here’s how to divide decimals:

1. Turn the divisor (the number you’re dividing by) into a whole
number by moving the decimal point all the way to the right; at the
same time, move the decimal point in the dividend (the number
you’re dividing) the same number of places to the right.

For example, suppose you want to divide 10.274 by 0.11. Write the prob-
lem as usual:

. .0 11 10 274g

Turn 0.11 into a whole number by moving the decimal point in 0.11 two
places to the right, giving you 11. At the same time, move the decimal
point in 10.274 two places to the right, giving you 1,027.4:

. .11 1027 4g

2. Place a decimal point in the quotient (the answer) directly above
where the decimal point now appears in the dividend.

Here’s what this step looks like:

. .
.

11 1027 4g

3. Divide as usual, being careful to line up the quotient properly so that
the decimal point falls into place.

To start out, notice that 11 is too large to go into either 1 or 10. However,
11 does go into 102 (9 times). So write the first digit of the quotient just
above the 2 and continue:

. .
.

11 1027 4
99
37

9
g

I left off after bringing down the next number, 7. This time, 11 goes into
37 three times. The important thing is to place the next digit in the
answer just above the 7:

. .
.

11 1027 4
99
37
33

44

93
g
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I left off after bringing down the next number, 4. Now, 11 goes into 44
four times. Again, be careful to place the next digit in the quotient just
above the 4, and complete the division:

. .
.

11 1027 4
99
37
33

44
44
0

93 4
g

So the answer is 93.4. As you can see, as long as you’re careful when
placing the decimal point and the digits, the correct answer appears
with the decimal point in the right position.

Dealing with more zeros in the dividend
Sometimes, you may have to add one or more trailing zeros to the dividend.
As I discuss earlier in this chapter, you can add as many trailing zeros as you
like to a decimal without changing its value. For example, suppose you want
to divide 67.8 by 0.333:

. .0 333 67 8g

1. Change 0.333 into a whole number by moving the decimal point
three places to the right; at the same time, move the decimal point in
67.8 three places to the right:

. .333 67800g

In this case, when you move the decimal point in 67.8, you run out of
room, so you have to add a couple of zeros to the dividend. This step is
perfectly valid, and you need to do this whenever the divisor has more
decimal places than the dividend.

2. Place the decimal point in the quotient directly above where it
appears in the dividend:

. .
.

333 67800g

3. Divide as usual, being careful to line up the numbers in the quotient
correctly. This time, 333 doesn’t go into 6 or 67, but it does go into
678 (two times). So place the first digit of the quotient directly above
the 8:

. .
.

333 67800
666

120

2
g
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I’ve jumped forward in the division to the place where I bring down the
first 0. At this point, 333 doesn’t go into 120, so you need to put a 0
above the first 0 in 67,800 and bring down the second 0. Now, 333 does
go into 1,200, so place the next digit in the answer (3) over the second 0:

. .
.

333 67800
666

1200
999
201

203
g

This time, the division doesn’t work out evenly. If this were a problem with
whole numbers, you’d finish by writing down a remainder of 201. (For more
on remainders in division, see Chapter 1.) But decimals are a different story.
The next section explains why, with decimals, the show must go on.

Completing decimal division
When you’re dividing whole numbers, you can complete the problem simply
by writing down the remainder. But remainders are never allowed in decimal
division.

A common way to complete a problem in decimal division is to round off the
answer. In most cases, you’ll be instructed to round your answer to the near-
est whole number or to one or two decimal places (see earlier in this chapter
to find out how to round off decimals.)

To complete a decimal division problem by rounding it off, you need to add
at least one trailing zero to the dividend. To round a decimal to

� a whole number, add one trailing zero

� one decimal place, add two trailing zeros

� two decimal places, add three trailing zeros 

Here’s what the problem looks like with a trailing zero attached:

. .
.

333 67800 0
666

1200
999
2010

203
g
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Attaching a trailing zero doesn’t change a decimal, but it does allow you to
bring down one more number, changing 201 into 2,010. Now you can divide
333 into 2,010:

. .
.

333 67800 0
666

1200
999
2010
1998

12

203 6
g

At this point, the you can round the answer to the nearest whole number, 204.
I give you more practice dividing decimals later in this chapter.

Converting between Decimals
and Fractions

Fractions (see Chapters 9 and 10) and decimals are similar in that they both
allow you to represent parts of the whole — that is, these numbers fall on the
number line between whole numbers.

In practice, though, sometimes one of these options is more desirable than the
other. For example, calculators love decimals, but aren’t so crazy about frac-
tions. To use your calculator, you may have to change fractions into decimals.

As another example, some units of measurement (such as inches) use frac-
tions while others (such as meters) use decimals. To change units, you may
need to convert between fractions and decimals.

In this section, I show you how to convert back and forth between fractions
and decimals. (If you need a refresher on fractions, review chapters 9 and 10
before proceeding.)

Making simple conversions
Some decimals are so common that you should memorize how to represent
them as fractions. Here’s how to convert all the one-place decimals to 
fractions:
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.1 .2 .3 .4 .5 .6 .7 .8 .9

1/10 1/5 3/10 2/5 1/2 3/5 7/10 4/5 9/10

And, here are few more common decimals that translate easily to fractions:

.125 .25 .375 .625 .75 .875

1/8 1/4 3/8 5/8 3/4 7/8

Changing decimals to fractions
Converting a decimal to a fraction is pretty simple. The only tricky part
comes in when you have to reduce the fraction or change it to a mixed
number. 

In this section, I first show you the easy case, when no further work is neces-
sary. Then I show you the harder case, when you need to tweak the fraction.
I also show you a great time-saving trick. 

Doing a basic decimal-to-fraction conversion
Here’s how to convert a decimal to a fraction:

1. Draw a line (fraction bar) under the decimal and place a 1 under-
neath it.

Suppose you want to turn the decimal 0.3763 into a fraction. Draw a line
under 0.3763 and place a 1 underneath it:

.
1

0 3763

This number looks like a fraction, but technically it isn’t one because the
top number (the numerator) is a decimal.

2. Move the decimal point one place to the right and add a 0 after the 1.

.
10

3 763

3. Repeat Step 2 until the decimal point moves all the way to the right,
so you can drop the decimal point entirely.

In this case, this is a three-step process:

.
,

.
,
,

100
37 63

1 000
376 3

10 000
3 763

= =

As you can see on the last step, the decimal point in the numerator
moves all the way to the end of the number, so dropping the decimal
point is okay.
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Note: Moving a decimal point one place to the right is the same thing as
multiplying a number by 10. When you move the decimal point four places
in this problem, you’re essentially multiplying the 0.3763 and the 1 by
10,000. Notice that the number of digits after the decimal point in the orig-
inal decimal is equal to the number of 0s that end up following the 1.

4. If necessary, change the resulting fraction to a mixed number and/or
reduce it.

The fraction 3,763⁄10,000 may seem like a large number, but it’s smaller than 1
because the numerator is less than the denominator (bottom number).
So this fraction is a proper fraction and can’t be changed into a mixed
number (see Chapter 10 to find out more about mixed numbers). This
fraction is also in the lowest possible terms (you can’t reduce it — see
Chapter 9), so this problem is complete.

In the following section, I show you how to convert decimals to fractions
when you have to work with mixed numbers and reduce the terms.

On better terms: Mixing numbers and reducing fractions
In some cases, you may have to reduce a fraction to lowest terms after you
convert it (see Chapter 9 for more on reducing fractions). Reducing in these
cases is usually easy, because no matter how large the denominator is, it’s a
multiple of 10, which has only two prime factors: 2 and 5 (see Chapter 8 for
more on prime factors).

When you’re converting a decimal to a fraction, if the decimal ends in an even
number or in 5, you can reduce the fraction; otherwise, you can’t. Also, if you
have a number greater than 0 somewhere before the decimal point, you’ll end
up with a mixed number.

Suppose you want to convert the decimal 12.16 to a fraction. Do the following:

1. Draw a line (fraction bar) under 12.16 and place a 1 underneath it:

.
1

12 16

2. Move the decimal point one place to the right and add a 0 after the 1:

.
10

121 6

3. Repeat Step 2:
,
100

1 216
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4. If necessary, change 1,216⁄100 to a mixed number and reduce it to lowest
terms.

This time, the numerator is greater than the denominator, so 
,
100

1 216

is an improper fraction and must be changed to a mixed number.

After you’ve changed a decimal to an improper fraction, you can convert it to
a mixed number by “pulling out” the original whole number part of the deci-
mal from the fraction.

In this case, the original decimal was 12.16, so its whole number part was 12.
Doing the following is perfectly okay:

,
100

1 216 12 100
16

=

This trick works only when you’ve changed a decimal to a fraction — don’t
try it with other fractions, or you’ll get a wrong answer.

The mixed number 1216⁄100 can be also be reduced as follows (if this last step
seems unclear, check out Chapter 9 for more on reducing fractions):

12 100
16 12 50

8 12 25
4

= =

Changing fractions to decimals
Converting fractions to decimals isn’t difficult, but to do it, you need to know
about decimal division. If you need to get up to speed on this, check out
“Dividing decimals” earlier in this chapter.

To convert a fraction to a decimal:

1. Set up the fraction as a decimal division, dividing the numerator (top
number) by the denominator (bottom number).

2. Attach enough trailing zeros to the numerator so that you can continue
dividing until you find that the answer is either a terminating decimal or
a repeating decimal.

Don’t worry, I explain terminating and repeating decimals later. 
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The last stop: Terminating decimals
Sometimes, when you divide the numerator of a fraction by the denominator,
the division eventually works out evenly. The result is a terminating decimal.

For example, suppose you want to change the fraction 2⁄5 to a decimal. Here’s
your first step:

5 2g

One glance at this problem, and it looks like you’re doomed from the start
because 5 doesn’t go into 2. But watch what happens when I add a few trail-
ing zeros. Notice that I also place another decimal point in the answer just
above the first decimal point. This step is important — you can read more
about it in “Dividing decimals”:

.

.
5 2 000g

Now you can divide because although 5 doesn’t go into 2, 5 does go into 20
four times:

.

.
5 2 000

20
0

0 4
g

You’re done! As it turns out, you only needed one trailing zero, so you can
ignore the rest:

.5
2 0 4=

Because the division worked out evenly, the answer is an example of a 
terminating decimal. 

As another example, suppose you want to find out how to represent 7⁄16 as a
decimal. As earlier, I attach three trailing zeros:

.
.

16 7 000
64

60
48
120
112

8

0 437
g
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This time, three trailing zeros aren’t enough to get my answer, so I’ll attach a
few more and continue: 

.

.
16 7 000000

64
60
48
120
112

80
80
0

0 4375
g

At last, the division works out evenly, so again the answer is a terminating
decimal. Therefore, 7⁄16 = 0.4375.

The endless ride: Repeating decimals
Sometimes when you try to convert a fraction to a decimal, the division never
works out evenly. The result is a repeating decimal — that is, a decimal that
cycles through the same number pattern forever.

You may recognize these pesky little critters from your calculator, when an
apparently simple division problem produces a long string of numbers.

For example, to change 2⁄3 to a decimal, begin by dividing 2 by 3. As in the last
section, start out by adding three trailing zeros and see where it leads:

.

.
3 2 000

18
20
18

20
18

2

0 666
g

At this point, you still haven’t found an exact answer. But you may notice that
a repeating pattern has developed in the division. No matter how many trail-
ing zeros you attach to the number 2, the same pattern will continue forever.
This answer, 0.666..., is an example of a repeating decimal. You can write 2⁄3 as

2/3 = .0 6
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The bar over the 6 means that in this decimal, the number 6 repeats forever.
You can represent many simple fractions as repeating decimals. In fact, every
fraction can be represented either as a repeating decimal or as a terminating
decimal — that is, as an ordinary decimal that ends.

Now suppose you want to find the decimal representation of 5⁄11. Here’s how
this problem plays out:

.
.

11 5 0000
44

60
55
50
44

60
55

5

0 4545
g

This time, the pattern repeats every other number — 4, then 5, then 4 again,
and then 5 again, forever. Attaching more trailing zeros to the original decimal
will only string out this pattern indefinitely. So you can write

5/11 = .0 45

This time, the bar is over both the 4 and the 5, telling you that these two
numbers alternate forever.

Repeating decimals are an oddity, but they aren’t hard to work with. In fact,
as soon as you can show that a decimal division is repeating, you’ve found
your answer. Just remember to place the bar only over the numbers that
keep on repeating.

Some decimals never end and never repeat. You can’t write them as fractions,
so mathematicians have agreed on some shorter ways of naming them so
writing them out doesn’t take, well, forever. 
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Chapter 12

Playing with Percents
In This Chapter
� Understanding what percents are

� Converting percents back and forth between decimals and fractions

� Solving both simple and difficult percent problems

� Using the percent circle to solve three different types of percent problems

Like whole numbers and decimals, percents are a way to talk about parts
of a whole. The word percent means “out of 100.” So if you have 50% of

something, you have 50 out of 100. If you have 25% of it, you have 25 out of 100.
Of course, if you have 100% of anything, you have all of it.

In this chapter, I show you how to work with percents. Because percents
resemble decimals, I first show you how to convert numbers back and forth
between percents and decimals. No worries — this switch is very easy to
do. Next, I show you how to convert back and forth between percents and
fractions — also not too bad. When you understand how conversions work,
I show you the three basic types of percent problems, plus a method that
makes the problems simple.

Making Sense of Percents
The word percent literally means “for 100,” but in practice, it means closer to
“out of 100.” For example, suppose a school has exactly 100 children — 50
girls and 50 boys. You can say that “50 out of 100” children are girls — or you
can shorten it to simply “50 percent.” Even shorter than that, you can use the
symbol %, which means percent.

Saying that 50% of the students are girls is the same as saying that 1⁄2 of them
are girls. Or if you prefer decimals, it’s the same thing as saying that 0.5 of all
the students are girls. This example shows you that percents, like fractions and
decimals, are just another way of talking about parts of the whole. In this case,
the whole is the total number of children in the school.
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You don’t literally have to have 100 of something to use a percent. You proba-
bly won’t ever really cut a cake into 100 pieces, but that doesn’t matter. The
values are the same. Whether you’re talking about cake, a dollar, or a group
of children, 50% is still half, 25% is still one-quarter, and 75% is still three-
quarters, and so on.

Any percentage smaller than 100% means less than the whole — the smaller
the percentage, the less you have. You probably know this fact well from the
school grading system. If you get 100%, you get a perfect score. And 90% is
usually A work, 80% is a B, 70% is a C, and, well, you know the rest.

Of course, 0% means “0 out of 100” — any way you slice it, you have nothing.

Dealing with Percents 
Greater than 100%

100% means “100 out of 100” — in other words, everything. So when I say I
have 100% confidence in you, I mean that I have complete confidence in you.

What about percentages more than 100%? Well, sometimes percentages like
these don’t make sense. For example, you can’t spend more than 100% of
your time playing basketball no matter how much you love the sport; 100%
is all the time you have, and there ain’t no more.

But lots of times, percentages larger than 100% are perfectly reasonable. For
example, suppose I own a hot dog wagon and I sell the following:

10 hot dogs in the morning

30 hot dogs in the afternoon

The number of hot dogs I sell in the afternoon is 300% of the number I sold in
the morning. That’s three times as many.

Here’s another way of looking at this: I sell 20 more hot dogs in the afternoon
than in the morning, so this is a 200% increase in the afternoon — 20 is twice
as many as 10. 

Spend a little time thinking about this example until it makes sense. You visit
some of these ideas again in Chapter 13, when I show you how to do word
problems involving percents.
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Converting to and from Percents,
Decimals, and Fractions

To solve many percent problems, you need to change the percent to either a
decimal or a fraction. Then you can apply what you know about solving deci-
mal and fraction problems. That’s why I show you how to convert to and
from percents before I show you how to solve percent problems. 

Percents and decimals are very similar ways of expressing parts of a whole.
This similarity makes converting percents to decimals and vice versa mostly
a matter of moving the decimal point. It’s so simple you can probably do it in
your sleep (but you should probably stay awake when you first read about
the concept).

Percents and fractions both express the same idea — parts of a whole — in
different ways. So converting back and forth between percents and fractions
isn’t quite as simple as just moving the decimal point back and forth. In this
section, I cover the ways to convert to and from percents, decimals, and frac-
tions, starting with percents to decimals.

Going from percents to decimals
To convert a percent to a decimal, drop the percent sign (%) and move the
decimal point two places to the left. That’s all there is to it. Remember that in
a whole number, the decimal point comes at the end. For example,

2.5% = 0.025

4% = 0.04

36% = 0.36

111% = 1.11

Changing decimals into percents
To convert a decimal to a percent, move the decimal point two places to the
right and add a percent sign (%):

0.07 = 7%

0.21 = 21%

0.375 = 37.5%
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Switching from percents to fractions
Converting percents to fractions is fairly straightforward. Remember that the
word percent means “out of 100.” So changing percents to fractions naturally
involves the number 100.

To convert a percent to a fraction, use the number in the percent as your
numerator (top number) and the number 100 as your denominator (bottom
number):

%39 100
39

= %86 100
86

= %217 100
217

=

As always with fractions, you may need to reduce to lowest terms or convert
an improper fraction to a mixed number (flip to Chapter 9 for more on these
topics).

In the three examples, 39⁄100 can’t be reduced or converted to a mixed number.
However, 86⁄100 can be reduced because the numerator and denominator are
both even numbers:

100
86

50
43

=

And 217⁄100 can be converted to a mixed number because the numerator (217) is
greater than the denominator (100):

100
217 2 100

17
=

Once in a while, you may start out with a percentage that’s a decimal such as
99.9%. The rule is still the same, but now you have a decimal in the numera-
tor (top number), which most people don’t like to see. To get rid of it, move
the decimal point one place to the right in both the numerator and the
denominator:

. % .
,99 9 100

99 9
1 000
999

= =

Thus, 99.9% converts to the fraction 999⁄1,000.

Turning fractions into percents
Converting a fraction to a percent is really a two-step process. Here’s how to
convert a fraction to a percent:
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1. Convert the fraction to a decimal.

For example, suppose you want to convert the fraction 4⁄5 to a percent.
To convert 4⁄5 to a decimal, you can divide the numerator by the denomi-
nator, as shown in Chapter 11:

4⁄5 = 0.8

2. Convert this decimal to a percent. 

Convert 0.8 to a percent by moving the decimal point two places to
the right and adding a percent sign (as I show you earlier in “Changing
decimals into percents”).

0.8 = 80%

Now suppose you want to convert the fraction 5⁄8 to a percent. Follow these
steps:

1. Convert 5⁄8 to a decimal by dividing the numerator by the denominator:

.

.
8 5 000

0 625

4 8
20
16

40
40
0

-

-

-

g

Therefore, 5⁄8 = 0.625.

2. Convert 0.625 to a percent by moving the decimal point two places to
the right and adding a percent sign (%):

0.625 = 62.5%

Solving Percent Problems
When you know the connection between percents and fractions, which I dis-
cuss earlier in “Converting to and from Percents, Decimals, and Fractions,”
you can solve a lot of percent problems with a few simple tricks. Others, 
however, require a bit more work. In this section, I show you how to tell an
easy percent problem from a tough one, and I give you the tools to solve all
of them.
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Figuring out simple percent problems
A lot of percent problems turn out to be easy when you give them a little
thought. In many cases, just remember the connection between percents and
fractions and you’re halfway home:

� Finding 100% of a number: Remember that 100% means the whole thing,
so 100% of any number is simply the number itself:

100% of 5 is 5

100% of 91 is 91

100% of 732 is 732

� Finding 50% of a number: Remember that 50% means half, so to find
50% of a number, just divide it by 2:

50% of 20 is 10

50% of 88 is 44

50% of 7 is 2
7 (or 3 2

1 or 3.5)

� Finding 25% of a number: Remember that 25% equals 1⁄4, so to find 25%
of a number, divide it by 4:

25% of 40 is 10

25% of 88 is 22

25% of 15 is 4
15 (or 3 4

3 or 3.75)

� Finding 20% of a number: Finding 20% of a number is handy if you like
the service you’ve received in a restaurant, because a good tip is 20% of
the check. Because 20% equals 1⁄5, you can find 20% of a number by divid-
ing it by 5. But I can show you an easier way:

To find 20% of a number, move the decimal point one place to the left
and double the result:

20% of 80 = 8 ⋅ 2 = 16

20% of 300 = 30 ⋅ 2 = 60

20% of 41 = 4.1 ⋅ 2 = 8.2

� Finding 10% of a number: Finding 10% of any number is the same as
finding 1⁄10 of that number. To do this, just move the decimal point one
place to the left:

10% of 30 is 3

10% of 41 is 4.1

10% of 7 is 0.7
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� Finding 200%, 300%, and so on of a number: Working with percents
that are multiples of 100 is easy. Just drop the two 0s and multiply by the
number that’s left:

200% of 7 = 2 ⋅ 7 = 14

300% of 10 = 3 ⋅ 10 = 30

1,000% of 45 = 10 ⋅ 45 = 450

(See the earlier “Dealing with Percents Greater than 100%” section for
details on what having more than 100% really means.)

Turning the problem around
Here’s a trick that makes certain tough-looking percent problems so easy
that you can do them in your head. Simply move the percent sign from one
number to the other and flip the order of the numbers.

Suppose someone wants you to figure out the following:

88% of 50

Finding 88% of anything isn’t an activity that anybody looks forward to. But
an easy way of solving the problem is to switch it around:

88% of 50 = 50% of 88

This move is perfectly valid, and it makes the problem a lot easier. As I dis-
cuss in the preceding section, “Figuring out simple percent problems,” 50% of
88 is simply half of 88:

88% of 50 = 50% of 88 = 44

As another example, suppose you want to find

7% of 200

Again, finding 7% is tricky, but finding 200% is simple, so switch the problem
around:

7% of 200 = 200% of 7

In the preceding section, I tell you that to find 200% of any number, you just
multiply that number by 2:

7% of 200 = 200% of 7 = 2 ⋅ 7 = 14
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Deciphering more-difficult 
percent problems
You can solve a lot of percent problems using the tricks I show you earlier in
this chapter. But what about this problem?

35% of 80 = ?

Ouch — this time, the numbers you’re working with aren’t so friendly. When
the numbers in a percent problem become a little more difficult, the tricks no
longer work, so you want to know how to solve all percent problems.

Here’s how to find any percent of any number:

1. Change the word of to a multiplication sign and the percent to a deci-
mal (as I show you earlier in this chapter).

Changing the word of to a multiplication sign is a simple example of turn-
ing words into numbers, as I discuss in Chapters 6 and 13. This change
turns something unfamiliar into a form that you know how to work with.

Suppose you want to find 35% of 80. Here’s how you start:

35% of 80 = 0.35 ⋅ 80

2. Solve the problem using decimal multiplication (see Chapter 11).

Here’s what the example looks like:

.

.

0 35

80

28 00

#

So 35% of 80 is 28.

As another example, suppose you want to find 12% of 31. Again, start by
changing the percent to a decimal and the word of to a multiplication sign:

12% of 31 = 0.12 ⋅ 31

Now you can solve the problem with decimal multiplication:

.

.

0 12

31

12

360

3 72

#

So 12% of 31 is 3.72.
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Putting All the Percent 
Problems Together

In the preceding section, “Solving Percent Problems,” I give you a few ways to
find any percent of any number. This type of percent problem is the most
common — that’s why it gets top billing.

But percents are commonly used in a wide range of business applications
such as banking, real estate, payroll, and taxes. (I show you some real-world
applications when I discuss word problems in Chapter 13.) And depending
on the situation, two other common types of percent problems may present
themselves. 

In this section, I show you these two additional types of percent problems
and how they relate to the type you now know how to solve. I also give you a
simple tool to make quick work of all three types.

Identifying the three types 
of percent problems
Earlier in this chapter, I show you how to solve problems that look like this:

50% of 2 is ?

And the answer, of course, is 1. (See “Solving Percent Problems” for details on
how to get this answer.) Given two pieces of information — the percent and
the number to start with — you can figure out what number you end up with.

Now suppose instead that I leave out the percent but give you the starting
and ending numbers:

? % of 2 is 1

You can still fill in the blank without too much trouble. Similarly, suppose
that I leave out the starting number but give the percent and the ending
number:

50% of ? is 1

Again, you can fill in the blank.
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If you get this basic idea, you’re ready to solve percent problems. When you
boil them down, nearly all percent problems are like one of the three types I
show in Table 12-1.

Table 12-1 The Three Main Types of Percent Problems
Problem Type What to Find Example

Type #1 The ending number 50% of 2 is what?

Type #2 The percentage What percent of 2 is 1?

Type #3 The starting number 50% of what is 1?

In each case, the problem gives you two of the three pieces of information, and
your job is to figure out the remaining piece. In the next section, I give you a
simple tool to help you solve all three of these types of percent problems.

Introducing the percent circle
The percent circle is a simple visual aid that helps you make sense of percent
problems so that you can solve them easily. The trick to using a percent
circle is to write information into it. For example, Figure 12-1 shows how to
record the information that 50% of 2 is 1.

Notice that as I fill in the percent circle, I change the percentage, 50%, to its
decimal equivalent, 0.5 (for more on changing percents to decimals, see
“Going from percents to decimals” earlier in this chapter).

1

20.5

Figure 12-1:
In the per-

cent circle,
the ending

number is at
the top, the
percentage

is at the 
left, and the

starting
number is at

the right.

188 Part III: Parts of the Whole: Fractions, Decimals, and Percents 

18_135372 ch12.qxd  8/28/07  7:41 PM  Page 188



Here are the two main features of the percent circle:

� When you multiply the two bottom numbers together, they equal the top
number:

0.5 ⋅ 2 = 1

� If you make a fraction out of the top number and either bottom number,
that fraction equals the other bottom number:

.2
1 0 5= and .0 5

1 2=

These features are the heart and soul of the percent circle. They enable you
to solve any of the three types of percent problems quickly and easily.

Most percent problems give you enough information to fill in two of the three
sections of the percent circle. But no matter which two sections you fill in,
you can find out the number in the third section.

Finding the ending number
Suppose you want to find out the answer to this problem:

What is 75% of 20?

You’re given the percent and the starting number and asked to find the ending
number. To use the percent circle on this problem, fill in the information as
shown in Figure 12-2.

Because 0.75 and 20 are both bottom numbers in the circle, multiply them to
get the answer:

.

.

0 75

20

15 00

#

So 75% of 20 is 15.

?

200.75

Figure 12-2:
Putting 75%
of 20 into a

percent
circle
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As you can see, this method is essentially the same one I show you earlier in
this chapter in “Deciphering more difficult percent problems,” where you trans-
late the word of as a multiplication sign. You still use multiplication to get your
answer, but with the percent circle, you’re less likely to get confused.

Discovering the percentage
In the second type of problem, I give you both the starting and ending numbers,
and I ask you to find the percentage. Here’s an example:

What percent of 50 is 35?

In this case, the starting number is 50 and the ending number is 35. Set up the
problem on the percent circle as shown in Figure 12-3.

This time, 35 is above 50, so make a fraction out of these two numbers:

50
35

This fraction is your answer, and all you have to do is convert the fraction to
a percent as I discuss earlier in this chapter in “Turning fractions into per-
cents.” First, convert 35⁄50 to a decimal:

.

.
50 35 0

350
0

0 7
g

Now convert 0.7 to a percent:

0.7 = 70%

Tracking down the starting number
In the third type of problem, you get the percentage and the ending number,
and you have to find the starting number. For example,

15% of what number is 18?

35

50?

Figure 12-3:
Determining

what
percent of

50 is 35.
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This time, the percentage is 15% and the ending number is 18, so fill in the
percent circle as shown in Figure 12-4.

Because 18 is above 0.15 in the circle, make a fraction out of these two 
numbers:

.0 15
18

This fraction is your answer; you just need to convert to a decimal as I show
you in Chapter 11:

. . .
.

15 1800
15

30
30

0

120
^ h g

In this case, the “decimal” you find is the whole number 120, so 15% of 120 is 18.

18

?0.15

Figure 12-4:
Working out
the answer

to 15%
of what
number

is 18?
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Chapter 13

Word Problems with Fractions,
Decimals, and Percents

In This Chapter
� Adding and subtracting fractions, decimals, and percents in word equations

� Translating the word of as multiplication

� Changing percents to decimals in word problems

� Tackling business problems involving percent increase and decrease

In Chapter 6, I show you how to solve word problems (also known as story
problems) by setting up word equations that use the Big Four operations

(adding, subtracting, multiplying, and dividing). In this chapter, I show you
how to extend these skills to solve word problems with fractions, decimals,
and percents.

First, I show you how to solve relatively easy problems, in which all you need
to do is add or subtract fractions, decimals, or percents. Next, I show you
how to solve problems that require you to multiply fractions. Such problems
are easy to spot because they almost always contain the word of. After that,
you discover how to solve percent problems by setting up a word equation
and changing the percent to a decimal. Finally, I show you how to handle
problems of percent increase and decrease. These problems are often practi-
cal money problems in which you figure out information about raises and
salaries, costs and discounts, or amounts before and after taxes.

Adding and Subtracting Parts of 
the Whole in Word Problems

Certain word problems involving fractions, decimals, and percents are really
just problems in adding and subtracting. You may add fractions, decimals,
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or percents in a variety of real-world settings that rely on weights and 
measures — such as cooking and carpentry. (In Chapter 15, I discuss these
applications in depth.)

To solve these problems, you can use the skills that you pick up in Chapters 10
(for adding and subtracting fractions), 11 (for adding and subtracting decimals),
and 12 (for adding and subtracting percents).

Sharing a pizza: Fractions
You may have to add or subtract fractions in problems that involve splitting
up part of a whole. For example, consider the following:

Joan ate 1⁄6 of a pizza, Tony ate 1⁄4, and Sylvia ate 1⁄3. What fraction of the
pizza was left when they were finished?

In this problem, just jot down the information that’s given as word equations:

Joan = 6
1 Tony = 4

1 Sylvia = 3
1

These fractions are part of one total pizza. To solve the problem, you need to
find out how much all three people ate, so form the following word equation:

All three = Joan + Tony + Sylvia

Now you can substitute as follows:

All three = 6
1

4
1

3
1

+ +

Chapter 10 gives you several ways to add these fractions. Here’s one way:

All three = 12
2

12
3

12
4

12
9

4
3

+ + = =

However, the question asks what fraction of the pizza was left after they fin-
ished, so you have to subtract that amount from the whole:

1 4
3

4
1

- =

Thus, the three people left 1⁄4 of a pizza.

Buying by the pound: Decimals
You frequently work with decimals when dealing with money, metric measure-
ments (see Chapter 15), and food sold by the pound. The following problem
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requires you to add and subtract decimals, which I discuss in Chapter 11.
Even though the decimals may look intimidating, this problem is fairly simple
to set up:

Antonia bought 4.53 pounds of beef and 3.1 pounds of lamb. Lance
bought 5.24 pounds of chicken and 0.7 pounds of pork. Which of them
bought more meat, and how much more?

To solve this problem, you first find out how much each person bought:

Antonia = 4.53 + 3.1 = 7.63

Lance = 5.24 + 0.7 = 5.94

You can already see that Antonia bought more than Lance. To find how much
more, subtract:

7.63 – 5.94 = 1.69

So Antonia bought 1.69 pounds more than Lance.

Splitting the vote: Percents
When percents represent answers in polls, votes in an election, or portions of
a budget, the total often has to add up to 100%. In real life, you may see such
info organized as a pie chart (which I discuss in Chapter 17). Solving prob-
lems about this kind of information often involves nothing more than adding
and subtracting percents. Here’s an example:

In a recent mayoral election, five candidates were on the ballot. Faber
won 39% of the vote, Gustafson won 31%, Ivanovich won 18%, Dixon won
7%, Obermayer won 3%, and the remaining votes went to write-in candi-
dates. What percentage of voters wrote in their selection?

