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Foreword

Digital Soil Mapping is by now a well-established branch of soil science, with
regular meetings and a very active working group of the International Union of
Soil Sciences (IUSS). Meetings of the group bring together scientists dealing with
digital soil mapping in the broadest sense. These meetings allow for exchange of
information among scientists on their research topics and are excellent opportunities
for assessing the status of this relatively young area of research in soil science.

The chapters in this book were selected from papers presented at the 3rd Global
Workshop on Digital Soil Mapping (DSM 2008) that was held in Logan (Utah,
USA). The theme of the workshop was Digital Soil Mapping: Bridging Research,
Production, and Environmental Application.

There is great interest in transferring the scientific achievements of the past years
of digital soil mapping into operational data and information systems responding
to the increasing demands for high quality soil data and information. The past col-
lection of soil data was largely driven by a mono-functional view of soil as the
basis for agricultural production. Under the leadership of the Food and Agriculture
Organization of the United Nations (FAO) substantial progress has been made in
collecting soils data and information in all continents, particularly in developing
countries. Standardized systems for soil classification and soil profile description
have facilitated the interoperability of information systems across national borders,
paving the way for the creation of digital soil databases at global and continental
scales based on advanced GIS technologies. Good examples of such systems are
SOTER (SOil and TERrain Digital Database) coordinated by FAO and the European
Soil Information System (EUSIS) of the European Union (EU).

The relatively recent recognition of the multi-functionality of soils, including
important ecosystem services and socio-economic benefits, has emphasized the
inadequacy of existing soil information systems worldwide. Traditional soil survey,
based on soil profile descriptions, soil classification and extrapolation of data on
a soil-landscape model developed by expert judgment, cannot respond to the new
requirements coming from user communities other than agriculturalists.

New soil data and information are needed to address the emerging concerns about
the functioning of soils systems in the delivery of services required by modern
societies. Data on soil contamination, soil biota and their diversity, soil stability
(landslides), soil hydraulic functions, soil carbon pools, soil erosion, salinization,
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vi Foreword

etc. are needed by policymakers dealing with the urgent priorities related to climate
change, natural and man-made hazard prevention, food and feed health as well as
food security, and bio-energy production.

The emergence of new legal frameworks for soil protection at national, regional,
and global levels has made traditional soil survey techniques incapable of respond-
ing to stringent legal requirements. The delineation of areas with different soil prop-
erties needs to have a solid scientific and geostatistical basis so that it can be used by
legislators. Priority areas for soil protection cannot solely be delineated on the basis
of expert judgements, but must be based on quantitative data that can withstand
legal challenges in court. For example, the EU Soil Thematic Strategy requires the
delineation of priority areas for the various threats to soil functions. These delin-
eations have legal and financial implications that affect landowners. Therefore, the
definition of these areas requires the highest quality of soil data as well as solid
scientific methods for producing soil data. Digital soil mapping will thus play a key
role in implementing this legislation in the European Union. Similarly at the global
scale, soils play a critical role in the implementation processes of Multilateral Envi-
ronmental Agreements (MEAs). The United Nations Framework Convention on
Climate Change (UNFCCC), the Convention on Biodiversity (CBD), and the United
Nations Convention to Combat Desertification (UNCCD) increasingly recognise the
crucial role of soils. Updated and accurate global soil data and information are
urgently required for these emerging needs, such as information on soil organic
carbon pools and their dynamics over time. Also, the specific initiative within the
Group of Earth Observation (GEO) to establish a Global Soil Information System
(GLOSIS) as part of the Global Earth Observation System of Systems (GEOSS) is
a response to these new requirements from policymakers.

The digital soil mapping community has taken up the challenge to foster the
development of a new generation of digital soil information at local, national and
global scales. The establishment of the GlobalSoilMap.net consortium, pooling
together the major players in digital soil mapping in the world, has initiated a pro-
cess that will deliver a new digital soil map of the world at fine resolution. The first
node getting active in the GlobalSoilMap.net project is the Africa Soil Information
Service (AfSIS), coordinated by the Tropical Soil Biology and Fertility Institute of
CIAT (CIAT-TSBF) and financed by the Bill and Melinda Gates Foundation. The
experience of transferring digital soil mapping technologies into practice on such a
scale is useful in making digital soil mapping operational at continental and global
scales.

The chapters in this book provide a very useful and comprehensive overview of
the status of digital soil mapping and are a further step in developing this branch of
soil science. I strongly recommend their consultation and reading.

European Commission, Ispra, Italy Luca Montanarella



Preface

This book contains papers presented at the 3rd Global Workshop on Digital Soil
Mapping held in Logan, Utah, USA, 30 September–3 October 2008. The workshop
was organized under the auspices of the International Union of Soil Sciences Work-
ing Group on Digital Soil Mapping, and was hosted by Utah State University. The
organizing committee was chaired by Dr. Janis Boettinger, professor of Pedology
in Utah State University’s Plants, Soils, and Climate Department. Financial and in-
kind support for this workshop was provided by Utah State University and the US
Department of Agriculture Natural Resources Conservation Service. Approximately
100 participants from 20 countries presented and discussed nearly 70 papers during
the four-day session, demonstrating the global engagement in digital soil mapping.

The theme of this workshop was Digital Soil Mapping: Bridging Research, Pro-
duction, and Environmental Application. Advances in digital soil mapping technol-
ogy and methods occur at a rapid pace, facilitating the development of digital soil
information with increasing precision for many areas around the world. In many
cases we are fortunate to have a wealth of legacy soil data to work with. Legacy
soil data can be used to improve digital soil mapping models and, in turn, digital
soil mapping models can be used to help modernize and harmonize legacy soil data.
Digital soil mapping has evolved to the point where it is has entered the operational
realm, as a tool for improving accuracy, consistency, and efficiency of production
soil mapping. At the same time, there is still a need for innovative soil information
products to support environmental applications. Credible and innovative research is
the basis for the development of digital soil mapping and soil assessment protocols.
Development of practical soil mapping and environmental applications drives the
need for continued progress in the field of digital soil mapping. With this workshop,
we hoped to recognize these distinct foci within the realm of digital soil mapping.

We have selected 33 papers from the Logan workshop that focus on digital soil
mapping research, environmental application, and operation. Part I is an introduc-
tory chapter which provides context for the whole book. The remaining papers
are organized into the following parts: (II) Research; (III) Environmental Appli-
cation and Assessment; and (IV) Making Digital Soil Mapping Operational. Within
the research section, papers are grouped by three key topics: (A) Environmental
Covariates and Soil Sampling; (B) Soil Sensors and Remote Sensing; (C) and Soil
Inference Systems. Mapping and modeling of organic carbon is the primary focus
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viii Preface

of the section on environmental application and assessment and of major interest to
the global soil science community as well as policy makers. Digital soil mapping in
a production setting is presented with case studies from New Zealand, the European
Union, Canada, the United States, and the GlobalSoilMap.net project.

This book complements and extends the ideas presented in Digital Soil
Mapping – An Introductory Perspective, edited by Lagacherie, McBratney, and
Voltz, (2007) and Digital Soil Mapping with Limited Data, edited by Hartemink,
McBratney, and Medonça-Santos (2008). We hope that this book will inspire digital
soil mapping researchers and practitioners at universities, agencies, and other orga-
nizations in their efforts to create and utilize soil information in a range of global
issues like climate change, food production, energy, and water security. We are
excited to see where global advancements in digital soil mapping research will take
us in the project.

Logan, UT J.L. Boettinger
Arcata, CA D.W. Howell
Annapolis, MD A.C. Moore
Wageningen, The Netherlands A.E. Hartemink
Logan, UT S. Kienast-Brown

November 2009
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Chapter 1
Current State of Digital Soil Mapping
and What Is Next

S. Grunwald

Abstract Digital soil mapping (DSM) involves research and operational applica-
tions to infer on patterns of soils across various spatial and temporal scales. DSM
is not solely focused to map soils and their properties, but often environmental
issues such as land degradation and global climate change, require assessing soils in
context of ecosystem change and environmental stressors imparting control on soil
properties. In this section an overview is provided of state-of-the art DSM applica-
tions and their constraints and potential is discussed. Future trends and challenges
to map soils using digital approaches are outlined.

Keywords Environmental covariates · Soil sensors · Soil inference systems ·
Legacy soil data · Environmental assessment

1.1 Introduction

Digital soil mapping has evolved as a discipline linking field, laboratory, and prox-
imal soil observations with quantitative methods to infer on spatial patterns of soils
across various spatial and temporal scales. Studies use various approaches to predict
soil properties or classes including univariate and multi-variate statistical, geostatis-
tical and hybrid methods, and process-based models that relate soils to environ-
mental covariates considering spatial and temporal dimensions. A comprehensive
overview of digital soil mapping was provided by McBratney et al. (2003) and
Grunwald (2006). Discussions of state-of-the-art digital soil mapping applications at
different extents, geographic settings, and model resolutions (grains) were provided
by Lagacherie et al. (2007) and Hartemink et al. (2008).

Research-focused digital soil mapping contrasts with agency-operated soil sur-
veys. The dichotomy between research and agency-operated digital soil mapping is
due to different sets of qualities. The former strives to find the best method/model to
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estimate soil characteristics exploiting digital, quantitative and emerging technolo-
gies with rigorous errors and uncertainty assessments. The latter aims to implement
a standardized mapping protocol to characterize soils across a soil survey region.
Soil taxonomic mapping of soil map units and development of soil information
systems have played major roles in agency-operated soil surveys covering regional,
national, and global scales. Whereas historically soil data needs were driven by food
and fiber production (agriculture-centered period), more recent needs for soil data
are more diverse with pronounced environmental-centered drivers requesting high-
resolution, pixel-based soil products, which are associated with error assessment.

Traditional soil surveys explicitly incorporate pedological knowledge into the
soil survey product, but have become costly and time-consuming when compared to
emerging digital soil mapping approaches, such as diffuse reflectance spectroscopy
(Lagacherie, 2008). This has evoked the thought to investigate in more detail how
research and operational soil mapping can be fused. Grunwald (2009) presented a
comprehensive analysis of recent digital soil mapping literature and pointed out that
merging of quantitative, geographic, and pedological expertise is required to link
production-oriented and research-oriented digital soil mapping. There is no univer-
sal soil equation or digital soil prediction model that fits all geographic regions and
purposes, which complicates matters.

At the 3rd Global Workshop on Digital Soil Mapping organized by the Inter-
national Union of Soil Sciences, Soil Science Society of America and Utah State
University, Logan, UT, September 30–October 3, 2008, researchers, agency scien-
tists, and practitioners met to share knowledge on digital soil mapping. This book
compiles the outcomes from this Workshop in form of 34 chapters.

1.2 Research

1.2.1 Environmental Covariates and Soil Sampling

The section “Environmental Covariates and Soil Sampling” presents various chap-
ters that focus on how environmental covariates are used to model soil properties.
Factorial soil-landscape models form the conceptual framework for relating envi-
ronmental covariates to soil properties as formalized in the CLORPT model (CL:
Climate; O: Organism, vegetation; R: Relief; P: Parent material; and T: time)
(Jenny, 1941) and the SCORPAN model (S: soil property or class; C : Climate;
A: Age or time factor; and N : Space, spatial position) (McBratney et al., 2003)
that are used to predict soil properties/classes (Sp). The SCORPAN model is made
spatially and temporally explicit by predicting Sc (soil classes) or Sa (soil attributes)
at a specific geographic location (x and y coordinates) and time. Grunwald (2006)
extended the SCORPAN model by incorporating the vertical dimension (z), or depth
of a specific soil property. Similarly, “environmental correlation” describes a method
of relating environmental attributes (or environmental covariates) to Sp (McKenzie
and Austin, 1993).
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Although these conceptual models are accepted widely for digital soil mapping,
the strength of relationships between environmental covariates and soil properties
of interest differ by geographic region, observation/derivation method used to map
environmental properties, spatial and temporal scales, and the specific soil property
under investigation. In a comprehensive review, McBratney et al. (2003) found that
the key environmental covariates for inferring Sa or Sc, were R (80% of studies)
followed by S (35%), O and P (both 25%), N (20%), and C (5%). In contrast,
in a review of 90 digital soil mapping journal articles Grunwald (2009) found that
the contribution of S was 51%, C 6%, O 34%, R 24%, and P 6% to predict soil
properties and classes.

To further investigate the behavior between environmental covariates and soil
properties of interest various studies are presented in Section A. Chapter 2 discusses
the use of environmental covariates in the Western USA derived from digital eleva-
tion models (DEMs) and remote sensing imagery (ASTER and Landsat) to infer on
topography, climate, geomorphology, parent material, soil, and vegetation proper-
ties. These environmental properties are incorporated into soil prediction models
to support soil mapping efforts, in particular, in the western USA region which
still lacks initial soil mapping on private and public lands. In Chapter 3 a suite
of topographic and land cover attributes to infer on soil depth using a Generalized
Additive Model and Random Forest in a watershed in Boise, Idaho, USA is used.
The importance of incorporating age (A factor) explicitly into digital soil models
are emphasized in Chapter 4 fusing geological maps, age point data, and remote
sensing data to infer on geochronology using a decision-tree analysis. The author
indicates that incorporating the A factor explicitly into soil-prediction models as a
co-variant is rare. A has been more often incorporated in implicit form carried in the
age of parent material (P) and land form (R). In Chapter 5 different terrain attributes
by varying grid and neighborhood sizes and investigate their effect on subsequent
modeling of soil attributes are derived. Their study highlights that terrain attributes
are specific to geographic land surfaces. Disparate neighborhood sizes correlate
strongest with specific soil properties (soil carbon, rock fragment content, and clay
content) suggesting that there is “no optimal” neighborhood size to model different
soil properties. In Chapter 6 authors go after finding the optimal sample size for
digital soil mapping in arid rangelands in Utah, USA. They employ conditioned
Latin Hypercube sampling on five environmental covariates and identify an optimal
sample size of 200–300 which is approximately 0.05–0.1% of the available potential
sampling points in the 30,000 ha study area.

1.2.2 Soil Sensors and Remote Sensing

Sensing of both soils and environmental covariates is widely used in digital soil
mapping studies. Lab-based or in-situ diffuse reflectance spectroscopy have been
employed in the visible, near-infrared, and mid-infrared range to infer on a multi-
tude of soil properties with varying success (Reeves, 2010). Other soil sensors map
penetration resistance using cone penetrometers, apparent electrical conductivity, or
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magnetic susceptibility (Grunwald and Lamsal, 2006). Grunwald (2009) found that
out of 90 reviewed digital soil mapping studies 39% utilized soil or remote sensors,
out of which 23.3% used soil sensors to complement analytical soil data which
are more costly and labor-intensive to derive. In 16.7% of the studies, visible/near-
infrared, mid-infrared, and/or Fourier-transform spectroscopy were used to infer dif-
ferent properties including soil organic carbon (SOC), texture, and others. Remote
sensing applications that map soil properties, landscape or soil map boundaries, or
environmental covariates, such as vegetation or climatic properties, can be readily
incorporated into digital soil prediction models. A variety of satellite images are
used in digital soil mapping projects including Landsat Enhanced Thematic Map-
per (ETM), Advanced Spaceborne Thermal Emission and Reflection Radiometer
(ASTER), Quickbird, IKONOS or others. These satellite images differ in their spa-
tial resolution, spectral range and spectral resolution, which may affect the capabili-
ties to infer on soil and environmental covariates. Remote sensing is confounded by
the fact that the land surface is a mix of bare soil (with varying soil moisture con-
tent) and vegetation coverage which impact reflectance patterns sensed by aerial or
satellite sensors. But aerial and satellite images provide dense grids of information
across landscapes allowing to characterize SCORPAN factors.