The candidates were in a single election, so all the votes have to total 100%.
The first step here is just to add up the five percentages. Then subtract that
value from 100%:

39% + 31% + 18% + 7% + 3% = 98%

100% – 98% = 2%

Because 98% of voters voted for one of the five candidates, the remaining 2%
wrote in their selections.
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Problems about Multiplying Fractions 
In word problems, the word of almost always means multiplication. So when-
ever you see the word of following a fraction, decimal, or percent, you can
usually replace it with a times sign.

When you think about it, of means multiplication even when you’re not talking
about fractions. For example, when you point to an item in a store and say, “I’ll
take three of those,” in a sense you’re saying, “I’ll take that one multiplied by
three.”

The following examples give you practice turning word problems that include
the word of into multiplication problems that you can solve with fraction 
multiplication.

When you divide up a single thing — such as one pizza or one death-by-
chocolate cake — the word of still means to multiply; you’re technically 
multiplying each fraction by 1. For example, the fraction that represents half
of a pizza — that is, 1⁄2 of 1 pizza — is 1⁄2 ⋅ 1 = 1⁄2. Because anything times 1 is
itself, you don’t have to write the 1 at all — you can just add the fractions, as
I do earlier in “Sharing a pizza: Fractions.”

Renegade grocery shopping: Buying 
less than they tell you to
After you understand that the word of means multiplication, you have a power-
ful tool for solving word problems. For instance, you can figure out how much
you’ll spend if you don’t buy food in the quantities listed on the signs. Here’s
an example:

If beef costs $4 a pound, how much does 5⁄8 of a pound cost?

Here’s what you get if you simply change the of to a multiplication sign:

8
5 ⋅ 1 pound of beef

That’s how much beef you’re buying. However, you want to know the cost.
Because the problem tells you that 1 pound = $4, you can replace 1 pound of
beef with $4:

= 8
5 ⋅ $4

Now you have an expression you can evaluate. Use the rules of multiplying
fractions from Chapter 10 and solve:
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= $
8 1

5 4
$
$ = $ 8

20

This fraction reduces to $5⁄2. However, the answer looks weird because dollars
are usually expressed in decimals, not fractions. So convert this fraction to a
decimal using the rules I show you in Chapter 11:

$ 2
5 = $5 ÷ 2 = $2.5

At this point, recognize that $2.5 is more commonly written as $2.50, and you
have your answer. 

Easy as pie: Working out 
what’s left on your plate
Sometimes, when you’re sharing something such as a pie, not everyone gets
to it at the same time. The eager pie-lovers snatch the first slice, not bother-
ing to divide the pie into equal servings, and the people who were slower or
more patient or just not that hungry cut their own portions from what’s left
over. When someone takes a part of the leftovers, you can do a bit of multi-
plication to see how much of the whole pie that portion represents.

Consider the following example:

Jerry bought a pie and ate 1⁄5 of it. Then his wife Doreen ate 1⁄6 of what was
left. How much of the total pie was left?

To solve this problem, begin by jotting down what the first sentence tells you:

Jerry = 5
1

Doreen ate part of what was left, so write a word equation that tells you how
much of the pie was left after Jerry was finished. He started with a whole pie,
so subtract his portion from 1:

Pie left after Jerry = 1 – 5
1 = 5

4

Next, Doreen ate 1⁄6 of this amount. Rewrite the word of as multiplication and
solve as follows. This answer tells you how much of the whole pie Doreen ate:

Doreen = 6
1

5
4

30
4

=$

To make the numbers a little smaller before you go on, notice that you can
reduce the fraction:

Doreen = 15
2
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Now you know how much Jerry and Doreen both ate, so you can add these
amounts together:

Jerry + Doreen = 5
1 + 15

2

Solve this problem as I show you in Chapter 10:

15
3

15
2

15
5

= + =

This fraction reduces to 1⁄3. Now you know that Jerry and Doreen ate 1⁄3 of the
pie, but the problem asks you how much is left. So finish up with some sub-
traction and write the answer:

1 3
1

3
2

- =

The amount of pie left over was 2⁄3.

Multiplying Decimals and Percents
in Word Problems

In the preceding section, “Problems about Multiplying Fractions,” I show you
how the word of in a fraction word problem usually means multiplication.
This idea is also true in word problems involving decimals and percents. The
method for solving these two types of problems is similar, so I lump them
together in this section.

You can easily solve word problems involving percents by changing the per-
cents into decimals (see Chapter 12 for details). Here are a few common 
percents and their decimal equivalents:

25% = 0.25 50% = 0.5 75% = 0.75 99% = 0.99

To the end: Figuring out 
how much money is left
One common type of problem gives you a starting amount — and a bunch of
other information — and then asks you to figure out how much you end up
with. Here’s an example:
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Maria’s grandparents gave her $125 for her birthday. She put 40% of the
money in the bank, spent 35% of what was left on a pair of shoes, and
then spent the rest on a dress. How much did the dress cost?

Start at the beginning, forming a word equation to find out how much money
Maria put in the bank:

Money in bank = 40% of $125

To solve this word equation, change the percent to a decimal and the word of
to a multiplication sign; then multiply:

Money in bank = 0.4 ⋅ $125 = $50

Pay special attention to whether you’re calculating how much of something
was used up or how much of something is left over. If you need to work with
the portion that remains, you may have to subtract the amount used from the
amount you started with.

Because Maria started with $125, she had $75 left to spend:

Money left to spend = Money from grandparents – Money in bank

= $125 – $50 = $75

The problem then says that she spent 35% of this amount on a pair of shoes.
Again, change the percent to a decimal and the word of to a multiplication
sign:

Shoes = 35% of $75 = 0.35 ⋅ $75 = $26.25

She spent the rest of the money on a dress, so

Dress = $75 – $26.25 = $48.75

Therefore, Maria spent $48.75 on the dress.

Finding out how much you started with
Some problems give you the amount that you end up with and ask you to find
out how much you started with. In general, these problems are harder because
you’re not used to thinking backwards. Here’s an example, and it’s kind of a
tough one, so fasten your seat belt:

Maria received some birthday money from her aunt. She put her usual
40% in the bank, spent 75% of the rest on a purse, and when she was done,
she had $12 left to spend on dinner. How much did her aunt give her?
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This problem is similar to the one in the preceding section, but you need to
start at the end and work backwards. Notice that the only dollar amount in
the problem comes after the two percent amounts. The problem tells you that
she ends up with $12 after two transactions — putting money in the bank and
buying a purse — and asks you to find out how much you started with.

To solve this problem, set up two word equations to describe the two 
transactions:

Money from aunt – money for bank = money after bank

Money after bank – money for purse = $12

Notice what these two word equations are saying. The first tells you that
Maria took the money from her aunt, subtracted some money to put in the
bank, and left the bank with a new amount of money, which I’m calling money
after bank. The second word equation starts where the first leaves off. It tells
you that Maria took the money left over from the bank, subtracted some
money for a purse, and ended up with $12.

This second equation already has an amount of money filled in, so start here.
To solve this problem, realize that Maria spent 75% of her money at that time
on the purse — that is, 75% of the money she still had after the bank:

Money after bank – 75% of money after bank = $12

I’m going to make one small change to this equation so you can see what it’s
really saying:

100% of money after bank – 75% of money after bank = $12

Adding 100% of doesn’t change the equation because it really just means
you’re multiplying by 1. In fact, you can slip these two words in anywhere
without changing what you mean, though you may sound ridiculous saying
“Last night, I drove 100% of my car home from work, walked 100% of my dog,
then took 100% of my wife to see 100% of a movie.”

In this particular case, however, these words help you to make a connection
because 100% – 75% = 25%; here’s an even better way to write this equation:

25% ⋅ money after bank = $12

Before moving on, make sure you understand the steps that have brought
you here. The percent circle (see Chapter 12) tells you that $12 ÷ 0.25 gives
you the remaining amount of $48.
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Okay, you know how much money Maria had after the bank, so you can plug
this number into the first equation:

Money from aunt – money for bank = $48

Now you can use the same type of thinking to solve this equation (and it goes
a lot more quickly this time!). First, Maria placed 40% of the money from her
aunt in the bank:

Money from aunt – 40% of money from aunt = $48

Again, rewrite this equation to make what it’s saying clearer:

100% of money from aunt – 40% of money from aunt = $48

Now, because 100% – 40% = 60%, rewrite it again:

60% ⋅ money from aunt = $48

At this point, you can use the percent circle, which I show you in Chapter 12,
to solve the equation (see Figure 13-1). In this case, the percent circle tells
you that $48 ÷ 0.6 gives you the remaining amount of $80. So Maria’s aunt
gave her $80 for her birthday.

Handling Percent Increases and
Decreases in Word Problems

Word problems that involve increasing or decreasing by a percentage add a
final spin to percent problems. Typical percent-increase problems involve cal-
culating the amount of a salary plus a raise, the cost of merchandise plus tax,
or an amount of money plus interest or dividend. Typical percent decrease
problems involve the amount of a salary minus taxes or the cost of merchan-
dise minus a discount.

$48

Money
from
aunt

0.6

Figure 13-1:
Money

from aunt =
$48 ÷ 0.6 =

$80.
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To tell you the truth, you may have already solved problems of this kind earlier
in “Multiplying Decimals and Percents in Word Problems.” But people often get
thrown by the language of these problems — which, by the way, is the language
of business — so I want to give you some practice in solving them.

Raking in the dough: Finding
salary increases
A little street smarts should tell you that the words salary increase or raise
means more money, so get ready to do some addition. Here’s an example:

Alison’s salary was $40,000 last year, and at the end of the year she
received a 5% raise. What will she earn this year?

To solve this problem, first realize that Alison got a raise. So whatever she
makes this year, it will be more than she made last year. The key to setting up
this type of problem is to think of percent increase as “100% of last year’s
salary plus 5% of last year’s salary.” Here’s the word equation:

This year’s salary = 100% of last year’s salary + 5% of last year’s salary
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A quick look at the distributive property
The distributive property says that multiplying a
number by the sum of two other numbers in
parentheses is the same thing as multiplying by
the numbers in parentheses individually and
then adding their products. In other words,

3(1 + 5) = 3(1) + 3(5)

If you evaluate both sides of the equation, here’s
what you get. You can see that they’re equal:

3(6) = 3 + 15

18 = 18

The property also works for subtraction:

5(6 – 4) = 5(6) – 5(4)

5(2) = 30 – 20

10 = 10

In percent terms, you can say that the following
statements are true:

Salary (100% + 5%) = Salary (100%) +
Salary (5%)

Salary (100% – 5%) = Salary (100%) –
Salary (5%)

What’s the point? Well, you can solve percent
problems either way, but adjusting the percents
first is often easier. You may be able to do the
addition or subtraction in your head, and as
soon as you do the multiplication, you have
your answer.

See Chapter 4 for more on the distributive 
property.
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Now you can just add the percentages (see the nearby sidebar for why this
works):

This year’s salary = (100% + 5%) of last year’s salary

= 105% of last year’s salary

Change the percent to a decimal and the word of to a multiplication sign;
then fill in the amount of last year’s salary:

This year’s salary = 1.05 ⋅ $40,000

Now you’re ready to multiply:

This year’s salary = $42,000

So Alison’s new salary is $42,000.

Earning interest on top of interest
The word interest means more money. When you receive interest from the
bank, you get more money. And when you pay interest on a loan, you pay
more money. Sometimes people earn interest on the interest they earned ear-
lier, which makes the dollar amounts grow even faster. Here’s an example:

Bethany placed $9,500 in a one-year CD that paid 4% interest. The next
year, she rolled this over into a bond that paid 6% per year. How much
did Bethany earn on her investment in those two years?

This problem involves interest, so it’s another problem in percent increase,
only this time, you have to deal with two transactions. Take them one at a time.

The first transaction is a percent increase of 4% on $9,500. The following
word equation makes sense:

Money after first year = 100% of initial deposit + 4% of initial deposit

Money after first year = (100% + 4%) of $9,500 = 104% of $9,500

Now change the percent to a decimal and the word of to a multiplication sign:

Money after first year = 1.04 ⋅ $9,500

Multiplication gives you this result:

Money after first year = $9,880
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At this point, you’re ready for the second transaction. This is a percent
increase of 6% on $9,880:

Final amount = 106% of $9,880

Again, change the percent to a decimal and the word of to a multiplication sign:

Final amount = 1.06 ⋅ $9,880 = $10,472.80

Then subtract the initial deposit from the final amount:

Earnings = final amount – initial deposit = $10,472.80 – $9,500 = $972.80

So Bethany earned $972.80 on her investment.

Getting a deal: Calculating discounts
When you hear the words discount or sale price, think of subtraction. Here’s
an example:

Greg has his eye on a television with a listed price of $2,100. The sales-
man offers him a 30% discount if he buys it today. What will the television
cost with the discount?

In this problem, you need to realize that the discount lowers the price of the
television, so you have to subtract:

Sale price = 100% of regular price – 30% of regular price

Now subtract percentages:

Sale price = (100% – 30%) of regular price = 70% of regular price

At this point, you can fill in the details, as I show you throughout this chapter:

Sale price = 0.7 ⋅ $2,100 = $1,470

Thus, the television will cost $1,470 with the discount.
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Part IV
Picturing and
Measuring —

Graphs, Measures,
Stats, and Sets
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In this part . . .

I introduce you to scientific notation as a convenient
way to represent very large and very small numbers.

I discuss two important systems of measurement — the
English system and the metric system — and show you
how to convert from one to the other. You do some geom-
etry and discover how to find the perimeter and area of
important shapes such as squares, rectangles, and tri-
angles. I provide some quick information on how to read a
variety of graphs and present the Cartesian graph. You get
started with some basic set theory, statistics, and proba-
bility. Finally, I show you how to apply these skills to solve
word problems involving measurement and geometry.
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Chapter 14

A Perfect Ten: Condensing
Numbers with Scientific Notation

In This Chapter
� Knowing how to express powers of ten in exponential form

� Appreciating how and why scientific notation works

� Understanding order of magnitude

� Multiplying numbers in scientific notation

Scientists often work with very small or very large measurements — the
distance to the next galaxy, the size of an atom, the mass of the Earth, or

the number of bacteria cells growing in last week’s leftover Chinese takeout.
To save on time and space — and to make calculations easier — people
developed a sort of shorthand called scientific notation.

Scientific notation uses a sequence of numbers known as the powers of ten,
which I introduce in Chapter 2:

1 10 100 1,000 10,000 100,000 1,000,000 10,000,000 ...

Each number in the sequence is 10 times more than the preceding number. 

Powers of ten are easy to work with, especially when you’re multiplying
and dividing, because you can just add or drop zeros or move the decimal
point. They’re also easy to represent in exponential form (as I show you in
Chapter 4):

100 101 102 103 104 105 106 107 ...

Scientific notation is a handy system for writing very large and very small
numbers without writing a bunch of 0s. It uses both decimals and exponents
(so if you need a little brushing up on decimals, flip to Chapter 11). In this
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chapter, I introduce you to this powerful method of writing numbers. I also
explain the order of magnitude of a number. Finally, I show you how to multi-
ply numbers written in scientific notation.

First Things First: Powers 
of Ten as Exponents

Scientific notation uses powers of ten expressed as exponents, so you need
a little background before you can jump in. In this section, I round out your
knowledge of exponents, which I first introduce in Chapter 4.

Counting up zeros and writing exponents
Numbers starting with a 1 and followed by only 0s (such 10, 100, 1,000,
10,000, and so forth) are called powers of ten, and they’re easy to represent
as exponents. Powers of ten are the result of multiplying 10 times itself any
number of times.

To represent a number that’s a power of 10 as an exponential number, count
the zeros and raise 10 to that exponent. For example, 1,000 has three zeros,
so 1,000 = 103 (103 means to take 10 times itself three times, so it equals 
10 ⋅ 10 ⋅ 10). Table 14-1 shows a list of some powers of ten.

Table 14-1 Powers of Ten Expressed as Exponents
Number Exponent

1 100

10 101

100 102

1,000 103

10,000 104

100,000 105

1,000,000 106
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After you know this trick, representing a lot of large numbers as powers of
ten is easy — just count the 0s! For example, the number 1 trillion —
1,000,000,000,000 — is a 1 with twelve 0s after it, so

1,000,000,000,000 = 1012

This trick may not seem like a big deal, but the higher the numbers get, the
more space you save by using exponents. For example, a really big number is
a googol, which is 1 followed by a hundred 0s. You can write this:

10,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,
000,000,000,000,000,000,000,000,000,000,000,000,000,000,000,000

As you can see, a number of this size is practically unmanageable. You can
save yourself some trouble and write 10100.

A 10 raised to a negative number is also a power of ten.

You can also represent decimals using negative exponents. For example,

10–1 = 0.1 10–2 = 0.01 10–3 = 0.001 10–4 = 0.0001

Although the idea of negative exponents may seem strange, it makes sense
when you think about it alongside what you know about positive exponents.
For example, to find the value of 107, start with 1 and make it larger by moving
the decimal point 7 spaces to the right: 

107 = 10,000,000

Similarly, to find the value of 10–7, start with 1 and make it smaller by moving
the decimal point 7 spaces to the left:

10–7 = 0.0000001

Negative powers of 10 always have one fewer 0 between the 1 and the deci-
mal point than the power indicates. In this example, notice that 10–7 has six 0s
between them.

As with very large numbers, using exponents to represent very small deci-
mals makes practical sense. For example, 

10–23 = 0.00000000000000000000001

As you can see, this decimal is easy to work with in its exponential form but
almost impossible to read otherwise.
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Adding exponents to multiply
An advantage of using the exponential form to represent powers of ten is that
this form is a cinch to multiply. To multiply two powers of ten in exponential
form, add their exponents. Here are a few examples:

� 101 ⋅ 102 = 101+ 2 = 103

Here, I simply multiply these numbers:

10 ⋅ 100 = 1,000

� 1014 ⋅ 1015 = 1014 + 15 = 1029

Here’s what I’m multiplying:

100,000,000,000,000 ⋅ 1,000,000,000,000,000

= 100,000,000,000,000,000,000,000,000,000

You can verify that this multiplication is correct by counting the 0s.

� 10100 ⋅ 100 = 10100 + 0 = 10100

Here I’m multiplying a googol by 1 (any number raised to an exponent of
0 equals 1), so the result is a googol.

In each of these cases, you can think of multiplying powers of ten as adding
extra 0s to the number.

The rules for multiplying powers of ten by adding exponents also applies to
negative exponents. For example, 

103 ⋅ 10–5 = 10(3 – 5) = 10–2 = 0.01

Working with Scientific Notation
Scientific notation is a system for writing very large and very small numbers
that makes them easier to work with. Every number can be written in scien-
tific notation as the product of two numbers (two numbers multiplied
together):

� A decimal greater than or equal to 1 and less than 10 (see Chapter 11 for
more on decimals)

� A power of ten written as an exponent (see the preceding section)
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Writing in scientific notation
Here’s how to write any number in scientific notation:

1. Write the number as a decimal (if it isn’t one already).

Suppose you want to change the number 360,000,000 to scientific nota-
tion. First, write it as a decimal:

360,000,000.0

2. Move the decimal point just enough places to change this number to a
new number that’s between 1 and 10.

Move the decimal point to the right or left so that only one nonzero digit
comes before the decimal point. Drop any leading or trailing zeros as
necessary.

Using 360,000,000.0, only the 3 should come before the decimal point. So
move the decimal point eight places to the left, drop the trailing zeros,
and get 3.6:

360,000,000.0 becomes 3.6

3. Multiply the new number by 10 raised to the number of places you
moved the decimal point in Step 2.

You moved the decimal point eight places, so multiply the new number
by 108:

3.6 ⋅ 108

4. If you moved the decimal point to the right in Step 2, put a minus sign
on the exponent.

You moved the decimal point to the left, so you don’t have to take any
action here. Thus, 360,000,000 in scientific notation is 3.6 ⋅ 108.

Changing a decimal to scientific notation basically follows the same process.
For example, suppose you want to change the number 0.00006113 to scien-
tific notation:

1. Write 0.00006113 as a decimal (this step’s easy, because it’s already a
decimal):

0.00006113

2. To change 0.00006113 to a new number between 1 and 10, move the
decimal point five places to the right and drop the leading zeros:

6.113
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3. Because you moved the decimal point five places, multiply the new
number by 105:

6.113 ⋅ 105

4. Because you moved the decimal point to the right, put a minus sign on
the exponent:

6.113 ⋅ 10–5

So 0.00006113 in scientific notation is 6.113 ⋅ 10–5.

After you get used to writing numbers in scientific notation, you can do it all
in one step. Here are a few examples:

, .

. .

. .

17 400 1 7400 10

212 04 2 1204 10

0 003002 3 002 10

4

2

3

=

=
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Why scientific notation works
After you understand how scientific notation works, you’re in a better posi-
tion to understand why it works. Suppose you’re working with the number
4,500. First of all, you can multiply any number by 1 without changing it, so
here’s a valid equation:

4,500 = 4,500 ⋅ 1

Because 4,500 ends in a 0, it’s divisible by 10 (see Chapter 7 for info on divisi-
bility). So you can factor out a 10 as follows:

4,500 = 450 ⋅ 10

Also, because 4,500 ends in two 0s, it’s divisible by 100, so you can factor 
out 100:

4,500 = 45 ⋅ 100

In each case, you drop another 0 after the 45 and place it after the 1. At this
point, you have no more 0s to drop, but you can continue the pattern by
moving the decimal point one place to the left:

4,500 = 4.5 ⋅ 1,000

4,500 = 0.45 ⋅ 10,000

4,500 = 0.045 ⋅ 100,000

212 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

21_135372 ch14.qxd  8/28/07  7:48 PM  Page 212



What you’ve been doing from the beginning is moving the decimal point one
place to the left and multiplying by 10. But you can just as easily move the
decimal point one place to the right and multiply by 0.1, two places right by
multiplying by 0.01, and three places right by multiplying by 0.001:

4,500 = 45,000 ⋅ 0.1

4,500 = 450,000 ⋅ 0.01

4,500 = 4,500,000 ⋅ 0.001

As you can see, you have total flexibility to express 4,500 as a decimal multi-
plied by a power of ten. As it happens, in scientific notation, the decimal
must be between 1 and 10, so the following form is the equation of choice:

4,500 = 4.5 ⋅ 1,000

The final step is to change 1,000 to exponential form. Just count the 0s in
1,000 and write that number as the exponent on the 10:

4,500 = 4.5 ⋅ 103

The net effect is that you moved the decimal point three places to the left
and raised 10 to an exponent of 3. You can see how this idea can work for any
number, no matter how large or small.

Understanding order of magnitude
A good question to ask is why scientific notation always uses a decimal
between 1 and 10. The answer has to do with order of magnitude. Order of
magnitude is a simple way to keep track of roughly how large a number is so
you can compare numbers more easily. The order of magnitude of a number is
its exponent in scientific notation. For example,

703 = 7.03 ⋅ 102 — order of magnitude is 2

600,000 = 6 ⋅ 105 — order of magnitude is 5

0.00095 = 9.5 ⋅ 10–4 — order of magnitude is –4

Every number starting with 10 but less than 100 has an order of magnitude
of 1. Every number starting with 100 but less than 1,000 has an order of 
magnitude of 2.
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Multiplying with scientific notation
Multiplying numbers that are in scientific notation is fairly simple because
multiplying powers of ten is easy, as you see earlier in this chapter in “Adding
exponents to multiply.” Here’s how to multiply two numbers that are in scien-
tific notation:

1. Multiply the two decimal parts of the numbers.

Suppose you want to multiply the following:

(4.3 ⋅ 105)(2 ⋅ 107)

Multiplication is commutative (see Chapter 4), so you can change the
order of the numbers without changing the result. And because of the
associative property, you can also change how you group the numbers.
Therefore, you can rewrite this problem as

(4.3 ⋅ 2)(105 ⋅ 107)

Multiply what’s in the first set of parentheses — 4.3 ⋅ 2 — to find the 
decimal part of the solution:

4.3 ⋅ 2 = 8.6

2. Multiply the two exponential parts by adding their exponents.

Now multiply 105 by 107:

105 ⋅ 107 = 105 + 7 = 1012

3. Write the answer as the product of the numbers you found in Steps 1
and 2.

8.6 ⋅ 1012

4. If the decimal part of the solution is 10 or greater, move the decimal
point one place to the left and add 1 to the exponent.

Because 8.6 is less than 10, you don’t have to move the decimal point
again, so the answer is 8.6 ⋅ 1012.

Note: This number equals 8,600,000,000,000.

Because scientific notation uses positive decimals less than 10, when you
multiply two of these decimals, the result is always a positive number
less than 100. So in Step 4, you never have to move the decimal point
more than one place to the left.

This method even works when one or both of the exponents are negative
numbers. For example, suppose you want to multiply the following:

(6.02 ⋅ 1023)(9 ⋅ 10–28)
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1. Multiply 6.02 by 9 to find the decimal part of the answer:

6.02 ⋅ 9 = 54.18

2. Multiply 1023 by 10–28 by adding the exponents (check Chapter 4 if you
need info on adding negative numbers):

1023 ⋅ 10–28 = 1023 + –28 = 10–5

3. Write the answer as the product of the two numbers:

54.18 ⋅ 10–5

4. Because 54.18 is greater than 10, move the decimal point one place to
the left and add 1 to the exponent:

5.418 ⋅ 10–4

Note: In decimal form, this number equals 0.0005418.

Scientific notation really pays off when you’re multiplying very large and very
small numbers. If you’d tried to multiply the numbers in the preceding exam-
ple the usual way, here’s what you would’ve been up against:

602,000,000,000,000,000,000,000 ⋅ 0.0000000000000000000000000009

As you can see, scientific notation makes the job a lot easier.
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Chapter 15

How Much Have You Got?
Weights and Measures

In This Chapter
� Measuring things that run together

� Discovering differences between the English and metric systems

� Estimating and calculating English and metric system conversions

In Chapter 4, I introduce you to units, which are things that can be counted,
such as apples, coins, or hats. Apples, coins, and hats are easy to count

because they’re discrete — that is, you can easily see where one ends and
the next one begins. But not everything is so easy. For example, how do you
count water — by the drop? Even if you tried, exactly how big is a drop?

That’s where units of measurement come in. A unit of measurement allows
you to count something that isn’t discrete: an amount of a liquid or solid,
the distance from one place to another, a length of time, the speed at which
you’re traveling, or the temperature of the air.

In this chapter, I discuss two important systems of measurement: English and
metric. You’re probably familiar with the English system already, and you may
know more than you think about the metric system. Each of these measure-
ment systems provides a different way to measure distance, volume, weight
(or mass), time, and speed. Next, I show you how to estimate metric amounts
in English units. Finally, I show how to convert from English units to metric
and vice versa.

Examining Differences between the
English and Metric Systems

The two most common measurement systems today are the English system
and the metric system. 
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Most Americans learn the units of the English system — for example, pounds
and ounces, feet and inches, and so forth — and use them every day.
Unfortunately, the English system is awkward for use with math. English units
such as inches and fluid ounces are often measured in fractions, which (as
you know from Chapters 9 and 10) can be difficult to work with. 

The metric system was invented to simplify the application of math to measure-
ment. Metric units are based on the number 10, which makes them much easier
to work with. Parts of units are expressed as decimals, which (as Chapter 11
shows you) are much friendlier than fractions. 

Yet despite these advantages, the metric system has been slow to catch on in
the U.S. Many Americans feel comfortable with English units and reluctant to
part with them. This is understandable. For example, if I ask, you to carry a
20 lb. bag for 1/4 of a mile, you know what to expect. However, if I ask you to
carry a bag weighing 10 kilograms half a kilometer, you may not be sure.

In this section, I show you the basic units of measurement for both the
English and metric systems.

If you want an example of the importance of converting carefully, you may
want to look to NASA — they kind of lost a Mars orbiter in the late 1990s
because an engineering team used English units and NASA used metric to
navigate!

Looking at the English system
The English system of measurement is most commonly used in the United
States (but, ironically, not in England). Although you’re probably familiar with
most of the English units of measurement, in the following list, I make sure
you know the most important ones. I also show you some equivalent values
that can help you do conversions from one type of unit to another.

� Units of distance: Distance — also called length — is measured in
inches (in.), feet (ft.), yards (yd.), and miles (mi.):

12 inches = 1 foot

3 feet = 1 yard

5,280 feet = 1 mile

218 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

22_135372 ch15.qxd  8/28/07  7:49 PM  Page 218



� Units of fluid volume: Fluid volume (also called capacity) is the amount
of space occupied by a liquid such as water, milk, or wine. I discuss
volume when I talk about geometry in Chapter 16. Volume is measured in
fluid ounces (fl. oz.), cups (c.), pints (pt.), quarts (qt.), and gallons (gal.):

8 fluid ounces = 1 cup

2 cups = 1 pint

2 pints = 1 quart

4 quarts = 1 gallon

Units of fluid volume are typically used for measuring the volume of
things that can be poured. The volume of solid objects is more com-
monly measured in cubic units of distance such as cubic inches, cubic
feet, and so forth.

� Units of weight: Weight is the measurement of how strongly gravity
pulls an object toward Earth. Weight is measured in ounces (oz.),
pounds (lb.), and tons.

16 ounces = 1 pound

2,000 pounds = 1 ton

Don’t confuse fluid ounces, which measure volume, with ounces, which
measure weight. These units are two completely different types of 
measurements!

� Units of time: Time is hard to define, but everybody knows what it is.
Time is measured in seconds, minutes, hours, days, weeks, and years:

60 seconds = 1 minute

60 minutes = 1 hour

24 hours = 1 day

7 days = 1 week

365 days ≈ 1 year

The conversion from days to years is approximate, because earth’s daily
rotation on its axis and its yearly revolution around the sun aren’t
exactly synchronized. A year is closer to 365.25 days, which is why leap
years exist.

I left months out of the picture because the definition of a month is
imprecise — it can vary from 28 to 31 days.
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� Unit of speed: Speed is the measurement of how much time an object
takes to move a given distance. The most common unit of speed is miles
per hour (mph).

� Unit of temperature: Temperature measures how much heat an object
contains. This object can be a glass of water, a turkey in the oven, or
the air surrounding your house. Temperature is measured in degrees
Fahrenheit (°F).

Looking at the metric system
Like the English system, the metric system provides units of measurement for
distance, volume, and so on. Unlike the English system, however, the metric
system builds these units using a basic unit and a set of prefixes.

Table 15-1 shows five important basic units in the metric system.

Table 15-1 Five Basic Metric Units 
Measure Of Basic Metric Unit

Distance Meter

Volume (capacity) Liter

Mass (weight) Gram

Time Second

Temperature Degree (Celsius)

For scientific purposes, the metric system has been updated to more rigor-
ously defined System of International Units (SI). Each basic SI unit correlates
directly to a measurable scientific process that defines it. In SI, the kilogram
(not the gram) is the basic unit of mass, the kelvin is the basic unit of temper-
ature, and the liter is not considered a basic unit. For technical reasons, sci-
entists tend to use the more rigidly defined SI, but most other people use the
looser metric system. In everyday practice, you can think of the units listed
in Table 15-1 as basic units.

Table 15-2 shows ten metric prefixes, with the three most commonly used in
bold (see Chapter 14 for more information on powers of ten).
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Table 15-2 Ten Metric Prefixes
Prefix Meaning Number Power of Ten

Giga- One billion 1,000,000,000 109

Mega- One million 1,000,000 106

Kilo- One thousand 1,000 103

Hecta- One hundred 100 102

Deca- Ten 10 101

(none) One 1 100

Deci- One tenth 0.1 10–1

Centi- One hundredth 0.01 10–2

Milli- One thousandth 0.001 10–3

Micro- One millionth 0.000001 10–6

Nano- One billionth 0.000000001 10–9

Large and small metric units are formed by linking a basic unit with a prefix.
For example, linking the prefix kilo- to the basic unit meter gives you the kilo-
meter, which means 1,000 meters. Similarly, linking the prefix milli- to the
basic unit liter gives you the milliliter, which means 0.001 (one thousandth)
of a meter.

Here’s a list giving you the basics:

� Units of distance: The basic metric unit of distance is the meter (m).
Other common units are millimeters (mm), centimeters (cm), and kilo-
meters (km): 

1 kilometer = 1,000 meters

1 meter = 100 centimeters

1 meter = 1,000 millimeters

� Units of fluid volume: The basic metric unit of fluid volume (also called
capacity) is the liter (L). Another common unit is the milliliter (mL):

1 liter = 1,000 milliliters

Note: One milliliter is equal to 1 cubic centimeter (cc).

221Chapter 15: How Much Have You Got? Weights and Measures

22_135372 ch15.qxd  8/28/07  7:49 PM  Page 221



� Units of mass: Technically speaking, the metric system measures not
weight but mass. Weight is the measurement of how strongly gravity
pulls an object toward Earth. Mass, however, is the measurement of the
amount of matter an object has. If you traveled to the moon, your weight
would change, so you would feel lighter. But your mass would remain
the same, so all of you would still be there. Unless you’re planning a trip
into outer space or performing a scientific experiment, you probably
don’t need to know the difference between weight and mass. In this
chapter, you can think of them as equivalent, and I use the word weight
when referring to metric mass.

The basic unit of weight in the metric system is the gram (g). Even more
commonly used, however, is the kilogram (kg):

1 kilogram = 1,000 grams

Note: 1 kilogram of water has a volume of 1 liter.

� Units of time: As in the English system, the basic metric unit of time is a
second (s). For most purposes, people also use other English units such
as minutes, hours, and so forth.

For many scientific purposes, the second is the only unit used to mea-
sure time. Large numbers of seconds and small fractions of sections are
represented with scientific notation, which I cover in Chapter 14.

� Units of speed: For most purposes, the most common metric unit of
speed (also called velocity) is kilometers per hour (km/hr). Another
common unit is meters per second (m/s).

� Units of temperature (degrees Celsius or Centigrade): The basic metric
unit of temperature is the Celsius degree (°C), also called the Centigrade
degree. The Celsius scale is set up so that at sea level, water freezes at
0°C and boils at 100°C.

Scientists often use another unit — the Kelvin (K) — to talk about temper-
ature. The degrees are the same size as in Celsius, but 0 K is set at absolute
zero, the temperature at which atoms don’t move at all. Absolute zero is
approximately equal to –273.15°C.

Estimating and Converting between
the English and Metric Systems

Most Americans use the English system of measurement all the time but have
only a passing acquaintance with the metric system. But metric units are
being used more commonly as the units for tools, footraces, soft drinks, and
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many other things. Also, if you travel abroad, you need to know how far 100
kilometers is or how long you can drive on 10 liters of gasoline.

In this section, I show you how to make ballpark estimates of metric units in
terms of English units, which can help you feel more comfortable with metric
units. I also show you how to convert between English and metric units,
which is a common type of math problem.

When I talk about estimating, I mean very loose ways of measuring metric
amounts using the English units you are familiar with. In contrast, when I talk
about converting, I mean using an equation to change from one system of
units to the other. Neither method is exact, but converting provides a much
closer approximation (and takes longer) than estimating. 

Estimating in the metric system
One reason people sometimes feel uncomfortable using the metric system
is that when you’re not familiar with it, estimating amounts in practical
terms is hard. For example, if I tell you that we’re going out to a beach that’s
1⁄4 mile away, you prepare yourself for a short walk. And if I tell you that it’s
10 miles away, you head for the car. But what do you do with the information
that the beach is 3 kilometers away?

Similarly, if I tell you that the temperature is 85 degrees Fahrenheit, you’ll
probably wear a bathing suit or shorts. And if I tell you it’s 40 degrees
Fahrenheit, you’ll probably wear a coat. But what do you wear if I tell you
that the temperature is 25 degrees Celsius?

In this section, I give you a few rules of thumb to estimate metric amounts. In
each case, I show you how a common metric unit compares with an English
unit that you already feel comfortable with.

Approximating short distances: 1 meter is about 1 yard (3 feet)
Here’s how to convert meters to feet: 1 meter ≈ 3.26 feet. But for estimating,
use the simple rule that 1 meter is about 1 yard (that is, about 3 feet).

By this estimate, a 6-foot man stands about 2 meters tall. A 15-foot room is 5
meters wide. And a football field that’s 100 yards long is about 100 meters
long. Similarly, a river with a depth of 4 meters is about 12 feet deep. A moun-
tain that’s 3,000 meters tall is about 9,000 feet. And a child who is only half a
meter tall is about a foot and a half.
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Estimating longer distances and speed
Here’s how to convert kilometers to miles: 1 kilometer ≈ 0.62 miles. For a ball-
park estimate, you can remember that 1 kilometer is about 1⁄2 a mile. By the
same token, 1 kilometer per hour is about 1⁄2 mile per hour.

This guideline tells you that if you live 2 miles from the nearest supermarket,
then you live about 4 kilometers from there. A marathon of 26 miles is about
52 kilometers. And if you run on a treadmill at 6 miles per hour, then you can
run at about 12 kilometers per hour. By the same token, a 10 kilometer race is
about 5 miles. If the Tour de France is about 4,000 kilometers, then it’s about
2,000 miles. And if light travels about 300,000 kilometers per second, then it
travels about 150,000 miles per second.

Approximating volume: 1 liter is about 1 quart (1⁄4 gallon)
Here’s how to convert liters to gallons: 1 liter ≈ 0.26 gallons. A good estimate
here is that 1 liter is about 1 quart (that is, there are about 4 liters to the
gallon).

Using this estimate, a gallon of milk is 4 quarts, so it’s about 4 liters. If you
put 10 gallons of gasoline in your tank, this is about 40 liters. In the other
direction, if you buy a 2-liter bottle of cola, you have about 2 quarts. If you
buy an aquarium with a 100-liter capacity, it holds about 25 gallons of water.
And if a pool holds 8,000 liters of water, it holds about 2,000 gallons.

Estimating weight: 1 kilogram is about 2 pounds
Here’s how to convert kilograms to pounds: 1 kilogram ≈ 2.20 pounds. For
estimating, figure that 1 kilogram is equal to about 2 pounds.

By this estimate, a 5-kilogram bag of potatoes weighs about 10 pounds. If you
can bench press 70 kilograms, then you can bench press about 140 pounds.
And because a liter of water weighs exactly 1 kilogram, you know that a quart
of water weighs about 2 pounds. Similarly, if a baby weighs 8 pounds at birth,
he or she weighs about 4 kilograms. If you weigh 150 pounds, then you weigh
about 75 kilograms. And if your New Year’s resolution is to lose 20 pounds,
then you want to lose about 10 kilograms.

Estimating temperature
The most common reason for estimating temperature in Celsius is in connec-
tion with the weather. The formula for converting from Celsius to Fahrenheit
is kind of messy:

Fahrenheit = Celsius ⋅ 9⁄5 + 32

Instead, use the handy chart in Table 15-3.
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Table 15-3 Comparing Celsius and Fahrenheit Temperatures
Celsius (Centigrade) Description Fahrenheit

0 degrees Cold 32 degrees

10 degrees Cool 50 degrees

20 degrees Warm 68 degrees

30 degrees Hot 86 degrees

Any temperature below 0°C is cold, and any temperature over 30°C is hot.
Most of the time, the temperature falls in this middling range. So now you
know that when the temperature is 6°C, you want to wear a coat. When it’s
14°C, you may want a sweater or at least long sleeves. And when it’s 25°C,
head for the beach!

Converting units of measurement
Many books give you one formula for converting from English to metric and
another for converting from metric to English. People often find this conver-
sion method confusing because they have trouble remembering which formula
to use in which direction. 

In this section, I show you a simple way to convert between English and
metric units that uses only one formula for each type of conversion.

Understanding conversion factors
When you multiply any number by 1, that number stays the same. For exam-
ple, 36 ⋅ 1 = 36. And when a fraction has the same numerator (top number)
and denominator (bottom number), that fraction equals 1 (see Chapter 10 for
details). So when you multiply a number by a fraction that equals 1, the
number stays the same. For example:

36 ⋅ 5
5 = 36

If you multiply a measurement by a special fraction that equals 1, you can
switch from one unit of measurement to another without changing the value.
People call such fractions conversion factors.
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Take a look at some equations that show how metric and English units are
related (all conversions between English and metric units are approximate):

� 1 meter ≈ 3.26 feet

� 1 kilometer ≈ 0.62 miles

� 1 liter ≈ 0.26 gallons

� 1 kilogram ≈ 2.20 pounds

Because the values on each side of the equations are equal, you can create
fractions that are equal to 1, such as

� 3.26 feet
1 meter or 1 meter

3.26 feet

� 0.62 miles
1 kilometer or 1 kilometer

0.62 miles

� 0.26 gallons
1 liter or 1 liter

0.26 gallons

� 2.2 pounds
1 kilogram

or 1 kilogram
2.2 pounds

After you understand how units of measurement cancel (which I discuss in
the next section), you can easily choose which fractions to use to switch
between units of measurement.

Canceling units of measurement
When you’re multiplying fractions, you can cancel any factor that appears in
both the numerator and denominator (see Chapter 9 for details). Just as with
numbers, you can also cancel out units of measurement in fractions. For
example, suppose you want to evaluate this fraction:

2 gallons
6 gallons

You already know that you can cancel out a factor of 2 in both the numerator
and denominator. But you can also cancel out the unit gallons in both the
numerator and denominator:

2 gallons
6 gallons

3
=

So this fraction simplifies as follows:

= 3
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Converting units
After you understand how to cancel out units in fractions and how to set up
fractions equal to 1 (see the preceding sections), you have a foolproof system
for converting units of measurement.

Suppose you want to convert 7 meters into feet. Using the equation 1 meter =
3.26 feet, you can make a fraction out of the two values as follows:

3.26 feet
1 meter 1= or 1 meter

3.26 feet 1=

Both fractions equal 1 because the numerator and the denominator are
equal. So you can multiply the quantity you’re trying to convert (7 meters) by
one of these fractions without changing it. Remember that you want the
meters unit to cancel out. You already have the word meters in the numerator
(to make this clear, place 1 in the denominator), so use the fraction that puts
1 meter in the denominator:

1
7 meters

1 meter
3.26 feet$

Now cancel out the unit that appears in both the numerator and denominator: 

1
7 meters

1 meter
3.26 feet

= $

At this point, the only value in the denominator is 1, so you can ignore it. And
the only unit left is feet, so place it at the end of the expression:

= 7 ⋅ 3.26 feet

Now do the multiplication (Chapter 11 shows how to multiply decimals):

= 22.82 feet

It may seem strange that the answer appears with the units already attached,
but that’s the beauty of this method: When you set up the right expression,
the answer just appears.

You can get more practice converting units of measurement in Chapter 18,
where I show you how to set up conversion chains and tackle word problems
involving measurement.

227Chapter 15: How Much Have You Got? Weights and Measures

22_135372 ch15.qxd  8/28/07  7:52 PM  Page 227



228 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

22_135372 ch15.qxd  8/28/07  7:52 PM  Page 228



Chapter 16

Picture This: Basic Geometry
In This Chapter
� Knowing the basic components of geometry: Points, lines, angles, and shapes 

� Examining two-dimensional shapes 

� Looking at solid geometry

� Finding out how to measure a variety of shapes 

G eometry is the mathematics of figures such as squares, circles, triangles,
lines, and so forth. Because geometry is the math of physical space, it’s

one of the most useful areas of math. Geometry comes into play when mea-
suring rooms or walls in your house, the area of a circular garden, the volume
of water in a pool, or the shortest distance across a rectangular field. 

Although geometry is usually a year-long course in high school, you may be
surprised at how quickly you can pick up what you need to know about basic
geometry. Much of what you discover in a geometry course is how to write
geometric proofs, which you don’t need for algebra — or trigonometry, or
even calculus.

In this chapter, I give you a quick and practical overview of geometry. First,
I show you four important concepts in plane geometry: points, lines, angles,
and shapes. Then I give you the basics on geometric shapes, from flat circles
to solid cubes. Finally, I discuss how to measure geometric shapes by finding
the area and perimeter of two-dimensional forms and the volume and surface
area of some geometric solids.

Of course, if you want to know more about geometry, the ideal place to look
beyond this chapter is Geometry For Dummies (published by Wiley)!
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Getting on the Plane: Points, 
Lines, Angles, and Shapes

Plane geometry is the study of figures on a two-dimensional surface — that is,
on a plane. You can think of the plane as a piece of paper with no thickness at
all. Technically, a plane doesn’t end at the edge of the paper — it continues
forever.

In this section, I introduce you to four important concepts in plane geometry:
points, lines, angles, and shapes (such as squares, circles, triangles, and so
forth). 

Making some points
A point is a location on a plane. It has no size or shape. Although in reality a
point is too small to be seen, you can represent it visually in a drawing by
using a dot.

When two lines intersect, as shown above, they share a single point.
Additionally, each corner of a polygon is a point. (See below for more on lines
and polygons.)

Knowing your lines
A line — also called a straight line — is pretty much what it sounds like; it
marks the shortest distance between two points, but it extends infinitely in
both directions. It has length but no width, making it a one-dimensional (1-D)
figure.
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Given any two points, you can draw exactly one line that passes through both
of them. That is, two points determine a line.

When two lines intersect, they share a single point. When two lines don’t
intersect, they are parallel, which means that they remain the same distance
from each other everywhere. A good visual aid for parallel lines is a set of
railroad tracks. In geometry, you draw a line with arrows at both ends.
Arrows on either end of a line mean that the line goes on forever (as you can
see in Chapter 1, where I discuss the number line).

A line segment is a piece of a line that has endpoints, as shown here.

A ray is a piece of a line that starts at a point and extends infinitely in one
direction, kind of like a laser. It has one endpoint and one arrow.

Figuring the angles
An angle is formed when two rays extend from the same point.

Angles are typically used in carpentry to measure the corners of objects.
They’re also used in navigation to indicate a sudden change in direction. For
example, when you are driving, it’s common to distinguish when the angle of
a turn is “sharp” or “not so sharp.” 

The sharpness of an angle is usually measured in degrees. The most common
angle is the right angle — the angle at the corner of a square — which is a 90°
(90 degree) angle:
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Angles that have fewer than 90° — that is, angles that are sharper than a
right angle — are called acute angles, like this one:

Angles that measure greater than 90° — that is, angles that aren’t as sharp as
a right angle — are called obtuse angles, as seen here:

When an angle is exactly 180°, it forms a straight line and is called a straight
angle.

Shaping things up
A shape is any closed geometrical figure that has an inside and an outside.
Circles, squares, triangles, and larger polygons are all examples of shapes. 

232 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

23_135372 ch16.qxd  8/28/07  7:55 PM  Page 232



Much of plane geometry focuses on different types of shapes. In the next 
section, I show you how to identify a variety of shapes. Later in this chapter,
I show you how to measure these shapes.

Closed Encounters: Shaping Up Your
Understanding of 2-D Shapes

A shape is any closed two-dimensional (2-D) geometrical figure that has an
inside and an outside, separated by the perimeter (boundary) of the shape.
The area of a shape is the measurement of the size inside that shape.

A few shapes that you’re probably familiar with include the square, rectangle,
and triangle. However, many shapes don’t have names, as you can see in
Figure 16-1.

Measuring the perimeter and area of shapes is useful for a variety of applica-
tions, from land surveying (to get information about a parcel of land that you’re
measuring) to sewing (to figure out how much material you need for a project).
In this section, I introduce you to a variety of geometric shapes. Later in the
chapter, I show you how to find the perimeter and area of each, but for now I
just acquaint you with them.

Circles
A circle is the set of all points that are a constant distance from the circle’s
center. The distance from any point on the circle to its center is called the
radius of the circle. The distance from any point on the circle straight through
the center to the other side of the circle is called the diameter of the circle. 

Unlike the polygons I discuss later, a circle has no straight edges. The ancient
Greeks — who invented much of geometry as we know it today — thought
that the circle was the most perfect geometric shape. 

Figure 16-1:
Unnamed

shapes.
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Polygons
A polygon is any shape whose sides are all straight. Every polygon has three
or more sides (if it had fewer than three, it wouldn’t really be a shape at all).
Following are a few of the most common polygons. 

Triangles
The most basic shape with straight sides is the triangle, a three-sided poly-
gon. You find out all about triangles when you study trigonometry (and what
better place to begin than Trigonometry For Dummies?). Triangles are classi-
fied on the basis of their sides and angles. Take a look at the differences (and
see Figure 16-2):

� Equilateral: An equilateral triangle has three sides that are all the same
length and three angles that all measure 60 degrees.

� Isosceles: An isosceles triangle has two sides that are the same length
and two equal angles.

� Scalene: Scalene triangles have three sides that are all different lengths
and three angles that are all unequal.

� Right: A right triangle has one right angle. It may be isosceles or scalene.

Quadrilaterals
A quadrilateral is any shape that has four straight sides. Quadrilaterals are one
of the most common shapes you see in daily life. If you doubt this, look around
and notice that most rooms, doors, windows, and tabletops are quadrilaterals.
Here, I introduce you to a few common quadrilaterals (Figure 16-3 shows you
what they look like):

Equilateral Isosceles Scalene Right

Figure 16-2:
Types of

triangles.
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� Square: A square has four right angles and four sides of equal length;
also, both pairs of opposite sides (sides directly across from each other)
are parallel.

� Rectangle: Like a square, a rectangle has four right angles and two pairs
of opposite sides that are parallel. Unlike the square, however, although
opposite sides are equal in length, sides that share a corner — adjacent
sides — may have different lengths.

� Rhombus: Imagine taking a square and collapsing it as if its corners
were hinges. This shape is called a rhombus. All four sides are equal in
length, and both pairs of opposite sides are parallel.

� Parallelogram: Imagine taking a rectangle and collapsing it as if the cor-
ners were hinges. This shape is a parallelogram — both pairs of opposite
sides are equal in length, and both pairs of opposite sides are parallel.

� Trapezoid: The trapezoid’s only important feature is that at least two
opposite sides are parallel. 

� Kite: A kite is a quadrilateral with two pairs of adjacent sides that are
the same length. 

Square Rectangle

Parallelogram Kite Trapezoid

Rhombus

Figure 16-3:
Common

quadri-
laterals.
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A quadrilateral can fit into more than one of these categories. For example,
every parallelogram (with two sets of parallel sides) is also a trapezoid (with
at least one set of parallel sides). Every rectangle and rhombus is also both a
parallelogram and a trapezoid. And every square is also all five other types of
quadrilaterals. In practice, however, it’s common to identify a quadrilateral as
descriptively as possible — that is, use the first word in the list above that
accurately describes it.

Polygons on steroids — larger polygons
A polygon can have any number of sides. Polygons with more than four sides
are not as common as triangles and quadrilaterals, but are still worth knowing
about. Larger polygons come in two basic varieties: regular and irregular.

A regular polygon has equal sides and equal angles. The most common are
regular pentagons (5 sides), regular hexagons (6 sides), and regular octagons
(8 sides). See Figure 16-4.

Every other polygon is an irregular polygon (see Figure 16-5).

Figure 16-5:
Various

irregular
polygons.

Figure 16-4:
A pentagon,
a hexagon,

and an
octagon.

236 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

23_135372 ch16.qxd  8/28/07  7:55 PM  Page 236



Taking a Trip to Another Dimension:
Solid Geometry

Solid geometry is the study of shapes in space — that is, the study of shapes
in three dimensions. A solid is the spatial (three-dimensional, or 3-D) equiva-
lent of a shape. Every solid has an inside and an outside separated by the 
surface of the solid. Here, I introduce you to a variety of solids.

The many faces of polyhedrons
A polyhedron is the three-dimensional equivalent of a polygon. As you may
recall from earlier in the chapter, a polygon is a shape that has only straight
sides. Similarly, a polyhedron is a solid that has only straight edges and flat
faces (that is, faces that are polygons). 

The most common polyhedron is the cube (see Figure 16-6). As you can see,
a cube has 6 flat faces that are polygons — in this case, all of the faces are
square — and 12 straight edges. Additionally, a cube has 8 vertexes (corners).
Later in this chapter, I show you how to measure the surface area and volume
of a cube.

Figure 16-7 shows a few common polyhedrons.

Figure 16-6:
A typical

cube.
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Later in this chapter, I show you how measure each of these polyhedrons
to determine its volume — that is, the amount of space contained inside its
surface.

One special set of polyhedrons is called the five regular solids (see Figure 16-8).
Each regular solid has identical faces that are regular polygons. Notice that
a cube is a type of regular solid. Similarly, the tetrahedron is a pyramid with
four faces that are equilateral triangles.

Triangular prism BoxHexagonal prism

Cube Pyramid

Figure 16-7:
Common

polyhedrons.
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3-D shapes with curves
Many solids aren’t polyhedrons because they contain at least one curved sur-
face. Here are a few of the most common of these types of solids (also see
Figure 16-9):

� Sphere: A sphere is the solid, or three-dimensional, equivalent of a
circle. A ball is a perfect visual aid for a sphere.

� Cylinder: A cylinder has a circular base and extends vertically from the
plane. A good visual aid for a cylinder is a can of soup.

� Cone: A cone is a solid with a round base that extends vertically to a
single point. A good visual aid for a cone is an ice cream cone.

Sphere Cylinder Cone

Figure 16-9:
Spheres,

cylinders,
and cones.

Tetrahedron OctahedronCube

Icosahedron Dodecahedron

Figure 16-8:
The five
regular
solids.
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In the next section, I show you how to measure each of these solids to deter-
mine its volume — that is, the amount of space contained inside its surface. 

Measuring Shapes: Perimeter, Area,
Surface Area, and Volume

In this section, I introduce you to some important formulas for measuring
shapes on the plane and solids in space. These formulas use letters to stand
for numbers that you can plug in to make specific measurements. Using let-
ters in place of numbers is a feature you’ll see more of in Part V, when I dis-
cuss algebra.

2-D: Measuring on the flat
Two important skills in geometry — and real life — are finding the perimeter
and the area of shapes. A shape’s perimeter is a measurement of the length of
its sides. You use perimeter for measuring the distance around the edges of a
room, building, or circular pathway. A shape’s area is a measurement of how
big it is inside. You use area when measuring the size of a wall, a table, or a tire.

For example, in Figure 16-10, I give you the lengths of the sides of each shape.

When every side of a shape is straight, you can measure its perimeter by
adding up the lengths of all of its sides.

Similarly, in Figure 16-11, I give you the area of each shape.

4 in.² 3 in.²
1.73 in.²

Figure 16-11:
The areas of

figures.

2 in.

2 in.

1 in.
2 in. 2 in.

3 in.
2 in.

Figure 16-10:
Measuring

the sides of
figures.
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The area of a shape is always measured in square units: square inches (in.2),
square feet (ft.2), square miles (mi.2), square kilometers (km2), and so on —
even if you’re talking about the area of a circle! (For more on measurements,
flip to Chapter 15.)

I cover these types of calculations in this section. (For more information on
the names of shapes, refer back to “Closed Encounters: Shaping Up Your
Understanding of 2-D Shapes.”)

Going ’round in circles
The center of a circle is a point that’s the same distance from any point on the
circle itself. This distance is called the radius of the circle, or r for short. And
any line segment from one point on the circle through the center to another
point on the circle is called a diameter, or d for short. See Figure 16-12.

As you can see, the diameter of any circle is made up of one radius plus
another radius — that is, two radii (pronounced ray-dee-eye). This concept
gives you the following handy formula:

d = 2 ⋅ r

For example, given a circle with a radius of 5 millimeters, you can figure out
the diameter as follows:

d = 2 ⋅ 5 mm = 10 mm

Because the circle is an extra-special shape, its perimeter (the length of its
“sides”) has an extra-special name: the circumference (C for short). Early
mathematicians went to a lot of trouble figuring out how to measure the cir-
cumference of a circle. Here’s the formula they hit upon:

C = 2 ⋅ π ⋅ r

Center
Radius

Diameter

Figure 16-12:
Deciphering
the parts of

a circle.

241Chapter 16: Picture This: Basic Geometry

23_135372 ch16.qxd  8/28/07  7:55 PM  Page 241



Note: Because 2 ⋅ r is the same as the diameter, you also can write the for-
mula as C = π ⋅ d.

The symbol π is called pi (pronounced pie). It’s just a number whose approxi-
mate value is as follows (the decimal part of pi goes on forever, so you can’t
get an exact value for pi):

π ≈ 3.14

So given a circle with a radius of 5 mm, you can figure out the approximate
circumference:

C ≈ 2 ⋅ 3.14 ⋅ 5 mm = 31.4 mm

The formula for the area (A) of a circle also uses π:

A = π ⋅ r 2

Here’s how to use this formula to find the approximate area of a circle with a
radius of 5 mm:

A ≈ 3.14 ⋅ (5 mm)2 = 3.14 ⋅ 25 mm2 = 78.5 mm2

Measuring triangles
In this section, I discuss how to measure the perimeter and area of all triangles.
Then, I show you a special feature of right triangles that allows you to measure
them more easily.

Finding the perimeter and area of a triangle
Mathematicians have no special formula for finding the perimeter of a 
triangle — they just add up the lengths of the sides.

To find the area of a triangle, you need to know the length of one side — the
base (b for short) — and the height (h). Note that the height forms a right
angle with the base. Figure 16-13 shows a triangle with a base of 5 cm and a
height of 2 cm:

5 cm

2 cmFigure 16-13:
The base

and height
of a triangle.

242 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

23_135372 ch16.qxd  8/28/07  7:55 PM  Page 242



Here’s the formula for the area of a triangle:

A b h2
1

= $^ h

So here’s how to figure out the area of a triangle with a base of 5 cm and a
height of 2 cm:

A 2
1 5 cm 2 cm 2

1 10 cm 5 cm2 2= = =$^ _h i

Lessons from Pythagoras: Finding the third side of a right triangle
The long side of a right triangle (c) is called the hypotenuse, and the two
short sides (a and b) are called the legs (see Figure 16-14). The most impor-
tant right triangle formula is the Pythagorean theorem:

a2 + b2 = c2

This formula allows you to find the hypotenuse of a triangle given only the
lengths of the legs. For example, suppose the legs of a triangle are 3 and 4
units. Here’s how to use the Pythagorean theorem to find the length of the
hypotenuse:

32 + 42 = c2

9 + 16 = c2

25 = c2

So when you multiply c by itself, the result is 25. Therefore,

c = 5

The length of the hypotenuse is 5 units.

Leg (a)

Leg (b)
Hypotenuse (c)Figure 16-14:

The
hypotenuse
and legs of

a right
triangle.
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Measuring squares
The letter s represents the length of a square’s side. For example, if the side
of a square is 3 inches, then you say s = 3 in. Finding the perimeter (P) of a
square is simple: Just multiply the length of the side by 4. Here’s the formula
for the perimeter of a square:

P = 4 ⋅ s

For example, if the length of the side is 3 inches, substitute 3 inches for s in
the formula:

P = 4 ⋅ 3 in. = 12 in.

Finding the area of a square is also easy: Just multiply the length of the side
by itself — that is, take the square of the side. Here are two ways of writing
the formula for the area of a square (s2 is pronounced s squared):

A = s2 or A = s ⋅ s

For example, if the length of the side is 3 inches, then you get the following:

A = (3 in.)2 = 3 in. ⋅ 3 in. = 9 in.2

Working with rectangles
The long side of a rectangle is called the length, or l for short. The short side
is called the width, or w for short. For example, in a rectangle whose sides are
5 and 4 feet long, l = 5 ft. and w = 4 ft.

Because a rectangle has two lengths and two widths, you can use the follow-
ing formula for the perimeter of a rectangle:

P = 2 ⋅ (l + w)

Calculate the perimeter of a rectangle whose length is 5 yards and whose
width is 2 yards as follows:

P = 2 ⋅ (5 yd. + 4 yd.) = 2 ⋅ 9 yd. = 18 yd.

The formula for the area of a rectangle is:

A = l ⋅ w

So here’s how you calculate the area of the same rectangle:

A = 5 yd. ⋅ 4 yd. = 20 yd.2
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Calculating with rhombuses
As with a square, use s to represent the length of a rhombus’s side. But
another key measurement for a rhombus is its height. The height of a rhom-
bus (h for short) is the shortest distance from one side to the opposite side.
In the Figure 16-15, s = 4 cm and h = 2 cm.

The formula for the perimeter of a rhombus is the same as for a square:

P = 4 ⋅ s

Here’s how you figure out the perimeter of a rhombus whose side is 
4 centimeters:

P = 4 ⋅ 4 cm = 16 cm

To measure the area of a rhombus, you need both the length of the side and
the height. Here’s the formula:

A = s ⋅ h

So here’s how you determine the area of a rhombus with a side of 4 cm and a
height of 2 cm:

A = 4 cm ⋅ 2 cm = 8 cm2

You can read 8 cm2 as 8 square centimeters or, less commonly, as 8 centime-
ters squared.

Measuring parallelograms
The top and bottom sides of a parallelogram are called its bases (b for short),
and the remaining two sides are its sides (s). And as with rhombuses, another
important measurement of a parallelogram is its height (h), the shortest 
distance between the bases. So the parallelogram in Figure 16-16 has these
measurements: b = 6 in., s = 3 in., and h = 2 in.

4 cm

2 cm4 cm
Figure 16-15:

Measuring
a rhombus.
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Each parallelogram has two equal bases and two equal sides. Therefore,
here’s the formula for the perimeter of a parallelogram:

P = 2 ⋅ (b + s)

To figure out the perimeter of the parallelogram in this section, just substi-
tute the measurements for the bases and sides:

P = 2 ⋅ (6 in. + 3 in.) = 2 ⋅ 9 in. = 18 in.

And here’s the formula for the area of a parallelogram:

A = b ⋅ h

Here’s how you calculate the area of the same parallelogram:

A = 6 in. ⋅ 2 in. = 12 in.2

Measuring trapezoids
The parallel sides of a trapezoid are called its bases. Because these bases are
different lengths, you can call them b1 and b2. The height (h) of a trapezoid is
the shortest distance between the bases. Thus, the trapezoid in Figure 16-17
has these measurements: b1 = 2 in., b2 = 3 in., and h = 2 in.

Because a trapezoid can have sides of four different lengths, you really don’t
have a special formula for finding the perimeter of a trapezoid. Just add up
the lengths of its sides and you get your answer.

2 in.

3 in.

2 in.

Figure 16-17:
Measuring

a trapezoid.

6 in.

2 in.
3 in.

Figure 16-16:
Measuring
a parallel-

ogram.
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Here’s the formula for the area of a trapezoid:

A b b h2
1

1 2= +$ $_ i

So, here’s how to find the area of the pictured trapezoid:

A 2
1 2 in. 3 in. 2 in.

2
1 5 in. 2 in.

2
1 10 in. 5 in.2 2

= +

=

= =

$ $

$ $

$

^ h

Note: Because of the associative property (see Chapter 4), I’m allowed to
multiply 5 in. ⋅ 2 in. before multiplying by 1⁄2.

Spacing out: Measuring in three dimensions
In three dimensions, the concepts of perimeter and area have to be tweaked
a little. 

Recall that in 2-D, the perimeter of a shape is the measurement of its bound-
ary, and the area of a shape is the measurement of what’s inside the shape. In
3-D, the boundary of a solid is called its surface area and what’s inside a solid
is called its volume. 