Chapter 7 provides an overview of proximal soil sensors for digital soil map-
ping including electromagnetic induction, magnetic sensors, gravitometers, ground
penetrating radar, magnetic resonance sounding, gamma-radiometrics, and diffuse
reflectance spectroscopy. The use of hyperspectral imagery with 5 m spatial res-
olution to map clay content and calcium carbonate content in a Mediterranean
region is presented in Chapter 8. In this chapter, special attention is given to derive
soil data from a region that is partially covered by vegetation using hyperspec-
tral images accounting for atmospheric effects. In Chapter 9 Quickbird imagery
with 2.4 m spatial resolution are used to discriminate between different soil types
including chernozem-like soils, light chestnut soils, and solonetzes (sodic soils).
In Chapter 10 ASTER imagery with 15 m spatial resolution to infer on vege-
tation and correlate it to soil horizons are used in the North Cascades National
Park in Washington State, USA. In Chapter 11 quantitative hydrologic parame-
ters, such as root zone soil moisture obtained by land-surface energy models, are
used for the identification of soil boundaries. They employ Landsat imagery with
30 m spatial resolution to infer on root zone moisture based on a multi-temporal
analysis.

1.2.3 Soil Inference Systems

McBratney et al. (2002) provided an overview of soil inference systems, which take
measurements we more-or-less know with a given level of (un)certainty, and infers
data we do not know with minimal inaccuracy, by means of properly and logically
conjoined pedotransfer functions (PTFs). In essence, the soil inference system has a
source, an organizer, and a predictor. The inference system is a collection of logical
rules selecting the PTFs with the minimum variance (McBratney et al., 2002).
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In her recent digital soil mapping review study Grunwald (2009) found that the
most popular soil inference methods (41.1%) were regressions followed by classifi-
cation/discrimination methods (32.2%), and tree-based methods (e.g. Classification
and Regression Trees, Random Forest) (13.3%). Other methods such as GIS-based
modeling, neural networks, and fuzzy logic based models were less frequently used
to predict soils. In her comprehensive review study, knowledge-based digital soil
models that rely on expert knowledge were rare when compared to stochastic or
deterministic methods to predict soils. Out of 90 reviewed journal articles 40.0%
presented soil prediction results derived from only one method, whereas 60.0% used
two or more quantitative methods to predict or model soil properties/classes. Grun-
wald (2009) found that 36.7% of 90 reviewed digital soil mapping journal articles
used legacy data in their research.

In Chapter 12 Homosoil, a methodology for quantitative extrapolation of soil
information across the globe is presented. Homosoil facilitates to map soils in places
where soil information is difficult to obtain or does not exist. A major assumption of
this conceptual approach is homology of soil-forming factors between a reference
area and the region of interest. Gower’s similarity index is used to quantify similar-
ity in climate, physiography, and parent materials in a reference area and the rest
of the world. In Chapter 13 Artificial Neural Networks and a Decision Tree model
for predictive soil mapping based on the SCORPAN approach are employed in a
poorly accessible 20 km2 watershed in Thailand. In Chapter 14 a knowledge-based
approach and a rule-based fuzzy inference engine, Soil Inference Engine (SIE), is
used in two small watersheds in Vermont. In this study not only the predictive capa-
bility of the inference engine is evaluated to infer on soil series and drainage classes,
but also the potential to transfer the prediction model to a watershed with similar
landscape characteristics is assessed. In Chapter 15 Random Forest to predict soil
classes using environmental covariates derived from Landsat ETM and a DEM in
an arid region in Utah are employed. Chapter 16 explicitly incorporates legacy data
into the soil predictive models (sand, silt, clay and organic carbon) implemented
using Generalized Linear Modeling and Bayesian Belief Networks. Authors of this
chapter emphasize the limitations of using legacy data that may not cover the exist-
ing feature space (i.e., the range of attribute values present in a given region) and
may contain a mix of qualitative and quantitative data.

1.3 Environmental Application and Assessment

Historically, soil surveys have focused on soil descriptions and mapping of tax-
onomic soil data and standard soil properties. Recently, the emphasis has shifted
from classification and inventory to understanding and quantifying spatially and
temporally soil patterns to address environmental problems. This environmental-
centered approach views soils as integral part of an ecosystem interacting with
environmental factors generating complex patterns and processes that co-evolve
through time. Environmental-centered digital soil mapping responds to critical soci-
etal needs including environmental quality assessment, soil degradation, soil quality,
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and health as outlined in Hartemink (2006). Spatially-explicit soil carbon assess-
ment over large landscapes has gained attention to help mitigate rising levels of
greenhouse gases in the atmosphere.

In a review it was found that out of 90 investigated digital soil mapping studies,
40.0% focused on predictions of base soil properties such as texture, bulk density,
and structure, 31.1% on soil carbon/global climate change, 24.4% on eutrophica-
tion/environmental quality assessment, 16.6% on hydrologic properties (such as
soil moisture, saturated hydraulic conductivity, or soil water content), 8.9% on soil
degradation (salinity, acidity, and erosion), and 15.6% on mapping of soil taxo-
nomic/ecological classes (Grunwald, 2009). In particular, studies that focus on map-
ping of SOC and soil organic matter (SOM) are prominently represented in the
recent digital soil mapping literature.

Chapter 17 addressed the problem of heavy metals in soils in a study site in the
Italian Alps. They use multi-scale Support Vector Regression (SVR), a machine
learning technique, to model distribution patterns of heavy metals. SVR is a non-
parametric technique based on Structural Risk Minimization that aims to opti-
mize model performance by minimizing both the error and the model complex-
ity. Chapter 18 map carbon/nitrogen (C/N) ratio of forest soils aiming to evalu-
ate soil functions and provide needed information to address climate change in
Europe. Interestingly, in their study the classical Kriging approach performs better
to model C/N ratios when compared to Neural Network modeling of C/N using
environmental covariates. This may be explained by the scale of the “global soil
mapping approach” extending over Europe. Chapter 19 compares various meth-
ods (Multiple Linear Regression, Universal Kriging, Regression Kriging, Artificial
Neural Network–Kriging, Regression Tree, and Sequential Indicator Simulation) to
model SOC in a province in China, with Regression Tree outperforming all other
tested methods. In Chapter 20 SOM is estimated using Regression Kriging and
various environmental covariates in central Italy. The topsoil SOC stocks are esti-
mated using six different sets of SCORPAN factors implemented using Multi-linear
Regression analysis and Regression Kriging in Rio de Jaineiro State (Chapter 21).
Chapter 22 assesses the extent of organic soils in Denmark using Decision Tree
Modeling and Indicator Kriging, which classified 58 and 52% correctly, respec-
tively. In Chapter 23 wind erosion is assessed in the Danuve Basin using Regression
Kriging and various environmental covariates bridging the gap between digital soil
mapping and digital soil risk assessment.

1.4 Making Digital Soil Mapping Operational

Research-focused digital soil mapping contrasts with need-driven digital soil map-
ping and agency-operated soil surveys. Digital soil mapping studies are diverse with
specialized, mathematical prototype models tested on limited geographic regions
and/or datasets and simpler, operational digital soil mapping used for routine map-
ping over large soil regions.
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Grunwald (2009) pointed out that numerous research-oriented digital soil map-
ping studies ranked high in terms of quantitative knowledge and expertise, but
lacked pedological interpretations which may limit widespread adoption by prac-
titioners. In her review study she documented various complex digital soil mapping
methods, such as genetic programming, Simulation of Gaussian Fields, Markov
Chain Random Fields, or mechanistic models, which require profound mathematical
expertise. Minasny and McBratney (2007) suggested that for practical applications
digital soil prediction methods, such as Regression Kriging, may be mathematically
biased, however, they appear robust to predict soil properties in various soil regions.
Both authors conclude that improvement in the prediction of soil properties does
not rely on more sophisticated quantitative methods, but rather on gathering more
useful and higher quality data.

There are multiple studies presented in this book that use Multivariate Regres-
sion, Regression Kriging, Tree-based models, or Neural Networks, which are meth-
ods that are versatile and easy to implement. In these studies much effort is invested
in assembly of SCORPAN factors from various sources (legacy datasets, soil and
remote sensors, derivatives from DEMs, and others). In many cases, data collec-
tion of environmental covariates is given more attention than the collection of
soil samples. The presented studies further suggest that there is not one method
emerging that performs best to estimate multiple soil properties/classes in different
geographic regions. Factors that confound findings to estimate soil properties and
classes include sampling design and sample density, quality and spatial resolution
of soil and environmental covariates, scale (extent of study site, model grain), data
aggregation, and integration methods. Critical is to evaluate the performance of soil
prediction models using calibration and/or validation. Grunwald (2009) found that
out of 90 investigated studies 21.1% used cross-validation, 46.7% used validation,
and 35.6% did not use cross-validation, validation or any other performance test.
Rigorous performance tests to evaluate soil predictions in various geographic soil-
landscape settings are critical to minimize uncertainty in soil predictions at unsam-
pled locations.

Chapter 24 presents the S-map designed to deliver a new digital soil map,
database, inference system, and soil information system for New Zealand. The sys-
tem builds on legacy data, older soil surveys, expert-knowledge, and digital soil
mapping methods. Preliminary results contrast expert-clustering and data-driven
clustering deriving soilscapes. Chapter 25 addresses the problem of legacy soil
data harmonization and data base integration for a region covering the Hungarian-
Slovakian border. They form an integrated database of profiles using pedotransfer
rules and environmental covariates to employ Regression Kriging and Maximum
Likelihood Classification to derive soil groupings, pH, and humus content. Chap-
ter 26 provides an overview of how existing soil survey data and expert-knowledge
is linked to implement digital soil mapping in Canada. Authors aim is to produce
raster-based soil maps that utilize existing soil survey information managed by
the Canadian Soil Information System (CanSIS). Chapter 27 demonstrates predic-
tive ecosystem mapping for 8.2 million hectare of forestland in British Columbia,
Canada. Their approach for operational modeling of ecological entities is based
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on a combination of fuzzy membership functions and knowledge-based predic-
tive rules. Chapter 28 presents an operational initiative facilitated by the Natural
Resources Conservation Service building digital soil mapping capacity within the
U.S. National Cooperative Soil Survey. In this pilot project ASTER satellite imagery
and DEM data will be used to create soil predictive models in the Joshua Tree
National Park, Mojave Desert. Complimentary, Chapter 29 presents a qualitative
comparison of conventional soil survey product and one derived using environmen-
tal covariates and Random Forest to predict soil subgroups as part of the Mojave
Desert initiative. In Chapter 30 the Optimum Index Factor (OIF) to multiple data
types is applied to identify the optimum combination of bands from Landsat TM and
DEM data. The OIF is used to determine which data layers, derived from elevation
data and remote-sensing images, best represent the full range of biophysical charac-
teristics in a study area in north-eastern Utah. The optimum data layers are combined
into a multiband image used for classification and modeling, and ultimately to cre-
ate a pre-map for the study area. Chapter 31 presents the TEUI-Geospatial Toolkit
which is an operational GIS-based ecological inventory application used by the U.S.
Department of Agriculture, Forest Service and other land management agencies. In
Chapter 32 a GIS framework and rule-based system developed by experts is used
to map shallow soil condition to model dust emissions in the arid southwest U.S.
Chapter 33 describes the GlobalSoilMap project that aims to produce a new digital
soil map of the world with a grid resolution of 90 m × 90 m. The global soil map will
be freely available, web-accessible, and widely distributed. The first portion of the
global soil map is focused on Sub-Saharan Africa. Chapter 34 provides methodolo-
gies for global soil mapping based on the current state of knowledge incorporating
legacy data, extracting information from soil maps, combining soil maps and soil
point data, SCORPAN, Kriging, extrapolating based on reference areas, and the
Homosoil approach.

1.5 What Is Next in Digital Soil Mapping

The methodological digital soil mapping framework to map soils across the globe
at fine grains (≤90 m × 90 m) has been formalized (compare Chapters 33 and 34;
and McBratney et al., 2003). Research-oriented digital soil mapping studies pre-
sented in this book and digital soil mapping literature (Grunwald, 2009; Hartemink
et al., 2008; Lagacherie et al., 2007) provide evidence that soil taxonomic data and
soil properties can be predicted successfully using sets of environmental covari-
ates as shown in various soil-landscape settings. Availability of high-resolution and
hyperspectral remote sensing data, high-quality DEMs as well as soil sensors, and
multi-sensor systems have facilitated to improve soil prediction models. In research-
oriented digital soil mapping error and uncertainty metrics accompany soil estimates
to document the quality of digital soil maps, which have often not been provided
in transparent format by operational soil survey programs. The trend to formalize
pedological expertise in form of quantitative soil prediction models of various types
is continuing in the research community.
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Carré et al. (2007) suggested that the next step in digital soil mapping is digital
soil assessment, which comprises three main processes: (1) soil attribute space infer-
ence, (2) evaluation of soil functions and the threats to soils, and (3) risk assessment
and the development of strategies for soil protection. Digital Soil Risk Assessment
consists of integrating political, social, economical parameters and general environ-
mental threats to digital soil assessment outputs for building, modeling and testing
some scenarios about environmental perspectives. This path responds to the pressing
environmental issues that requires accurate and high-resolution, spatially-explicit
soil data to conduct a holistic assessment of soil-environmental systems.

Future challenges will entail to adapt digital soil mapping to various soil-
landscape settings accounting for spatial as well as temporal soil patterns. Digital
soil mapping will need to encompass three-dimensional soil bodies extending along
profiles and across landscapes. So far, digital soil mapping has focused on the topsoil
but mapping of soil characteristics in the subsurface are critical to address nutrient
enrichment and pollution problems, carbon sequestration in spodic horizons, and
more. To bridge the gap between research and operational digital soil mapping pro-
grams will require fusing of expert-knowledge from soil surveyors and research
scientists. Despite technological and methodological advancements in digital soil
mapping it will be critical to collect reconnaissance soil data without relying too
much on legacy soil data. Fusing of soil and environmental covariates and devel-
opment of multi-sensor systems will be important to advance digital soil mapping.
The methodology for digital soil mapping as outlined by Minasny and McBratney
(Chapter 34) will help to homogenize future digital soil mapping products.
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Chapter 2
Environmental Covariates for Digital Soil
Mapping in the Western USA

J.L. Boettinger

Abstract Unlike most of the USA, the western region still lacks initial soil mapping
on many private and public lands. Spatially explicit soil data are needed to support
a variety of land uses including energy development, mining, grazing, agriculture,
forest products, recreation, wildlife habitat, species conservation and urban develop-
ment. The wide diversity of lithology, geomorphology, climate, and vegetation and
the vast, difficult-to-access terrain of western landscapes facilitated the develop-
ment of digital soil mapping. Environmental covariates used in digital soil mapping
in the western USA include derivatives of digital elevations models (DEM) and
remotely sensed spectral data (RS). DEM-derived data are often used to represent
climate and relief (geomorphology, microclimate). The low vegetation cover of arid,
semiarid, and seasonally dry climates typical of the West facilitates the use of RS
data and its derivatives. Landsat and ASTER data are the most common sources of
RS data, and are used to represent organisms (vegetation type and density), parent
material (lithology, mineralogy), and soil (mineralogy, wetness, other surface char-
acteristics). Spatially explicit, digital environmental covariates have improved sev-
eral aspects of soil survey in the western USA including pre-mapping, developing
efficient and targeted field sampling plans, and implementation of spatial prediction
models.

Keywords Remote-sensing · Spectral reflectance · Topographic attributes · Band
combinations

2.1 Introduction

Large areas of the USA still need initial soil survey data on public and private lands,
particularly in the West (Fig. 2.1). The USDA Natural Resources Conservation Ser-
vice, which provides leadership to the National Cooperative Soil Survey in the USA,
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Fig. 2.1 Map showing the status of soil surveys in the USA and its territories. Areas shown in
white still lack modern initial soil survey data

has a goal to complete the initial soil survey on Non-Federal, Native American, and
high-priority Federal lands before the end of 2011. Other areas that have initial soil
survey data now need updates of existing soil surveys to meet emerging demands for
soil information, such as for urban planning, assessing environmental hazards and
impacts of various land uses, predicting habitat of sensitive species, and the delivery
of ecosystem services.

Federal (public) lands in the West managed by the US Department of Interior
Bureau of Land Management and National Park Service and the US Department of
Agriculture Forest Service that still lack initial soil survey are often vast tracts of
land which are often very rugged with few roads (e.g., Fig. 2.2). While traditional
uses of public lands were often of low intensity (i.e., grazing lands, recreation),
recent increase in demand for domestic energy sources has placed intense devel-
opment pressure on these lands, particularly those administered by the Bureau of
Land Management. Traditional methods of soil survey commonly produce soil maps
with broad map unit polygons representing soil associations and complexes with
multiple soil and miscellaneous land type components. Therefore, even where soil
survey data are available, the lack of specific spatially distributed soil information
and associated estimates of uncertainty hinders land planning and management.

Until fairly recently, traditional soil survey was based largely on interpretation
of aerial photography verified with field observations. Map unit concepts were
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Fig. 2.2 Rugged, roadless
landscape typical of public
land managed by the Bureau
of Land Management in
southern Utah, USA

sometimes applied inconsistently across survey areas, with different soil scientists
having different interpretations of soil-landscape relationships. Locations of pedon
descriptions, transects, traverses, and observations were difficult to accurately geo-
reference. Map unit concepts and rules of application were rarely documented and
archived in places other than the minds of the soil scientists who moved on to map
soils in other areas, making soil survey updates more difficult and time-consuming.
Paper copies of pedon descriptions and other documentation were sometimes lost,
damaged, or destroyed following completion of the soil survey.

The scientific foundation of soil mapping in the USA has traditionally been
Jenny’s (1941) conceptual model to explain that unique soils on the landscape are
the products of unique sets of five soil-forming factors, including climate, organ-
isms (mainly vegetation), relief, parent material, and time. Vegetation and relief
were often interpreted from aerial photographs, in conjunction with topographic
quadrangle maps published by the US Geological Survey (USGS). Parent material
was interpreted from available surficial and bedrock geology maps published by
USGS or state geological surveys. These data were usually of good quality, but it
was cumbersome to spatially overlay these data layers and it was difficult to quan-
tify relationships between soil-forming factors and the distribution of soils on the
landscape.

Increased availability and user-friendliness of geographic information systems
(GIS), software, and tools has improved the efficiency of initial and update soil
survey. Most soil mapping currently involves the geo-referencing of data points and
transects with global positioning systems (GPS), and spatial data can be viewed,
overlaid, and queried using GIS software. Digital elevation models (DEM) are
widely available; currently, most areas of the USA are represented by 30-m DEM,
and some areas have 10-m DEM or higher resolution. Remotely sensed satellite
imagery (RS) is obtained from remote or proximal sensors that record the elec-
tromagnetic reflection patterns of the Earth’s surface (Lillesand and Kiefer, 2000)
are also increasingly available. These DEM-derived and RS-derived data represent-
ing biophysical properties of the landscape and environment can be analyzed using
various techniques.
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Reviewing these advances, McBratney et al. (2003) and Scull et al. (2003)
described the discipline of digital (predictive) soil mapping. McBratney et al. (2003)
reframed Jenny’s soil-forming factors into seven scorpan factors that describe the
environment, where s = soil or soil properties), c = climate, o = organisms including
vegetation and land cover, r = relief or topography, p = parent material, a = soil age
(time), and n = spatial position. The goal is to represent all scorpan factors – envi-
ronmental covariates – with spatially explicit digital data, assemble existing (legacy)
and/or collect new georeferenced field and laboratory soil data, fit quantitative rela-
tionships, and predict the spatial distribution of soil classes and/or attributes. Digital
soil mapping expects estimates of error to accompany the soil spatial predictions.

Public lands in the western USA are typically very diverse geologically, topo-
graphically, climatically, and ecologically, which facilitates the representation of
the seven scorpan environmental covariates by a variety of DEM- and RS-derived
data. Because there is little to no legacy soil data available for initial soil survey, the
challenge of field sampling in vast and difficult-to-access areas remains. However,
these environmental covariates can also be useful for stratifying study areas and
developing objective field sampling plans that represent the environmental variabil-
ity. The goal of this chapter is to demonstrate the potential usefulness of DEM- and
RS-derived data to represent environmental covariates in the western USA.

2.2 Environmental Covariates Represented by Remotely
Sensed Spectral Data: Organisms (o), Soil (s), and Parent
material (p)

Publicly available and/or low-cost RS data are particularly useful for quantifying the
spectral properties of organisms, soil, and/or parent material. This is especially true
in arid to semiarid areas of the western USA where low vegetation cover exposes
the surface of soils, sediments, and rocks, and where effective moisture can be
represented by a range in vegetation density and type. While there are only seven
bands from visible to short-wave infrared, spectral data from the Landsat Missions
(Table 2.1; http://landsat.usgs.gov/) have commonly been used to represent organ-
isms, soil, and parent material. With greater spatial and spectral resolution, spectral
data from the Advanced Spaceborne Thermal Emission and Reflection Radiome-
ter (ASTER) sensor (Table 2.1; http://asterweb.jpl.nasa.gov/) should become more
common in future digital soil mapping studies.

The spectral properties of organisms, soil, and/or parent material can be exploited
using simple or normalized difference band ratios (Jensen, 2005). Simple band ratios
are ratios of the reflectance (represented as percent reflectance or a digital number)
of one spectral band to another, with the equation taking the form of Band A/Band B.
Normalized difference band ratios help reduce the effects of solar illumination inten-
sity and angle, as well as topographic variations in slope and aspect. The equation
takes the form (Band A–Band B)/(Band A+ Band B), which constrains the value of
the ratio between −1 and +1.
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Table 2.1 Spatial and spectral resolutions of Landsat and ASTER data used to represent environ-
mental covariates in digital soil mapping projects in the western USA

Band Spatial resolution Spectral range Common name

m μm

Landsat
1 30 0.450–0.515 Blue
2 30 0.525–0.605 Green
3 30 0.630–0.690 Red
4 30 0.775–0.900 NIR
5 30 1.550–1.750 SWIR (MIR)
6 60 10.40–12.50 TIR
7 30 2.090–2.350 SWIR (MIR)

Pan 15 0.520–0.900 Visible + NIR

ASTER
1 15 0.520–0.600 Green
2 15 0.630–0.690 Red

3N 15 0.760–0.860 NIR (Nadir View)
3B 15 0.760–0.860 NIR (Backward Scan)

4 30 1.600–1.700 SWIR
5 30 2.145–2.185 SWIR
6 30 2.185–2.225 SWIR
7 30 2.235–2.285 SWIR
8 30 2.295–2.365 SWIR
9 30 2.630–2.430 SWIR

10 90 8.125–8.475 TIR
11 90 8.475–8.825 TIR
12 90 8.925–9.275 TIR
13 90 10.25–10.95 TIR
14 90 10.95–11.65 TIR

Abbreviations: NIR = near infrared; SWIR = short-wave infrared (formerly MIR = middle
infrared, 1–3 μm; Lillesand and Kiefer, 2000); TIR = thermal infrared

2.2.1 Organisms (o)

The most obvious “organism” environmental covariate is vegetation, which is well
represented by remotely sensed spectral data. Healthy green vegetation reflects
near infrared (NIR; 0.7–1.1 μm) and absorbs visible electromagnetic radiation
(0.4–0.7 μm), especially in the red region (e.g., Fig. 2.3). Dead or senescent veg-
etation reflect more in the visible region than healthy vegetation.

The Normalized Difference Vegetation Index (NDVI) is a normalized difference
ratio model of the near infrared (NIR) and red bands of a multispectral image
[NDVI = (NIR–RED)/(NIR + RED)]. A monochrome image of the NDVI illus-
trates areas that appear black which have no vegetation (e.g., water bodies, interstate
highways), areas that appear white which have relatively high vegetation density
(e.g., dense forest or meadow), and areas in gray shades representing intermediate
vegetation density, with darker gray areas having lower vegetation cover and lighter
gray areas having higher vegetation cover (e.g., Boettinger et al., 2008).
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Fig. 2.3 Spectral reflectance of lawn grass (healthy green vegetation) viewed using the Landsat
Missions’ Spectral Characteristics Viewer (http://landsat.usgs.gov/tools_spectralViewer.php). The
spectra illustrates the reflectance of near infrared radiation (NIR; Landsat 7 ETM+ band 4) and the
absorbance of visible radiation, especially in the red region (Landsat 7 ETM+ band 3)

The NDVI is probably the most common representation of vegetation cover in
digital soil mapping in the western USA (e.g., Sections 15.2.2 and 29.2.2). However,
the soil-adjusted vegetation index (SAVI), which is similar to NDVI but includes a
correction factor (“L”) for soil, has also been used (e.g., Section 6.2.2). Tasseled cap
and principal components analyses of Landsat data have also been useful covariates
related to vegetation (see Chapter 3).

The “organism” environmental covariate in arid and semiarid regions may be
represented by biological soil crusts. Biological soil crusts in the western USA are
usually composed of cyanobacteria, lichen, and mosses. They can also include algae
and other organisms, depending on parent material and climate (USGS Canyonlands
Research Station, 2008). The cyanobacteria in biological soil crusts have distinct
spectral properties. Most notably, the phycobilin pigment in cyanobacteria increases
reflectance in the blue region (Karnieli et al., 1999). A normalized difference band
ratio for cyanobacteria-dominated biological soil crust index (CI) was developed by
Karnieli (1997) [CI = 1−(RED–BLUE)/(RED+BLUE)]. Our preliminary studies
using Landsat spectral data in Canyonlands National Park in southern Utah indicate
that the CI adds information about biological soil crust cover that appears potentially
useful for digital soil mapping and assessment. The CI value is inversely related to
NDVI, reflects soil properties in undisturbed sites, and indicates the degree of sur-
face disturbance within a particular soil type. For lichen-dominated crusts, which are
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more common on highly calcareous and gypsiferous soils in the western USA, Chen
et al. (2005) developed biological soil crust index (BSCI), which exploits reflectance
in the red, green and NIR bands.

The Advanced Spaceborne Thermal Emission and Reflectance Radiometer, or
ASTER, on the Terra satellite platform has also been utilized to represent vegetation
in the western USA. While there are only three spectral bands in the visible through
NIR radiation, the spatial resolution is 15 m, which is finer than the 30-m resolution
of Landsat spectral data (Table 2.1). Chapter 10 illustrates the use of ASTER to
create a finer spatial resolution environmental covariate for vegetation in remote
terrain of the Pacific Northwest.

2.2.2 Soil (s) and/or Parent Material (p)

The spectral properties of different mineral assemblages in parent materials (rocks,
sediments) and soils can vary greatly. Figure 2.4 illustrates the spectra for cal-
cite (calcium carbonate, CaCO3), montmorillonite (an expandable 2:1 layer silicate
clay), and hematite (iron oxide, Fe2O3). White- and light-colored minerals, such
as calcite, have high reflectance in the visible portion of the electromagnetic spec-
trum. Some minerals, such as clay minerals, calcite, and gypsum are particularly
responsive in the short-wave infrared (SWIR) range of the electromagnetic spec-
trum. Landsat band 5 and 7 and ASTER bands 4 through 9 have been quite useful
for distinguishing variations in surface mineralogy of parent material and soil.

The Bureau of Land Management (BLM) developed three simple band ratios
using Landsat data, known as the Soil Enhancement Ratios. Band 3 (Red) / Band 2

Fig. 2.4 Spectral characteristics of calcite (CaCO3), montmorillonite (an expandable 2:1 layer
silicate clay), and hematite (Fe2O3) viewed using the Landsat Missions’ Spectral Characteristics
Viewer (http://landsat.usgs.gov/tools_spectralViewer.php)
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(Green) was thought to represent variations in carbonates, Band 3 (Red) / Band 7
(longer wavelength SWIR) was thought to represent iron, and Band 5 (shorter
wavelength SWIR) / Band 7 (longer wavelength SWIR) was thought to represent
hydroxyls of clays. While these exact physical relationships may not be valid for
all study areas, these simple band ratios illustrate and help quantify mineralogical
diversity of the soils and parent material on the landscape (e.g., Boettinger et al.,
2008).

“Soils” can be represented by remotely sensed data. Chemical and/or physical
properties of the soil surface or very near-surface may have diagnostic spectral
properties. For example, in the arid climate of the San Rafael Swell in central Utah,
there are soils with an accumulation of secondary gypsum within a few centimeters
of the soil surface. Gypsum has diagnostic spectral response in the SWIR region,
which is well represented by Landsat TM and ETM+ bands 5 and 7. A normalized
difference ratio model of Landsat bands (5 − 7)/(5 + 7) was used to successfully
map the occurrence of gypsic soils in this area (Nield et al., 2007).

The “parent material” environmental covariate can be represented by remotely
sensed spectral data. Chapter 15 illustrates the use of normalized difference band
ratio of Landsat bands 5 and 2 to distinguish andesite from limestone in a Basin and
Range landscape in southwestern Utah. In addition, normalized band ratios 4/5, 3/7,
5/1, and 4/7 distinguished unique soil-landscape-vegetation relationships thought to
be useful in the random forests inference model. While rasterized vector coverages
of bedrock and surficial geology may be useful covariates, spectral reflectance bet-
ter quantifies the mineralogy and spatial position of the parent material. With the
greater spectral resolution in both SWIR and TIR spectral regions, combinations
and ratios of ASTER bands should be very useful for representing mineralogy of
parent materials and soils in digital soil mapping. For example, calcitic, dolomitic,
and quartzitic lithology, and rocks affected by contact metamorphism in southeast-
ern California were differentiated using ASTER SWIR and TIR bands (Rowan and
Mars, 2003). The ASTER mineral indexes (band combinations and ratios) devel-
oped by Geoscience Australia have been used to map mineralogy on a regional
scale (Kalinowski and Oliver, 2004)

The spectral properties of materials of interest, especially minerals and rocks,
can be explored using digital spectral libraries available on-line. These include
the ASTER Spectral Library (http://speclib.jpl.nasa.gov/; Baldridge et al., 2009)
and the USGS Spectroscopy Lab http://speclab.cr.usgs.gov/spectral-lib.html; Clark
et al., 2007). For both the ASTER and USGS Spectral Libraries, one may view plots,
which allows qualitative comparisons between spectra and band profiles in ERDAS
Imagine or other image processing software. One may also view and download the
spectral files with x , y wavelength and reflectance data, which can then be plotted
against wavelength band intervals of sensors.

The use of proximal sensors and their spectral libraries (see Chapter 7) will
likely be useful in scaling satellite and airborne imagery (e.g., HYMAP hyper-
spectral data; see Chapter 8) and aerial gamma radiometrics to field and labo-
ratory measurements of soil properties as digital soil mapping progresses in the
western USA.
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2.3 Environmental Covariates Represented by Elevation Data:
Relief (r) and Climate (c)

2.3.1 Relief (r)

The environmental covariate of “relief” can be represented by elevation, and can
be determined from several remote sensing sources. These include photogrammet-
ric, Shuttle Radar Topographic Mission (SRTM), Interferometric Synthetic Aperture
Radar (IfSAR or InSAR), and Light Detection And Ranging (LiDAR). Most of the
western USA has 30- and 10-m digital elevation models (DEM) available, and some
areas have 5-m DEM.

Primary and secondary topographic derivatives from DEM data have been
extremely useful for digital soil mapping in the high relief areas of the western
USA. These include slope, curvature, and compound topographic index (also known
as wetness index), etc. (e.g., Chapters 15 and 30). Chapter 3 briefly reviews com-
monly used topographic derivatives and introduces the use of 36 novel topographic
attributes used to model soil depth in a western USA watershed, many of which
represent landscape context including various representations of distance to ridge or
stream.

2.3.2 Climate (c)

“Climate” is often difficult to quantify at the spatial scale needed in digital soil map-
ping in the western USA. Climate stations with long term climate records are widely
spaced, and high relief and rugged terrain introduce orographic climate effect. While
not very robust, elevation can help represent climate in remote areas subject to oro-
graphic climate effect (e.g., Chapter 15). Euclidean distance from the coast can also
be useful to model climate for some locations (Howell and Kim, 2009).