The surface area of a solid is a measurement of the size of its surface, as mea-
sured in square units such as square inches (in.2), square feet (ft.2), square
meters (m2), and so forth. The volume (V) of a solid is a measurement of the
space it occupies, as measured in cubic units such as cubic inches (in.3),
cubic feet (ft.3), cubic meters (m3), and so forth. (For info on measurement,
flip to Chapter 15.)

You can find the surface area of a polyhedron (solid whose faces are all 
polygons — see the earlier “The many faces of polyhedrons” section) by
adding together the areas of all its faces. The preceding sections give you
some area formulas. In most other cases, you don’t need to know the formu-
las for finding the surface area of a solid. (For the names of solids, see the 
earlier section titled “Taking a Trip to Another Dimension: Solid Geometry.”)

Finding the volume of solids, however, is something mathematicians love for
you to know. In the next sections, I give you the formulas for finding the vol-
umes of a variety of solids.
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Spheres
The center of a sphere is a point that’s the same distance from any point on
the sphere itself. This distance is called the radius (r) of the sphere. If you
know the radius of a sphere, you can find out its volume using the following
formula:

V rπ3
4 3= $ $

Because this formula includes π, using 3.14 as an approximate value for π
gives you an approximation of the volume. For example, here’s how to figure
out the approximate volume of a ball whose radius is 4 inches:

V 3
4 3.14 4 in.

3
4 3.14 64 in.

4.19 64 in.

268.16 in.

3

3

3

3

.

.

=

=

$ $

$ $

$

^ h

Cubes
The main measurement of a cube is the length of its side (s). Using this mea-
surement, you can find out the volume of a cube using the following formula:

V = s3

So if the side of a cube is 5 meters, here’s how you figure out its volume:

V = (5 m)3 = 5 m ⋅ 5 m ⋅ 5 m = 125 m3

You can read 125 m3 as 125 cubic meters or, less commonly, as 125 meters cubed.

Boxes (Rectangular solids)
The three measurements of a box (or rectangular solid) are its length (l),
width (w), and height (h). The box pictured in Figure 16-18 has the following
measurements: l = 4 m, w = 3 m, and h = 2 m.

2 m

4 m

3 m
Figure 16-18:

Measuring
a box.
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You can find the volume of a box using the following formula:

V = l ⋅ w ⋅ h

So here’s how to find the volume of the box pictured in this section:

V = 4 m ⋅ 3 m ⋅ 2 m = 24 m3

Prisms
Finding the volume of a prism (see prisms in Figure 16-7) is easy if you have
two measurements. One measurement is the height (h) of the prism. The
second is the area of the base (Ab). The base is the polygon that extends verti-
cally from the plane. (In “2-D: Measuring on the flat” earlier, I show you how
to find the area of a variety of shapes.)

Here’s the formula for finding the volume of a prism:

V = Ab ⋅ h

For example, suppose a prism has a base with an area of 5 square centi-
meters and a height of 3 centimeters. Here’s how you find its volume:

V = 5 cm2 ⋅ 3 cm = 15 cm3

Notice that the units of measurements (cm2 and cm) are also multiplied,
giving you a result of cm3.

Cylinders
You find the volume of cylinders the same way you find the area of prisms —
by multiplying the area of the base (Ab) by the cylinder’s height (h):

V = Ab ⋅ h

Suppose you want to find the volume of a cylindrical can whose height is 4
inches and whose base is a circle with a radius of 2 inches. First, find the area
of the base by using the formula for the area of a circle:

Ab = π ⋅ r 2

≈ 3.14 ⋅ (2 in.)2

= 3.14 ⋅ 4 in.2

= 12.56 in.2
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This area is approximate because I use 3.14 as an approximate value for π.
(Note: In the preceding problem, I use equal signs when a value is equal to
whatever comes right before it and approximately-equal-to signs (≈) when I
round.)

Now use this area to find the volume of the cylinder:

V ≈ 12.56 in.2 ⋅ 4 in. = 50.24 in.3

Notice how multiplying square inches (in.2) by inches gives a result in cubic
inches (in.3).

Pyramids and cones
The two key measurements for pyramids and cones are the same as those for
prisms and cylinders (see the previous sections): the height (h) and the area
of the base (Ab). Here’s the formula for the volume of a pyramid or a cone:

V A h3
1

b= $_ i

For example, suppose you want to find the volume of an ice cream cone
whose height is 4 inches and whose base area is 3 square inches. Here’s how
you do it:

V 3
1 3 in. 4 in.

3
1 12 in.

4 in.

2

3

3

=

=

=

$_

_

i

i

Similarly, suppose you want to find the volume of a pyramid in Egypt whose
height is 60 meters with a square base whose sides are each 50 meters. First,
find the area of the base using the formula for the area of a square from “2-D:
Measuring on the flat,” earlier in this chapter:

Ab = s2 = (50 m)2 = 2,500 m2

Now use this area to find the volume of the pyramid:

V 3
1 2,500 m 60 m

3
1 150,000 m

50,000 m

2

3

3

=

=

=

$_

_

i

i
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Chapter 17

Seeing Is Believing: 
Graphing as a Visual Tool

In This Chapter
� Reading bar graphs, pie charts, and line graphs

� Understanding the Cartesian coordinate system

� Plotting points and lines on a graph

� Solving problems using a graph

A graph is a visual tool for organizing and presenting information about
numbers. Most students find graphs relatively easy because they pro-

vide a picture to work with rather than just a bunch of numbers. Their sim-
plicity makes graphs show up in newspapers, magazines, business reports,
and anywhere clear visual communication is important.

In this chapter, I introduce you to three common styles of graphs: the bar
graph, the pie chart, and the line graph. I show you how to read each of these
styles of graphs to obtain information. I also show you how to answer the
types of questions people may ask to check your understanding.

I spend the rest of the chapter focusing on the most important type of math-
matical graph: the Cartesian coordinate system. This system is so common
that when math folks talk about a graph, they’re usually talking about this
type. I show you the various parts of the graph, and then I show you how to
plot points and lines. At the end of the chapter, you see how you can solve
math problems using a graph.
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Looking at Three Important Graph Styles
In this section, I show you how to read and understand three styles of graphs:
the bar graph, the pie chart, and the line graph. They aren’t the only types of
graphs, but they’re very common, and understanding them can give you a leg
up on reading other types of graphs when you see them.

Each of these graph styles has a specific function:

� The bar graph is best for representing numbers that are independent of
each other.

� The pie chart allows you to show how a whole is cut up into parts.

� The line graph gives you a sense of how numbers change over time.

Bar graph
A bar graph gives you an easy way to compare numbers or values. For example,
Figure 17-1 shows a bar graph comparing the performance of five trainers at a
fitness center.

As you can see from the caption, the graph shows how many new clients each
trainer has enrolled this quarter. The advantage of such a graph is that you can
see at a glance, for example, that Edna has the most new clients and Iris has
the fewest. The bar graph is a good way to represent numbers that are inde-
pendent of each other. For example, if Iris gets another new client, it doesn’t
necessarily affect any other trainer’s performance.

Dwayne
0

5

10

15

20

25

Edna Iris Jay Rita

Figure 17-1:
The number

of new
clients

recorded
this quarter.
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Reading a bar graph is easy after you get used to it. Here are a few types of
questions someone could ask about the bar graph in Figure 17-1:

� Individual values: How many new clients does Jay have? Find the bar
representing Jay’s clients and notice that he has 23 new clients.

� Differences in value: How many more clients does Rita have compared
with Dwayne’s? Notice that Rita has 20 new clients and Dwayne has 18,
so she has 2 more than he does.

� Totals: Together, how many clients do the three women have? Notice that
the three women — Edna, Iris, and Rita — have 25, 16, and 20 new
clients, respectively, so they have 61 new clients altogether.

Pie chart
A pie chart, which looks like a divided circle, shows you how a whole object
is cut up into parts. Pie charts are most often used to represent percentages.
For example, Figure 17-2 is a pie chart representing Eileen’s monthly expenses.

You can tell at a glance that Eileen’s largest expense is rent and that her
second largest is her car. Unlike the bar graph, the pie chart shows numbers
that are dependent upon each other. For example, if Eileen’s rent increases to
30% of her monthly income, she’ll have to decrease her spending in at least
one other area.

Here are a few typical questions you may be asked about a pie chart:

� Individual percentages: What percentage of her monthly expenses does
Eileen spend on food? Find the slice that represents what Eileen spends
on food, and notice that she spends 10% of her income there.

Rent 25%
Car 20%

Bills 15%

Savings 15%Food 10%

Clothes 5%

Entertainment 5%

Miscellaneous 5%
Figure 17-2:

Eileen’s
monthly

expenses.
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� Differences in percentages: What percentage more does she spend on
her car than on entertainment? Eileen spends 20% on her car but only 5%
on entertainment, so the difference between these percentages is 15%.

� How much a percent represents in terms of dollars: If Eileen brings
home $2,000 per month, how much does she put away in savings each
month? First notice that Eileen puts 15% every month into savings. So
you need to figure out 15% of $2,000. Using your skills from Chapter 12,
solve this problem by turning 15% into a decimal and multiplying:

0.15 ⋅ 2,000 = 300

So Eileen saves $300 every month.

Line graph
The most common use of a line graph is to plot how numbers change over
time. For example, Figure 17-3 is a line graph showing last year’s sales figures
for Tami’s Interiors.

The line graph shows a progression in time. At a glance, you can tell that
Tami’s business tended to rise strongly at the beginning of the year, drop off
during the summer, rise again in the fall, and then drop off again in December.

Jan
$0

$5,000

$10,000

$15,000

$20,000

$25,000

$30,000

$35,000

$40,000

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Figure 17-3:
Gross

receipts
for Tami’s
Interiors.
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Here are a few typical questions that you may be asked to show that you
know how to read a line graph:

� High or low points and timing: In what month did Tami bring in the most
revenue, and how much did she bring in? Notice that the highest point on
the graph is in November, when Tami’s revenue reached $40,000.

� Total over a period of time: How much did she bring in altogether the
last quarter of the year? A quarter of a year is three months, so the last
quarter is the last three months of the year. Tami brought in $35,000 in
October, $40,000 in November, and $30,000 in December, so her total
receipts for the last quarter add up to $105,000.

� Greatest change: In what month did the business show the greatest gain in
revenue as compared with the previous month? You want to find the line
segment on the graph that has the steepest upward slope. This change
occurs between April and May, where Tami’s revenue increased by
$15,000, so her business showed the greatest gain in May.

Cartesian Coordinates
When math folks talk about using a graph, they’re usually referring to a
Cartesian graph (also called the Cartesian coordinate system), as shown in Fig-
ure 17-4. In Chapter 25, I tell you why I believe that this graph is one of the ten
most important mathematical inventions of all time. You see a lot of this graph
when you study algebra, so getting familiar with it now is a good idea.

A Cartesian graph is really just two number lines that cross at 0. These number
lines are called the horizontal axis (also called the x-axis) and the vertical axis
(also called the y-axis). The place where these two axes (plural of axis) cross is
called the origin.

Origin
x-axis

y-axis

10 2 3 4 5

1

2

3

4

5

6 7 8

Figure 17-4:
A Cartesian

graph
includes

horizontal
and vertical
axes, which
cross at the
origin (0, 0).
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Plotting points on a Cartesian graph
Plotting a point (finding and marking its location) on a graph isn’t much harder
than finding a point on a number line, because a graph is just two number lines
put together. (Flip to Chapter 1 for more on using the number line.)

Every point on a Cartesian graph is represented by two numbers in parenthe-
ses, separated by a comma, called a set of coordinates. To plot any point,
start at the origin, where the two axes cross. The first number tells you how
far to go to the right (if positive) or left (if negative) along the horizontal axis.
The second number tells you how far to go up (if positive) or down (if nega-
tive) along the vertical axis.

For example, here are the coordinates of four points called A, B, C, and D:

A = (2, 3) B = (–4, 1) C = (0, –5) D = (6, 0)

Figure 17-5 depicts a graph with these four points plotted. Start at the origin,
(0, 0). To plot point A, count 2 spaces to the right and 3 spaces up. To plot
point B, count 4 spaces to the left (the negative direction) and then 1 space
up. To plot point C, count 0 spaces left or right and then count 5 spaces down
(the negative direction). And to plot point D, count 6 spaces to the right and
then 0 spaces up or down.

1 2 3 4 5 6−1−2−3−4−5−6

1

2
A

(6, 0)

(2, 3)

(−4, 1)

(0, −5)

3

4

5

6

−1

−2

−3

−4

−5

−6

B

C

D

Figure 17-5:
Points A, B,

C, and D
plotted on a

Cartesian
graph.
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Drawing lines on a Cartesian graph
After you understand how to plot points on a graph (see the preceding 
section), you can begin to plot lines and use them to show mathematical 
relationships.

The examples in this section focus on the number of dollars that two people,
Xenia and Yanni, are carrying. The horizontal axis represents Xenia’s money,
and the vertical axis represents Yanni’s. For example, suppose you want to
draw a line representing this statement:

Xenia has $1 more than Yanni.

To do this, make a chart as follows:

Xenia 1 2 3 4 5

Yanni

Now fill in each column of the chart assuming that Xenia has that number of
dollars. For example, if Xenia has $1, then Yanni has $0. And if Xenia has $2,
then Yanni has $1. Continue until your chart looks like this:

Xenia 1 2 3 4 5

Yanni 0 1 2 3 4

Now you have five pairs of points that you can plot on your graph as (Xenia,
Yanni): (1, 0), (2, 1), (3, 2), (4, 3), and (5, 4). Next, draw a straight line through
these points, as shown in Figure 17-6.

This line on the graph represents every possible pair of amounts for Xenia
and Yanni. For example, notice how the point (6, 5) is on the line. This point
represents the possibility that Xenia has $6 and Yanni has $5.
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Here’s a slightly more complicated example:

Yanni has $3 more than twice the amount that Xenia has.

Again, start by making the usual chart:

Xenia 1 2 3 4 5

Yanni

You can fill in this chart by supposing that Xenia has a certain amount of
money and then figuring out how much money Yanni would have in that case.
For example, if Xenia has $1, then twice that amount is $2, so Yanni has $3
more than that, or $5. And if Xenia has $2, then twice that amount is $4, so
Yanni has $3 more, or $7. Continue in that way to fill in the chart as follows:

Xenia 1 2 3 4 5

Yanni 5 7 9 11 13

Now plot these five points on the graph and draw a line through them, as in
Figure 17-7.

As in the other examples, this graph represents all possible values that Xenia
and Yanni could have. For example, if Xenia has $7, Yanni has $17.

1 2 3 4 5 6−1−2−3−4−5−6

1
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4

5

6

Yanni

Xenia

−1

−2

−3

−4

−5

−6

7Figure 17-6:
All possible

values of
Xenia’s and

Yanni’s
money if

Xenia has $1
more than

Yanni.
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Solving problems with a Cartesian graph
After you understand how to plot points and draw lines, you can use a graph to
solve certain types of math problems. When you draw two lines that represent
different parts of a word problem, then the point at which the lines intersect
(where they cross) is your answer.

Here’s an example:

Jacob is exactly 5 years younger than Marnie, and together their ages add
up to 15. How old are they?

To solve this problem, first make a chart to show that Jacob is 5 years
younger than Marnie:

Jacob 1 2 3 4 5

Marnie 6 7 8 9 10

1 2 3 4 5 6−1−2−3−4−5−6

1

2
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4

5

6

−1

−2

−3
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−5

−6

7

8

9

Yanni

Xenia

Figure 17-7:
All possible

values of
Xenia’s and

Yanni’s
money if

Yanni has $3
more than
twice the

amount
Xenia has.
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Then make another chart to show that together, the two children’s ages add
up to 15:

Jacob 1 2 3 4 5

Marnie 14 13 12 11 10

Finally, plot both lines on a graph (see Figure 17-8) where the horizontal axis
represents Jacob’s age and the vertical axis represents Marnie’s age. Notice
that the two lines cross at the point where Jacob is 5 and Marnie is 10 years
old, so these are the two children’s ages.

1 2 3 4 5 6
Jacob

Marnie

1

−1−2

2

3

4

5

6

7

8

9

10 (5, 10)

11

12

13

14

15

Figure 17-8:
Both lines

plotted on a
graph.
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Chapter 18

Solving Geometry
and Measurement Word Problems
In This Chapter
� Solving measurement problems using conversion chains

� Using a picture to solve geometry problems

In this chapter, I focus on two important types of word problems: measure-
ment problems and geometry problems. In a word problem involving mea-

surement, you’re often asked to perform a conversion from one type of unit
to another. Sometimes you don’t have a conversion equation to solve this
type of problem directly, so you need to set up a conversion chain, which I
discuss in detail in the chapter.

Another common type of word problem requires the geometric formulas that
I provide in Chapter 16. Sometimes, a geometry word problem gives you a
picture to work with. In other cases, you have to draw the picture yourself by
reading the problem carefully. Here I give you practice doing both types of
problems.

The Chain Gang: Solving Measurement
Problems with Conversion Chains

In Chapter 15, I give you a set of basic conversion equations for converting
units of measurement. I also show you how to turn these equations into 
conversion factors — fractions that you can use to convert units. This infor-
mation is useful as far as it goes, but you may not always have an equation
for the exact conversion that you want to perform. For example, how do you
convert years to seconds?
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For more-complex conversion problems, a good tool is the conversion chain.
A conversion chain links together a sequence of unit conversions.

Setting up a short chain
Here’s a problem that shows you how to set up a short conversion chain to
make a conversion you won’t find a specific equation for:

Vendors at the Fragola County Strawberry Festival sold 7 tons of straw-
berries in a single weekend. How many 1-ounce servings of strawberries
is that?

You don’t have an equation to convert tons directly to ounces. But you do have
one to convert tons to pounds and another to convert pounds to ounces. You
can use these equations to build a bridge from one unit to another:

tons → pounds → ounces

So here are the two equations that you’ll want to use:

1 ton = 2,000 lbs.

1 lb. = 16 oz.

To convert tons to pounds, note that these fractions equal 1, because the
numerator (top number) equals the denominator (bottom number):

2,000 lbs.
1 ton or 1 ton

2,000 lbs.

To convert pounds to ounces, note that these fractions equal 1:

16 oz.
1 lb. or 1 lb.

16 oz.

You could do this conversion in two steps. But when you know the basic
idea, you set up a conversion chain instead. To help make this idea clear, take
a look at how to get from tons to ounces:

tons → pounds → ounces

So here’s how to set up a conversion chain to turn 7 tons into pounds and
then into ounces. Because you already have tons on top, you want the tons-
and-pounds fraction that puts ton on the bottom. And because that fraction
puts pounds on the top, use the pounds-and-ounces fraction that puts pound
on the bottom:

1
7 tons

1 ton
2,000 lbs.

1 lb.
16 oz.$ $
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The net effect here is to take the expression 7 tons and multiply it twice by 1,
which doesn’t change the value of the expression. But now, you can cancel
out all units of measurement that appear in the numerator of one fraction and
the denominator of another:

1
7 tons

1 ton
2,000 lbs.

1 lb.
16 oz.

= $ $

If any units don’t cancel out properly, you probably made a mistake when you
set up the chain. Flip the numerator and denominator of one or more of the
fractions until the units cancel out the way you want them to.

Now you can simplify the expression:

= 7 ⋅ 2,000 ⋅ 16 oz.

A conversion chain doesn’t change the value of the expression, just the units
of measurement.

Working with more links
After you understand the basic idea of a conversion chain, you can make a
chain as long as you like to solve longer problems easily. Here’s another
example of a problem that uses a time-related conversion chain:

Jane is exactly 12 years old today. You forgot to get her a present, but
you decide that offering her your mathematical skills is the greatest gift
of all — you’ll recalculate how old she is. Assuming that a year has
exactly 365 days, how many seconds old is she?

Here are the conversion equations you have to work with:

1 year = 365 days

1 day = 24 hours

1 hour = 60 minutes

1 minute = 60 seconds

To solve this problem, you need to build a bridge from years to seconds as 
follows:

years → days → hours → minutes → seconds

263Chapter 18: Solving Geometry and Measurement Word Problems

25_135372 ch18.qxd  8/28/07  8:05 PM  Page 263



So set up a long conversion chain as follows:

1
12 years

1 year
365 days

1 day
24 hrs.

1 hr.
60 min.

1 min.
60 sec.$ $ $ $

Cancel out all units that appear in both a numerator and a denominator:

1
12 years

1 year
365 days

1 day
24 hrs.

1 hr.
60 min.

1 min.
60 sec.

= $ $ $ $

As you cancel out units, notice that there is a diagonal pattern: the numerator
(top number) of one fraction cancels with the denominator (bottom number)
of the next, and so on. 

When the smoke clears, here’s what’s left:

= 12 ⋅ 365 ⋅ 24 ⋅ 60 ⋅ 60 sec.

This problem requires a bit of multiplication, but the work is no longer 
confusing:

= 378,432,000 sec.

The conversion chain from 12 years to 378,432,000 seconds doesn’t change
the value of the expression, just the unit of measurement.

Pulling equations out of the text
In some word problems, the problem itself gives you a couple of the conver-
sion equations necessary for solving. Take this problem for example:

A furlong is 1⁄8 of a mile, and a fathom is 2 yards. If I rode my horse 24 fur-
longs today, how many fathoms did I ride?

This problem gives you two new conversion equations to work with:

1 furlong = 1⁄8 mile

1 fathom = 2 yards

It’s helpful to remove fractions from the equations before you begin, so here’s
a more useful version of the first equation:

8 furlongs = 1 mile
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You also want to remember two other conversions:

1 mile = 5,280 feet

3 feet = 1 yard

Next, build a bridge from furlongs to miles using the conversions that are
available from these equations:

furlongs → miles → feet → yards → fathoms

Now you can form your conversion chain. Every unit you want to cancel has
to appear once in the numerator and once in the denominator:

1
24 furlongs

8 furlongs
1 mile

1 mile
5,280 feet

3 feet
1 yard

2 yards
1 fathom$ $ $ $

Next, you can cancel out all the units except for fathoms: 

1
24 furlongs

8 furlongs
1 mile

1 mile
5,280 feet

3 feet
1 yard

2 yards
1 fathom

= $ $ $ $

Another way you can make this problem a little easier is to notice that the
number 24 is in the numerator and 3 and 8 are in the denominator. Of course,
3 ⋅ 8 = 24, so you can cancel out all three of these numbers:

1
24 furlongs

8 furlongs
1 mile

1 mile
5,280 feet

3 feet
1 yard

2 yards
1 fathom

= $ $ $ $

At this point, the expression has only two numbers left aside from the 1s, and
the fraction’s easy to simplify:

, ,2
5 280 fathoms 2 640 fathoms= =

As always, the conversion chain from 24 furlongs to 2,640 fathoms doesn’t
change the value of the expression, just the units of measurement.

Rounding off: Going for the short answer
Sometimes real-life measurements just aren’t that accurate. After all, if you
measure the length of a football field with your trusty ruler, you’re bound to
be off an inch or two (or more). When you perform calculations with such
measurements, finding the answer to a bunch of decimal places doesn’t make
sense because the answer’s already approximate. Instead, you want to round
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off your answer to the numbers that are probably correct. Here’s a problem
that asks you to do just that:

Heather weighed her new pet hamster, Binky, and found that he weighs
4 ounces. How many grams does Binky weigh, to the nearest whole gram?

This problem requires you to convert from English to metric units, so you
need this conversion equation:

1 kilogram ≈ 2.20 pounds

Notice that this conversion equation includes only kilograms and pounds,
but the problem includes ounces and grams. So to convert from ounces to
pounds and from kilograms to grams, here are some equations to help build
a bridge between ounces and grams:

1 pound = 16 ounces

1 kilogram = 1,000 grams

Your chain will perform the following conversions:

ounces → pounds → kilograms → grams

So set up your expression as follows:

.1
4 oz.

16 oz.
1 lb.

2.2 lb
1 kg

1 kg
1,000 g

$ $ $

As always, after you set up the expression, you can cancel out every unit
except for the one you’re converting to:

.1
4 oz.

16 oz.
1 lb.

2.2 lb
1 kg

1 kg
1,000 g

= $ $ $

When you’re multiplying a string of fractions, you can make one fraction out of
all the numbers. The numbers that were originally in the numerators of frac-
tions remain in the numerator. Similarly, the numbers that were in the denomi-
nators remain in the denominator. Then just put a multiplication sign between
each pair of numbers.

16 2.2
4 1,000 g= $
$

266 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

25_135372 ch18.qxd  8/28/07  8:14 PM  Page 266



At this point, you can begin calculating. But to save some effort, I recommend
canceling out common factors. In this case, you cancel out a 4 in the numera-
tor and denominator, changing the 16 in the denominator to a 4:

.
,

16 2 2
4 1 000

g
4

= $
$

Now, you can cancel out another 4 in the numerator and denominator, chang-
ing the 1,000 in the numerator to 250:

.
,

4 16 2 2
4 1 000

g
250

= $
$

At this point, here’s what’s left:

.2 2
250 g=

Divide 250 by 2.2 to get your answer:

≈ 113.6 g

Notice that I took the division out to one decimal place. Because the number
after the decimal point is 6, I need to round my answer up to the next highest
gram. (See Chapter 11 for more about rounding decimals.)

So to the nearest gram, Binky weighs 114 grams. As usual, the conversion chain
doesn’t change the value of the expression, just the unit of measurement.

Solving Geometry Word Problems
Some geometry word problems present you with a picture. In other cases,
you have to draw a picture yourself. Sketching figures is always a good idea
because it can usually give you an idea of how to proceed. The following sec-
tions present you with both types of problems. (To solve these word prob-
lems, you need some of the geometry formulas I discuss in Chapter 16.)

Working from words and images
Sometimes, you have to interpret a picture to solve a word problem. Read the
problem carefully, recognize shapes in the drawing, pay attention to labels,
and use whatever formulas you have to help you answer the question. In this
problem, you get to work with a picture.
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Mr. Dennis is a farmer with two teenage sons. He gave them a rectangular
piece of land with a creek running through it diagonally, as shown in
Figure 18-1. The elder boy took the larger area and the younger boy took
the smaller. What is the area of each boy’s land in square feet?

To find the area of the smaller, triangular plot, use the formula for the area of
a triangle, where A is the area, b is the base, and h is the height:

A b h2
1

= $^ h

The whole piece of land is a rectangle, so you know that the corner the trian-
gle shares with the rectangle is a right angle. Therefore, you know that the
sides labeled 200 feet and 250 feet are the base and height. Find the area of
this plot by plugging the base and height into the formula:

A 2
200 feet 250 feet

= $

To make this calculation a little easier, notice that you can cancel a factor of 2
from the numerator and denominator:

,A 2 25 000
200 feet 250 feet

square feet
100

= =
$

200 ft. 150 ft.

350 ft.

250 ft. 250 ft.

Figure 18-1:
Two sons
get non-

rectangular
portions of a
rectangular

field. 
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The shape of the remaining area is a trapezoid. You can find its area by using
the formula for a trapezoid, but there’s an easier way. Because you know the
area of the triangular plot, you can use this word equation to find the area of
the trapezoid:

Area of trapezoid = area of whole plot – area of triangle

To find the area of the whole plot, remember the formula for the area of a rec-
tangle. Plug its length and width into the formula:

A = length ⋅ width

A = 350 ft. ⋅ 250 ft.

A = 87,500 square ft.2

Now just substitute the numbers that you know into the word equation you
set up:

Area of trapezoid = 87,500 square feet – 25,000 square feet

= 62,500 square feet

So the area of the elder boy’s land is 62,500 square feet, and the area of the
younger boy’s land is 25,000 square feet.

Breaking out those sketching skills
Geometry word problems may not make much sense until you draw some pic-
tures. Here’s an example of a geometry problem without a picture provided:

In Elmwood Park, the flagpole is due south of the swing set and exactly
20 meters due west of the treehouse. If the area of the triangle made by
the flagpole, the swing set, and the treehouse is 150 square meters, what
is the distance from the swing set to the treehouse?

This problem is bound to be confusing until you draw a picture of what it’s
telling you. Start with the first sentence, depicted in Figure 18-2. You don’t need
to draw the ladder up to the treehouse, some kids fighting over the swings,
and a flag with the correct number of stars and stripes waving at the top of the
pole — labels do just fine. As you can see, I’ve drawn a right triangle whose
corners are the swing set (S), the flagpole (F), and the treehouse (T). I’ve also
labeled the distance from the flagpole to the treehouse as 20 meters.
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The next sentence tells you the area of this triangle:

A = 150 m2

Now you’re out of information, so you need to remember anything you can
from geometry. Because you know the area of the triangle, you may find the
formula for the area of a triangle helpful:

A = b h2
1 $^ h

Here, b is the base and h is the height. In this case, you have a right triangle,
so the base is the distance from F to T and the height is the distance from S
to F. So you already know the area of the triangle, and you also know the
length of the base. Fill in the equation:

150 = h2
1 20 $^ h

You can now solve this equation for h. Start by simplifying:

150 = 10 ⋅ h

You can turn this into a division problem using inverse operations, as I
show you in Chapter 4:

150 ÷ 10 = h

15 = h

Now you know that the height of the triangle is 15 m, so you can add this
information to your picture, as shown in Figure 18-3.

20 m

F T

North
S

Figure 18-2:
A labeled

sketch
shows the
important

information
in a word
problem. 
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To solve the problem, though, you still need to find out the distance from 
S to T. Because this is a right triangle, you can use the Pythagorean theorem
to figure out the distance:

a2 + b2 = c2

Remember that a and b are the lengths of the short sides, and c is the length
of the longest side, called the hypotenuse. (See Chapter 16 for more on the
Pythagorean theorem.) You can substitute numbers into this formula as 
follows:

152 + 202 = c2

Begin solving for c by evaluating the left side of the equation according to the
order of operations (see Chapter 5 for details). Start with the two exponents
and then move on to addition:

225 + 400 = c2

625 = c2

At this point, remember that c2 means c ⋅ c:

625 = c ⋅ c

So c is a number that, when multiplied by itself, results in the number 625. It’s
greater than 20 (because one of the shorter sides of the triangle is 20), but less
than 30 (because 30 ⋅ 30 = 900). A bit of trial and error gives you the following:

625 = 25 ⋅ 25

So the distance from the swing set to the treehouse is 25 meters.

20 m

15 m

F T

S

Figure 18-3:
Update the

labels in
your sketch
as you work
through the

problem. 
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Together at Last: Putting Geometry and
Measurements in One Problem

Word problems often ask you to use a variety of skills. This is especially pop-
ular (among teachers, not students!) on a final exam, when you’re being
tested on everything that a class covered for a whole semester. So here’s an
example that pulls together everything from this chapter:

A circular fountain that’s 32 feet across is surrounded by a circular path
that’s 120 feet in length around at its outside edge. What is the width of
the path in inches to the nearest inch? (Use 3.1 as an approximation of π.)

First, draw a picture of what the problem is asking, like the one shown in
Figure 18-4.

Fountain

Path

Diameter = 32 feet

Circumference = 120 feet

Figure 18-4:
Measuring

a path
around a
fountain. 
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As you can see, I drew a circle for the fountain and labeled its diameter as
32 feet. The outside edge of the path around the fountain is also a circle, and
its circumference is 120 feet. The problem is asking for the width of the path.
The picture shows you that the path’s width is the distance from the inner
circle to the outer circle.

The radius of a circle is the distance from its center to the circle itself (see
Chapter 16). So if you know the radius of each circle, you can find the width
of the path by subtracting:

Width of path = radius of outer circle – radius of inner circle 

This word equation is the key to the problem. Look at the diagram and make
sure you understand it before continuing.