Microclimate influenced by relief (slope gradient, aspect, etc.) can be quanti-
fied by estimating solar radiation, calculated from the georeferenced DEM (e.g.,
Chapter 30). Steep, north-facing slopes receive much less solar radiation than cor-
responding south-facing slopes in high relief, low-humidity environments typical
throughout the western USA, resulting in lower evapotranspiration and higher effec-
tive moisture on north-facing slopes.

2.4 Soil Age (a)

Explicit and implicit estimates of soil age are very useful environmental covariates
in digital soil mapping in landscapes of the western USA, but are often difficult
to obtain. Chapter 4 reviews various approaches to add geochronology in digital
soil mapping in southeastern Oregon. Improved prediction of soil on the landscape
was obtained with addition of several implicit age covariates, including custom
thematic maps of lithology and geologic age. In the absence of explicit soil age
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Fig. 2.5 The normalized difference ratio of Landsat bands 5 and 7 distinguishes recent channels
from older surfaces on dissected alluvial fans emanating from the Spring Mountains in the south-
west and the Sheep Mountains in the north to the basin floor near Las Vegas, southern Nevada.
White areas indicate higher ratios and younger geomorphic surfaces, particularly evident as rela-
tively active drainage channels

data, implicit topographic data representing landforms that are commonly related to
soil relative age and remotely sensed spectral data that focuses on surface spectral
characteristics represent surface or soil age. Chapter 15 illustrates the implicit use of
landform surface age in predictive soil mapping by spatially modeling the shoreline
of Pleistocene pluvial Lake Bonneville. Implicit soil age is represented by spectral
reflectance focused on Fe-oxides in Chapter 4. Figure 2.5 illustrates the normalized
difference ratio of Landsat bands 5 and 7, which distinguishes recent channels from
older, stable surfaces on alluvial fans in southern Nevada.

2.5 Conclusions

In the western USA, the scorpan environmental covariates of organisms, parent
material and soil, and possibly soil age, can be represented by remotely sensed
spectral data, whereas properties related to relief or microclimate can be repre-
sented by topographic attributes derived from elevation. Explicit estimates of soil
age would be very useful in digital soil mapping, but may not be available. While
some covariates are routinely used, e.g., NDVI, novel covariates are being developed
and tailored to specific study areas, e.g., new topographic attributes introduced in
Chapter 3. The challenge of digital soil mapping of vast land areas in the western
USA, particularly the remote and rugged public lands, is fertile ground for develop-
ing and utilizing a wide variety of environmental covariate data. Spatially explicit,
digital environmental covariates have already improved several aspects of soil sur-
vey in the West including pre-mapping, developing efficient and targeted field sam-
pling plans, and implementation of spatial prediction models (e.g., Chapters 28, 29,
30, 31, and 32).
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Chapter 3
A Generalized Additive Soil Depth Model
for a Mountainous Semi-Arid Watershed Based
Upon Topographic and Land Cover Attributes

T.K. Tesfa, D.G. Tarboton, D.G. Chandler, and J.P. McNamara

Abstract Soil depth is an important input parameter in hydrological and ecolog-
ical modeling. Presently, the soil depth data available in national soil databases
(STATSGO, SSURGO) is provided as averages within generalized map units. Spa-
tial uncertainty within these units limits their applicability for spatially distributed
modeling. This work reports a statistical model for prediction of soil depth in a semi-
arid mountainous watershed that is based upon topographic and other landscape
attributes. Soil depth was surveyed by driving a rod into the ground until refusal
at geo-referenced locations selected to represent the range of topographic and land
cover variations in Dry Creek Experimental Watershed, Boise, Idaho, USA. The
soil depth survey consisted of a model calibration set, measured at 819 locations
over 8 sub-watersheds, and a model testing set, measured at 130 locations randomly
distributed over the remainder of the watershed. Topographic attributes were derived
from a Digital Elevation Model. Land cover attributes were derived from Landsat
TM remote sensing images and high resolution aerial photographs. A Generalized
Additive Model was developed to predict soil depth over the watershed from these
attributes. This model explained about 50% of the soil depth spatial variation and
is an important improvement towards solving the need in distributed modeling for
distributed soil depth input data.

Keywords Generalized additive models · Explanatory variables · Land cover
attributes · Soil depth · Topographic attributes

3.1 Introduction

Soil depth is one of the most important input parameters for hydrological and
ecological models. Its spatial pattern, significantly affects soil moisture, runoff
generation, and subsurface and groundwater flow (Freer et al., 2002; McNamara
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et al., 2005; Stieglitz et al., 2003). Consequently, its accurate representation is
becoming increasingly important. It is highly variable spatially, and laborious, time-
consuming and difficult to practically measure even for a modestly sized watershed
(Dietrich et al., 1995). There is thus a need for models that can predict the spatial
pattern of soil depth.

The national soil databases (SSURGO & STATSGO) have been the main sources
of soil depth information used in hydrological and ecological modeling in the United
States. In these soil databases, soils are spatially represented as discrete map units
with sharp boundaries. A map unit may be comprised of more than one soil com-
ponent but these components are not represented spatially within the map unit. As
a result, soil attributes are spatially represented at map unit level as a mean or some
other representative value of the components. Such a representation limits quantifi-
cation of the variability of soil attributes within each class, and class boundaries
generalize the spatial pattern of the soil properties, absorbing small scale variability
into larger class units (Moore et al., 1993; Zhu, 1997). There is a need in spatially
distributed modeling for fine scale models of soil depth that do not have these limi-
tations. Past efforts to develop fine scale models include fuzzy logic, statistical and
physically based approaches (Dietrich et al., 1995; Moore et al., 1993; Zhu, 1997).

In this chapter, we develop a statistical model for prediction of the spatial pattern
of soil depth over complex terrain from topographic and land cover attributes in a
mountainous semi arid watershed. Topographic and land cover attributes intended
to have explanatory capability for soil depth were derived from a digital elevation
model (DEM) and Landsat TM remote sensing images. A Generalized Additive
Model (GAM) (Hastie and Tibshirani, 1990) was applied to predict soil depth based
on these topographic and land cover attributes using soil depth data measured at 819
points at 8 sub-watersheds within Dry Creek Experimental Watershed (DCEW).
This calibration data set was randomly divided into a training subset consisting
of 75% of the data and a validation subset consisting of the remaining 25% that
was used to estimate the prediction error for variable and model complexity selec-
tion (see Chapter 7). Soil depth data measured at an additional 130 random points
within DCEW was used as an out of sample data set to test the model results.
The Nash-Sutcliffe efficiency coefficient, which is widely used to assess the pre-
dictive accuracy of models, was used to evaluate the efficiency of the soil depth
model.

3.2 Study Area

This study was carried out in the Dry Creek Experimental Watershed (DCEW),
about 28 km2 in area, located in the semi-arid southwestern region of Idaho, USA
(Fig. 3.1). The area is composed of mountainous and foothills topography with ele-
vations that range from 1,000 to 2,100 m (Williams et al., 2008). The landscape is
typified by moderately steep slopes with average slope of about 25%, with steeper
north facing slopes than south facing slopes, and is strongly dissected by streams.
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Fig. 3.1 Dry Creek Experimental Watershed (DCEW) near Boise, ID, in the Western USA. Points
show locations where soil depth was sampled

The climate is a steppe summer dry climate at low elevation and moist continental
climate with dry summers at high elevation (McNamara et al., 2005). Precipitation is
highest in winter, as snow in the highlands and rain in the lowlands, and in spring in
the form of rain. There are occasional summer thunderstorms. The average annual
precipitation ranges from 37 cm at lower elevations to 57 cm at higher elevations
(Williams, 2005). The average monthly temperatures are highest in July and lowest
in January. Streamflow typically remains low in the early and mid winter and peaks
in the early to mid spring due to snowmelt (McNamara et al., 2005).

Vegetation varies with elevation and landscape aspect (McNamara et al., 2005;
Williams, 2005). Grass (south facing aspects) and sagebrush (north facing aspects)
are dominant at lower elevations. Upper elevations are dominated by ponderosa
pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) forest with patches
of lodgepole pine (Pinus contorta) and aspen (Populus tremuloides). Middle ele-
vations range from grass and shrublands to open forest of ponderosa pine and
Douglas-fir.

Soils in this area are formed from weathering of the underlying Idaho Batholith,
which is a granite intrusion ranging in age from 75 to 85 million years (Lewis
et al., 1987; USDA, 1997). The dominant rock type is biotite granodiorite which
consists of medium to coarse-grained rocks composed of plagioclase, quartz, potas-
sium feldspar, and biotite (Johnson et al., 1988). The soils are classified into three
general great groups according to US Soil Taxonomy: Argixerolls, Haploxerolls,
and Haplocambids. These soils range from loam to sandy loam in texture and are
generally well drained with high surface erosion potential (USDA, 1997). The Nat-
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ural Resource Conservation’s soil survey of the Boise Front (SSURGO soil database
for survey area symbol ID903 obtained from Idaho NRCS office) provides a more
detailed description of the soils underlying the watershed.

3.3 Methodology

3.3.1 Field and Digital Data

Eight sub-watersheds were selected to represent the elevation, slope, aspect and land
cover variability present within the DCEW. Soil depth was surveyed at a total of 819
points within these sub-watersheds. Survey locations were chosen to represent the
range of topographic and land cover variation in the sub-watersheds. At each survey
location three depth replicates two to three meters apart were collected by driving a
220 cm long 1.27 cm diameter sharpened copper coated steel rod graduated at 5 cm
interval into the ground using a fence post pounder until refusal. The survey was
carried out in the early springs of 2005 and 2006, when the ground was relatively
wet so that the rod penetrated more easily. The first author carried out this survey
for 761 of the points in seven sub-watersheds, while soil depth data for 58 points
in the eighth sub-watershed, had been previously collected using the same meth-
ods (Williams et al., 2008). The data from these 819 points are designated as the
calibration dataset. A further 130 soil depth observations were collected using the
same method at randomly distributed locations, at least 50 meters away from the
selected sub-watersheds, over the remainder of the watershed. These are designated
as the testing dataset (Fig. 3.1).

A wide range of topographic and land cover attributes were chosen as potential
regression explanatory variables for the prediction of soil depth. Fifty five topo-
graphic variables (Table 3.1) were derived from the 1/3 arc second DEM obtained
from the USGS seamless data server, which was projected to a 5 m resolution
grid for the derivation of the topographic attributes. Of these, 36 were new topo-
graphic attributes that we derived following the approach described in Tarboton and
Baker (2008). Ten land cover variables (Table 3.2) were derived from the Landsat
TM imagery (path 41 row 30 obtained from the USGS) and an aerial photograph
(obtained from NRCS Idaho State Office). Details on the derivation of these geospa-
tial input variables are given in Tesfa et al. (2009).

3.3.2 Statistical Analysis

3.3.2.1 Normalization

Box Cox transformations (Equation (3.1)) were used to transform the measured soil
depth (sd) and each explanatory variable so that their distribution was near normal.
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Table 3.1 Topographic attributes derived from DEM; derivations and equations are in Tesfa et al.
(2009)

Symbol Description

elv∗∗ Elevation above sea level
sca∗∗ Specific catchment area from the D∞ method. This is contributing area divided

by the grid cell size (from TauDEMa specific catchment area function)
plncurv∗∗ Plan curvature is the curvature of the surface perpendicular to the direction of

the maximum slope (From ArcGIS spatial analysis tools curvature function).
A positive value indicates upwardly convex surface; a negative value indicates
upwardly concave surface; and zero indicates flat surface

prfcurv Profile curvature is the curvature of the surface in the direction of maximum
slope (From ArcGIS spatial analyst tools curvature function) (Moore
et al., 1993, 1991). A negative value indicates upwardly convex surface; a
positive value indicates upwardly concave surface and zero indicates flat
surface. See Table 29.1)

gncurv The second derivative of the surface computed by fitting a fourth order
polynomial equation to a 3×3 grid cell window (From ArcGIS spatial analyst
tools curvature function) (Moore et al., 1993, 1991).

aspg The direction that a topographic slope faces expressed in terms of degrees from
the north (From ArcGIS spatial analyst tools aspect function).

slpg∗∗ Magnitude of topographic slope computed using finite differences on a 3×3 grid
cell window (From ArcGIS spatial analyst tools slope function).

ang∗∗ The D∞ flow direction: This is the direction of the steepest outwards slope from
the triangular facets centered on each grid cell and is reported as the angle in
radians counter-clockwise from east (TauDEM Dinf Flow Directions
function).

ad8 D8 Contributing Area: The number of grid cells draining through each grid cell
using the single flow direction model (TauDEM D8 Contributing Area
function)

sd8 The D8 slope: The steepest outwards slope from a grid cell to one of its eight
neighbors reported as drop/distance, i.e. tan of the angle (TauDEM D8 Flow
Directions function).

stdist D8 Distance to Stream: Horizontal distance from each grid cell to a stream grid
cell traced along D8 flow directions by moving until a stream grid cell as
defined by the Stream Raster grid is encountered (TauDEM Flow Distance to
Streams function).

Slpt D∞ slope (Tarboton, 1997): The steepest outwards slope from the triangular
facets centerd on each grid cell reported as drop/distance, i.e. tan of the slope
angle (TauDEM Dinf Flow Directions function)

plen D8 Longest Upslope Length: The length of the flow path from the furthest cell
that drains to each cell along D8 flow directions. (TauDEM Grid Network
Order and Flow Path Lengths function)

tlen D8 Total Upslope Length: The total length of flow paths draining to each grid
cell along D8 flow directions (TauDEM Grid Network Order and Flow Path
Lengths function)

sd8a∗∗ Slope averaged over a 100 m path traced downslope along D8 flow directions
(from GRAIPb, D8 slope with downslope averaging function)

p The D8 flow direction grid representing the flow direction from each grid cell to
one of its adjacent or diagonal neighbors, encoded as 1–8 counter-clockwise
starting at east (TauDEM D8 Flow Directions function)

sar Wetness index inverse: an index calculated as slope/specific catchment area
(TauDEM wetness index inverse function)
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Table 3.1 (continued)

Symbol Description

sph8 D8 horizontal slope position
modcurv∗∗ Curvature modeled based on field observed curvature using a regression

equation on plan curvature, D8 horizontal slope position, wetness index
inverse and general curvature, see Tesfa et al. (2009) for details

lhr∗ Longest D∞ horizontal distance to ridge, see Tesfa et al. (2009) for details
shr∗ Shortest D∞ horizontal distance to ridge, see Tesfa et al. (2009) for details
ahr∗ Average D∞ horizontal distance to ridge, see Tesfa et al. (2009) for details
lhs∗ Longest D∞ horizontal distance to stream, see Tesfa et al. (2009) for details
shs∗ Shortest D∞ horizontal distance to stream, see Tesfa et al. (2009) for details
ahs∗ Average D∞ horizontal distance to stream, see Tesfa et al. (2009) for details
lvr∗ Longest D∞ vertical rise to ridge, see Tesfa et al. (2009) for details
svr∗ Shortest D∞ vertical rise to ridge, see Tesfa et al. (2009) for details
avr∗∗ Average vertical rise to ridge computed over multiple (D∞) paths from ridge to

each point, see Tesfa et al. (2009) for details
lvs∗∗ Longest vertical drop to stream computed over multiple (D∞) paths from point

to stream, see Tesfa et al. (2009) for details
svs∗ Shortest D∞ vertical drop to stream, see Tesfa et al. (2009) for details
avs∗ Average D∞ vertical drop to stream, see Tesfa et al. (2009) for details
lsr∗ Longest surface distance to ridge, see Tesfa et al. (2009) for details
ssr∗ Shortest surface distance to ridge, see Tesfa et al. (2009) for details
asr∗ Average surface distance to ridge, see Tesfa et al. (2009) for details
lss∗ Longest surface distance to stream, see Tesfa et al. (2009) for details
sss∗ Shortest surface distance to stream, see Tesfa et al. (2009) for details
ass∗ Average surface distance to stream, see Tesfa et al. (2009) for details
lps∗ Longest Pythagoras distance to stream, see Tesfa et al. (2009) for details
sps∗ Shortest Pythagoras distance to stream, see Tesfa et al. (2009) for details
aps∗ Average Pythagoras distance to stream, see Tesfa et al. (2009) for details
lpr∗ Longest Pythagoras distance to ridge, see Tesfa et al. (2009) for details
spr∗ Shortest Pythagoras distance to ridge, see Tesfa et al. (2009) for details
apr∗ Average Pythagoras distance to ridge, see Tesfa et al. (2009) for details
lsph∞∗ D∞ Longest horizontal slope position, see Tesfa et al. (2009) for details
ssph∞∗ D∞ Shortest horizontal slope position, see Tesfa et al. (2009) for details
asph∞∗ D∞ Average horizontal slope position, see Tesfa et al. (2009) for details
lspv∗∗ Longest vertical slope position computed as longest vertical drop divided by the

longest vertical drop plus longest vertical rise to ridge, see Tesfa et al. (2009)
for details

sspv∗ Shortest vertical slope position, see Tesfa et al. (2009) for details
aspv∗ Average vertical slope position, see Tesfa et al. (2009) for details
lspp∗ Longest Pythagoras slope position, see Tesfa et al. (2009) for details
sspp∗ Shortest Pythagoras slope position, see Tesfa et al. (2009) for details
asp∗ Average Pythagoras slope position, see Tesfa et al. (2009) for details
lspr∗ Longest slope position ratio, see Tesfa et al. (2009) for details
sspr∗ Shortest slope position ratio, see Tesfa et al. (2009) for details
aspr∗ Average slope position ratio, see Tesfa et al. (2009) for details
∗ New topographic variables derived using enhanced terrain analysis
∗∗Topographic variables selected for modeling soil depth
aTauDEM is the Terrain Analysis Using Digital Elevation Models software (http://www. engineer-
ing.usu.edu/dtarb/taudem)
bGRAIP is the Geomorphologic Road Analysis Inventory Package software (http://www. engineer-
ing.usu.edu/dtarb/graip)
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Table 3.2 Landsat remote sensing image based data and their descriptions; equations are in Tesfa
et al. (2009)

Symbol Description

lc Land cover map derived from Landsat TM image using supervised classification
(this method is described in Section 10.2.4) in ERDAS IMAGINE. Land
cover is represented as a numerical value encoded as follows: 1 Road, rock
outcrop and bare, 2 Grass, 3 Mixed grass and shrub, 4 Shrub, riparian and
deciduous forest, 5 Coniferous forest

pc1∗∗ First principal component from ERDAS IMAGINE principal component
analysis of Landsat Thematic Mapper bands 1, 2, 3, 4, 5, and 7

pc2 Second principal component derived from principal component transformation
of Landsat TM image in ERDAS IMAGINE (Jensen, 1996)

pc3 Third principal component derived from principal component transformation of
Landsat TM image in ERDAS IMAGINE (Jensen, 1996)

tc1 First tasseled cap component derived from tasseled cap transformation of
Landsat TM image in ERDAS IMAGINE (represents brightness)

tc2 Second tasseled cap component derived from tasseled cap transformation of
Landsat TM image in ERDAS IMAGINE (represents greenness)

tc3 Third tasseled cap component derived from tasseled cap transformation of
Landsat TM image in ERDAS IMAGINE (represents wetness)

ndvi Normalized difference vegetation index calculated in ERDAS IMAGINE
(Jensen, 1996) (see Table 29.1 and Section 20.2.3)

vi Vegetation index calculated in ERDAS IMAGINE (Jensen, 1996)
cc Canopy cover index calculated in ERDAS IMAGINE (Zhu and Band, 1994)
∗∗ Land cover variables selected for modeling soil depth

t (x) = (xλ − 1)

λ
(3.1)

Here, t (x) denotes the transform of variable x with transformation parameter λ.
λ was selected to maximize the Shapiro-Wilks Normality Test W-statistic as imple-
mented in R (R Development Core Team, 2007).

3.3.2.2 Model

We applied Generalized Additive Models (GAM) (Hastie and Tibshirani, 1990) to
predict soil depth using the explanatory variables. GAM is a statistical approach that
generalizes multiple regression by replacing linear combinations of the explanatory
variables with combinations of nonparamtertic smoothing or fitting functions, esti-
mated through a backfitting algorithm. The GAM model is:

E(sd|x1, x2, . . . , x p) = α + f1(x1) + f2(x2) + · · · + f p(x p) (3.2)

where, x1, x2, . . . , x p are explanatory variables (predictors), sd is soil depth
(response variable) and fi are non-parametric smoothing splines that relate sd to the
x1, x2, . . . , x p. The model assumes that the mean of sd is an additive combination of
nonlinear functions of the explanatory variables x1, x2, . . . , x p. We used the GAM
package as implemented in R (R Development Core Team, 2007).
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3.3.2.3 Variable Selection and Model Complexity

Questions in developing a predictive regression model include which potential
explanatory variables to use and what to do about interdependent explanatory vari-
ables. Many of the explanatory variables that we derived from the DEM (Table 3.1)
were variants on similar quantities, so we were specifically concerned about the
effect of explanatory variable correlation on model prediction error. A correla-
tion matrix giving the cross correlation between all 65 explanatory variables was
computed using all 819 data points in the calibration dataset. Random Forest
(Breiman, 2001), a classification and regression package (this is described in Sec-
tion 15.2.3) in R (R Development Core Team, 2007), was used to calculate a mea-
sure of explanatory variable importance (see Section 29.2.3.2) for the prediction of
soil depth. Due to randomness in the Random Forest method the variable importance
varies slightly each time it is run. We therefore ran Random Forest 50 times using all
819 data points in the calibration dataset with all 65 potential explanatory variables
with soil depth as the response variable and averaged variable importance across
these runs. Explanatory variables were then ordered based upon their importance
measures.

The number of explanatory variables in a model is a measure of model complex-
ity. We used the correlation matrix, together with the Random Forest importance
values to develop sets of explanatory variables representing models of differing
complexity by eliminating the variable of lesser importance from pairs of variables
with correlation above a designated threshold (from 0.15 to 0.9 in increments of
0.05). Variables were filtered out working sequentially from high to low correlation
until no pairs with correlation greater than the threshold remained. Lower thresholds
result in fewer variables, so a range of models with differing complexity were devel-
oped. This approach reduced the correlation between variables selected for inclusion
in a model. Models of differing complexity were also constructed using explanatory
variables directly from the variable list ordered by importance. Figure 3.2 shows the
explanatory variables with importance values greater than or equal to 0.009, ordered
based on their average importance values from 50 RF runs with all 819 calibration
data points and all 65 explanatory variables.

To evaluate appropriate model complexity, we randomly split the calibration
sample of 819 data points into two parts, designated as the training and valida-
tion sets. The separate testing dataset of 130 points randomly distributed across the
watershed was withheld from this process, so that it could be used for evaluation of
the final model. GAM was applied, using the training data set of 614 data points to
fit the models. Prediction error was computed for both the training and validation
data set. The validation data set prediction error provides an out of sample estimate
appropriate for trading off variance due to complexity with bias due to too few
explanatory variables (see e.g. Hastie et al., 2001). The results from this analysis
allowed us to select the explanatory variables and degree of model complexity.

3.3.2.4 Calibration and Testing

Once the explanatory variables and model with appropriate complexity had been
selected, GAM was applied using the full calibration data set as input. It was used
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Fig. 3.2 Variable importance
measure of the Box Cox
transformed explanatory
variables averaged from 50
RF model runs

to predict soil depth for the entire watershed. We then compared the testing dataset
with the GAM soil depth values at testing locations using the Nash-Sutcliffe effi-
ciency coefficient (NSE), which is a measure widely used to quantitatively assess
the predictive accuracy of a model.

NSE = 1 −
∑

(SDo − SDp)
2

∑
(SDo − SDm)2

(3.3)

where; SDo, SDp, and SDm are observed (measured), predicted, and mean of
observed (measured) soil depths respectively.

3.4 Results and Discussion

3.4.1 Variable Selection and Model Complexity

Figure 3.3 shows the variation of mean square prediction error for training and val-
idation datasets versus model complexity in terms of the number of input variables.
The continuous lines in this figure are from models developed using explanatory
variables selected based on Random Forest importance directly. There is a new
GAM model for each additional input variable. The symbols in this figure are from
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Fig. 3.3 Number of input variables (Model complexity) vs. mean squared error. Explanatory vari-
ables selected directly using importance (continuous) and filtered by correlation (symbols)

models developed using cross correlation as a filter to reduce inter-dependence
among explanatory variables. There is a new GAM model with different number
of input variables for each correlation threshold. Figure 3.3 reports training and
validation errors separately.

For both the importance-selected and correlation-filtered models, the training
error decreases progressively as additional input variables are added while the val-
idation error decreases initially and then flattens out and starts to increase. The use
of correlation-filtered explanatory variables resulted in lower error. The validation
error starts to increase for complexity more than 11 correlation-filtered variables
(Fig. 3.3). Although there are fluctuations on validation MSE that go slightly below
the 11 variable complexity, for 18 and 21 input variables, in our judgment the point
of diminishing returns has been reached at 11 input variables. Consequently we
selected 11 correlation-filtered explanatory variables as representing the optimum
GAM complexity for this dataset. Tables 3.1 and 3.2 list all the topographic and
land cover explanatory variables derived for modeling soil depth. Variables derived
using new DEM analysis methods are identified with single asterisk (∗) and variables
selected by this variable selection procedure are identified by double asterisks (∗∗).
Ten of the 11 selected explanatory variables are topographic variables, with three
(avr, lspv, lvs), variables derived using the new DEM analysis methods.

3.4.2 Model Evaluation

Based on the selection of 11 correlation-filtered explanatory variables above, GAM
was applied to the full calibration set of 819 data points. Figure 3.4 shows the scatter
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Fig. 3.4 Predicted soil depth vs. measured soil depth with plus and minus two standard error for
calibration (left) and testing (right) data

plots of predicted versus measured soil depth for the calibration (left) and testing
(right) data and their Nash-Sutcliffe Efficiency (NSE) and root mean squared errors
(RMSE) after transforming back into space of soil depth. The testing data was not
used at all in model development. In this figure, the diagonal (central) lines represent
the 1:1 line (predicted = observed). The two diverging dash lines, above and below
the 1:1 line, show the predicted soil depth plus and minus two standard errors rep-
resenting 95% confidence intervals. These lines diverge as a result of the Box-Cox
back transformation (Figs. 3.4 and 3.5).

Figure 3.5 shows the soil depth map created using GAM at 5 meter grid scale
which improves the scale of soil depth representation as compared to the map unit
based soil depth maps that can be created using conventional soil survey approach

Fig. 3.5 Soil depth map predicted using GAM model
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(see Sections 29.2.3.1 and 29.3.2). This models the ridges (convex areas) and south
facing slopes as having shallower soils compared to the valleys (concave areas)
and the north facing slopes respectively. This agrees with existing literature (e.g.
Dietrich et al., 1995). As compared to soil depth maps created using conventional.

3.5 Conclusions

A statistical model has been developed that predicts soil depth using topographic
and land cover attributes. The topographic attributes were found to be more impor-
tant than the land cover attributes in predicting the soil depth. The model was able
to explain about 50% of the measured soil depth variability in an out of sample
test. New topographic variables derived from the DEM played an important role
in this model. Considering the uncontrolled uncertainties due to the complex local
variation of soil depth, DEM errors and GPS reading errors, this is considered an
important improvement towards solving the need for distributed soil depth informa-
tion in distributed hydrological and ecological modeling.
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Chapter 4
Applying Geochronology in Predictive
Digital Mapping of Soils

Jay Stratton Noller

Abstract Explicitly adding time (geochronology) to the rubric of digital soil map-
ping enhances the results and accuracy of predictive maps for initial and update soil
surveys. Experiments were performed on a data set used in the prediction of soils in
the initial Malheur County soil survey, Oregon. Geochronological information was
derived from (1) independently compiled Quaternary geological maps, (2) age point
data, and (3) remotely sensed data. These data were incorporated in decision-tree
analysis as area-class data in raster format. Experimental area consists largely of
fluvial, lacustrine and/or volcanic materials and landforms. Expert soil survey maps
are used as reference in making predictions with and without implicit or explicit
age information. Addition of geochronological data produces predictive maps that
are most closely aligned with expert maps. Improvements afforded by predictive
soils mapping may be of greater magnitude in areas where the age stratification
of the landscape is not obvious to the soil surveyor. Layers representing palaeo-
geographical changes in surficial processes and palaeoclimatological events may
provide further enhancements.

Keywords Age · Dating · Geochronology · Decision-tree analysis · Volcanic
soilscape

4.1 Introduction

Time is a widely recognized factor in conventional soil survey, typically documented
as a descriptor of parent material (Soil Survey Staff, 1993), and is considered as the
t factor of soil formation (Jenny, 1941). In digital soil mapping, which is seen as the
next mode of global soil resource inventory and analysis (Lagacherie et al., 2007),
this factor is expressed as a (for age) in the formulation of Sc = f (s, c, o, r, p, a, n)

by McBratney et al. (2003).
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Age (a) is used by digital soil mapping in implicit or explicit form. Age has
been used as a co-variant in digital soil mapping (e.g., Scull et al., 2005; see Sec-
tion 13.2.4.5), but such explicit use is rare. The norm to date in digital soil mapping
has been the implicit form carried in the age of parent material (p) and landform (r).
In nearly all cases around the globe, parent material information is carried into dig-
ital soil mapping analysis as class data derived from geological and geomorpholog-
ical (thematic) maps (e.g., Bui and Moran, 2001; see Section 13.2.4.4). These data
are represented in GIS as polygon vector or raster representation, with age infor-
mation conveyed as geological time-series names. From Precambrian to Holocene,
the spectrum of time-series names generally connotes the age range in earth mate-
rials from ancient, hard and difficult-to-weather crystalline rocks to recent, soft and
weatherable unlithified sediments.

Explicit forms of age information could be represented in GIS in the form of
point observations or continuous rasters collected by a remote-sensing method.
Point data would be derived from field-sampled soil profiles. Many of the known
geochronological methods, particularly those yielding numerical age results (the
most sought-after, high confidence type) (Table 4.1), could be used in this regard
(Table 4.1). Spatially continuous observations of soil age, including proxies, from
remote sensors would provide explicit measures of properties related to age. Cur-
rently, age is not directly determined from such sensor data without the use of a
calibration data set, such as a chronosequence (e.g., Kahle et al., 1988). And so the
best results for the continuous data set are a calibrated age result (Table 4.1) (Noller
et al., 2000).

Age information for soil studies is not just a measure of time reported in years.
It is important to consider the source of material that was dated, context (or stratig-
raphy) of the sample, method applied, type of result, and community confidence.
These topics are considered in depth by Noller et al. (2000). A brief overview of
key points follows.

The 35+ known and applied methods of Quaternary geochronology classify into
six types based on (1) principles and laws, (2) biological, chemical and physical
processes, (3) accumulated or complexes of results of processes, and (4) logical
arguments (Noller et al., 2000) (Table 4.1). These six types of methods yield age
estimates that are classified into four types of results (Table 4.1). At least eight of
the dating methods would be amenable to remote detection (Table 4.1) and hence
of considerable promise and use in digital soil mapping. Some key questions should
be asked before considering using age in a digital soil mapping project. Is it appro-
priate, within the study context, to use age as environmental covariate? What type
of temporal information is available and can it be used?