You already know that the diameter of the inner circle is 32 feet, so you can
find its radius using this formula from Chapter 16, where d is the diameter
and r is the radius:

d = 2 ⋅ r

Plugging in the diameter of the inner circle, you get the following:

32 ft. = 2 ⋅ radius of inner circle

You can probably solve this problem in your head:

Radius of inner circle = 16 ft.

You also know the circumference of the outer circle, so you can find its radius
using this formula from Chapter 16, where C is the circumference and r is the
radius:

C = 2 ⋅ π ⋅ r

Plugging in the circumference and 3.1 for π gives you

120 ft. = 2 ⋅ 3.1 ⋅ radius of outer circle

This equation can be simplified a little as follows:

120 ft. = 6.2 ⋅ radius of outer circle
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Now, you can use inverses to rearrange this multiplication problem into a
division problem (see Chapter 4 for more on how to do this):

120 ft. ÷ 6.2 = radius of outer circle

Rounding off this division to the nearest tenth gives you this answer:

Radius of outer circle ≈ 19.4 ft.

Now that you have the radius of both circles, you can substitute into the
word equation that you started with:

Width of path ≈ 19.4 ft. – 16 ft. = 3.4 ft.

The problem asks for the answer to the nearest inch. Here’s a conversion
equation:

1 ft. = 12 in.

You can set up an expression as follows: 

1
3.4 ft.

1 ft.
12 in.$

Now, you can cancel out feet, because this unit appears in both the numera-
tor and denominator:

1
3.4 ft.

1 ft.
12 in.

= $

This expression now simplifies to the following:

= 3.4 ⋅ 12 in. = 40.8 in.

So the width of the path is about 41 inches. This problem is a good one to try
on your own. Copy it down and see whether you can work through it from
beginning to end.
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Chapter 19

Figuring Your Chances:
Statistics and Probability

In This Chapter
� Knowing how statistics works with both qualitative and quantitative data

� Finding out how to calculate a percentage and the mode of a sample 

� Calculating the mean and median

� Finding the probability of an event

Statistics and probability are two of the most important and widely used
applications of math. They’re applicable to virtually every aspect of the

real world — business, biology, city planning, politics, meteorology, and
many more areas of study. Even physics, once thought to be devoid of uncer-
tainty, now relies on probability.

In this chapter, I give you a basic understanding of these two mathematical
ideas. First, I introduce you to statistics and the important distinction between
qualitative and quantitative data. I show you how to work with both types of
data to find meaningful answers. Then I give you the basics of probability. I
show you how the probability that an event will occur is always a fraction from
0 to 1. After that, I demonstrate how to build this fraction by counting both
favorable outcomes and possible outcomes. Finally, I put these ideas to work by
showing you how to calculate the probability of tossing coins and rolling dice.

Gathering Data Mathematically:
Basic Statistics

Statistics is the science of gathering and drawing conclusions from data,
which is information that’s measured objectively in an unbiased, repro-
ducible way.
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An individual statistic is a conclusion drawn from this data. Here are some
examples:

� The average working person drinks 3.7 cups of coffee every day.

� Only 52% of students who enter law school actually graduate.

� The cat is the most popular pet in the United States.

� In the last year, the cost of a high-definition TV dropped by an average
of $575.

Statisticians do their work by identifying a population that they’d like to
study: working people, law students, pet owners, buyers of electronics, who-
ever. Because most populations are far too large to work with, a statistician
collects data from a smaller, randomly selected sample of this population.
Much of statistics concerns itself with gathering data that’s reliable and 
accurate. You can read all about this idea in Statistics For Dummies (Wiley).

In this section, I give you a short introduction to the more mathematical
aspects of statistics.

Understanding differences between 
qualitative and quantitative data
Data — the information used in statistics — can be either qualitative or 
quantitative. Qualitative data divides a data set (the pool of data that you’ve
gathered) into discrete chunks based on a specific attribute. For example, in
a class of students, qualitative data can include

� Each child’s gender

� His or her favorite color

� Whether he or she owns at least one pet

� How he or she gets to and from school

You can identify qualitative data by noticing that it links an attribute — that is,
a quality — to each member of the data set. For example, four attributes of
Emma are that she’s female, her favorite color is green, she owns a dog, and
she walks to school.

On the other hand, quantitative data provides numerical information — that
is, information about quantities, or amounts. For example, quantitative data
on this same classroom of students can include the following:
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� Each child’s height in inches

� His or her weight in pounds

� The number of siblings he or she has

� The number of words he or she spelled correctly on the most recent
spelling test

You can identify quantitative data by noticing that it links a number to
each member of the data set. For example, Carlos is 55 inches tall, weighs
68 pounds, has three siblings, and spelled 18 words correctly.

Working with qualitative data
Qualitative data usually divides a sample into discrete chunks. As my
sample — which is purely fictional — I use 25 children in Sister Elena’s fifth
grade class. For example, suppose all 25 children in Sister Elena’s class
answer the three yes-or-no questions in Table 19-1.

Table 19-1 Sister Elena’s Fifth-Grade Survey
Question Yes No

Are you an only child? 5 20

Do you own any pets? 14 11

Do you take the bus to school? 16 9

The students also answer the question “What is your favorite color?” with the
results shown in Table 19-2.

Table 19-2 Favorite Colors in Sister Elena’s Class
Color Number of Students Color Number of Students

Blue 8 Orange 1

Red 6 Yellow 1

Green 5 Gold 1

Purple 3
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Even though the information that each child provided is non-numerical, you
can handle it numerically by counting how many students made each
response and working with these numbers.

Given this information, you can now make informed statements about the
students in this class just by reading the charts. For instance,

� Exactly 20 children have at least one brother or sister.

� Nine children don’t take the bus to school.

� Only one child’s favorite color is yellow.

Playing the percentages
You can make more-sophisticated statistical statements about qualitative
data by finding out the percentage of the sample that has a specific attribute.
Here’s how you do so:

1. Write a statement that includes the number of members who share
that attribute and the total number in the sample.

Suppose you want to know what percentage of students in Sister Elena’s
class are only children. The chart tells you that 5 students have no sib-
lings, and you know that 25 kids are in the class. So you can begin to
answer this question as follows:

Five out of 25 children are only children.

2. Rewrite this statement, turning the numbers into a fraction: 

Number in sample
Number who share attribute

In the example, 5⁄25 of the children are only children.

3. Turn the fraction into a percent, using the method I show you in
Chapter 12.

You find that 5 ÷ 25 = 0.2, so 20% of the children are only children.

Similarly, suppose you want to find out what percentage of children take the
bus to school. This time, the chart tells you that 16 children take the bus, so
you can write this statement:

Sixteen out of 25 children take the bus to school.

Now rewrite the statement as follows:

25
16 of the children take the bus to school.
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Finally, turn this fraction into a percent. When you find 16 ÷ 25, you get 0.64,
or 64%:

64% of the children take the bus to school.

Getting into the mode
The mode tells you the most popular answer to a statistical question. For
example, in the poll of Sister Elena’s class (see Tables 19-1 and 19-2), the
mode groups are children who

� Have at least one brother or sister (20 students)

� Own at least one pet (14 students)

� Take the bus to school (16 students)

� Chose blue as their favorite color (8 students)

When a question divides a data set into two parts (as with all yes-or-no ques-
tions), the mode group represents more than half of the data set. But when
a question divides a data set into more than two parts, the mode doesn’t 
necessarily represent more than half of the data set.

For example, 14 children own at least one pet, and the other 11 children don’t
own one. So the mode group — children who own a pet — is more than half
the class. But 8 of the 25 children chose blue as their favorite color. So even
though this is the mode group, fewer than half the class chose this color.

With a small sample, you may have more than one mode — for example, per-
haps the number of students who like red is equal to the number who like
blue. However, getting multiple modes isn’t usually an issue with a larger
sample because it becomes less likely that exactly the same number of
people will have the same preference.

Working with quantitative data
Quantitative data assigns a numerical value to each member of the sample. As
my sample — again, fictional — I use five members of Sister Elena’s basket-
ball team. Suppose that the information in Table 19-3 has been gathered
about each team member’s height and most recent spelling test.
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Table 19-3 Height and Spelling Test Scores
Student Height in Inches Number of Words Spelled Correctly

Carlos 55 18

Dwight 60 20

Patrick 59 14

Tyler 58 17

William 63 18

In this section, I show you how to use this information to find the mean and
median for both sets of data. Both terms refer to ways to calculate the aver-
age value in a quantitative data set. An average gives you a general idea of
where most individuals in a data set fall so you know what kinds of results
are standard. For example, the average height of Sister Elena’s fifth grade
class is probably less than the average height of the Los Angeles Lakers. As
I show you in the sections that follow, an average can be misleading in some
cases, so knowing when to use the mean versus the median is important.

Finding the mean
The mean is the most commonly used average. In fact, when most people use
the word average, they’re referring to the mean. Here’s how you find the mean
of a set of data:

1. Add up all the numbers in that set.

For example, to find the average height of the five team members, first
add up all their heights:

55 + 60 + 59 + 58 + 63 = 295

2. Divide this result by the total number of members in that set.

Divide 295 by 5 (that is, by the total number of boys on the team):

295 ÷ 5 = 59

So the mean height of the boys on Sister Elena’s team is 59 inches.

Similarly, to find the mean number of words that the boys spelled correctly,
first add up the number of words they spelled correctly:

18 + 20 + 14 + 17 + 18 = 87
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Now divide this result by 5:

87 ÷ 5 = 17.4

As you can see, when you divide, you end up with a decimal in your answer. If
you round to the nearest whole word, the mean number of words that the five
boys spelled correctly is about 17 words. (For more information about round-
ing, see Chapter 2.)

The mean can be misleading when you have a strong skew in data — that is,
when the data has many low values and a few very high ones, or vice versa. 

For example, suppose that the president of a company tells you, “The average
salary in my company is $200,000 a year!” But on your first day at work, you
find out that the president’s salary is $19,010,000 and each of his 99 employees
earns $10,000. To find the mean, add up the total salaries:

$19,010,000 + (99 ⋅ $10,000) = $20,000,000

Now divide this number by the total number of people who work there:

$20,000,000 ÷ 100 = $200,000

So the president didn’t lie. However, the skew in salaries resulted in a mis-
leading mean.

Finding the median 
When data values are skewed (when a few very high or very low numbers
differ significantly from the rest of the data), the median can give you a more
accurate picture of what’s standard. Here’s how to find the median of a set
of data:

1. Arrange the set from lowest to highest.

To find the median height of the boys in Table 19-3, arrange their five
heights in order from lowest to highest.

55 58 59 60 63

2. Choose the middle number.

The middle value, 59 inches, is the median average height.

To find the median number of words that the boys spelled correctly (see
Table 19-3), arrange their scores in order from lowest to highest:

14 17 18 18 20
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This time, the middle value is 18, so 18 is the median score.

If you have an even number of values in the data set, put the numbers in
order and find the mean of the two middle numbers in the list (see the preced-
ing section for details on the mean). For instance, consider the following:

2 3 5 7 9 11

The two center numbers are 5 and 7. Add them together to get 12 and then
divide by 2 to get their mean. The median in this list is 6.

Now recall the company president who makes $19,010,000 a year and his
99 employees who each earn $10,000. Here’s how this data looks:

10,000 10,000 10,000 ... 10,000 19,010,000

As you can see, if you were to write out all 100 salaries, the center numbers
would obviously both be 10,000. The median salary is $10,000, and this result
is much more reflective of what you’d probably earn if you were to work at
this company.

Looking at Likelihoods: Basic Probability
Probability is the mathematics of deciding how likely an event is to occur. For
example,

� What’s the likelihood that the lottery ticket I bought will win?

� What’s the likelihood that my new car will need repairs before the 
warranty runs out?

� What’s the likelihood that more than 100 inches of snow will fall in
Manchester, New Hampshire, this winter?

Probability has a wide variety of applications in insurance, weather prediction,
biological sciences, and even physics.

The study of probability started hundreds of years ago when a group of
French noblemen began to suspect that math could help them turn a profit,
or at least not lose so heavily, in the gambling halls that they frequented.

You can read all about the details of probability in Probability For Dummies
(Wiley). In this section, I give you a little taste of this fascinating subject.
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Figuring the probability
The probability that an event will occur is a fraction whose numerator (top
number) and denominator (bottom number) are as follows (for more on frac-
tions, flip to Chapter 9):

Total number of possible outcomes
Number of favorable outcomes

In this case, a favorable outcome is simply an outcome in which the event
you’re examining does happen. In contrast, a possible outcome is an outcome
that can happen.

For example, suppose you want to know the probability that a tossed coin will
land heads up. Notice that there are two possible outcomes (heads or tails),
but only one of these outcomes is favorable — the outcome in which heads
comes up. To find the probability of this event, make a fraction as follows:

Total number of outcomes
Number of favorable outcomes

2
1

=

So the probability that the coin will land heads up is 1⁄2.

So what’s the probability that when you roll a die, the number 3 will land face
up? To figure this one out, notice that there are six possible outcomes (1, 2, 3,
4, 5, or 6), but in only one of these does 3 land face up. To find the probability
of this outcome, make a fraction as follows:

Total number of outcomes
Number of favorable outcomes

6
1

=

So the probability that the number 3 will land face up is 1⁄6.

And what’s the probability that if you pick a card at random from a deck, it’ll
be an ace? To figure this out, notice that there are 52 possible outcomes (one
for each card in the deck), but in only four of these do you pick an ace. So

Total number of outcomes
Number of favorable outcomes

52
4

=

So the probability that you’ll pick an ace is 4⁄52, which reduces to 1⁄13 (see
Chapter 9 for more on reducing fractions).

Probability is always a fraction or decimal from 0 to 1. When the probability of
an outcome is 0, the outcome is impossible. When the probability of an out-
come is 1, the outcome is certain.
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Oh, the possibilities! Counting outcomes
with multiple coins and dice
Although the basic probability formula isn’t difficult, sometimes finding the
numbers to plug into it can be tricky. One source of confusion is in counting
the number of outcomes, both favorable and possible. In this section, I focus
on tossing coins and rolling dice.

Tossing coins
When you flip a coin, you can generally get two possible outcomes: heads or
tails. When you flip two coins at the same time — say, a penny and a nickel —
you can get four possible outcomes:

Outcome Penny Nickel

#1 Heads Heads

#2 Heads Tails

#3 Tails Heads

#4 Tails Tails

When you flip three coins at the same time — say, a penny, a nickel, and a
dime — eight outcomes are possible:

Outcome Penny Nickel Dime

#1 Heads Heads Heads

#2 Heads Heads Tails

#3 Heads Tails Heads

#4 Heads Tails Tails

#5 Tails Heads Heads

#6 Tails Heads Tails

#7 Tails Tails Heads

#8 Tails Tails Tails

Notice the pattern: Every time you add an additional coin, the number of pos-
sible outcomes doubles. So if you flip six coins, here’s how many possible
outcomes you have:

2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 ⋅ 2 = 64
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The number of possible outcomes equals the number of outcomes per coin (2)
raised to the number of coins (6): Mathematically, you have 26 = 64.

Here’s a handy formula for calculating the number of outcomes when you’re
flipping, shaking, or rolling multiple coins, dice, or other objects at the same
time:

Number of outcomes per objectNumber of objects

Suppose you want to find the probability that six tossed coins will all fall
heads up. To do this, you want to build a fraction, and you already know that
the denominator — the number of possible outcomes — is 64. Only one out-
come is favorable, so the numerator is 1:

Total number of outcomes
Number of favorable outcomes

64
1

=

So the probability that six tossed coins will all fall heads up is 1⁄64.

Here’s a more subtle question: What’s the probability that exactly five out of six
tossed coins will all fall heads up? Again, you’re building a fraction, and you
already know that the denominator is 64. To find the numerator (favorable out-
comes), think about it this way: If the first coin falls tails up, then all the rest
must fall heads up. If the second coin falls tails up, then again all the rest must
fall heads up. This is true of all six coins, so you have six favorable outcomes:

Total number of outcomes
Number of favorable outcomes

64
6

=

Therefore, the probability that exactly five out of six coins will fall heads up
is 6⁄64, which reduces to 3⁄32 (see Chapter 9 for more on reducing fractions).

Rolling the dice
When you roll a single die, you can get six possible outcomes: 1, 2, 3, 4, 5, or 6.
However, when you roll two dice, this number jumps to 36. See Figure 19-1.

Every time you add an additional die, the number of possible outcomes is mul-
tiplied by 6. So if you roll four dice, here’s the number of possible outcomes:

64 = 6 ⋅ 6 ⋅ 6 ⋅ 6 = 1,296

Suppose you want to calculate the possibility of rolling four 6s. The probabil-
ity is a fraction, and you already know that the denominator of this fraction is
1,296. In this case, only one outcome — all four dice coming up 6 — is favor-
able, so here’s how you build your fraction:

Total number of outcomes
Number of favorable outcomes

1,296
1

=
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So the probability that you’ll roll four 6s is 1⁄1,296 — a very small probability,
indeed.

Here’s a more interesting question: What’s the probability that all four dice
will come up 4, 5, or 6? Again, you’re building a fraction whose denominator is
1,296. To find the numerator, think about it this way: For the first die, there are
three favorable outcomes (4, 5, or 6). For the first two dice, there are 3 ⋅ 3 = 9
favorable outcomes as shown here:

4-4 4-5 4-6

5-4 5-5 5-6

6-4 6-5 6-6

For three dice, there are 3 ⋅ 3 ⋅ 3 = 27 favorable outcomes. So for all four dice,
there are 3 ⋅ 3 ⋅ 3 ⋅ 3 = 81 favorable outcomes. So

Total number of outcomes
Number of favorable outcomes

6
3

1,296
81

4

4

= =

Thus, the probability that all four dice will come up 4, 5, or 6 is 81⁄1,296. This frac-
tion reduces to 1⁄16 (see Chapter 9 for more on reducing fractions).

Figure 19-1:
Possible

rolls for a
pair of dice.
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Chapter 20

Setting Things Up 
with Basic Set Theory

In This Chapter
� Defining a set and its elements

� Understanding subsets and the empty set

� Knowing the basic operations on sets, including union and intersection

A set is just a collection of things. But in their simplicity, sets are pro-
found. At the deepest level, set theory is the foundation for everything

in math.

Set theory provides a way to talk about collections of numbers such as even
numbers, prime numbers, or counting numbers with ease and clarity. It also
gives rules for performing calculations on sets that become useful in higher
math. For these reasons, set theory becomes more important the higher you
go up the math food chain — especially when you begin writing mathematical
proofs. Studying sets can also be a nice break from the usual math stuff you
work with.

In this chapter, I show you the basics of set theory. First, I show you how to
define sets and their elements and how you can tell when two sets are equal.
I also show you the simple idea of a set’s cardinality. Next, I discuss subsets
and the all-important empty set (8). After that, I discuss four operations on
sets: union, intersection, relative complement, and complement.

Understanding Sets
A set is a collection of things, in any order. These things can be buildings, 
earmuffs, lightning bugs, numbers, qualities of historical figures, names you
call your little brother, whatever.
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You can define a set in a few main ways:

� Placing a list of the elements of the set in braces { }: You can simply 
list everything that belongs in the set. When the set is too large, simply
use an ellipsis (...) to indicate elements of the set not mentioned. For
example, to list the set of numbers from 1 to 100, you can write {1, 2, 
3, ..., 100}. To list the set of all the counting numbers, you can write 
{1, 2, 3, ...}.

� Using a verbal description: If you use a verbal description of what the
set includes, make sure the description is clear and unambiguous so
you know exactly what’s in the set and what isn’t. For instance, the set
of the four seasons is pretty clear-cut, but you may run into some debate
on the set of words that describe my cooking skills because different
people have different opinions.

� Writing a mathematical rule (set-builder notation): In later algebra, you
can write an equation that tells people how to calculate the numbers
that are part of a set. Check out Algebra II For Dummies, by Mary Jane
Sterling (Wiley), for details.

Sets are usually identified with capital letters to keep them distinct from 
variables in algebra, which are usually small letters. (Chapter 21 talks about
using variables.)

The best way to understand sets is to begin working with them. For example,
here I define three sets:

A = {Empire State Building, Eiffel Tower, Roman Colosseum}

B = {Albert Einstein’s intelligence, Marilyn Monroe’s talent, Joe
DiMaggio’s athletic ability, Senator Joseph McCarthy’s ruthlessness}

C = the four seasons of the year

Set A contains three tangible objects: famous works of architecture. Set B
contains four intangible objects: attributes of famous people. And set C also
contains intangible objects: the four seasons. Set theory allows you to work
with either tangible or intangible objects, provided that you define your set
properly. In the following sections, I show you the basics of set theory.

Elementary, my dear: Considering
what’s inside sets
The things contained in a set are called elements (also known as members).
Consider the first two sets I define in the section intro:
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A = {Empire State Building, Eiffel Tower, Roman Colosseum}

B = {Albert Einstein’s intelligence, Marilyn Monroe’s talent, Joe
DiMaggio’s athletic ability, Senator Joseph McCarthy’s ruthlessness}

The Eiffel Tower is an element of A, and Marilyn Monroe’s talent is an element
of B. You can write these statements using the symbol �, which means is an
element of:

Eiffel Tower � A

Marilyn Monroe’s talent � B

However, the Eiffel Tower is not an element of B. You can write this statement
using the symbol �, which means is not an element of:

Eiffel Tower � B

These two symbols become more common as you move higher in your study
of math. The following sections discuss what’s inside those braces and how
some sets relate to each other.

Cardinality of sets
The cardinality of a set is just a fancy word for the number of elements in
that set.

When A is {Empire State Building, Eiffel Tower, Roman Colosseum}, it has three
elements, so the cardinality of A is three. Set B, which is {Albert Einstein’s
intelligence, Marilyn Monroe’s talent, Joe DiMaggio’s athletic ability, Senator
Joseph McCarthy’s ruthlessness}, has four elements, so the cardinality of B
is four.

Equal sets
If two sets list or describe the exact same elements, the sets are equal (you
can also say they’re identical or equivalent). The order of elements in the sets
doesn’t matter. Similarly, an element may appear twice in one set, but only
the distinct elements need to match.

Suppose I define some sets as follows:

C = the four seasons of the year

D = {spring, summer, fall, winter}

E = {fall, spring, summer, winter}

F = {summer, summer, summer, spring, fall, winter, winter, summer}
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Set C gives a clear rule describing a set. Set D explicitly lists the four elements
in C. Set E lists the four seasons in a different order. And set F lists the four
seasons with some repetition. Thus, all four sets are equal. As with numbers,
you can use the equal sign to show that sets are equal:

C = D = E = F

Subsets
When all the elements of one set are completely contained in a second set,
the first set is a subset of the second. For example, consider these sets:

C = {spring, summer, fall, winter}

G = {spring, summer, fall}

As you can see, every element of G is also an element of C, so G is a subset of C.
The symbol for subset is �, so you can write the following:

G � C

Every set is a subset of itself. This idea may seem odd until you realize that
all the elements of any set are obviously contained in that set.

Empty sets
The empty set — also called the null set — is a set that has no elements:

H = {}

As you can see, I define H by listing its elements, but I haven’t listed any, so H
is empty. The symbol 8 is used to represent the empty set. So H = 8.

You can also define an empty set using a rule. For example,

I = types of roosters that lay eggs

Clearly, roosters are male and therefore can’t lay eggs, so this set is empty.

You can think of 8 as nothing. And because nothing is always nothing, there’s
only one empty set. All empty sets are equal to each other, so in this case, H = I.

Furthermore, 8 is a subset of every other set (the preceding section discusses
subsets), so the following statements are true:

8 � A

8 � B

8 � C
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This concept makes sense when you think about it. Remember that 8 has no
elements, so technically speaking, every element in 8 is in every other set.

Sets of numbers
One important use of sets is to define sets of numbers. As with all other sets,
you can do so either by listing the elements or by verbally describing a rule
that clearly tells you what’s included in the set and what isn’t. For example,
consider the following sets:

J = {1, 2, 3, 4, 5}

K = {2, 4, 6, 8, 10, ...}

L = the set of counting numbers

My definitions of J and K list their elements explicitly. Because K is infinitely
large, I need to use an ellipsis (...) to show that this set goes on forever. The
definition of L is a description of the set in words.

I discuss some especially significant sets of numbers in Chapter 25.

Operations on Sets
In arithmetic, the Big Four operations (adding, subtracting, multiplying, and
dividing) allow you to combine numbers in various ways (see Chapters 3 
and 4 for more information). Set theory also has four important operations:
union, intersection, relative complement, and complement. You’ll see more
of these operations as you move on in your study of math.

Here are definitions for three sets of numbers:

P = {1, 7}

Q = {4, 5, 6}

R = {2, 4, 6, 8, 10}

In this section, I use these three sets and a few others to discuss the four set
operations and show you how they work. (Note: Within equations, I re-list
the elements, replacing the names of the sets with their equivalent in braces.
Therefore, you shouldn’t have to flip back and forth to look up what each set
contains.)
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Union: Combined elements
The union of two sets is the set of their combined elements. For example, the
union of {1, 2} and {3, 4} is {1, 2, 3, 4}. The symbol for this operation is ,, so

{1, 2} , {3, 4} = {1, 2, 3, 4}

Similarly, here’s how to find the union of P and Q:

P , Q = {1, 7} , {4, 5, 6} = {1, 4, 5, 6, 7}

When two sets have one or more elements in common, these elements appear
only once in their union set. For example, consider the union of Q and R. In
this case, the elements 4 and 6 are in both sets, but each of these numbers
appears once in their union:

Q , R = {4, 5, 6} , {2, 4, 6, 8, 10} = {2, 4, 5, 6, 8, 10}

The union of any set with itself is itself:

P , P = P

Similarly, the union of any set with 8 (see the earlier “Empty sets” section) is
itself:

P , 8 = P

Intersection: Elements in common
The intersection of two sets is the set of their common elements (the elements
that appear in both sets). For example, the intersection of {1, 2, 3} and {2, 3,
4} is {2, 3}. The symbol for this operation is +. You can write the following:

{1, 2, 3} + {2, 3, 4} = {2, 3}

Similarly, here’s how to write the intersection of Q and R:

Q + R = {4, 5, 6} + {2, 4, 6, 8, 10} = {4, 6}

When two sets have no elements in common, their intersection is the empty
set (8):

P + Q = {1, 7} + {4, 5, 6} = 8
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The intersection of any set with itself is itself:

P + P = P

But the intersection of any set with 8 is 8:

P + 8 = 8

Relative complement: Subtraction (sorta)
The relative complement of two sets is an operation similar to subtraction. The
symbol for this operation is the minus sign (–). Starting with the first set, you
remove every element that appears in the second set to arrive at their relative
complement. For example,

{1, 2, 3, 4, 5} – {1, 2, 5} = {3, 4}

Similarly, here’s how to find the relative complement of R and Q. Both sets
share a 4 and a 6, so you have to remove those elements from R:

R – Q = {2, 4, 6, 8, 10} – {4, 5, 6} = {2, 8, 10}

Note that the reversal of this operation gives you a different result. This time,
you remove the shared 4 and 6 from Q:

Q – R = {4, 5, 6} – {2, 4, 6, 8, 10} = {5}

Like subtraction in arithmetic, the relative complement is not a commutative
operation. In other words, order is important. (See Chapter 4 for more on
commutative and noncommutative operations.)

Complement: Feeling left out
The complement of a set is everything that isn’t in that set. Because every-
thing is a difficult concept to work with, you first have to define what you
mean by everything as the universal set (U). For example, suppose you define
the universal set like this:

U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
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Now, here are a couple of sets to work with:

M = {1, 3, 5, 7, 9}

N = {6}

The complement of each set is the set of every element in U that isn’t in the
original set:

U – M = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} – {1, 3, 5, 7, 9} = {0, 2, 4, 6, 8}

U – N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} – {6} = {0, 1, 2, 3, 4, 5, 7, 8, 9}

The complement is closely related to the relative complement (see the preced-
ing section). Both operations are similar to subtraction. The main difference
is that the complement is always subtraction of a set from U, but the relative
complement is subtraction of a set from any other set.

The symbol for the complement is ', so you can write the following:

M' = {0, 2, 4, 6, 8}

N' = {0, 1, 2, 3, 4, 5, 7, 8, 9}

294 Part IV: Picturing and Measuring — Graphs, Measures, Stats, and Sets 

27_135372 ch20.qxd  8/28/07  8:25 PM  Page 294



Part V
The X-Files:
Introduction 
to Algebra

28_135372 pt05.qxd  8/28/07  8:25 PM  Page 295



In this part . . .

I introduce you to algebra, an amazing tool for solving a
wide variety of math problems with speed and accu-

racy. I show you how to declare a variable (such as x) to
stand for an unknown number. Then, I give you a bunch
of important tools for working with algebraic expressions.
Next, you put these tools to work solving algebraic 
equations. Finally, everything comes together as you
solve algebra word problems.
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Chapter 21

Enter Mr. X: Algebra and
Algebraic Expressions

In This Chapter
� Meeting Mr. X head-on 

� Understanding how a variable such as x stands for a number

� Using substitution to evaluate an algebraic expression 

� Identifying and rearranging the terms in any algebraic expression

� Simplifying algebraic expressions

You never forget your first love, your first car, or your first x. Unfortunately
for some folks, remembering their first x in algebra is similar to remem-

bering their first love who stood them up at the prom or their first car that
broke down someplace in Mexico. 

The most well-known fact about algebra is that it uses letters — like x — to
represent numbers. So, if you have a traumatic x-related tale, all I can say is
that the future will be brighter than the past.

What good is algebra? That’s a common question, and it deserves a decent
answer. Algebra is used for solving problems that are just too difficult for
ordinary arithmetic. And because number crunching is so much a part of the
modern world, algebra is everywhere (even if you don’t see it): architecture,
engineering, medicine, statistics, computers, business, chemistry, physics,
biology, and of course higher math. Anywhere that numbers are useful, alge-
bra is there. That’s why virtually every college and university insists that you
leave (or enter) with at least a passing familiarity with algebra.
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In this chapter, I introduce (or re-introduce) you to that elusive little fellow,
Mr. X, in a way that’s bound to make him seem a little friendlier. Then I show
you how algebraic expressions are similar to and different from the arithmetic
expressions that you’re used to working with. (For a refresher on arithmetic
expressions, see Chapter 5.)

X Marks the Spot
In math, x stands for a number — any number. Any letter that you use to stand
for a number is a variable, which means that its value can vary — that is, its
value is uncertain. In contrast, a number in algebra is often called a constant,
because its value is fixed.

Sometimes, you have enough information to find out the identity of x. For
example, consider the following:

2 + 2 = x

Obviously, in this equation, x stands for the number 4. But other times, the
number that x stands for stays shrouded in mystery. For example:

x > 5

In this inequality, x stands for some number greater than 5 — maybe 6,
maybe 71⁄2, maybe 542.002.

Expressing Yourself with
Algebraic Expressions

In Chapter 5, I introduce you to arithmetic expressions: strings of numbers
and operators that can be evaluated or placed on one side of an equation.
For example:

2 + 3

7 ⋅ 1.5 – 2

2^4 – |–4| – 100
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In this chapter, I introduce you to another type of mathematical expression:
the algebraic expression. An algebraic expression is any string of mathemati-
cal symbols that can be placed on one side of an equation and that includes
at least one variable.

Here are a few examples of algebraic expressions:

5x

–5x + 2

x2y – y2x + z
3 – xyz + 1

As you can see, the difference between arithmetic and algebraic expressions
is simply that an algebraic expression includes at least one variable.

In this section, I show you how to work with algebraic expressions. First, I
demonstrate how to evaluate an algebraic expression by substituting the
values of its variables. Then, I show you how to separate an algebraic expres-
sion into one or more terms and how to identify the coefficient and the vari-
able part of each term. 