Digital soil mapping as a field of study developed and is practiced with consid-
erable success in the absence of purposive use of age. In digital soil mapping study,
is it appropriate, within the study context, to use age as an environmental covariate?
If we look at the successes of digital soil mapping around the globe, one might be
inclined to say it is not. Or is it that age has been used in implicit form, contributing
to such successes without operator knowledge?
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4.2 Materials and Methods

4.2.1 Study Area

To examine the potential roles of age in digital soil mapping, this paper focuses
on the initial soil survey of Malheur County, Oregon, with which my students and I
have been engaged since 2005. The official soil survey began during 2006 following
our development of digital soil mapping products to be used as pre-map layers by
field survey crews. We sought to try several approaches to digital soil mapping with
experiments focused on the Coyote Lake Basin and Jordan Valley area (Fig. 4.1).
Experiments on age in digital soil mapping were run in the Jordan Valley Volcanic
Field (JVVF), where c. 15 million years of lava flows and eruptive products have
shaped a constructional landscape crossed by rivers draining the northern rim of the
Great Basin of North America (Fig. 4.1).

The common landforms in the area consist of alluvial fans, fan remnants, ped-
iments, playas, dune fields, and volcanic tablelands, cones and flows. Most of
the soils in the study area are developed on volcanic parent materials (basalt and
andesite, tuffaceous sedimentary rocks, welded tuffs), lacustrine deposits and flu-
vial sedimentary rocks. Elevation varies from 1,100 m to 2,100 m. Soil moisture
regime is mainly aridic, with mean annual precipitation of 150 mm in low areas to
840 mm on high elevations. Soil temperature regime is mesic to frigid, with surface
air temperatures ranging from monthly mean low temperature of −8◦C (January) to
monthly mean maximum of 33◦C (August).

Fig. 4.1 Location of Malheur County, Oregon (upper left inset) study areas at Coyote Basin and
Jordan Valley Volcanic Field (JVVF) (outlined), astride the northern rim of the Great Basin (lower
right inset)
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Fig. 4.2 The cross-pattern of
the Three Mile Hill area
quadrangles (shown in color
NAIP imagery) is focus of
age experiments. Surrounding
quads are shown with
hillshaded 5 m DTM. Soil
Survey soil map units
(unlabelled) are outlined in
white

Aridisols is the most dominant soil order in the studied area, however there are
some areas with weakly to slightly developed soils (Entisols and Inceptisols) and
well-developed soils (Mollisols). Nearly all soils have andic properties, principally
due to influx of ash from the many volcanoes located upwind in the Cascade Range.

Soil Survey in the study area is conducted using the map base of 1:24,000 scale
topographic quadrangle maps (quads), and thus experiments were designed to con-
form to this scale and area of interest. This study focuses on five quads in the JVVF
(Fig. 4.2), subject of other digital soil mapping experiments (Hash, 2008; Hash and
Noller, 2009). Results of experiments were delivered to the NRCS for use in the
Malheur County soil survey.

4.2.2 Geochronology

Estimates of age used in this study were collected from the literature, derived
using established methods and handled and reported using geochronologic commu-
nity protocols (Noller et al., 2000). Methods used in this study include 39Ar-40Ar
geochronology of basalt rocks, radiocarbon (14C) dating on organic matter in lake
sediments, weathering of lava, and geomorphic expression of landforms. Argon and
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radiocarbon geochronology data were collected from the literature (Bondre, 2006;
Hart and Mertzman, 1983) and their geographic locations were inducted as a point-
data layer in ArcGIS. Weathering of basalt lava flows yields a number of time-
dependent characteristics, including changes in surface (glass) reflectance (Kahle
et al., 1988), collapse and smoothing of flow microtopography (Farr, 1992), lichen
growth (Stretch and Viles, 2002), and pedogenesis (Vaughan, 2008). Reflectance of
exposed basalt surfaces is observed to be related to flow age (Noller, 2008) and is
attributed to changes in Fe chemistry in the basalt surface layer. Such changes are
known to occur elsewhere on basalt surfaces, with development of Fe oxides being
an important weathering product (Jackson and Keller, 1970; Kahle et al., 1988;
Wasklewicz, 1994). For this study, the reflectance of iron oxide is revealed through
band 3/band 1 ratio of a Landsat ETM+ image (for this and other bands of similar
application see Chapters 1 and 30).

Surficial geology of the study area was mapped at 1:24,000 scale (Noller, 2008),
and the polygon vector data was attributed with an estimate of deposit/flow/
landform age based on point geochronology and surface relative-dating techniques
using field techniques, aerial photo interpretation, and IFSAR-derived 5 m DTM.
Cross-cutting relations, vertical separation and degree of pattern ground features
were the key criteria used to assess relative surface (and by extension soil) age.
Lithology and age of surficial geologic map units used in this study are presented in
Table 4.2.

Table 4.2 Geologic ages assigned to surficial geologic map units in the Jordan Valley area

Years B.P. (Thousands) Geological period/epoch Symbol

0 Active A
0–4 Late Holocene Hl
4–7.5 Middle Holocene Hm
7.5–10 Early Holocene He
10–15 Latest Pleistocene Pll
10–125 Late Pleistocene Pl
0–125 Late Pleistocene Ql
125–700 Middle Pleistocene Pm
700–1800 Early Pleistocene Pe
0–1800 Quaternary Q
1800–5000 Pliocene P
700–5000 Plio-Pleistocene Pp
1800+ Tertiary T
1500–5000+ Tertiary-Quaternary TQ

4.2.3 Experimental Setups

Experiments on age in digital soil mapping were run using decision-tree analysis
(See5 – www.rulequest.com; Imagine 9.1 – gi.leica-geosystems.com) following the
reference area approach (Lagacherie and Voltz, 2000; Lagacherie et al., 1995; Scull
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et al., 2005) (see approach descriptions in Chapters 13, 14 and 34). Building on
the decision-tree analysis work of Hash (2008) and Hash and Noller (2009) in the
area, experiments were designed considering both implicit and explicit modes of age
information exist for use in creating predictive digital soil mapping maps. Between
these modes, a number of submodes were selected as experimental constructs: age
implicit in remote sensing data; age implicit in lithological (thematic) map; age
explicit in geochronological (thematic) map; and age explicit in geological (the-
matic) map. A control experiment was run without any dependent data layers that
would directly carry geological information.

4.2.4 Age of the Soilscape

Establishing the age of soil is not an easy, straight-forward enterprise. Soils develop
over a considerable amount of time and these biological, chemical and physical
changes are not considered to be as “instantaneous” as the formation of its con-
stituent minerals and/or organismal tissue. Most strategies to date soils focus on
estimating the age of origin for its parent materials. The use of duration of pedoge-
nesis, or rather maturity of soil profile, is a widely held concept in soil survey (Soil
Survey Staff, 1993).

4.3 Results

Five experimental setups using decision-tree analysis in digital soil mapping yielded
an array of results on the impact of the absence, presence and type of age informa-
tion included with the environmental covariate data (Table 4.3). The base setup,
experiment 1, was run with eight input layers (first eight listed in Table 4.3), with-
out lithology and age information. Environmental data that might strongly carry
this sort of information, e.g., Landsat imagery bands, were excluded from all runs.
The experiments are numbered in order of the addition of increasingly more specific
(explicit) age information. In experiments 2 through 5, only one layer of information
is added to the base for a total of nine.

Absence of age information is taken here to mean geological map units classed
according to lithology but not age. Landform map units are not differentiated on
the basis of activity, preservation of original topography, and other age implicit
or explicit forms. Assessment of accuracy of prediction without geology or soil
age information in experiment 1 yielded the lowest values of the experiments
(OA = 78%, Khat = 0.84) (Table 4.4). Traditional addition of a parent material or
geology (lithology) layer in experiment 2 yielded improved results (OA = 82%,
Khat = 0.88). In experiment 3, the addition of Fe-oxide reflectance (b1b3) layer
yielded (OA = 79%, Khat = 0.84) values essentially unchanged from the experiment
without geology and age. The lack of change between experiments 1 and 3 may be
that while b1b3 is directly tracking the age of exposed lavas, it is also tracking the
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Table 4.3 Environmental variables used to develop predictive models

Independent variable Symbol Cell size (m) Source

Topography
Slope 30 Derived from 10 m DEM
Aspect 30 Derived from 10 m DEM

Climate
Mean annual temperature MAT 800 PRISM climate dataa

Mean annual precipitation MAP 800 PRISM climate data
Mean Jan min. temp. Tmin 800 PRISM climate data
Mean Jul max. temp. Tmax 800 PRISM climate data

Vegetation
Tasseled cap transformation
Wetness index wi 30 Landsat TM, acquired 7/5/1989
Normal. vegetation index NDVI 30 Landsat TM, acquired 7/5/1989

Parent material, time
Lithology L 30 Original work this project
Geologic age a 30 Original work this project
Geology (L + a) La 30 Original work this project
Fe-oxides (Landsat b3b1) L31 30 Landsat TM, acquired 7/5/1989

aPRISM data source is http://prism.oregonstate.edu

inverse of the vegetation cover (greenness), or soil cover which is greatest in areas
of Tertiary bedrock and Holocene fluvial landscapes. In the final results, the b1b3
layer was ranked lower in producing the prediction than the vegetation layers.

The presence of explicit age information in experiment 4 significantly increased
prediction (OA = 83%, Khat = 0.89) (Table 4.4). In the final go of experiment 5,
the addition of geology and surface (soil) age yielded the most accurate of the
experimental setups (OA = 86%, Khat = 0.94). Overall, incremental additions of
age information yielded a corresponding incremental increase in the successfulness
of prediction results.

Table 4.4 Results of age experiments in predictive soil map of Three Mile Hill Quadrangle,
Oregon

Accuracy assessment

Experimental setup Overall Producer’s User’s Khat

1. No lithologic/age information 78.2 73.4 65.9 0.84
2. Lithology only 81.8 75.1 68.7 0.88
3. Implicit age information onlya 78.7 73.4 66.7 0.84
4. Explicit age information onlyb 82.8 79.4 70.2 0.89
5. Lithology and (soil) agec 85.9 78.1 71.5 0.94
aGeomorphologic relative age (Fe-oxide reflectance) is linearly related to surface character; no
other geology-related inputs
bGeochronologically established age classes of geological (thematic) map units; no other geology-
related inputs
cCombined lithologic and age (geological thematic) map units
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4.4 Discussion

Because age is in the mind of the soil surveyor as “t” of Jenny’s (1941) soil-forming
factors and in the digital soil mapping model as “a” of McBratney et al. (2003),
it follows that inclusion of this factor will improve study results. However,
due to a general lack of numerical methods for dating soils, age is commonly
expressed as duration of exposure of the surface of the parent material to the
atmosphere and pedogenic process (Birkeland, 1999). As discussed by pedolo-
gists, e.g., Jenny (1941), McBratney et al. (2003), and Birkeland (1999), time
is involved in all environmental factors of soil formation and so it may remain
difficult, if not impossible, to fully control for the age/time factor in digital soil
mapping.

Dozens of sub-methods and strategies, under the umbrella of chemical, biological
and geomorphic methods, are available for use to define both implicit and explicit
data layers for digital soil mapping. Many of the rock and mineral weathering meth-
ods (Birkeland and Noller, 2000) could be applied to digital soil mapping study
without much further development. For example, the population of exposed stones
and boulders on the surface of a fluvial deposit is amenable to detection in imagery.
Transfer of methods used by Quaternary geologists and physical geographers to map
surficial geological and geomorphological map units could yield continuous raster
(grid) datasets of age proxy data in the palette of environmental covariate data for
digital soil mapping.

Age layers rank highly in their influence on decision-tree analysis results. This
paper’s demonstration of the importance of age in the milieu of environmental
covariates corroborates the findings of Scull et al. (2005). In their soil decision-tree
analysis study of the southwestern Great Basin area, age of surficial geologic map
units ranks highly among the many independent data layers. Age was carried in the
implicit form based on reflectance-age correlation.

Although the studies in which age appears in digital soil mapping are few, as
suggested by McBratney et al. (2003) and a review of the literature for this paper,
nearly all digital soil mapping studies incorporate data layers that carry implicit age
information. It is reasonable to presume that some of these layers carry spatial infor-
mation on (1) old vs young soils, surfaces and parent materials, (2) actively changing
vs equilibrium landscapes, and (3) fast vs slow rates of surficial processes. In disag-
gregating their geoinformation for digital soil mapping study, Bui and Moran (2001)
came very close to explicitly demonstrating this very point.

The addition of geological event(s) could improve prediction. Apart from the
static data layers representing the typical digital soil mapping environmental covari-
ates (Lagacherie et al., 2007), a sense of the dynamism in surficial processes can be
expressed. Some soils developed under conditions quite different than today. By pro-
viding indications of the nature of soil parent materials and/or pedogenesis-altering
conditions, paleoenvironmental maps interject information that is atypically car-
ried in maps of geology, modern climate, and hydrology. Examples include glacial
geology, paleofloods, and tephra distribution.
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4.5 Conclusions

The addition of age information as inferred geological period/epoch classes and as
numeric geochronological data yielded significant improvements in the accuracy
of prediction in decision-tree analysis-produced digital soil maps. It may well be
impossible to conduct digital soil mapping study without any sort of age information
or dependence on time. However, it is recommended that the age factor be explicitly
applied in all digital soil mapping studies.
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Chapter 5
Scale Effects on Terrain Attribute Calculation
and Their Use as Environmental Covariates
for Digital Soil Mapping

S.M. Roecker and J.A. Thompson

Abstract The digital representation of the Earth’s surface by terrain attributes is
largely dependent on the scale at which they are computed. Typically the effects
of scale on terrain attributes have only been investigated as a function of digital
elevation model (DEM) grid size, rather than the neighborhood size over which they
are computed. With high-resolution DEM now becoming more readily available, a
multi-scale terrain analysis approach may be a more viable option to filter out the
large amount short-range variation present within them, as opposed to coarsening
the resolution of a DEM, and thereby more accurately represent soil-landscape pro-
cesses. To evaluate this hypothesis, two examples are provided. The first study was
designed to evaluate the systematic effects of varying both grid and neighborhood
size on terrain attributes computed from LiDAR. In a second study, the objective
was to examine how the correlations between soil and terrain attributes vary with
neighborhood size, so as to provide an empirical measure of what neighborhood
size may be most appropriate. Results suggest that the overall representation of the
land surface by terrain attributes is specific to the land surface, but also that the
terrain attributes vary independently in response to spatial extent over which they are
computed. Results also indicate that finer grid sizes are more sensitive to the scale of
terrain attribute calculation than larger grid sizes. For the soil properties examined
in this study, slope curvatures produced the highest coefficients of correlation when
calculated at neighborhood sizes between 117 and 189 m.
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5.1 Introduction

The utilization of digital elevation models (DEM) has proven to be invaluable
to recent efforts in digital soil mapping (DSM) (see Chapter 2 for examples of
DEM-derived attributes used to represent topography and climate in DSM appli-
cations). According to a recent survey of the literature by McBratney et al. (2003),
DEM are by far the most heavily used environmental covariates. The popularity
of this data source as a predictive variable in DSM stems from its simple data
structure, widespread availability, and, most importantly, due to the strong influence
of topography on landscape scale processes that influence soil variability. Multi-
ple DEM-derived terrain attributes can be used to represent the Earth surface and
serve as indices of pedogeomorphological significance, such as slope gradient, slope
aspect, slope curvature, flow accumulation, and compound topographic parameters
(see Table 3.1 and Table 29.1 for extensive lists of DEM-derived environmental
covariates used for spatial modeling and predictive mapping). These digital repre-
sentations of the Earth’s surface so far have proven useful in explaining a substan-
tial portion of soil variation with (geo)statistical models (see Section 17.2.2 and
Table 30.3 for examples). In hopes of explaining more soil variation with terrain
attributes, research has sought to improve their digital representation by evaluating
the numerous methods for generating DEM (Chaplot et al., 2006), and the algo-
rithms used to derive terrain attributes from them (Florinsky, 1998). Alternative
approaches have examined the use of DEM simulation (Burrough et al., 2000) and
wavelets (Gallant and Hutchinson 1997). A entirely different approach has sought
to scale up the area (i.e., support) over which soil observations are made, so as to
quantify a more representative area of the landscape from which their environmental
correlation with terrain attributes are made (O’Connell et al., 2000). Perhaps the
most significant source of error in DSM is attributable to the scale at which the
Earth’s surface is represented by terrain attributes.

The scale or spatial extent of terrain attributes is related to two factors, the grid
size or horizontal resolution of the DEM used, and the window or neighborhood
size over which they are calculated. While the effect of grid size has been studied
extensively, the effect of neighborhood size has not. Perhaps the most important
assertion that has been made by such studies is that no perfect DEM resolution
exists (Claessens et al., 2005). Also, finer resolutions (5–10 m), in particular, do not
produce more accurate predictions, but instead introduce excessive detail which is
difficult to characterize with conventional automated methods (see Section 27.5.2).
An alternative to coarsening the resolution of a DEM to match the scale of the
soil-landscape processes being mimicked by terrain attributes is multi-scale terrain
characterization. This alternative approach was first suggested by Wood (1996),
whereby the window size used to calculate terrain attributes from a DEM is set by
the user. The application of this approach has been demonstrated in a few instances,
and it has been shown that soil-landscape relationships vary with neighborhood size
(Park et al., 2001; Schmidt and Hewitt, 2004; Smith et al., 2006).

With high-resolution DEM now becoming more readily available, a multi-scale
terrain analysis approach may be a more viable option to filter out the large amount
short-range variation present within them, as apposed to coarsening the resolution of
a DEM, and thereby more accurately represent soil-landscape processes. To evaluate
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this hypothesis, two examples are provided. One case study was designed to eval-
uate the systematic effects of varying both grid and neighborhood size on terrain
attributes computed from LiDAR. In a second case study, the objective was to
examine how the correlations between soil and terrain attributes vary with neigh-
borhood size, so as to provide an empirical measure of what neighborhood size may
be most appropriate.

5.2 Materials and Methods

5.2.1 Case Study 1 – Systematic Effects of Varying Grid
and Neighborhood Size on Terrain Attributes

5.2.1.1 Study Area

For this study, DEM datasets were chosen to represent two distinctly different land-
scapes within West Virginia. LiDAR elevation data with 1-m resolution were avail-
able for Gilmer County, in the Appalachian Plateau of central WV, and Jefferson
County, in the Valley and Ridge of eastern WV (Fig. 5.1). The areal extent at each
study area was a quarter-quarter (QQ) quadrangle (∼600 ha).

Fig. 5.1 Location of the three study areas across the Major Land Resource Areas within the state
of West Virginia. Inset: Location of West Virginia in the continental US
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5.2.1.2 DEM Resampling and Terrain Attribute Calculation

To allow for a direct comparison between the terrain attributes, specific DEM resam-
pling and terrain attribute calculation procedures were used. This was necessary to
ensure that the elevation values, grid sizes, and neighborhood sizes corresponded
for each comparison. When resampling the DEM this was accomplished by using
the nearest neighbor approach and selecting a set of nested grid and neighborhood
sizes (Table 5.1). From each DEM, the terrain attributes slope gradient, northerness,
profile curvature, tangential curvature, contour curvature, and mean curvature were
calculated according to the formulas of Zevenbergen and Thorne (1987), with an
adjustment to allow the neighborhood size to be specified by the user. As slope
aspect is a circular measure, its values are not suitable for direct comparison. There-
fore, slope aspect was transformed to northerness by, Northerness = |180−Aspect|.

5.2.1.3 Comparison of Grid and Neighborhood Size Combinations

Both qualitative and quantitative comparisons were made to evaluate the systematic
effects of varying both grid size and neighborhood size on terrain attributes. The
qualitative comparisons were made by examining the scatter plots of the individ-
ual terrain attributes vs. neighborhood size and inspecting box plots of the terrain
attributes at various neighborhood sizes. The quantitative comparisons were made
by calculating the goodness of fit between the benchmark (3 × 3 window size)
and expanded window sizes. The goodness of fit measures used were the mean
difference (MD), root mean square difference (RMSD), and Pearson’s correlation

Table 5.1 Experimental contrasts across grid size and neighborhood size

Grid size 1 3 9 27 81
Neighborhood size Lag Lag Lag Lag Lag

3 1∗
5 2
7 3
9 4 1∗

15 7 2
21 10 3
27 13 4 1∗
45 22 7 2
63 31 10 3
81 40 13 4 1∗

135 67 22 7 2
189 94 31 10 3
243 121 40 13 4 1∗
405 202 67 22 7 2
567 283 94 31 10 3
729 364 121 40 13 4

Lag is the radius of the neighborhood size, measured in the number of grid cells from
the center cell. The lags that are labeled with an asterisk (∗) serve as the bench mark,
from which the comparisons were made
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coefficient (r ). Due to the high-resolution of the datasets involved, the number
of corresponding points with the finest grid size totaled approximately 5,400,000.
Therefore, for the sake of computational efficiency, only the cell centers from the
27-m grids were used to evaluate the finer grid sizes, which totaled ∼7,400 points.

5.2.2 Case Study 2 – Soil and Terrain Attributes Correlations
Response to Neighborhood Size

5.2.2.1 Study Area

For this study, the study area was the Upper Gauley watershed (UGW) on the
Monongahela National Forest, which is located on the Appalachian Plateau of east-
ern West Virginia (Fig. 5.1). Within this watershed a soil dataset was available with
which to examine the effect of neighborhood size on correlations between soil prop-
erties and terrain attributes. The elevation dataset for this site was derived from
high-resolution aerial photography and had a grid size of 3-m, but was resampled
to 9-m.

5.2.2.2 Soil Sampling and Analysis

Soils data were collected from 97 sites within the UGW. Sample locations
were selected according to a stratified-random design; similar to that used by
McKenzie and Ryan (1999). The stratifying variables used were geology (62%
sandstone, 11% shale/sandstone, and 26 % shale), elevation (three quantile classes),
and stream power index (five quantile classes). The intersection of these variables
created 45 unique strata, within which two random sites were sampled. In order
to avoid sampling extraneous features, exclusion rules were used to avoid roads
(buffered to 20 m), streams (buffered to 10 m), developed areas, and patches of strata
smaller than 4,000 m2 (approximately 1 acre).

At each site a soil pit was excavated to 140 cm, described according to standard
procedures (Schoeneberger et al., 2002), and georeferenced. From each horizon an
approximately 300 g sample of soil was taken. These samples were analyzed for
particle size, pH, extractable calcium and magnesium, and carbon. For the purpose
of spatial analysis, the soil attributes subdivided into three depth increments (0–50,
50–100, and 100–150 cm) by taking a weighted average of the samples across the
soil horizons.

5.2.2.3 Soil and Terrain Attribute Correlation

Procedures outlined by Florinsky and Kuryankova (2000) were used to examine the
variation in environmental correlation between soil properties and terrain attributes
when altering the neighborhood size used to calculate the terrain attributes from a
high-resolution DEM. This procedure involves plotting the goodness of fit (correla-
tion coefficient, r ) between selected soil properties and individual terrain attributes
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over a span of neighborhood sizes, and identifying the range in neighborhood size
that occupies a smooth portion within the plots. Such an area of the correlation plot
where the correlation values are relatively invariant as neighborhood size increases
represents a range in scales where soil properties exhibit less spatial heterogeneity
and more predictable variability, providing for more reproducible and interpretable
results (Florinsky and Kuryankova, 2000). The terrain attributes that were consid-
ered for this analysis were slope gradient, northerness, profile curvature, tangential
curvature, contour curvature and mean curvature.

5.3 Results and Discussion

5.3.1 Case Study 1 – Systematic Effects of Varying Grid
and Neighborhood Size on Terrain Attributes

As the neighborhood size increases, the landscape features that are represented by
the derived terrain attributes is altered, and short-range variation is filtered out
in favor of broader hillslope trends. At small neighborhood sizes (e.g., ≤9 m),
it is the microtopographic features that are represented by the terrain attributes
(Fig. 5.2a). As such, there is noticeable short-range variability in terrain attribute

Fig. 5.2 Case Study 1. Tangential curvature derived from 3-m DEM calculated using neighborhood
sizes of (a) 9 m, (b) 27 m, (c) 81 m, and (d) 243 m. The image represents a subcatchment from the
QQ quadrangle from Gilmer County, WV
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values (Fig. 5.2a) and wide ranges in the distribution of the terrain attribute values
(Fig. 5.3). With increasing neighborhood size, the landscape features that are rep-
resented by the terrain attributes correspond more closely to recognizable landform
elements (Fig. 5.2b and c), such as drainageways, footslopes, backslopes, and shoul-
ders. At these intermediate neighborhood sizes (e.g., 15–81 m), the terrain attributes
represent a smoother but more connected landscape (Fig. 5.2b and c) This smooth-
ing of the landscape representation is also seen in the boxplots (Fig. 5.3), where
the median value remains relatively stable, but the interquartile range decreases and
the outliers become less extreme. When larger neighborhood sizes are used (e.g.,
> 81 m), the landscape features depicted by the terrain attributes become oversim-
plified (Fig. 5.2d). When the neighborhood size becomes significantly large, the
smoothing of the landscape increases and the terrain attributes may misrepresent
landform elements because the neighborhood includes DEM data from outside the
local landscape (e.g., from across a watershed divide). This distortion or oversimpli-
fication of the landscape represented by the terrain attributes appears in the boxplots
of slope gradient by a loss in the stability in the median value and continued decrease
in the maximum value above a neighborhood size of 81 m (Fig. 5.3a and e). More
extreme variability is also seen in the contour curvature values beyond this same
neighborhood size threshold of 81 m (Fig. 5.3c and d).

The effects of changing neighborhood size on derived terrain attributes is not
the same for the two landscapes examined in this case study. The study area in
Gilmer Co., WV, located on the Central Allegheny Plateau, exhibits much steeper
slope gradients and more extreme slope curvature values compared to the lower-
relief study area of the Northern Appalachian Ridge and Valley of the study area
in Jefferson Co., WV. Accordingly, the effect of increasing neighborhood size is
much less pronounced in the lower relief landscape of Jefferson Co. compared to the
higher relief landscape of Gilmer Co. (Fig. 5.3a and e). However, there still appears
to be a change in the distribution of terrain attribute values at larger neighborhood
sizes, with a decrease in both median and maximum slope gradient values above a
neighborhood size of 81 m.

While terrain attributes are affected by neighborhood size, the effect of grid
size appears to be negligible. The same decreases in maximum values, decreases
in interquartile range, and decreases in median value (above a neighborhood size
of 81 m) are seen if slope gradient is calculated using a 1-m DEM (Fig. 5.3a
and e), a 9-m DEM (Fig. 5.3b and f), or an 81-m DEM. These and other observations
suggest that slope gradient is not sensitive to the effect of spatial extent up until 81-
m. For these landscapes, it appears that a neighborhood size of 81-m corresponds
with the threshold beyond which all the terrain attributes become increasingly less
representative of the original landscape. Therefore a maximum grid size of 27-m,
which produces a 3 × 3 moving window with an extent of 81 m, is recommended to
adequately represent the land surface.

The goodness of fit measures (MD, RMSD, r ) quantify the similarity of the
terrain attributes derived from a given neighborhood size to the terrain attributes
calculated using the nearest neighbors in the DEM. As such, higher MD and RMSD
values and lower r values indicate greater differences between the two paired data
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Fig. 5.3 Case Study 1. Boxplots of terrain attributes as calculated using differing neighborhood
sizes and different grid sizes: (a) slope gradient, Gilmer Co., 3 m grid size; (b) slope gradient,
Gilmer Co., 9 m grid size, (c) contour curvature, Gilmer Co., 3 m grid size; (d) contour curva-
ture, Gilmer Co., 9 m grid size; (e) slope gradient, Jefferson Co., 3 m grid size; (f) slope gradient,
Jefferson Co., 9 m grid size
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Fig. 5.4 Case Study 1. Goodness of fit plots of (a) slope gradient, Gilmer Co.; (b) slope gradient,
Jefferson Co.; (c) tangential curvature, Gilmer Co.; and (d) tangential curvature, Jefferson Co

sets. Two trends are evident in the goodness of fit data. First, even small increases
in neighborhood size lead to larger differences in the terrain attribute values, and
therefore the representation of the landscape features. This is seen for all terrain
attributes, for both study areas, and for all grid sizes (Fig. 5.4). While the differ-
ences increase rapidly at first, a neighborhood size is reached where the differences
between the paired data sets approach (Fig. 5.4a and b) or reach (Fig. 5.4c and
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d) a constant value. There inflection points are most pronounced with the slope
curvature comparisons and with smaller grid sizes. For both study sites, and for all
terrain attributers, this inflection point appears to occur at approximately the same
neighborhood size: between 45 and 81 m. With increasing grid size this inflection
point diminishes to the point where it disappears completely, so that with larger
grid sizes it falls below the minimum window size of 3 × 3. A second trend is that

Fig. 5.5 Case Study 2. Correlation coefficient vs. neighborhood size for selected terrain attributes
and (a) soil C, (b) rock fragment content, and (c) clay content (N = northness, G = slope gradient,
Kp = profile curvature, Kt = tangential curvature, Kc = contour curvature, and Km = mean
curvature)
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the magnitude of the differences in terrain attribute values is much greater for the
higher relief landscape of the Gilmer Co. study area (Fig. 5.4a and c) compared to
the Jefferson Co. study area (Fig. 5.4b and d).

5.3.2 Case Study 2 – Soil and Terrain Attributes Correlations
Response to Neighborhood Size

The results show that the correlation between the soil properties and surface curva-
tures are the most sensitive to the effects of neighborhood size (Fig. 5.5). Their cor-
relation with the soil attributes ranged from approximately 0 to 0.5, with an optimal
neighborhood size range of 117–189 m in most cases. That the correlations between
the soil properties and surface curvatures were optimized is important because slope
curvatures have the strongest correlation coefficients in most cases.

While significant correlations were also present between slope gradient and
the soil properties, the effect of neighborhood size was negligible in most cases
(Fig. 5.5). As for northerness, only one significant correlation was observed. The
negligible effect of neighborhood size on the correlation between the soil properties
and slope gradient may be explained by the results of the first case study. Increasing
the neighborhood size used to derive terrain attributes had less of an effect on slope
gradient than on slope curvature (Figs. 5.3 and 5.4). Consequently, correlation coef-
ficients between soil properties and slope gradient do not appear to be sensitive to
the effect of neighborhood size.

5.4 Conclusions

The spatial extent over which terrain attributes are derived has a considerable effect
on their representation of the land surface and correlation with soil attributes. In the
first study described here, it was shown that using a larger neighborhood size has
a similar effect as using a larger grid size, without the unnecessary loss of detail
caused by using a larger grid size. Still the amount of detail provided by the small-
est grid sizes was excessive and computationally demanding. To help determine
what neighborhood size might be most appropriate for DSM, the simple exploratory
procedures used here proved to be informative. Ultimately, the relative size of the
landforms within the study area should serve as a guide. Within the second study
described here the correlation between the soil attributes and surface curvatures was
optimized by increasing the neighborhood size. While no one neighborhood size
showed the strongest correlation in all cases, a common range of optimal neigh-
borhood sizes occurred over a range of 117–189 m. Slope gradient also showed
significant correlations with some of the soil properties, but was not sensitive to
changes in neighborhood size. These results suggest that surface curvatures are the
most sensitive to altering the neighborhood size used to calculate terrain attributes
and that curvature values poorly represent the land surface unless calculated
over a neighborhood size commensurate with the size the landforms which they
characterize.
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Chapter 6
Conditioned Latin Hypercube Sampling:
Optimal Sample Size for Digital Soil Mapping
of Arid Rangelands in Utah, USA

C.W. Brungard and J.L. Boettinger

Abstract Conditioned Latin Hypercube Sampling (cLHS) is a type of stratified ran-
dom sampling that accurately represents the variability of environmental covariates
in feature space. As the smallest possible sample is important for efficient field
work, what is the optimal sample size for digital soil mapping? An optimal sam-
ple size accurately represents the variability in the environmental covariates and
provides enough samples for predictive models. This paper briefly reviews cLHS
and investigates different sample sizes for representing five environmental covari-
ates in a 30,000-ha complex landscape in the Great Basin of southwestern Utah.
The cLHS code was run in MatlabTM (Mathworks, 2008) and statistical analysis
was performed using the R statistical language (R Development Core Team, 2009).
Graphical analysis for continuous data and chi-square analysis of categorical data
suggested optimal sample size for this study area is approximately 200 to 300
(0.05–0.1%).