Evaluating algebraic expressions
To evaluate an algebraic expression, you need to know the numerical value of
every variable. For each variable in the expression, substitute the number that
it stands for, then evaluate the expression. 

In Chapter 5, I show you how to evaluate an arithmetic expression. Briefly,
this means finding the value of that expression as a single number (flip to
Chapter 5 for more on evaluating). 

Knowing how to evaluate arithmetic expressions comes in handy for evaluating
algebraic expressions. For example, suppose you want to evaluate the follow-
ing expression:

4x – 7

Note that this expression contains the variable x, which is unknown, so the
value of the whole expression is also unknown.

An algebraic expression can have any number of variables, but you usually
don’t work with expressions that have more than three. You can use any
letter as a variable, but x, y, and z tend to get a lot of mileage.
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Suppose in the previous case that x = 2. To evaluate the expression, substitute
2 for x everywhere it appears in the expression:

4(2) – 7

After you make the substitution, you’re left with an arithmetic expression, so
you can finish your calculations to evaluate the expression:

= 8 – 7 = 1

So given x = 2, the algebraic expression 4x – 7 = 1.

Now suppose you want to evaluate the following expression, where x = 4:

2x2 – 5x – 15

This time, the first step is to substitute 4 for x everywhere that this variable
appears in the expression:

2(42) – 5(4) – 15

Now evaluate according to the order of operations explained in Chapter 5. You
do powers first, so begin by evaluating the exponent 42, which equals 4 ⋅ 4:

= 2(16) – 5(4) – 15

Now proceed on to the multiplication, moving from left to right:

= 32 – 5(4) – 15

= 32 – 20 – 15

Then evaluate the subtraction, again from left to right:

= 12 – 15

= –3

So given x = 4, the algebraic expression 2x2 – 5x – 15 = –3.

You aren’t limited to expressions of only one variable when using substitution.
As long as you know the value of every variable in the expression, you can
evaluate algebraic expressions with any number of variables. For example,
suppose you want to evaluate this expression:

3x2 + 2xy – xyz
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To evaluate it, you need values of all three variables:

x = 3

y = –2

z = 5

The first step is to substitute the equivalent value for each of the three vari-
ables wherever you find them:

3(32) + 2(3)(–2) – 3(–2)(5)

Now use the rules for order of operations from Chapter 5. Begin by evaluating
the exponent 32:

= 3(9) + 2(3)(–2) – 3(–2)(5)

Next, evaluate the multiplication from left to right (if you need to know more
about the rules for multiplying negative numbers, check out Chapter 4):

= 27 + 2(3)(–2) – 3(–2)(5)

= 27 + 6(–2) – 3(–2)(5)

= 27 + –12 – 3(–2)(5)

= 27 + –12 – (–6)(5)

= 27 + –12 – (–30)

Now all that’s left is addition and subtraction. Evaluate from left to right,
remembering the rules for adding and subtracting negative numbers in
Chapter 4:

= 15 – (–30) = 15 + 30 = 45

So given the three values for x, y, and z, the algebraic expression 
3x2 + 2xy – xyz = 45.

For practice, copy down the expression and the three values, close the book,
and see whether you can substitute and evaluate on your own.

Coming to algebraic terms
A term in an algebraic expression is any chunk of symbols set off from the
rest of the expression by either addition or subtraction. As algebraic expres-
sions get more complex, they begin to string themselves out in more and
more terms. Here are some examples:
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Expression Number of Terms Terms

5x One 5x

–5x + 2 Two –5x and 2

x2y + z
3 – xyz + 8 Four x2y, z

3 , –xyz, and 8

No matter how complicated an algebraic expression gets, you can always
separate it out into one or more terms.

When separating an algebraic expression into terms, group the plus or minus
sign with the term that it immediately precedes.

When a term has a variable, it’s called an algebraic term. When it doesn’t have
a variable, it’s called a constant. For example, look at the following expression:

x2y + z
3 – xyz + 8

The first three terms are algebraic terms, and the last term is a constant. As
you can see, in algebra, constant is just a fancy word for number.

Terms are really useful because you can follow rules to move them, combine
them, and perform the Big Four operations on them. All these skills are
important for solving equations, which I explain in the next chapter. But for
now, this section explains a bit about terms and some of their traits.

Making the commute: Rearranging
your terms
After you understand how to separate an algebraic expression into terms,
you can go one step further by rearranging the terms in any order you like.
Each term moves as a unit, kind of like a group of people carpooling to work
together — everyone in the car stays together for the whole ride.

For example, suppose you begin with the expression –5x + 2. You can
rearrange the two terms of this expression without changing its value. Notice
that each term’s sign stays with that term, though dropping the plus sign at
the beginning of an expression is customary:

= 2 – 5x
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Rearranging terms in this way doesn’t affect the value of the expression
because addition is commutative — that is, you can rearrange things that
you’re adding and without changing the answer. (See Chapter 4 for more on
the commutative property of addition.) 

For example, suppose x = 3. Then the original expression and its rearrange-
ment evaluate as follows (using the rules that I outline earlier in “Evaluating
Algebraic Expressions”):

–5x + 2 2 – 5x

= –5(3) + 2 = 2 – 5(3)

= –15 + 2 = 2 – 15

= –13 = –13

Rearranging expressions in this way becomes handy later in this chapter,
when you simplify algebraic expressions. As another example, suppose you
have this expression:

4x – y + 6

You can rearrange it in a variety of ways:

= 6 + 4x – y

= –y + 4x + 6

Because the term 4x has no sign, it’s positive, so you can write in a plus sign
as needed when rearranging terms.

As long as each term’s sign stays with that term, rearranging the terms in an
expression has no effect on its value.

For example, suppose that x = 2 and y = 3. Here’s how to evaluate the original
expression and the two re-arrangements:

4x – y + 6 6 + 4x – y –y + 4x + 6

= 4(2) – 3 + 6 = 6 + 4(2) – 3 = –3 + 4(2) + 6

= 8 – 3 + 6 = 6 + 8 – 3 = –3 + 8 + 6

= 5 + 6 = 14 – 3 = 5 + 6

= 11 = 11 = 11
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Identifying the coefficient and variable
Every term in an algebraic expression has a coefficient. The coefficient is the
signed numerical part of a term in an algebraic expression — that is, the
number and the sign (+ or -) that goes with that term. For example, suppose
you’re working with the following algebraic expression:

–4x3 + x2 – x – 7

The table below shows the four terms of this expression, with each term’s
coefficient:

Term Coefficient Variable

–4x3 –4 x3

x2 1 x2

–x –1 x

–7 –7 none

Notice that the sign associated with the term is part of the coefficient. So the
coefficient of –4x3 is –4.

When a term appears to have no coefficient, the coefficient is actually 1. So
the coefficient of x2 is 1, and the coefficient of –x is –1. And when a term is a
constant (just a number), that number with its associated sign is the coeffi-
cient. So the coefficient of the term –7 is simply –7.

By the way, when the coefficient of any algebraic term is 0, the expression
equals 0 no matter what the variable part looks like:

0x = 0 0xyz = 0 0x3y4z10 = 0

In contrast, the variable part of an expression is everything except the coeffi-
cient. The table above shows the four terms of the same expression, with
each term’s variable part. 

Identifying similar terms
Similar terms (or like terms) are any two algebraic terms that have the same
variable part — that is, both the letters and their exponents have to be exact
matches. Here are some examples:
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Variable Part Examples of Similar Terms

x 4x 12x 99.9x

x2 6x2 –20x2

3
8 x2

y y 1,000y πy

xy –7xy 800xy 7
22 xy

x3y3 3x3y3 –111x3y3 3.14x3y3

As you can see, in each example, the variable part in all three similar terms
is the same. Only the coefficient changes, and it can be any real number: 
positive or negative, whole number, fraction, decimal, or even an irrational
number such as π. (For more on real numbers, see Chapter 25.)

Considering algebraic terms 
and the Big Four
In this section, I get you up to speed on how to apply the Big Four to alge-
braic expressions. For now, just think of working with algebraic expressions
as a set of tools that you’re collecting, for use when you get on the job. You
find how useful these tools are in Chapter 22, when you begin solving alge-
braic equations.

Adding terms
Add similar terms by adding their coefficients and keeping the same variable
part.

For example, suppose you have the expression 2x + 3x. Remember that 2x is
just shorthand for x + x, and 3x means simply x + x + x. So when you add
them up, you get the following:

= x + x + x + x + x = 5x

As you can see, when the variable parts of two terms are the same, you add
these terms by adding their coefficients: 2x + 3x = (2 + 3)x. The idea here is
roughly similar to the idea that 2 apples + 3 apples = 5 apples.

You cannot add non-similar terms. Here are some cases in which the variables
or their exponents are different:

2x + 3y

2yz + 3y

2x2 + 3x
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In these cases, you can’t perform the addition. You’re faced with a situation
that’s similar to 2 apples + 3 oranges. Because the units (apples and oranges)
are different, you can’t solve the problem. (See Chapter 4 for more on how to
work with units.)

Subtracting terms
Subtraction works much the same as addition. Subtract similar terms by find-
ing the difference between their coefficients and keeping the same variable
part.

For example, suppose you have 3x – x. Recall that 3x is simply shorthand for
x + x + x. So doing this subtraction gives you the following:

x + x + x – x = 2x

No big surprises here. You simply find (3 – 1)x. This time, the idea roughly
parallels the idea that $3 – $1 = $2.

Here’s another example:

2x – 5x

Again, no problem, as long as you know how to work with negative numbers
(see Chapter 4 if you need details). Just find the difference between the 
coefficients:

= (2 – 5)x = –3x

In this case, recall that $2 – $5 = –$3 (that is, a debt of 3 dollars).

You cannot subtract non-similar terms. For example, you can’t subtract either
of the following:

7x – 4y

7x2y – 4xy2

As with addition, you can’t do subtraction with different variables. Think of
this as trying to figure out $7 – 4 pesos. Because the units in this case (dollars
versus pesos) are different, you’re stuck. (See Chapter 4 for more on working
with units.)
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Multiplying terms
Unlike adding and subtracting, you can multiply non-similar terms. Multiply
any two terms by multiplying their coefficients and combining — that is, by
collecting or gathering up — all the variables in each term into a single term,
as I show you below.

For example, suppose you want to multiply 5x(3y). To get the coefficient, 
multiply 5 ⋅ 3. To get the algebraic part, combine the variables x and y:

= 5(3)xy = 15xy

Now suppose you want to multiply 2x(7x). Again, multiply the coefficients
and collect the variables into a single term:

= 7(2)xx = 14xx

Remember that x2 is shorthand for xx, so you can write the answer more 
efficiently:

= 14x2

Here’s another example. Multiply all three coefficients together and gather up
the variables:

2x2(3y)(4xy)

= 2(3)(4)x2xyy

= 24x3y2

As you can see, the exponent 3 that’s associated with x is just the count of
how many x’s appear in the problem. The same is true of the exponent 2
associated with y.

A fast way to multiply variables with exponents is to add the exponents
together. For example:

(x4y3)(x2y5)(x6y) = x12y9

In this example, I added the exponents of the x’s (4 + 2 + 6 = 12) to get the
exponent of x in the solution. Similarly, I added the exponents of the y’s 
(3 + 5 + 1 = 9 — don’t forget that y = y1!) to get the exponent of y in the solution. 
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Dividing terms
It’s customary to represent division of algebraic expressions as a fraction
instead of using the division sign (÷). So division of algebraic terms really
looks like reducing a fraction to lowest terms (see Chapter 9 for more on
reducing).

To divide one algebraic term by another, follow these steps:

1. Make a fraction of the two terms.

Suppose you want to divide 3xy by 12x2. Begin by turning the problem
into a fraction:

x
xy

12
3

2

2. Cancel out factors in coefficients that are in both the numerator and
denominator.

In this case, you can cancel out a 3. Notice that when the coefficient in
xy becomes 1, you can drop it:

x
xy
4 2=

3. Cancel out any variable that’s in both the numerator and denominator.

You can break x2 out as xx:

xx
xy

4=

Now you can clearly cancel an x in both the numerator and denominator:

x
y

4=

As you can see, the resulting fraction is really a reduced form of the 
original.

As another example, suppose you want to divide –6x2yz3 by –8x2y2z. Begin by
writing the division as a fraction:

x y z
x yz

8
6

2 2

2 3

-

-

First, reduce the coefficients. Notice that because both coefficients were orig-
inally negative, you can cancel out both minus signs as well:

x y z
x yz

4
3

2 2

2 3

=
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Now you can begin canceling variables. I do this in two steps as before:

xxyyz
xxyzzz
4

3
=

At this point, just cross out any occurrence of a variable that appears in both
the numerator and denominator:

y
zz

y
z

4
3

4
3 2

=

=

You can’t cancel out variables or coefficients if either the numerator or
denominator has more than one term in it.

Simplifying Algebraic Expressions
As algebraic expressions grow more complex, simplifying them can make
them easier to work with. Simplifying an expression means (quite simply!)
making it smaller and easier to manage. You see how important simplifying
expressions becomes when you begin solving algebraic equations. 

For now, think of this section as a kind of algebra toolkit. Here, I show you
how to use these tools. In Chapter 22, I show you when to use them.

Combining similar terms
When two algebraic terms are similar (when their variables match), you can
add or subtract them (see the earlier “Considering algebraic terms and the Big
Four” section). This feature comes in handy when you’re trying to simplify an
expression. For example, suppose you’re working with following expression:

4x – 3y + 2x + y – x + 2y

As it stands, this expression has six terms. But three terms have the variable
x and the other three have the variable y. Begin by rearranging the expres-
sion so that all similar terms are grouped together:

= 4x + 2x – x – 3y + y + 2y
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Now you can add and subtract similar terms. I do this in two steps, first for
the x terms and then for the y terms:

= 5x – 3y + y + 2y

= 5x + 0y = 5x

Notice that the x terms simplify to 5x and the y terms simplify to 0y, which is 0,
so the y terms drop out of the expression altogether!

Here’s a somewhat more complicated example that has variables with 
exponents:

12x – xy – 3x2 + 8y + 10xy + 3x2 – 7x

This time, you have four different types of terms. As a first step, you can
rearrange these terms so that groups of similar terms are all together (I under-
line these four groups so you can see them clearly):

= x x xy xy x x y12 7 10 3 3 82 2- - + - + +

Now combine each set of similar terms:

= 5x + 9xy + 0x2 + 8y

This time, the x2 terms add up to 0, so they drop out of the expression 
altogether:

= 5x + 9xy + 8y

Removing parentheses from 
an algebraic expression
Parentheses keep parts of an expression together as a single unit. In Chapter
5, I show you how to handle parentheses in an arithmetic expression. This
skill is also useful with algebraic expressions. As you find when you begin
solving algebraic equations in Chapter 22, getting rid of parentheses is often
the first step toward solving a problem. In this section, I show how to handle
the Big Four operations with ease. 

Drop everything: Parentheses with a plus sign
When an expression contains parentheses that come right after a plus sign (+),
you can just remove the parentheses. Here’s an example:

2x + (3x – y) + 5y

= 2x + 3x – y + 5y
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Now you can simplify the expression by combining similar terms:

= 5x + 4y

When the first term inside the parentheses is negative, when you drop the
parentheses, the minus sign replaces the plus sign. For example:

6x + (-2x + y) – 4y

= 6x – 2x + y – 4y

Sign turnabout: Parentheses with a minus sign
Sometimes, an expression contains parentheses that come right after a minus
sign (–). In this case, change the sign of every term inside the parentheses to
the opposite sign; then remove the parentheses.

Consider this example:

6x – (2xy – 3y) + 5xy

A minus sign is in front of the parentheses, so you need to change the signs of
both terms in the parentheses and remove the parentheses. Notice that the
term 2xy appears to have no sign because it’s the first term inside the paren-
theses. This expression really means the following:

= 6x – (+2xy – 3y) + 5xy

You can see how to change the signs:

= 6x – 2xy + 3y + 5xy

At this point, you can combine the two similar xy terms:

= 6x + 3xy + 3y

Distributing: Parentheses with no sign 
When you see nothing between a number and a set of parentheses, it means
multiplication. For example,

2(3) = 6 4(4) = 16 10(15) = 150

This notation becomes much more common with algebraic expressions,
replacing even the dot multiplication sign (⋅):

3(4x) = 12x 4x(2x) = 8x2 3x(7y) = 21xy
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To remove parentheses without a sign, multiply the term outside the paren-
theses by every term inside the parentheses; then remove the parentheses.
When you follow those steps, you’re using the distributive property.

Here’s an example:

2(3x – 5y + 4)

In this case, multiply 2 by each of the three terms inside the parentheses:

= 2(3x) + 2(–5y) + 2(4)

For the moment, this expression looks more complex than the original one,
but now you can get rid of all three sets of parentheses by multiplying:

= 6x – 10y + 8

Multiplying by every term inside the parentheses is simply distribution of
multiplication over addition — also called the distributive property — which I
discuss in Chapter 4.

As another example, suppose you have the following expression:

–2x(–3x + y + 6) + 2xy – 5x2

Begin by multiplying –2x by the three terms inside the parentheses:

= –2x(–3x) – 2x(y) – 2x(6) + 2xy – 5x2

The expression looks worse than when you started, but you can get rid of
all the parentheses by multiplying:

= 6x2 – 2xy – 12x + 2xy – 5x2

Now you can combine similar terms. I do this in two steps, first rearranging
and then combining:

= 6x2 – 5x2 – 2xy + 2xy – 12x

= x2 – 12x

Parentheses by FOILing 
Sometimes, expressions have two sets of parentheses next to each other
without a sign between them. In that case, you need to multiply every term
inside the first set by every term inside the second.
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When you have two terms inside each set of parentheses, you can use a
process called FOILing. The word FOIL is an acronym to help you make sure
you multiply the correct terms. It stands for First, Outside, Inside, and Last.
Here’s how the process works:

1. Start out by multiplying the two First terms in the parentheses.

Suppose you want to simplify the expression (2x – 2)(3x – 6). The first
term in the first set of parentheses is 2x, and 3x is the first term in the
second set of parentheses. Therefore, multiply 2x by 3x:

(2x – 2)(3x – 6) 2x(3x) = 6x2

2. Then multiply the two Outside terms.

The two outside terms, 2x and –6, are on the ends:

(2x – 2)(3x – 6) 2x(–6) = –12x

3. Next, multiply the two Inside terms.

The two terms in the middle are –2 and 3x:

(2x – 2)(3x – 6) –2(3x) = –6x

4. Finally, multiply the two Last terms.

The last term in the first set of parentheses is –2, and –6 is last term in
the second set:

(2x – 2)(3x – 6) –2(–6) = 12

Add these four results together to get the simplified expression:

6x2 – 12x – 6x + 12

In this case, you can simplify this expression still further by combining the
similar terms –12x and –6x:

= 6x2 – 18x + 12

Notice that during this process, you multiply every term inside one set of
parentheses by every term inside the other set. FOILing just helps you keep
track and make sure you’ve multiplied everything.

FOILing is really just an application of the distributive property, which I dis-
cuss in the section before this one. In other words, (2x – 2)(3x – 6) is really
the same thing as 2x(3x – 6) + -2(3x – 6) when distributed. Then, distributing
again gives you 6x2 – 6x – 12x + 12.
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Chapter 22

Unmasking Mr. X:
Algebraic Equations

In This Chapter
� Using variables (such as x) in equations 

� Knowing some quick ways to solve for x in simple equations

� Understanding the balance-scale method for solving equations

� Rearranging terms in an algebraic equation 

� Isolating algebraic terms on one side of an equation

� Removing parentheses from an equation

� Cross multiplying to remove fractions

When it comes to algebra, solving equations is the main event. 

Solving an algebraic equation means finding out what number the variable
(usually x) stands for. Not surprisingly, this process is called solving for x, and
when you know how to do it, your confidence — not to mention your grades —
in your algebra class will soar through the roof.

That’s what this chapter is all about. First, I show you a few informal methods
to solve for x when an equation isn’t too difficult. Then, I show you how to
solve more difficult equations by thinking of them as a balance scale. 

The balance-scale method is really the heart of algebra (yes, algebra has a
heart after all!). After you understand this simple idea, you’re ready to solve
more complicated equations using all the tools I show you in Chapter 21,
such as simplifying expressions and removing parentheses. You find out how
to extend these skills to algebraic equations. Finally, I show you how cross
multiplying (see Chapter 9) can make solving algebraic equations with frac-
tions a piece of cake. 

By the end of this chapter, you should have a solid grasp of a bunch of ways
to solve equations for the elusive and mysterious x.
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Understanding Algebraic Equations
An algebraic equation is an equation that includes at least one variable —
that is, a letter (such as x) that stands for a number. Solving an algebraic
equation means finding out what number x stands for. 

In this section, I show you the basics of how a variable like x works its way
into an equation in the first place. Then I show you a few quick ways to solve
for x when an equation isn’t too difficult.

Using x in equations
As you discover in Chapter 5, an equation is a mathematical statement that
contains an equal sign. For example, here’s a perfectly good equation:

7 ⋅ 9 = 63

At its heart, a variable (such as x) is nothing more than a placeholder for a
number. You’re probably used to equations that use other placeholders: One
number is purposely left as a blank or replaced by an underline or a question
mark, and you’re supposed to fill it in. Usually, this number comes after the
equal sign. For example:

8 + 2 = 

12 – 3 = __

14 ÷ 7 = ?

As soon as you’re comfortable with addition, subtraction, or whatever, you
can switch the equation around a bit:

9 + __ = 14

? ⋅ 6 = 18 

When you stop using underlines and question marks and start using vari-
ables such as x to stand for the part of the equation you want you to figure
out, bingo! You have an algebra problem:

4 + 1 = x

12 ÷ x = 3

x – 13 = 30
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Four ways to solve algebraic equations
You don’t need to call an exterminator just to kill a bug. Similarly, algebra is
strong stuff, and you don’t always need it to solve an algebraic equation. 

Generally speaking, you have four ways to solve algebraic equations such as
those I introduce earlier in this chapter:

� Eyeballing them (also called inspection, or just looking at the problem to
get the answer)

� Rearranging them, using inverse operations when necessary

� Guessing and checking

� Applying algebra

Eyeballing easy equations
You can solve easy problems just by looking at them. For example:

5 + x = 6

When you look at this problem, you can see that x = 1. When a problem is this
easy and you can see the answer, you don’t need to take any particular trou-
ble to solve it.

Rearranging slightly harder equations
When you can’t see an answer just by looking at a problem, sometimes rear-
ranging the problem helps to turn it into one that you can solve using a Big
Four operation. This is the method that I use throughout most of this book,
especially for solving equations with formulas, like geometry problems and
problems involving weights and measures. For example:

6x = 96

The answer may not jump out at you, but remember that this problem means

6 ⋅ x = 96

You can rearrange this problem using inverse operations, as I show you in
Chapter 4:

96 ÷ 6 = x

Now, solve the problem by division (long or otherwise) to find that x = 16.
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Guessing and checking equations
You can solve some equations by guessing an answer and then checking to
see whether you’re right. For example, suppose you want to solve the follow-
ing equation:

3x + 7 = 19

To find out what x equals, start by guessing that x = 2. Now, check to see
whether you’re right by substituting 2 for x in the equation:

3(2) + 7 = 6 + 7 = 13 < 19 WRONG!

When x = 2, the left side of the equation equals 13, not 19. That was a low
guess, so try a higher guess: x = 5:

3(5) + 7 = 15 + 7 = 22 > 19 WRONG!

This time, your guess was high, so try x = 4:

3(4) + 7 = 12 + 7 = 19 RIGHT!

With only three guesses, you found that x = 4.

Applying algebra to more difficult equations
When an algebraic equation gets hard enough, you find that looking at it and
rearranging it just isn’t enough to solve it. For example:

11x – 13 = 9x + 3

You probably can’t tell what x equals just by looking at this problem. You also
can’t solve it just by rearranging it using an inverse operation. And guessing
and checking would be very tedious. That’s where algebra comes into play. 

Algebra is especially useful because you can follow mathematical rules to
find your answer. Throughout the rest of this chapter, I show you how to use
the rules of algebra to turn tough problems like this one into problems that
you can solve.

The Balancing Act: Solving for X
As I show you in the previous section, some problems are too complicated to
find out what the variable (usually x) equals just by eyeballing it or rearranging
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it. For these problems, you need a reliable method for getting the right answer.
I call this method the balancing scale.

The balancing scale allows you to solve for x — that is, find the number that
x stands for — in a step-by-step process that always works. In this section, I
show you how to use the balancing scale method to solve algebraic equations.

Striking a balance
The equal sign in any equation means that both sides balance. To keep that
equal sign, you have to maintain that balance. In other words, whatever you
do to one side of an equation, you have to do to the other.

For example, here’s a balanced equation:

1 2 3
O

+ =

If you add 1 to one side of the equation, the scale would go out of balance.

1 2 1 3
O
!+ +

But if you add 1 to both sides of the equation, the scale stays balanced:

1 2 1 3 1
O

+ + = +

You can add any number to the equation, as long as you do it to both sides.
And in math, any number means x:

1 + 2 + x = 3 + x

Remember that x is the same wherever it appears in a single equation or
problem.

This idea of changing both sides of an equation equally isn’t limited to addi-
tion. You can just as easily subtract an x, or even multiply or divide by x, as
long as you do the same thing to both sides of the equation:

Subtract: x x1 2 3+ - = -

Multiply: x x1 2 3+ =^ h

Divide: x x
1 2 3+

=
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Using the balance scale to isolate x
The simple idea of balance is at the heart of algebra, and it enables you to
find out what x is in many equations. When you solve an algebraic equation,
the goal is to isolate x — that is, to get x alone on one side of the equation
and some number on the other side. In algebraic equations of middling diffi-
culty, this is a three-step process:

1. Get all constants (non-x terms) on one side of the equation. 

2. Get all x-terms on the other side of the equation.

3. Divide to isolate x.

For example, take a look at the following problem:

11x – 13 = 9x + 3

As you follow the steps, notice how I keep the equation balanced at each step:

1. Get all of the constants on one side of the equation by adding 13 to both
sides of the equation:

x x

x x

11 13 9 3

13 13

11 9 16

- = +

+ +

= +

Because you’ve obeyed the rules of the balance scale, you know that
this new equation is also correct. And now, the only non-x term (16) is
on the right side of the equation. 

2. Get all of the x-terms on the other side by subtracting 9x from both sides
of the equation:

x x

x x

x

11 9 16

9 9

2 16

= +

- -

=

Again, the balance is preserved, so the new equation is correct. 

3. Divide by 2 to isolate x:

x

x
2

2
2

16

8

=

=
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To check this answer, you can simply substitute 8 for x in the original
equation:

11(8) – 13 = 9(8) + 3

88 – 13 = 72 + 3

75 = 75 ✓

This checks out, so 8 is the correct value of x.

Rearranging Equations and Isolating X
When you understand how algebra works like a balance scale, as I show you
in the previous section, you can begin to solve more difficult algebraic equa-
tions. The basic tactic is always the same: Changing both sides of the equa-
tion equally at every step, try to isolate x on one side of the equation.

In this section, I show you how to you put your skills from Chapter 21 to work
solving equations. First, I show you how rearranging the terms in an expres-
sion is similar to rearranging them in an algebraic equation. Next, I show you
how removing parentheses from an equation can help you solve it. Finally,
you discover how cross-multiplication is useful for solving algebraic equa-
tions with fractions.

Rearranging terms on one 
side of an equation
Rearranging terms becomes all-important when working with equations. For
example, suppose you’re working with this equation:

5x – 4 = 2x + 2

When you think about it, this equation is really two expressions connected
with an equal sign. And of course, that’s true of every equation. That’s why
everything you find out about expressions in Chapter 21 is useful for solving
equations. For example, you can rearrange the terms on one side of an equa-
tion. So here’s another way to write the same equation:

–4 + 5x = 2x + 2
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And, here’s a third way:

–4 + 5x = 2 + 2x

This flexibility to rearrange terms comes in handy when you’re solving 
equations.

Moving terms to the other 
side of the equal sign
Earlier in this chapter, I show you how an equation is similar to a balance
scale. For example, take a look at Figure 22-1.

To keep the scale balanced, if you add or remove anything on one side, you
must do the same thing on the other side. For example:

x

x x

x

2 3 11

2 2

3 11 2

- =

- -

- = -

Now take a look at these two versions of this equation side by side:

2x – 3 = 11 –3 = 11 – 2x

In the first version, the term 2x is on the left side of the equal sign. In the
second, the term –2x is on the right side. This example illustrates an impor-
tant rule.

When you move any term in an expression to the other side of the equal sign,
change its sign (from plus to minus or from minus to plus).

=

2x − 3 11

Figure 22-1:
Showing

how an
equation is
similar to a

balance
scale.
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As another example, suppose you’re working with this equation:

4x – 2 = 3x + 1

You have x’s on both sides of the equation, so say you want to move the 3x.
When you move the term 3x from the right side to the left side, you have to
change its sign from plus to minus (technically, you’re subtracting 3x from
both sides of the equation):

4x – 2 – 3x = 1

After that, you can simplify the expression on the left side of the equation by
combining similar terms:

x – 2 = 1

At this point, you can probably see that x = 3 because 3 – 2 = 1. But, just to be
sure, move the –2 term to the right side and change its sign:

x = 1 + 2

x = 3

To check this result, substitute a 3 wherever x appears in the original 
equation:

4 (3) – 2 = 3 (3) + 1

12 – 2 = 9 + 1

10 = 10 ✓

As you can see, moving terms from one side of an equation to the other can
be a big help when you’re solving equations.

Removing parentheses from equations
Chapter 21 gives you a treasure trove of tricks for simplifying expressions,
and they come in very handy when you’re solving equations. One key skill
from that chapter is removing parentheses from expressions. This is also
indispensable when you’re solving equations.

For example, suppose you have the following equation:

5x + (6x – 15) = 30 – (x – 7) + 8
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Your mission is to get all the x terms on one side of the equation and all the
constants on the other. As the equation stands, however, x-terms and con-
stants are “locked together” inside parentheses. That is, you can’t isolate the
x-terms from the constants. So before you can isolate terms, you need to
remove the parentheses from the equation.

Recall that an equation is really just two expressions connected by an equal
sign. So you can start working with the expression on the left side. In this
expression, the parentheses begin with a plus sign (+), so you can just
remove them:

5x + 6x – 15 = 30 – (x – 7) + 8

Now move on to the expression on the right side. This time, the parentheses
come right after a minus sign (–). To remove them, change the sign of both
terms inside the parentheses: x becomes –x, and –7 becomes 7:

5x + 6x – 15 = 30 – x + 7 + 8

Bravo! Now you can isolate x terms to your heart’s content. Move the –x from
the right side to the left, changing it to x: 

5x + 6x – 15 + x = 30 + 7 + 8

Next, move –15 from the left side to the right, changing it to 15:

5x + 6x + x = 30 + 7 + 8 + 15

Now combine similar terms on both sides of the equation:

12x = 30 + 7 + 8 + 15

12x = 60

Finally, get rid of the coefficient 12 by dividing:

x

x
12

12
12
60

5

=

=

As usual, you can check your answer by substituting 5 into the original equa-
tion wherever x appears:

5x + (6x – 15) = 30 – (x – 7) + 8

5(5) + [6(5) – 15] = 30 – (5 – 7) + 8

25 + (30 – 15) = 30 – (–2) + 8

25 + 15 = 30 + 2 + 8

40 = 40 ✓
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Here’s one more example:

11 + 3(–3x + 1) = 25 – (7x – 3) – 12

As in the preceding example, start out by removing both sets of parentheses.
This time, however, on the left side of the equation, you have no sign between
3 and (–3x + 1). But again, you can put your skills from Chapter 21 to use. To
remove the parentheses, multiply 3 by both terms inside the parentheses:

11 – 9x + 3 = 25 – (7x – 3) – 12

On the right side, the parentheses begin with a minus sign, so remove the
parentheses by changing all the signs inside the parentheses:

11 – 9x + 3 = 25 – 7x + 3 – 12

Now, you’re ready to isolate the x terms. I do this in one step, but take as
many steps as you like:

–9x + 7x = 25 + 3 – 12 – 11 – 3

At this point, you can combine similar terms:

–2x = 2

To finish up, divide both sides by –2:

x = –1

As always, check your solution using substitution:

11 + 3(–3x + 1) = 25 – (7x – 3) – 12

11 + 3[–3(–1) + 1] = 25 – [7(–1) – 3] – 12

All the variables are gone now, so remember the order of precedence rules
from Chapter 5. Begin with the multiplication inside the parentheses, which
I’ve underlined:

11 + 3(3 + 1) = 25 – (–7 – 3) – 12

Now you can simplify what’s inside each set of parentheses:

11 + 3(4) = 25 – (–10) – 12
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And now you can remove the parentheses and complete the check:

11 + 12 = 25 + 10 – 12

23 = 23 ✓

Copy this example and work through it a few times with the book closed.

Cross-multiplication
In algebra, cross-multiplication helps to simplify equations by removing
unwanted fractions (and, honestly, when are fractions ever wanted?). As I dis-
cuss in Chapter 9, you can use cross-multiplication to find out whether two
fractions are equal. For example, here are two equal fractions:

4
2

6
3

=

When you cross-multiply them, you multiply the numerator of one fraction by
the denominator of the other:

2(6) = 3(4)

12 = 12 ✓

But suppose you want to solve this algebra equation:

x
x

x
x

2 2 4
2 3

-
=

+

This equation looks hairy. You can’t do the division or cancel anything out
because the fraction on the left has two terms in the denominator, and the frac-
tion on the right has two terms in the numerator (see Chapter 21 for info on
dividing algebraic terms). However, an important piece of information 

that you have is that the fraction x
x

2 2-
equals the fraction x

x
4

2 3+ . So if you 

cross-multiply these two fractions, you get two results that are also equal:

x(4x) = (2x + 3)(2x – 2)

At this point, you have something you know how to work with. The left side
is easy:

4x2 = (2x + 3)(2x – 2) 
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The right side requires a bit of FOILing (flip to Chapter 21 for details):

4x2 = 4x2 – 4x + 6x – 6

Now all the parentheses are gone, so you can isolate the x terms. Because
most of these terms are already on the right side of the equation, isolate
them on that side:

6 = 4x2 – 4x + 6x – 4x2

Combining like terms gives you a very pleasant surprise:

6 = 2x

The two x2 terms cancel each other out. You may be able to eyeball the correct
answer, but here’s how to finish:

x

x
2
6

2
2

3

=

=

To check your answer, substitute 3 back into the original equation:

2 3 2
3

4 3
2 3 3

6 2
3

12
6 3

4
3

12
9

4
3

4
3

-
=

+

-
=

+

=

=

^ ^

^

h h

h

This checks out, so the answer x = 3 is correct. 
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Chapter 23

Putting Mr. X to Work:
Algebra Word Problems

In This Chapter
� Solving algebra word problems in simple steps

� Working through solving an algebra word problem

� Choosing variables 

� Using charts

Word problems that require algebra are among the toughest problems
that students face — and the most common. Teachers just love alge-

bra word problems because they bring together a lot of what you know, such
as solving algebra equations (Chapters 21 and 22) and turning words into
numbers (see Chapters 6, 13, and 18). And standardized tests virtually always
include these types of problems.

In this chapter, I show you a five-step method for using algebra to solve
word problems. Then, I give you a bunch of examples that take you through
all five steps. 

Along the way, I give you some important tips that can make solving word
problems easier. First, I show you how to choose a variable that makes your
equation as simple as possible. Next, I give you practice organizing informa-
tion from the problem into a chart. By the end of this chapter, you should
have a solid understanding of how to solve a wide variety of algebra word
problems.
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Solving Algebra Word Problems 
in Five Steps

Everything from Chapters 21 and 22 comes into play when you use algebra to
solve word problems, so if you feel a little shaky on solving algebraic equa-
tions, flip back to those chapters for some review. 

Throughout this section, I use the following word problem as an example:

In three days, Alexandra sold a total of 31 tickets to her school play. On
Tuesday, she sold twice as many tickets as on Wednesday. And on
Thursday, she sold exactly 7 tickets. How many tickets did Alexandra sell
on each day, Tuesday through Thursday?

Organizing the information in an algebra word problem using a chart or picture
is usually helpful. Here’s what I came up with:

Tuesday: twice as many as on Wednesday

Wednesday: ?

Thursday: 7

Total: 31

At this point, all the information is in the chart, but the answer still may not
be jumping out at you. In this section, I outline a step-by-step method that
enables you to solve this problem and much harder ones as well.

Here are the five steps for solving most algebra word problems:

1. Declare a variable.

2. Set up the equation.

3. Solve the equation.

4. Answer the question that the problem asks.

5. Check your answer.

Declaring a variable
As you know from Chapter 21, a variable is a letter that stands for a number.
Most of the time, you don’t find the variable x (or any other variable, for that
matter) in a word problem. That doesn’t mean you don’t need algebra to
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solve the problem. It just means that you’re going to have to put x into the
problem yourself and decide what it stands for.

When you declare a variable, you say what that variable means in the problem
you’re solving.

Here are some examples of variable declarations:

Let m = the number of dead mice that the cat dragged into the house.

Let p = the number of times Marianne’s husband promised to take out the
garbage.

Let c = the number of complaints Arnold received after he painted his
garage door purple.

In each case, you take a variable (m, p, or c) and give it a meaning by attaching
it to a number.

Notice that the earlier chart for the sample problem has a big question mark
next to Wednesday. This question mark stands for some number, so you may
want to declare a variable that stands for this number. Here’s how you do it:

Let w = the number of tickets that Alexandra sold on Wednesday.

Whenever possible, choose a variable with the same initial as what the vari-
able stands for. This practice makes remembering what the variable means a
lot easier, which will help you later in the problem.

For the rest of the problem, every time you see the variable w, keep in mind
that it stands for the number of tickets that Alexandra sold on Wednesday.

Setting up the equation
After you have a variable to work with, you can go through the problem again
and find other ways to use this variable. For example, Alexandra sold twice
as many tickets on Tuesday as on Wednesday, so she sold 2w tickets on
Tuesday. Now you have a lot more information to fill in the chart:

Tuesday: Twice as many as on Wednesday 2w

Wednesday: ? w

Thursday: 7 7

Total: 31 31
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You know that the total number of tickets, or the sum of the tickets she sold
on Tuesday, Wednesday, and Thursday, is 31. With the chart filled in like that,
you’re ready to set up an equation to solve the problem:

2w + w + 7 = 31

Solving the equation
After you set up an equation, you can use the tricks from Chapter 22 to solve
the equation for w. Here’s the equation one more time:

2w + w + 7 = 31

For starters, remember that 2w really means w + w. So on the left, you know
you really have w + w + w, or 3w; you can simplify the equation a little bit as
follows:

3w + 7 = 31

The goal at this point is to try to get all the terms with w on one side of the
equation and all the terms without w on the other side. So on the left side of
the equation, you want to get rid of the 7. The inverse of addition is subtrac-
tion, so subtract 7 from both sides:

w

w

3 7 31

7 7

3 24

+ =

- -

=

You now want to isolate w on the left side of the equation. To do this, you
have to undo the multiplication by 3, so divide both sides by 3:

w

w
3

3
3

24

8

=

=

Answering the question
You may be tempted to think that after you’ve solved the equation, you’re
done. But you still have a bit more work to do. Look back at the problem, and
you see that it asks you this question:

How many tickets did Alexandra sell on each day, Tuesday through
Thursday? 
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At this point, you have some information that can help you solve the prob-
lem. The problem tells you that Alexandra sold 7 tickets on Thursday. And
because w = 8, you now know that she sold 8 tickets on Wednesday. And on
Tuesday, she sold twice as many on Wednesday, so she sold 16. So Alexandra
sold 16 tickets on Tuesday, 8 on Wednesday, and 7 on Thursday.

Checking your work
To check your work, compare your answer to the problem, line by line, to
make sure every statement in the problem is true:

In three days, Alexandra sold a total of 31 tickets to her school play.

That’s correct, because 16 + 8 + 7 = 31.

On Tuesday, she sold twice as many tickets as on Wednesday. 

Correct, because she sold 16 tickets on Tuesday and 8 on Wednesday.

And on Thursday, she sold exactly 7 tickets. 

Yep, that’s right, too, so you’re good to go.

Choosing Your Variable Wisely
Declaring a variable is simple, as I show you earlier in this chapter, but you
can make the rest of your work a lot easier when you know how to choose
your variable wisely. Whenever possible, choose a variable so that the equa-
tion you have to solve has no fractions, which are much more difficult to
work with than whole numbers.

For example, suppose you’re trying to solve this problem: 

Irina has three times as many clients as Toby. If they have 52 clients 
all together, how many clients does each person have?

The key sentence in the problem is “Irina has three times as many clients
as Toby.” It’s significant because it indicates a relationship between Irina and
Toby that’s based on either multiplication or division. And to avoid fractions,
you want to avoid division wherever possible.
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Whenever you see a sentence that indicates you should use either multiplica-
tion or division, choose your variable to represent the smaller number. In this
case, Toby has fewer clients than Irina, so choosing t as your variable is the
smart move.

Suppose you begin by declaring your variable as follows:

Let t = the number of clients that Toby has.

Then, using that variable, you can make this chart:

Irina 3t

Toby t

No fraction! Now, to solve this problem, set up this equation:

Irina + Toby = 52

Plug in the values from the chart:

3t + t = 52

Now you can solve the problem easily using what I show you in Chapter 22:

4t = 52

t = 13

Toby has 13 clients, so Irina has 39. To check this result — which I recom-
mend highly earlier in this chapter! — note that 13 + 39 = 52.

Now suppose that instead, you take the opposite route and decide to declare
a variable as follows:

Let i = the number of clients that Irina has.

Given that variable, you’d have to represent Toby’s clients using the fraction i
3 ,

which leads to the same answer but a lot more work.

Solving More-Complex Algebraic Problems
Algebra word problems become more complex when the number of people
or things that you need to find out increases. In this section, the complexity
increases from two or three people to four and then five. When you’re done,
you should feel comfortable solving algebra word problems of significant 
difficulty.
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Charting four people 
As in the previous section, a chart can help you organize information so you
don’t get confused. Here’s a problem that involves four people:

Alison, Jeremy, Liz, and Raymond participated in a canned goods drive at
work. Liz donated three times as many cans as Jeremy, Alison donated
twice as many as Jeremy, and Raymond donated 7 more than Liz. Together,
the two women donated two more cans than the two men. How many cans
did the four people donate all together?

The first step, as always, is declaring a variable. Remember that to avoid frac-
tions, you want to declare a variable based on the person who brought in the
fewest cans. But Liz donated more cans than Jeremy, and so did Alison.
Furthermore, Raymond donated more cans than Liz. So, because Jeremy
donated the fewest cans, declare your variable as follows:

Let j = the number of cans that Jeremy donated

Now you can set up your chart as follows:

Jeremy j

Liz 3j

Alison 2j

Raymond Liz + 7 = 3j + 7

This looks good because, as expected, there are no fractional amounts in the
chart. The next sentence tells you that the women donated two more cans
than the men, so make a word problem, as I show you in Chapter 6:

Liz + Alison = Jeremy + Raymond + 2

You can now substitute into this equation as follows:

3j + 2j = j + 3j + 7 + 2

With your equation set up, you’re ready to solve. First, isolate the algebraic
terms:

3j + 2j – j – 3j = 7 + 2

Combine similar terms:

j = 9
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Almost without effort, you’ve solved the equation, so you know that Jeremy
donated 9 cans. With this information, you can go back to the chart, plug in 9
for j, and find out how many cans the other children donated: Liz donated 27,
Alison donated 18, and Raymond donated 34. Finally, you can add up these
numbers to conclude that the four people donated 88 cans altogether.

To check the numbers, read through the problem and make sure they work at
every point in the story. For example, together Liz and Alison donated 45 cans
and Jeremy and Raymond donated 43, so the women really did donate 2 more
cans than the men.

Crossing the finish line with five people
Here’s one final example, the most difficult in this chapter, in which you have
five people to work with.

Five friends are keeping track of how many miles they run. So far this
month, Mina has run 12 miles, Suzanne has run 3 more miles than Jake,
and Kyle has run twice as far as Victor. But tomorrow, after they all com-
plete a 5-mile run, Jake will have run as far as Mina and Victor combined,
and the whole group will have run 174 miles. How far has each person
run so far?

The most important thing to notice in this problem is that there are two sets
of numbers: the miles that all five people have run up to today and their
mileage including tomorrow. And each person’s mileage tomorrow will be five
miles greater than his or her mileage today. Here’s how to set up a chart:

Today Tomorrow (Today + 5)

Jake

Kyle

Mina

Suzanne

Victor

With this chart, you’re off to a good start to solve this problem. Next, look for
that statement early in the problem that connects two people by either multi-
plication or division. Here it is:

. . . Kyle has run twice as far as Victor.

Because Victor has run fewer miles than Kyle, declare your variable as follows:

Let v = the number of miles that Victor has run up to today.
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Notice that I added the word today to the declaration to be very clear that I’m
talking about Victor’s miles before the 5-mile run tomorrow.

At this point, you can begin filling in the chart:

Today Tomorrow (Today + 5)

Jake

Kyle 2v 2v + 5

Mina 12 17

Suzanne

Victor v v + 5

As you can see, I left out the information about Jake and Suzanne because I
can’t represent it using the variable v. I’ve also begun to fill in the Tomorrow
column by adding 5 to my numbers in the Today column.

Now I can move on to the next statement in the problem:

But tomorrow . . . Jake will have run as far as Mina and Victor combined. . . .

I can use this to fill in Jake’s information:

Today Tomorrow (Today + 5)

Jake 17 + v 17 + v + 5

Kyle 2v 2v + 5

Mina 12 17

Suzanne

Victor v v + 5

In this case, I first filled in Jake’s tomorrow distance (17 + v + 5) and then sub-
tracted 5 to find out his today distance. Now I can use the information that,
today, Suzanne has run 3 more miles than Jake:

Today Tomorrow (Today + 5)

Jake 17 + v 17 + v + 5

Kyle 2v 2v + 5

Mina 12 17

Suzanne 17 + v + 3 17 + v + 8

Victor v v + 5
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With the chart filled in like this, you can begin to set up your equation. First,
set up a word equation as follows:

Jake tomorrow + Kyle tomorrow + Mina tomorrow + Suzanne tomorrow +
Victor tomorrow = 174

Now, just substitute information from the chart into this word equation to set
up your equation:

17 + v + 5 + 2v + 5 + 17 + 17 + v + 8 + v + 5 = 174

As always, begin solving by isolating the algebraic terms:

v + 2v + v + v = 174 – 17 – 5 – 5 – 17 – 17 – 8 – 5

Next, combine similar terms:

5v = 100

Finally, to get rid of the coefficient in the term 5v, divide both sides by 5:

v

v
5

5
5

100

20

=

=

You now know that Victor’s total distance up to today is 20 miles. With this
information, you substitute 20 for v and fill in the chart as follows:

Today Tomorrow (Today + 5)

Jake 37 42

Kyle 40 45

Mina 12 17

Suzanne 40 45

Victor 20 25

The Today column contains the answers to the question that the problem
asks. To check this solution, make sure that every statement in the problem is
true. For example, tomorrow the five people will have run a total of 174 miles
because

42 + 45 + 17 + 45 + 25 = 174 

Copy down this problem, close the book, and work through it for practice.
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The Part of Tens
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In this part . . .
Just for fun, this part of the book includes a couple of

top-ten lists on math-related topics. I show you some
important math concepts you should remember not to
forget. And I list some very important sets of numbers.
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Chapter 24

Ten Key Math Concepts You
Shouldn’t Ignore

In This Chapter
� Appreciating how simple concepts are indispensable in math

� Seeing why π and prime numbers are important

� Understanding the importance of sets and functions

� Looking at more-advanced concepts

Math itself is one big concept, and it’s chock full of so many smaller con-
cepts that no one person, however long he or she studies, can pos-

sibly understand them all.

But inside all this, certain concepts get so much airplay that in my humble
opinion, they make the Math Hall of Fame. Each of these ideas changed not
only math but also the way people thought of the world. Knowing them can
change your world, too — or at least give you a broader perspective of what
math is all about. 

So here’s my list of the ten most important concepts in mathematics.

Getting Set with Sets
A set is a collection of objects. The objects, called elements of the set, can 
be tangible (shoes, bobcats, people, jellybeans, and so forth) or intangible
(fictional characters, ideas, numbers, and the like).

Sets are such a simple and flexible way of organizing the world that you can
define all of math in terms of them. How mathematicians do this is very com-
plex, but a basic understanding of sets isn’t difficult and is part of most math
education. See Chapter 20 for more on set theory and Chapter 25 for some
significant number sets.
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Playing with Prime Numbers
A prime number is any counting number that has exactly two divisors (num-
bers that divide into it evenly) — 1 and the number itself. Here are the first
ten prime numbers:

2 3 5 7 11 13 17 19 23 29 ...

Prime numbers go on forever — that is, the list is infinite.

Beyond this, prime numbers are, in an important sense, the elements from
which all other numbers can be built. Every counting number greater 
than 1, no matter how large, can be written as the unique product of prime
numbers. 

Far more than just a curious bit of trivia, the uniqueness of each number’s
prime factors goes by a much more important name: the Fundamental
Theorem of Arithmetic. See Chapters 1 and 7 for more on prime numbers.

Zero: Much Ado about Nothing
Zero may look like a big nothing, but it’s actually one of the greatest inven-
tions of all time. Like all inventions, it didn’t exist until someone thought of it.
The Greeks and Romans, who knew so much about math and logic, knew
nothing about zero. The number systems they used had no way to express,
for example, how many olive trees you had left when you started with three
and an angry neighbor cut down all three of them.

The concept of zero as a number arose independently in several different
places. In South America, the number system that the Mayans used included
a symbol for zero. And the Hindu-Arabic system used throughout most 
of the world today developed from an earlier Arabic system that used 
zero as a placeholder. (See Chapter 2 for more on the use of zero as a 
placeholder.)

In fact, zero isn’t really nothing — it’s simply a way to express nothing mathe-
matically. And that’s really something.
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Going Greek: Pi (π)
The symbol π (pi — pronounced pie) is a Greek letter that stands for the ratio
of the circumference of a circle to its diameter (see Chapter 16 for the scoop
on circles). Here’s the approximate value of π:

π ≈ 3.1415926535 ...

Although π is just a number — or, in algebraic terms, a constant — it’s impor-
tant for several reasons:

� Geometry just wouldn’t be the same without it. Circles are one of the
most basic shapes in geometry, and you need π to measure the area and
the circumference of a circle. So if aliens land in your cornfield and you
want to measure the resulting crop circles, or if you just want to know
the area of your round kitchen table, π can come in handy.

� Pi is an irrational number, which means that no fraction that equals it
exactly exists. Beyond this, π is a transcendental number, which means
that it’s never the value of x in a polynomial equation (the most basic
type of algebraic equation). Thus, even though π emerges from a very
simple operation (measuring a circle), it contains a deep complexity that 
numbers such as 0, 1, –1, 1⁄2, and even 2 don’t share. (See Chapter 25 for
details on irrational and transcendental numbers.)

� Pi is everywhere in math. It shows up constantly (no pun intended)
where you’d least expect it. One example is trigonometry, the study of
triangles. Triangles obviously aren’t circles, but trig uses circles to mea-
sure the size of angles, and you can’t swing a compass without hitting π.

On the Level: Equal Signs and Equations
Almost everyone takes the humble equal sign (=) for granted. It’s so common
in math that it goes virtually unnoticed. But the fact that the equal sign
shows up practically everywhere only adds weight to the idea that the con-
cept of equality — an understanding of when one thing is mathematically the
same as another — is one of the most important math concepts ever created.

A mathematical statement with an equal sign is an equation. The equal sign
links two mathematical expressions that have the same value. The power of
math lies in this linkage. That’s why nearly everything in math involves equa-
tions. On their own, expressions are limited in their usefulness. The equal
sign provides a powerful way to connect expressions, which allows scientists
to connect ideas in new ways.
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For example, for thousands of years, energy and matter were seen as sepa-
rate and unrelated. Einstein’s famous equation — E = mc2 — links an expres-
sion that represents energy with one that represents matter. The result is a
radically altered view of the universe.

For details on how the concepts of equality and balance play out in algebra,
flip to Chapter 22.

On the Grid: The Cartesian Graph
The Cartesian graph (also called the Cartesian coordinate system) is the
fancy name for the good old-fashioned graph that I discuss in Chapter 17. It
was invented by French philosopher and mathematician René Descartes.

What’s so special about the Cartesian graph? Before the graph was invented,
algebra and geometry were studied for centuries as two separate and unre-
lated areas of math. Algebra was exclusively the study of equations (see 
Part V), and geometry was solely the study of figures on the plane or in space
(see Chapter 16).

Descartes’ invention of the graph brought algebra and geometry together.
The result was analytic geometry, a new mathematics that not only merged
the ancient sciences of algebra and geometry but also brought greater clarity
to both. Now, you can draw solutions to equations that include the variables
x and y as points, lines, circles, and other geometric shapes on a graph. 

In and Out: Relying on Functions
A function is a mathematical machine that takes in one number (called the
input) and gives back exactly one other number (called the output). It’s kind
of like a blender because what you get out of it depends on what you put into
it: When you put in ice cream, you get a milkshake. When you put in fruit, you
get a fruit smoothie. When you put in your cellphone, you get a heinously
damaged cellphone.

Suppose I invent a function called PlusOne that adds 1 to any number. So
when you input the number 2, the number that gets outputted is 3: 

PlusOne 2 3=^ h
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Similarly, when you input the number 100, the number that gets outputted 
is 101: 

100 101PlusOne =^ h

As you can see, whenever you input an even number, the function PlusOne
outputs an odd number. And this will happen for every even number. Thus,
this function maps the set of even numbers to the set of odd numbers. 

This process may look rather simplistic, but as with sets, the simplicity of
functions gives them their power. Functions allow mathematicians — and a
host of other people, such as computer programmers, statisticians, biolo-
gists, economists, and psychologists — to perceive a complex world in a
mathematical way.

Functions get a lot of play as you move forward in algebra. For now, just
remember that a function takes an input and gives you an output. For a
deeper look at functions, see Algebra For Dummies by Mary Jane Sterling
(Wiley).

Exploring the Infinite
The very word infinity commands great power. So does the symbol for infinity
(∞). How big is infinity? Here’s a common answer: If you were to count all the
grains of sand on all the beaches in the world and then do the same thing on
every planet in our galaxy, by the time you were done counting, you’d be no
closer to infinity than you are right now. Yessiree, that’s big. (Don’t you wish
you’d gone sightseeing on all those other planets instead?)

In fact, infinity isn’t a number at all. Infinity, beyond any classification of size
or number, is the very quality of endlessness. And yet, mathematicians have
tamed infinity to a great extent.

In his invention of calculus, Sir Isaac Newton introduced the concept of a limit,
which allows you to calculate what happens to numbers as they get very large
and approach infinity. And in his transfinite mathematics, Georg Cantor
proved that the very infinity I just described is only the very smallest of a set
of larger infinities. And here’s the kicker: This set of larger and larger infinities
itself is infinite. (See Chapter 25 for more on Cantor’s transfinite numbers.)
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The Real Number Line
The number line has been around for a very long time, and it’s one of the first
visual aids that teachers use to teach kids about numbers. Every point on the
number line stands for a number. Well, okay, that sounds pretty obvious, but
strange to say, this concept wasn’t fully understood for thousands of years.

The Greek philosopher Zeno of Elea posed this problem, called Zeno’s
Paradox: In order to walk across the room, you have to first walk half the dis-
tance (1⁄2) across the room. Then you have to go half the remaining distance
(1⁄4). After that, you have to go half the distance that still remains (1⁄8). This
pattern continues forever:

1⁄2 1⁄4 1⁄8 1⁄16
1⁄32

1⁄64
1⁄128

1⁄256 ...

So you can never get to the other side of the room.

Obviously, in the real world, you can and do walk across rooms all the time.
But from the standpoint of math, Zeno’s Paradox and other similar paradoxes
remained unanswered for about 2,000 years.

The basic problem was this: All the fractions listed in the preceding sequence
are between 0 and 1 on the number line. And there are an infinite number of
them. But how can you have an infinite number of numbers in a finite space?

Mathematicians of the 19th century — Augustin Cauchy, Richard Dedekind,
Karl Weierstrass, and Georg Cantor foremost among them — solved this 
paradox. The result was real analysis, the advanced mathematics of the real
number line. 

The Imaginary Number i
The imaginary numbers are a set of numbers not found on the real number
line. If that idea sounds unbelievable — where else would they be? — don’t
worry: For thousands of years, mathematicians didn’t believe in them, either.
But real-world applications in electronics, particle physics, and many other
areas of science have turned skeptics into believers. So if your summer plans
include wiring your secret underground lab or building a flux capacitor for
your time machine — or maybe just studying to get a degree in electrical engi-
neering — you’ll find that imaginary numbers are too useful to be ignored.

See Chapter 25 for info on imaginary and complex numbers.
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Chapter 25

Ten Important Number 
Sets You Should Know

In This Chapter
� Identifying counting numbers, integers, rational numbers, and real numbers

� Discovering imaginary and complex numbers

� Looking at how transfinite numbers represent higher levels of infinity

The more you find out about numbers, the stranger they become. When
you’re working with just the counting numbers and a few simple opera-

tions, numbers seem to develop a landscape all their own. The terrain of this
landscape starts out uneventful, but as you introduce other sets, it soon
turns surprising, shocking, and even mind-blowing. In this chapter, I take you
on a mind-expanding tour of ten sets of numbers.

I start with the very familiar and comfy counting numbers. I continue with 
the integers (positive and negative counting numbers and 0), the rational
numbers (integers and fractions), and real numbers (all numbers on the
number line). I also take you on a few side routes along the way. The tour
ends with the bizarre and almost unbelievable transfinite numbers. And in a
way, the transfinite numbers bring you back to where you started at the very
beginning — with the counting numbers.

Each of these sets of numbers serves a different purpose, some familiar (such
as accounting or carpentry), some scientific (such as electronics and
physics), and a few purely mathematical. Enjoy the ride!
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Counting on Counting (Or 
Natural) Numbers 

The counting numbers — also called the natural numbers — are probably the
first numbers you ever encountered. They start with 1 and go up from there:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...

The three dots (or ellipsis) at the end tell you that the sequence of numbers
goes on forever — in other words, it’s infinite.

The counting numbers are useful for keeping track of tangible objects:
stones, chickens, cars, cellphones — anything that you can touch and that
you don’t plan to cut into pieces.

The set of counting numbers is closed under both addition and multiplica-
tion. That is, if you add or multiply any two counting numbers, the result is
also a counting number. But the set isn’t closed under subtraction or divi-
sion. For example, if you subtract 2 – 3, you get –1, which is a negative
number rather than a counting number. And if you divide 2 ÷ 3, you get 2⁄3,
which is a fraction.

If you place 0 in the set of counting numbers, you get the set of whole numbers.

Identifying Integers
The set of integers includes the counting numbers (see the preceding section),
the negative counting numbers, and 0:

..., –6, –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6, ...

The dots, or ellipses, at the beginning and the end of the set tell you that the
integers are infinite in both the positive and negative directions.

Because the integers include the negative numbers, you can use them to keep
track of anything that can potentially involve debt. In today’s culture, that’s
usually money. For example, if you have $100 in your checking account and
write a check for $120, you find that your new balance will drop to –$20 (not
counting any fees that the bank charges!).
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The set of integers is closed under addition, subtraction, and multiplication.
In other words, if you add, subtract, or multiply any two integers, the result is
also an integer. But the set isn’t closed under division. For example, if you
divide the integer –2 by the integer 5, you get the fraction –2⁄5, which isn’t an
integer.

Knowing the Rationale behind 
Rational Numbers

The rational numbers include the integers (see the preceding section) and all
the fractions between the integers. Here, I list only the rational numbers from
–1 to 1 whose denominators (bottom numbers) are positive numbers less
than 5:

... –1 ... –3⁄4 ... –2⁄3 ... –1⁄2 ... –1⁄3 ... –1⁄4 ... 0 ... 1⁄4 ... 1⁄3 ... 1⁄2 ... 2⁄3 ... 3⁄4 ... 1 ...

The ellipses tell you that between any pair of rational numbers are an infinite
number of other rational numbers — a quality called the infinite density of
rational numbers.

Rational numbers are commonly used for measurement in which precision is
important. For example, a ruler wouldn’t be much good if it were to measure
length only to the nearest inch. Most rulers measure length to the nearest 1⁄16

of an inch, which is close enough for most purposes. Similarly, measuring
cups, scales, precision clocks, and thermometers that allow you to make
measurements to a fraction of a unit also use rational numbers. (See Chapter
15 for more on units of measurement.)

The set of rational numbers is closed under the Big Four operations. That is,
if you take any two rational numbers and add, subtract, multiply, or divide
them, the result is always another rational number.

Making Sense of Irrational Numbers
In a sense, the irrational numbers are a sort of catchall; every number on the
number line that isn’t rational is irrational.

By definition, no irrational number can be represented as a fraction; nor can
an irrational number be represented as either a terminating decimal or a
repeating decimal (see Chapter 11 for more about these types of decimals).
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Instead, an irrational number can be approximated only as a non-terminating,
non-repeating decimal: the string of numbers after the decimal point goes on
forever without creating a pattern.

The most famous example of an irrational number is π, which represents the
circumference of a circle with a diameter of 1 unit. Another common irra-
tional number is 2, which represents the diagonal distance across a square
with a side of 1 unit. In fact, all square roots of non-square numbers (such as 

3, 5, and so forth) are irrational numbers.

Irrational numbers fill out the spaces in the real number line. (The real
number line is just the number line you’re used to, but it’s continuous; it has
no gaps so that every point is paired with a number.) These numbers are
used in many cases in which you need not just a high level of precision, as
with the rational numbers, but the exact value of a number that can’t be rep-
resented as a fraction.

Irrational numbers come in two varieties: algebraic numbers and transcenden-
tal numbers. I discuss both of these types of numbers in the sections that
follow.

Absorbing Algebraic Numbers
To understand algebraic numbers, you need a little information about poly-
nomial equations. A polynomial equation is an algebraic equation that meets
the following conditions:

� Its operations are limited to addition, subtraction, and multiplication. In
other words, you don’t have to divide by a variable.

� Its variables are raised only to positive, whole-number exponents.

You can find out more about polynomials in Algebra For Dummies by Mary
Jane Sterling (Wiley). Here are some polynomial equations:

2x + 14 = (x + 3)2

2x2 – 9x – 5 = 0

Every algebraic number shows up as the solution of at least one polynomial
equation. For example, suppose you have the following equation:

x2 = 2

You can solve this equation as x = 2. Thus, 2 is an algebraic number
whose approximate value is 1.4142135623... (see Chapter 4 for more informa-
tion on square roots).
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Moving through Transcendental Numbers
A transcendental number, in contrast to an algebraic number (see the preced-
ing section), is never the solution of a polynomial equation. Like the irrational
numbers, transcendental numbers are also a sort of catchall: Every number
on the number line that isn’t algebraic is transcendental.

The best known transcendental number is π, whose approximate value is
3.1415926535... . Its uses begin in geometry but extend to virtually all areas of
mathematics. (See Chapters 16 and 24 for more on π.)

Other important transcendental numbers come about when you study
trigonometry, the math of right triangles. Sines, cosines, tangents, and other
trigonometric functions are often transcendental numbers.

Another important transcendental number is e, whose approximate value is
2.7182818285... . The number e is the base of the natural logarithm, which you
probably won’t use until you get to pre-calculus or calculus. People use e to
do problems on compound interest, population growth, radioactive decay,
and the like.

Getting Grounded in Real Numbers
The set of real numbers is the set of all rational and irrational numbers (see the
earlier sections). The real numbers comprise every point on the number line. 

Like the rational numbers (see “Knowing the Rationale behind Rational
Numbers,” earlier in this chapter), the set of real numbers is closed under the
Big Four operations. That is, if you take any two real numbers and add, sub-
tract, multiply, or divide them, the result is always another real number.

Trying to Imagine Imaginary Numbers
An imaginary number is any real number multiplied by 1- .

To understand what’s so strange about imaginary numbers, it helps to know
a bit about square roots. The square root of any number is a second number
that, when multiplied by itself, gives you the first number. For example, the
square root of 9 is 3 because 3 ⋅ 3 = 9. And the square root of 9 is also –3
because –3 ⋅ –3 = 9. (See Chapter 4 for more on square roots and multiplying
negative numbers.)
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The problem with finding 1- is that it isn’t on the real number line (because
it isn’t in the set of real numbers). If it were on the real number line, it would
be a positive number, a negative number, or 0. But when you multiply any
positive number by itself, you get a positive number. And when you multiply
any negative number by itself, you also get a positive number. Finally, when
you multiply 0 by itself, you get 0.

If 1- isn’t on the real number line, where is it? That’s a good question. For
thousands of years, mathematicians believed that the square root of a nega-
tive number was simply meaningless. They banished it to the mathematical
non-place called undefined, which is the same place where they kept fractions
with a denominator of 0. In the 19th century, however, mathematicians began
to find these numbers useful and found a way to incorporate them into the
rest of math. 

Mathematicians designated 1- with the symbol i. Because it didn’t fit onto
the real number line, i got its own number line, which looks a lot like the real
number line. Figure 25-1 shows some numbers that form the imaginary
number line.

Even though these numbers are called imaginary, mathematicians today con-
sider them no less real than the real numbers. And the scientific application
of imaginary numbers to electronics and physics has verified that these num-
bers are more than just figments of someone’s imagination.

Grasping the Complexity 
of Complex Numbers

A complex number is any real number (see “Getting Grounded in Real
Numbers,” earlier in this chapter) plus or minus an imaginary number 
(see the preceding section). Here are some examples:

1 + i 5 – 2i –100 + 10i

−3i −2i −i 0 i 2i 3i

Figure 25-1:
Numbers

on the
imaginary

number line.
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You can turn any real number into a complex number by just adding 0i
(which equals 0):

3 = 3 + 0i –12 = –12 + 0i 3.14 = 3.14 + 0i

These examples show you that the real numbers are just a part of the larger
set of complex numbers.

Like the rational numbers and real numbers (check out the sections earlier in
this chapter), the set of complex numbers is closed under the Big Four opera-
tions. That is, if you take any two complex numbers and add, subtract, multi-
ply, or divide them, the result is always another complex number.

Going beyond the Infinite 
with Transfinite Numbers

The transfinite numbers are a set of numbers representing different levels of
infinity. Consider this for a moment: The counting numbers (1, 2, 3, ...) go on
forever, so they’re infinite. But there are more real numbers than counting
numbers.
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Getting inside subsets
Many sets of numbers actually fit inside other
sets. Mathematicians call these nesting sets
subsets. For instance, the set of integers is
called Z for short. Because the set of counting
or natural numbers (represented as N) is com-
pletely contained within the set of integers, N
is a subset, or part, of Z.

The set of rational numbers is called Q. Because
the set of integers is completely contained
within the set of rational numbers, N and Z are
both subsets of Q.

R stands for the set of real numbers. Because the
set of rational numbers is completely contained

within the set of real numbers, N, Z, and Q are all
subsets of R.

The set of complex numbers is called C. Because
the set of real numbers is completely contained
within the set of complex numbers, N, Z, Q, and R
are all subsets of C.

The symbol � means is a subset of (see Chap-
ter 20 for details on set notation). So here’s how
the sets fit inside each other:

N � Z � Q � R � C
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In fact, the real numbers are infinitely more infinite than the counting num-
bers. Mathematician Georg Cantor proved this fact. He also proved that for
every level of infinity, you can find another level that’s even higher. He called
these numbers transfinite because they transcend, or go beyond, what you
think of as infinite.

The lowest transfinite number is ℵ0 (aleph null), which equals the number of
elements in the set of counting numbers. Because the counting numbers are
infinite, the familiar symbol for infinity (∞) and ℵ0 mean the same thing.

The next transfinite number is ℵ1 (aleph one), which equals the number of
elements in the set of real numbers. This is a higher order of infinity than ∞.

The sets of integers, rational, and algebraic numbers all have ℵ0 elements.
And the sets of irrational, transcendental, imaginary, and complex numbers
all have ℵ1 elements.

Higher levels of infinity exist, too. Here’s the set of transfinite numbers:

ℵ0, ℵ1, ℵ2, ℵ3, ...

The ellipsis tells you that the sequence of transfinite numbers goes on 
forever — in other words, that it’s infinite. As you can see, on the surface, the
transfinite numbers look similar to the counting numbers (in the first section
of this chapter). That is, the set of transfinite numbers has ℵ0 elements.
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• Symbols and Numerics •
≈ (approximately equals), 34–35, 67
{} (braces), 288
[=/] (doesn’t equal), 66
÷ (division sign), 51
· (dot), 44–45
... (ellipsis), 288
= (equal to), 343–344
— (fraction bar), 51
/ (fraction slash), 51
> (greater than), 67
∞ (infinity)

defined, 20
overview, 345

< (less than), 67
– (minus sign), 39
9 times table, 49
() (parentheses)

order of precedence in expressions with,
79–82

overview, 45
removing from algebraic expressions,

310–333
removing from equations, 323–326

% (percent)
changing decimals to, 181
circle, 188–191
converting fractions into, 182–183
converting to decimals, 181
converting to fractions, 182
decreases, 201–204
defined, 179
greater than, 100, 180
increases, 201–204
multiplying, 198–201
solving problems, 183–186
types of problems, 187–188
word problems, 195, 201–204

+ (plus sign), 38

π (pi)
measuring, 241
overview, 343

2-D shapes
measuring, 239–240
overview, 233–236

3-D
measuring in, 246–250
shapes with curves, 238–239

x (algebraic symbol)
defined, 298
isolating, 320–327
using in algebraic equations, 298, 316

x (multiply sign), 44

• A •
A (area). See also formulas

circle formula, 241
defined, 239
parallelogram formula, 245
rectangle formula, 244
rhombus formula, 245
square formula, 243
trapezoid formula, 246, 268
triangle formula, 242, 268

absolute value, 70
acute angles, 232
addends, 38
adding

algebraic terms, 305–306
arithmetic equations, 76
associative operations, 60
carrying digits, 38–39
commutative operations, 59
decimals, 164–165
exponents, 210
expressions, 76
fractions, 136–143
inverse operations, 58–59

Index
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adding (continued)
large numbers in columns, 38–39
mixed numbers, 148–151
negative numbers, 62–63
on the number-line, 18–19
overview, 37–39
units, 65
word problems, 193–195

addition. See adding
algebra

declaring variables, 333–334
solving word problems, 330–333, 334–338
word problems overview, 329

Algebra For Dummies (Sterling), 345, 350
Algebra II For Dummies (Sterling), 288
algebraic equations. See also algebraic

expressions; arithmetic equations
balancing scale, 318–321
cross-multiplication, 326–327
isolating x, 320–321
overview, 316
rearranging terms, 321–323
removing parentheses, 323–326
setting up, 331–332
solving, 317–318, 332
using x in, 316

algebraic expressions. See also algebraic
equations; arithmetic equations

adding terms, 305–306
algebraic terms, 301–302
arithmetic expressions versus, 299
coefficient, 304
distribution, 311–312
dividing terms, 308–309
evaluating, 299–301
FOILing, 312–313
multiplying terms, 307
overview, 298–299
parentheses, 310–311, 312–313
rearranging terms, 302–303
removing parentheses, 310–313
similar terms, 304–305
simplifying, 309–313
subtracting terms, 306
variable, 304

algebraic numbers, 350

algebraic terms
adding, 305–306
defined, 302
dividing, 308–309
multiplying, 307
rearranging, 302–303
subtracting, 306

angles, 231–232
≈ (approximately equals), 34–35, 67
area (A). See also formulas

circle formula, 241
defined, 239
parallelogram formula, 245
rectangle formula, 244
rhombus formula, 245
square formula, 243
trapezoid formula, 246, 268
triangle formula, 242, 268

arithmetic equations. See also algebraic
equations; algebraic expressions

defined, 72
evaluations, 73–74
expressions, 73, 298–299
order of operations, 74–82
properties of equality, 72–73

arithmetic expressions, algebraic
expressions versus, 299

Arnone, Wendy, Geometry For
Dummies, 229

associative operations, 60
attribute, 276

• B •
b (base), 242. See also formulas
balancing scale

defined, 318–319
using, 319–321

bar graph, 252–253
base (b), 242. See also formulas
base number, 68
basic unit, 220
book

conventions, 2
icons, 6
organization, 3–6
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borrowing process, 41–43
boxes, finding the volume of, 248
{} (braces), 288

• C •
C (circumference), 241. See also formulas
C subset, 353
Cantor, Georg, 345, 354
capacity. See fluid volume
cardinality of sets, 289
carrying digits, 38–39
Cartesian coordinate system

drawing lines, 257–258
overview, 255, 344
plotting points, 256
word problems, 259–260

Cartesian graph
drawing lines, 257–258
overview, 255, 344
plotting points, 256
word problems, 259–260

Celsius, Fahrenheit versus, 225
Centi-, ten metric prefix, 221
certain outcome, 283
chart, place value, 31
circles

area formula, 241
circumference formula, 241
defined, 233
diameter formula, 240–241
measuring, 240–241
π (pi), 241

circumference (C), 241. See also formulas
closed set, 348
coefficient, 304
column addition, 38
commutative

operations, 59
property defined, 59
property of multiplication, 23

complement, of sets, 293–294
complex numbers, 352–353
composite numbers

defined, 15–16
identifying, 102–104

cones
defined, 238
finding the volume of, 249–250

constant, 298, 302
conventions, used in this book, 2
conversion

equations, 265–267
factors, 225–226

conversion chains
defined, 262
setting up, 262–264
word problems, 261–267

converting
decimals to fractions, 172–174
decimals to percents, 181
fractions to decimals, 174–175
fractions to percents, 182–183
measurement units, 225–227
percents to decimals, 181
percents to fractions, 182
units, 227

coordinates
Cartesian, 255–260
defined, 256

counting
by numbers, 13–14
outcomes, 284–286

counting numbers
defined, 18, 25
overview, 348
set, 26

cross-multiplication
fractions, 131–132
overview, 326–327

cubes, finding the volume of, 247–248
cylinders

defined, 238
finding the volume of, 249

• D •
d (diameter). See also formulas

circle formula, 240–241
defined, 233
measuring, 240–241
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data
qualitative, 277–279
qualitative versus quantitative, 276–277
quantitative, 279–282

Deca-, ten metric prefix, 221
Deci-, ten metric prefix, 221
decimal point, moving, 161–162
decimals

adding, 164–165
changing fractions to, 174–177
converting to fractions, 172–174
dividing, 168–171
leading zeros, 159–160
money and, 156–158
moving the decimal point, 161–162
multiplying, 166–167, 198–201
overview, 156–163
place value, 158–159
repeating, 176
rounding, 162–163
subtracting, 166
terminating, 177
trailing zeros, 159–161
word problems, 194–195

decompose, 16
denominators

adding fractions, 137–143
adding mixed numbers, 149–151
defined, 122
subtracting fractions, 144–147
subtracting mixed numbers, 151–153

diameter (d). See also formulas
circle formula, 240–241
defined, 233
measuring, 240–241

difference, 40
digital root, finding, 99
digits

carrying, 38–39
numbers versus, 30

distance
estimating, 223–224
units of, 221

distribution
algebraic expressions, 311–312
overview, 61

distributive property
of multiplication over addition, 61
overview, 202

dividend, 51, 169
dividing

algebraic terms, 308–309
arithmetic equations, 77
decimals, 168–171
expressions, 77
fractions, 136
inverse operations, 58–59
long, 52–53
mixed numbers, 147–148
negative numbers, 64
noncommutative operations, 59
number-line, 23–24
overview, 51–54
remainders, 54
symbols, 51
units, 65–66

divisibility
checking, 99–102
composite numbers, 102–104
prime numbers, 102–104
tricks, 97–102

divisible, 97
division. See dividing
÷ (division sign), 51
divisor, 51
[=/] (doesn’t equal), 66
· (dot), 44–45
drawing, lines, 257–258

• E •
elements, 288, 341
... (ellipsis), 288
empty sets

defined, 19
overview, 290–291

English system of measurement, 217–220
equal sets, 289–290
= (equal to), overview, 343–344
equality, properties, 72
equations. See also algebraic equations

adding arithmetic, 76
defined, 71, 316
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dividing arithmetic, 77
multiplying, 77
overview, 72–74
polynomial, 350
rearranging terms, 321–327
subtracting, 76
word problems, 264–265

equilateral triangle, 234
equivalent sets, 289–290
estimating

metric system, 223–225
numbers, 34–35

evaluation. See also solving
algebraic expressions, 299–301
defined, 71
overview, 73–74

even numbers, 13
exponents

adding, 210
multiplying, 210
multiplying with, 17–18
order of operations in expressions with,

78–79
overview, 68–69
powers of ten, 208–210

expressions
addition, 76
algebraic, 298–301
applying order of operations to, 75–78
defined, 71
division, 77
mixed-operator, 77–78
multiplication, 77
order of operations and exponential,

78–79
order of precedence with parenthetical,

79–82
overview, 73–74
subtraction, 76

• F •
factorization, prime, 112–114, 115–116, 118
factorization tree, prime factors, 110–112
factors

conversion, 225–226
defined, 44

finding the GCF (greatest common
factor), 114–115

generating, 108–109
identifying, 107–108
multiples and, 106–107
prime, 109–114

Fahrenheit, Celsius versus, 225
favorable outcome, 283
finding the value of an expression. See

evaluation
First, Outside, Inside, and Last (FOILing),

312–313
five regular solids, 237–238
fluid ounces, ounces versus, 219
fluid volume, units of, 219
FOILing (First, Outside, Inside, and Last),

312–313
formulas (2-D shapes)

circles, 240–241
parallelograms, 245
rectangles, 244
rhombuses, 244–245
squares, 243
trapezoids, 246, 268
triangles, 242–243, 268, 271

formulas (3-D shapes)
box volume, 248
cone volume, 249–250
cube volume, 247–248
cylinder volume, 249
prism volume, 248–249
pyramid volume, 249–250
sphere volume, 247

formulas (circle)
area, 241
circumference, 241
diameter, 240–241
π (pi), 241

formulas (parallelogram)
area, 245
perimeter, 245

formulas (rectangle)
area, 244
perimeter, 244

formulas (rhombus)
area, 245
perimeter, 244
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formulas (square)
area, 243
perimeter, 243

formulas (trapezoid), area, 246, 268
formulas (triangle)

area, 242, 268
hypotenuse, 242–243
Pythagorean theorem, 242–243, 271

— (fraction bar), 51
/ (fraction slash), 51
fractions

adding, 136–143
changing to decimals, 174–177
converting decimals to, 172–174
cross-multiplying, 131–132
denominator, 122–124
dividing, 136
improper, 125–126
increasing terms of, 126–127
mixed numbers, 125
mixed numbers and improper, 129–131
multiplying, 133–135, 196–198
number-line, 24–25
numerator, 122–124
ones and zeros, 124–125
overview, 122–123
proper, 125–126
reciprocal, 124
reducing, 127–129
subtracting, 143–147
terms of, 126–129
word problems, 194

functions, overview, 344–345
Fundamental Theorem of Arithmetic, 112

• G •
GCF (greatest common factor)

defined, 114
finding, 114–116

geometry
2-D shapes, 233–236, 239–246
3-D shapes with curves, 238–239
angles, 231–232
boxes, 248
circles, 233, 240–241
cones, 249–250

cubes, 247–248
cylinders, 249
kites, 235
lines, 230–231
measurements and, 272–274
measuring 2-D shapes, 239–246
measuring 3-D shapes, 246–250
parallelograms, 235, 245
plane, 230–232
points, 230
polygons, 234–236
polyhedrons, 237–238
prisms, 248–249
pyramids, 249–250
quadrilaterals, 234–235
rectangles, 235, 239–240, 243–244
rhombuses, 235, 244–245
shapes, 232
solid, 236–239
spheres, 247
squares, 235, 243
trapezoids, 235, 246
triangles, 234, 241–243
word problems, 267–271, 272–274

Geometry For Dummies (Arnone), 229
Giga-, ten metric prefix, 221
graph

bar, 252–253
Cartesian, 255–260
defined, 251
line graph, 254–255
pie chart, 253–254
styles, 252–260

> (greater than), 67
greatest common factor (GCF)

defined, 114
finding, 114–116

• H •
h (height), measuring, 242, 244–245, 246
Hecta-, ten metric prefix, 221
height (h), measuring, 242, 244–245, 246
Hindu-Arabic numbers, 30
horizontal axis (x-axis), 255
hypotenuse, finding, 242–243
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• I •
icons, used in this book, 6
identical sets, 289–290
imaginary numbers, 346, 351–352
impossible outcome, 283
improper fractions, 125–126

mixed numbers and, 129–131
increasing, terms of fractions, 126–127
inequalities, 66–67
∞ (infinity)

defined, 20
overview, 345

integers
defined, 25
overview, 348–349
set, 26

interest, 203
intersection, of sets, 292–293
inverse

defined, 58
operations, 58–59

irrational numbers
defined, 27
overview, 349–350

irregular polygon, 236
isolating, x, 320–327
isosceles triangle, 234

• K •
Kilo-, ten metric prefix, 221
kite, 235

• L •
l (length), measuring, 243–244
LCM (least common multiple)

defined, 116
finding, 116–118

leading zeros, 159–160
placeholders versus, 31–32

least common multiple (LCM)
defined, 116
finding, 116–118

length (l), measuring, 243–244

< (less than), 67
like terms, identifying, 304–305
limit, 345
line graph, 254–255
line segment, 231
lines

drawing, 257–258
geometry, 230

long division, 52–53
long numbers, 32

• M •
magnitude, order of, 213
mass

defined, 222
units of, 222

math concepts
Cartesian graph, 344
equal signs and equations, 343–344
functions, 344–345
imaginary numbers, 346
infinity (∞), 345
number-line, 346
pi (π), 343
prime numbers, 342
sets, 341
zero, 342

Mayan numerals, 360–361
mean

defined, 280
finding, 280–281

measurements, geometry, 272–274
measures

English system of measurement, 217–220
metric system, 220–222

measuring
in 3-D, 246–250
circles, 240–241
parallelograms, 245
rectangles, 243–244
rhombuses, 244–245
shapes, 239–250
squares, 243
trapezoids, 246
triangles, 241–243
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median
defined, 281
finding, 281–282

Mega-, ten metric prefix, 221
members. See elements
metric prefixes, basic, 221
metric system

estimating, 223–225
overview, 220–222

metric units, basic, 220
Micro-, ten metric prefix, 221
Mili-, ten metric prefix, 221
minuend, 40
– (minus sign), 39
mixed numbers

adding, 148–151
components, 130
defined, 125
dividing, 147–148
improper fractions and, 129–131
multiplying, 147–148
subtracting, 151–153

mixed-operator expressions, 77–78
mode, 279
multiples

defined, 22
factors and, 106–107
generating, 116

multiplicand, 44
multiplication. See also multiplying

zero property of, 47
multiplication table, finding the LCM (least

common multiple) using the, 117–118
multiplicative identity, 47
multiplier, 44
x (multiply sign), 44
multiplying

algebraic terms, 307
arithmetic equations, 77
associative operations, 60
commutative operations, 59
cross, 131–132
decimals, 166–167, 198–201
distributive property of multiplication, 61
with exponents, 17–18, 68–69
exponents, 210

expressions, 77
fractions, 133–135, 196–198
inverse operations, 58–59
large numbers, 49–50
mixed numbers, 147–148
multiplication table, 45–48
negative numbers, 64
number-line, 22–23
overview, 44–50
percents, 198–201
with scientific notation, 214–215
symbols, 44–45
table, 47–48
units, 65–66
word problems, 196–201

• N •
N subset, 353
Nano-, ten metric prefix, 221
natural numbers, 18

defined, 25
overview, 348
set, 26

negate, 40
negative numbers

adding, 62–63
dividing, 64
multiplying, 64
number–line, 21
overview, 61–62
subtracting, 62–63

nested
defined, 26
parentheses with expressions, 81–82

Newton, Sir Isaac, 345
non-repeating decimal, 27
non-terminating, non-repeating decimal, 350
noncummutative operations, 59
nothing. See zeros
number–line

adding, 18–19
dividing, 23–24
fractions, 24–25
multiplying, 22–23
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negative numbers, 21
overview, 18, 346
subtracting, 18–19
zero, 19–20

number sequences
composite numbers, 15–16
counting by numbers, 13–14
even, 13
exponents, 17–18
odd, 13
overview, 12
prime numbers, 16
square numbers, 14

number sets
algebraic numbers, 350
complex numbers, 352–353
counting numbers, 348
imaginary numbers, 351–352
integers, 348–349
irrational numbers, 349–350
natural numbers, 348
rational numbers, 349
real numbers, 351
subsets, 353
transcendental numbers, 351
transfinite numbers, 353–354
types, 347–354

numbers. See also numerals
algebraic, 350
base, 68
complex, 352–353
composite, 15–16, 102–104
condensing with scientific notation,

207–215
counting, 18, 25, 26, 348
defined, 355
digits versus, 30
estimating, 34–35
even, 13
Hindu-Arabic, 30
imaginary, 346, 351–352
invention, 12
irrational, 349–350
long, 32
mixed, 125, 148–151

natural, 18, 25, 26, 348
negative, 61–64
odd, 13
prime, 102–104, 342
rational, 25, 27, 349
real, 25, 351
rounding, 33–34
sets of, 25–27, 291
transcendental, 351
transfinite, 353–354

numerator, 122

• O •
obtuse angles, 232
odd numbers, 13
ones, fractions, 124–125
operations

associative, 60
commutative, 59
inverse, 58–59
on sets, 291–294

order of magnitude, 213
order of operations

applying to expressions, 75–78
defined, 72
expressions with exponents, 78–79
overview, 74–75

order of precedence. See also order of
operations

expressions with parentheses, 79–82
organization, of this book, 3–6
origin, 255
ounces, fluid ounces versus, 219
outcomes, counting, 284–286

• P •
P (perimeter). See also formulas

overview, 233, 239
parallelogram formula, 245
rectangle formula, 244
rhombus formula, 244
square formula, 243

parallel, 231
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parallelograms
area formula, 245
defined, 235
measuring, 245
perimeter formula, 245

parentheses ( )
order of precedence in expressions with,

79–82
overview, 45
removing from algebraic expressions,

310–313
removing from equations, 323–326

( ) (parentheses)
order of precedence in expressions with,

79–82
overview, 45
removing from algebraic expressions,

310–313
removing from equations, 323–326

percent (%)
changing decimals to, 181
circle, 188–191
converting fractions into, 182–183
converting to decimals, 181
converting to fractions, 182
decreases, 201–204
defined, 179
greater than, 100, 180
increases, 201–204
multiplying, 198–201
solving problems, 183–186
types of problems, 187–188
word problems, 195, 201–204

percent circle, 188–191
perimeter (P). See also formulas

overview, 233, 239
parallelogram formula, 245
rectangle formula, 244
rhombus formula, 244
square formula, 243

periods, 32
π (pi)

measuring, 241
overview, 343

pie chart, 253–254

place value
chart, 31
decimals, 158–159
overview, 30–32

placeholders, leading zeros versus, 31–32
plane geometry, 230
plotting a point, 256
+ (plus sign), 38
points

geometry, 230
plotting, 256

polygons
defined, 234
types, 234–236

polyhedrons, 237
polynomial equation, 350
possible outcome, 283
powers. See exponents
powers of ten, exponents, 208–210
prefixes

basic metric, 221
defined, 220

prime factorization
finding, 112–114
finding the GCF (greatest common factor)

using, 115–116
finding the LCM (least common multiple)

using, 118
prime factors

defined, 109
factorization tree, 110–112

prime numbers
defined, 16
identifying, 102–104
overview, 342

prisms, finding the volume of, 248–249
probability

calculating, 283
counting outcomes, 284–286
defined, 282

Probability For Dummies (Rumsey), 282
problems. See word problems
product, 44, 106
proper fractions, 125–126
properties, of the Big Four Operations,

57–61
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pyramids, finding the volume of, 249–250
Pythagorean theorem, 242–243

• Q •
Q subset, 353
quadrilaterals

defined, 234
types, 234–235

qualitative data
defined, 276
working with, 277–279

quantitative data
defined, 276–277
working with, 279–282

quotient, 51

• R •
r (radius)

defined, 233, 247
measuring, 240–241

R subset, 353
radical. See square root
radius (r)

defined, 233, 247
measuring, 240–241

rational numbers
defined, 25
overview, 349
set, 27

ray, 231
reading, long numbers, 32
real number line. See number–line
real numbers

defined, 25
overview, 351

reciprocal fractions, 124
rectangles

area formula, 244
defined, 235
measuring, 243–244
perimeter formula, 244

reducing fractions, 127–129
reflexivity, 72

regular polygon, 236
relative complement, of sets, 293
remainder, 54
removing, parentheses from equations,

323–326
repeating decimals, 176
rhombus

area formula, 245
defined, 235
measuring, 244–245
perimeter formula, 244

right angle, 232
right triangle, 234
Roman numerals, 359–360
root. See square root
rounding

conversion equations, 265–267
decimals, 162–163
numbers, 33–34

Rumsey, Deborah
Probability For Dummies, 282
Statistics For Dummies, 276

• S •
s (length of a square’s side), measuring, 243
scalene triangle, 234
scientific notation

condensing numbers with, 207–215
defined, 210
multiplying with, 214–215
order of magnitude, 213
powers of ten as exponents, 208–210
writing in, 211–215

sets
cardinality of, 289
complement, 293–294
defined, 25, 287, 341
elements, 288–289
empty, 290–291
equal, 289–290
intersection, 292–293
of numbers, 25–27, 291
operations on, 291–294
overview, 288

365Index

35_135372 bindex.qxd  8/28/07  8:40 PM  Page 365



sets (continued)
relative complement, 293
symbols, 288
union of, 292

shapes
2-D, 233–236
3-D, 238–239
defined, 232
measuring, 239–250

SI (System of International Units), metric
system, 220

similar terms
combining, 309–310
identifying, 304–305

simplifying. See also evaluation
algebraic expressions, 309–313

solid, defined, 236
solid geometry

defined, 236
overview, 236–239

solving. See also evaluation
algebra word problems, 330–333
algebraic equations, 317–318, 332
algebraic word problems, 334–338
basic word problems, 85–90
complex word problems, 90–95
geometry word problems, 267–271
percent problems, 183–186
problems on a Cartesian graph, 

259–260
speed

estimating, 224
units of, 220, 222

spheres
defined, 238
finding the volume of, 247

square numbers, 14
square root

defined, 351
overview, 69

square units, 240
squares

area formula, 243
defined, 235
measuring, 243
perimeter formula, 243

statistics
defined, 275–276
mean, 280–281
median, 281–282
mode, 279
percentages, 278–279
qualitative data, 276–279
quantitative data, 279–282

Statistics For Dummies (Rumsey), 276
Sterling, Mary Jane

Algebra For Dummies, 345, 350
Algebra II For Dummies, 288

straight angle, 232
straight line, 230
subsets

defined, 290
overview, 353

subtracting
algebraic terms, 306
arithmetic equations, 76
borrowing, 41–43
decimals, 166
expressions, 76
fractions, 143–147
inverse operations, 58–59
larger numbers, 40–43
mixed numbers, 151–153
negative numbers, 62–63
noncommutative operations, 59
on the number-line, 18–19
overview, 39–43
units, 65
word problems, 193–195

subtraction. See subtracting
subtrahend, 40
sum, 38. See also adding
surface area, 247
switch, 40
symmetry, 72
System of International Units (SI), metric

system, 220

• T •
temperature

estimating, 224–225
units of, 220, 222
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terminating decimal, 177
terms

adding algebraic, 305–306
defined, 301
dividing algebraic, 308–309
of fractions, 126–129
multiplying algebraic, 307
rearranging, 302–303, 321–327
subtracting algebraic, 306

3-D
measuring in, 246–250
shapes with curves, 238–239

time, units of, 219, 222
trailing zeros

decimals, 159–161
defined, 160

transcendental numbers, 351
transfinite numbers, 353–354
transitivity, 72
trapezoids

area formula, 246, 268
defined, 235
measuring, 246

triangles
area formula, 242, 268
hypotenuse formula, 242–243
measuring, 241–243
Pythagorean theorem, 242–243, 271
types, 234

trigonometry, 351
2-D shapes

measuring, 239–240
overview, 233–236

• U •
U (Universal set), 293
undefined, 98, 125
union, of sets, 292
units

adding, 65
basic metric, 220
converting, 227
defined, 64
distance, 221
dividing, 65–66
fluid volume, 219

mass, 222
measurement, 226
multiplying, 65–66
speed, 220, 222
subtracting, 65
temperature, 220, 222
time, 219, 222
volume, 221
weight, 219

units of measurement
canceling, 226
converting, 225–227

Universal set (U), 293

• V •
variable

declaring, 330–331
defined, 298
identifying, 304
selecting, 333–334

vertical axis (y-axis), 255
volume

box formula, 248
cone formula, 249–250
cube formula, 247–248
cylinder formula, 249
defined, 247
estimating, 224
prism formula, 248–249
pyramid formula, 249–250
sphere formula, 247
units of, 221

• W •
w (width), measuring, 243–244
weight

defined, 222
English system of measurement, 217–220
estimating, 224
metric system, 220–222
units of, 219

width (w), measuring, 243–244
word equations. See also word problems

defined, 85
turning word problems into, 85–88
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word problems. See also word equations
adding, 193–195
algebra, 329–338
Cartesian graph, 259–260
conversion chains, 261–267
decimals, 194–195
equations, 264–265
fractions, 194
geometry, 267–271, 272–274
multiplying decimals and percents,

198–201
multiplying fractions, 196–198
overview, 84–85
percents, 195, 201–204
solving, 85–95, 267–271
solving on a Cartesian graph, 259–260
subtracting, 193–195
turning into word equations, 85–88

writing, in scientific notation, 211–215

• X •
x (algebraic symbol)

defined, 298
isolating, 320–327
using in algebraic equations, 298, 316

x (multiply sign), 44
x-axis (horizontal axis), 255

• Y •
y-axis (vertical axis), 255

• Z •
Z subset, 353
Zeno’s Paradox, 346
zero property of multiplication, 47
zeros

fractions, 124–125
leading, 159–160
number-line, 19–20
overview, 342
placeholders versus leading, 31–32
trailing, 159–161
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