Keywords Sampling · Latin hypercube · Digital soil mapping · Great Basin ·
Rangelands

6.1 Introduction

Current methods of sampling for soil survey in the USA depend on the subjective
decisions of soil surveyors and involve few, if any, statistically identified sampling
sites (Soil Survey Division Staff, 1993). Such methods introduce bias and impair
attempts at statistical, classification, and/or interpolation methods for digital soil
mapping. A statistically robust sampling method is needed to eliminate bias and
improve predictive models.

Some soil scientists have used random (e.g. Howell et al., 2007) and stratified
random (e.g., McKenzie and Ryan, 1999 and Section 29.2.2) methods as statistically
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robust sampling strategies. While random and stratified random sampling may sam-
ple throughout the geographic space, the samples may not be distributed through the
full range of the environmental covariates (the feature space). Additionally, random
sampling methods often require large numbers of samples that are impractical to
obtain with soil survey budgets and time constraints. Bui et al. (2007) found that
extrapolation between sampling sites was grossly incorrect if the sampling was not
representative of the landscape, and called for a method that ensures every combi-
nation of environmental covariates is covered. A sampling scheme that meets time
and budget constraints, that is statistically sound, and that represents the covariate
feature space is needed (see Section 16.4).

Minasny and McBratney (2006) proposed conditioned Latin Hypercube Sam-
pling (cLHS) as an efficient method for sampling from the variability of the feature
space of multiple environmental covariates. Conditioned Latin Hypercube Sampling
is based on the concept of Latin Hypercube Sampling (LHS) where a sample is
drawn from the covariates such that each variable is maximally stratified. Condi-
tioned Latin Hypercube Sampling adds the condition that the sample chosen must
actually occur on the landscape. Minasny and McBratney (2006) showed that cLHS
closely represented the original distribution of the environmental covariates with
relatively small sample sizes in a digital soil mapping project in the Hunter Valley
of New South Wales, Australia. Minasny and McBratney (2007) compared cLHS to
simple random sampling, stratified random sampling, sampling along the principal
components, and spatial Latin Hypercube sampling, and demonstrated that cLHS
most accurately reproduced the original distribution of the environmental covariates.
However, the question remains: what is the optimal cLHS sample size?

Determining optimal cLHS sample size is important for accuracy and efficiency
in production soil survey, especially for countries with limited soil survey budgets.
An optimal sample size would minimize the costs of field data collection by mini-
mizing sample number while providing both an accurate representation of the vari-
ability in the environmental covariates and enough samples for predictive models.
This paper attempts to determine the optimal sample size for a 30,000-ha com-
plex Great Basin landscape in southwestern Utah represented by five environmental
covariates.

6.2 Materials and Methods

6.2.1 Study Area

Located in Beaver County, southwestern Utah, USA, the study area comprises
approximately 30,000 ha (∼70,000 acres) of mountains, hills, and associated allu-
vial fans typical of the arid Great Basin (Fig. 6.1). The study area includes parts
of two small mountain ranges. The Star Range in the northeast of the study area
is predominately tilted, faulted, and, in places, metamorphosed limestone, shale
and sandstone, whereas the Shauntie Hills in the south are predominantly exposed
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Fig. 6.1 Study area location
in southwestern Utah. The
photograph shows typical
vegetation and relief

volcanic flows, covered in places with a relatively thin veneer of alluvium (Best
et al., 1989). Elevation for the entire project area ranges from 1,500 to 2,100 m
(4,900–6,900 ft).

Precipitation occurs as winter snow or high-intensity, convective thunderstorms
in the late summer, yet water is scarce, averaging less than 23 cm annual precipi-
tation. There are no perennial streams, but intermittent waterways periodically fill
with flash flooding during particularly intense storms. A few extremely localized
springs occur in the area. Consistent with the elevation and limited water this area
supports desert shrub, shrub-grass, and sparse woodland vegetation (NRCS, 2008).
Mining for precious metals mostly ended by the early 1900s, and land use has since
been limited to sheep and cattle grazing.

Dominant soils in this area were classified as Aridisols and Entisols according to
Soil Taxonomy. We estimated the soil temperature and moisture regime to be aridic
and xeric, respectively.

6.2.2 Digital Data

Table 6.1 summarizes the digital data layers chosen to represent environmental
covariates in the SCORPAN model (McBratney et al., 2003).

Slope, inverse wetness index, and aspect were calculated from a sink-filled, 10 m
digital elevation model (DEM) from the United States Geological Survey (USGS)
National Elevation Dataset (NED, 2006) using TauDEM (Tarboton, 2008). The
Inverse Wetness Index, the inverse of the Compound Topographic Index (CTI), is
used to avoid division by zero where slope is zero (Tarboton, 2008). Aspect was con-
verted to transformed aspect (a measure of northness vs. southness) using ERDAS
ImagineTM(ERDAS, 2006) modeler (Stum, 2007).

Landsat 7 ETM+ images were obtained from the Intermountain Region Digital
Image Archive Center (IRDIAC, 2008) for several dates. An image acquired July
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Table 6.1 Digital data used to represent SCORPAN environmental covariates

Environmental covariate Representative digital data Source data

Soil (s) None None
Climate (c) None None
Organisms (o) Soil adjusted vegetation index (SAVI) Landsat 7 ETM+ (30 m)

Land cover (vegetation type) SWReGAP (30 m)
Relief (r) Inverse wetness index (IWI) 10 m NED DEM

Slope 10 m NED DEM
Transformed aspect 10 m NED DEM

Parent Material (p) Geology USGS geological map (30 m)
Time/age (a) None None
Space (n) None None

31st 2000 was selected to show maximum green leaf area for calculating vege-
tation indices. The image was atmospherically corrected using the COST method
(Chavez, 1996). Soil Adjusted Vegetation Index (SAVI) was calculated following
the method of Huete using an L value of 0.5 (Huete, 1988).

Land cover type was obtained from the Southwest Regional Gap Analysis Pro-
gram (USGS National Gap Analysis Program, 2004). The SWReGAP is a digital
land cover map of the southwestern USA produced from Landsat imagery. Twelve
common Basin and Range land cover types were identified.

Geology was obtained from a USGS 1:50,000 geology map. Five broad geologic
types were digitized then converted to raster form. Because the Matlab code from
Minasny (2007) allowed only one categorical variable, land cover and geology were
combined into a single landcover-geology data layer.

A regularly spaced point grid was used to extract environmental covariate values
every 30 m. The resulting text file was the input to the cLHS algorithm.

6.2.3 cLHS

The objective of cLHS for digital soil mapping is to find a set of values from several
digital environmental covariates that satisfy the requirements of a Latin hypercube
and that exist in the real world. The requirements of a Latin hypercube are that only
one sample exists in each row and column, in n dimensions. Because particular
combinations of values (samples) selected by Latin Hypercube Sampling (LHS)
may not exist in the environmental covariate data a solution must be found. It is
possible to keep repeating the LHS and searching until suitable combinations are
found, but a better way is to select samples that form a Latin hypercube in the
feature space. This becomes an optimization problem (Minasny and McBratney,
2006).

The cLHS is implemented as follows: The user decides upon a sample size,
the algorithm divides the environmental covariate data into the same number of
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equally probable strata, and a random sample of points from the input environmen-
tal covariate data is selected, combined, and tested against the demands of a Latin
Hypercube. It is quite likely that this combination of random samples does not form
a Latin Hypercube. A combination of values that is close to a Latin Hypercube and
that occurs in the digital environmental covariate data is iteratively obtained by the
objective function and annealing schedule contained in the cLHS code (Minasny
and McBratney, 2006).

The cLHS algorithm developed by Minasny and McBratney (2006) was run using
Matlab (Mathworks, 2008) software. Sample sizes of 50, 100, 200, 300, and 500
were produced. The run time for 50 samples and 125,000 iterations using an Intel
Core 2 Duo 3.0 GHz with 256 MB RAM was approximately 2.1 h. Greater numbers
of iterations require longer run times.

6.2.4 Optimal Sample Size

We generated box plots (Fig. 6.2) and density distributions (Fig. 6.3) to compare
sample sizes against each continuous environmental covariate. Sample sizes were
evaluated based on the similarity between sample size and covariate.

Fig. 6.2 Box-whisker plots comparing distribution of multiple sample sizes to distribution of full
environmental covariate dataset
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Fig. 6.3 Density plots comparing distribution of sample sizes for each environmental covariate

Table 6.2 Chi square test of the combined geology/land cover categorical variable distribution for
multiple sample sizes

Combined geology and land cover categorical variable

cLHS sample size Chi-square values p-values Conclusion

50 samples 4.87 1.00 Accept nulla, sample is not statistically
different from covariate

100 samples 12.68 0.999 Accept nulla, sample is not statistically
different from covariate

200 samples 13.6 0.998 Accept nulla, sample is not statistically
different from covariate

300 samples 4.13 1.00 Accept nulla, sample is not statistically
different from covariate

500 samples 6.86 1.00 Accept nulla, sample is not statistically
different from covariate

aReject null at a = 0.05
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We generated chi-square goodness of fit measures (Table 6.2) for the combined
geology/land cover categorical covariate. If the sample is not statistically different
from the covariate the sample is assumed to adequately represent the geology/land
cover environmental covariate.

6.3 Results

Box plots are presented in Fig. 6.2. Box plots compare mean and inter-quartile range
(IQR) between covariates and sample sizes. Whiskers on the box plots are 1.5*IQR.
Box plots show that little difference exists between median and IQR for cLHS sam-
ple sizes and each covariate. Density curves for each covariate and each sample size
are presented in Fig. 6.3. All sample sizes closely approximate the values of each
environmental covariate.

Transformed aspect density curves are shown in Fig. 6.3. Sample sizes of 100,
200 and 300 closely follow the covariate distribution and approximate the “right
leaning” shape of the environmental covariate. Five hundred samples least closely
approximates the covariate distribution.

The large peak in the Soil Adjusted Vegetation Index (SAVI, Fig. 6.3) is most
closely approximated by a sample size of 500. All sample sizes, except 300, capture
the variation in SAVI values from 0.28 to 0.35.

Inverse Wetness Index (IWI) density curve (Fig. 6.3) comparison shows that
for the peak at approximately 0.002 the similarity between covariate and sample
increases with increasing sample size. The right tail of the covariate is closely
approximated by all sample sizes.

All samples sizes closely approximate the slope density curve (Fig. 6.3) with
200, 300 and 500 more similar to the covariate than 50 or 100 samples.

A chi-square goodness of fit test for the combined geology/land cover categorical
variable is presented in Table 6.2. All p-values are non-significant at α = 0.05
indicating no significant difference between the sample and the environmental
covariate.

6.4 Discussion

Based on the above discussion we propose 200–300 as the optimal sample size
for this study area as these sample sizes provide the closest approximation of the
distribution of all input environmental covariates. This is approximately 0.05–0.1%
of the available potential sampling points (∼290,000). While not grossly inaccurate,
smaller sample sizes of 50 and 100 are not as representative of the whole set of
environmental covariates. Optimal sample size also depends on the model used to
predict soil distribution. Some predictive models, such as classification and regres-
sion trees and some geostatistical methods (see Section 22.4), are “data hungry” and
require large amounts of input data. Sample sizes greater than 300 may not provide
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significantly better representations of the landscape given the extra cost involved
in data collection and may actually worsen the representation of the environmental
covariate (see Fig. 6.3, Transformed Aspect, 500 samples).

6.5 Conclusions

Conditioned Latin Hypercube Sampling closely represents the original distribu-
tion of the environmental covariate feature space and as such is an appropriate
method for selecting sampling sites for digital soil mapping, particularly in areas
with limited soil survey budgets. Statistical comparison of multiple sample sizes
allows the soil scientist to select an optimal sample size given time/cost, and inter-
polation method requirements. Approximately 0.05–0.1% of the available sampling
area (200–300 samples from ∼290,000 potential sampling points) is recommended
as an adequate sample size for areas with similar variability in the environmental
covariates. While some programming skill is required, we recommend that the soil
scientist investigate multiple cLHS sample sizes to select the optimal sample size
for mapping other areas.
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Chapter 7
Using Proximal Soil Sensors for Digital
Soil Mapping

R.A. Viscarra Rossel, N.J. McKenzie, and M.J. Grundy

Abstract There is a great need for soil data to be used in natural resource
assessment and management, e.g. for environmental modelling and digital soil map-
ping (DSM) to better understand soil processes and reduce risks in decision making.
Conventional soil survey cannot efficiently provide these data because the tech-
niques are time consuming and expensive. Proximal soil sensing (PSS) can be used
to acquire spatial and temporal data cheaply and with less effort. This paper reviews
some the technologies that may be used for PSS and proposes a framework for their
use with DSM.

Keywords Proximal soil sensing · Soil sensors · Diffuse reflectance spectroscopy ·
Soil spatial variability · Digital soil mapping

7.1 Introduction

The need for soil information is greater now than ever before. Concerns over food
security and global climate change are transforming agriculture and the way in
which we use and manage our soils. Nations are looking at ways to increase food
production, increase the sequestration of carbon equivalents (or mitigate the loss of
carbon) and identify new opportunities before existing lands become marginal. How
we measure, model and map the soil is central to their response, but conventional
soil survey cannot efficiently provide the amount of data that is required. The pri-
mary reason is well known; when spatial soil information is needed (particularly
the functional attributes such as water balance, nutrient supply), conventional soil
sampling and laboratory analyses are time-consuming and expensive (e.g. Viscarra
Rossel and McBratney, 1998a).
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Digital soil mapping (DSM) may help to provide this information and at the
required resolutions. However, further developments in, and adoption of, DSM
depends on (i) the effective use of historical (or legacy) soil information and (ii)
the development of rapid and inexpensive techniques to make new soil measure-
ments. In this paper we deal with the latter, and identify technologies that might
help. Remote sensing, for example, using multi- and hyper-spectral sensors can
partly solve this problem (Gomez et al., 2008). The drawback of remote sens-
ing for soil science (and soil mapping) is that the measurements and the models
derived from them only account for the soil surface; in most cases, only the top
few millimetres of the soil profile. Proximal soil sensing (PSS) (Viscarra Rossel and
McBratney, 1998b) on the other hand can acquire soil sample information rapidly
and cheaply and, unlike remote sensing, PSS can be used to measure both surface
and subsurface soil properties. For DSM, both remote and proximal soil-sensing
approaches are useful and potentially complementary. Examples of uses of remote
sensing for DSM are shown in Chapters 8, 9 and 10; here we will discuss the use of
proximal soil sensing in DSM.

Much research is being conducted to develop proximal soil sensors and tech-
niques that may be used for proximal soil sensing. This work includes investigation
of the use of electromagnetic (EM) induction and electrical resistivity, magnetic
susceptibility, ground penetrating radar (GPR), γ -radiometrics, soil colour, diffuse
reflectance spectroscopy using visible–near infrared (vis–NIR) and mid infrared
(mid-IR) energies, ion-selective field effect transistors (ISFET) and ion-selective
electrodes (ISE) and mechanical-draft systems.

The aim of this paper is to discuss the potential for using proximal soil sensing
in DSM.

7.2 Digital Soil Mapping and Proximal Soil Sensing

DSM uses soil information and related environmental covariates to fit quantitative
relationships that describe soil variation through the creation of digital soil maps
(Chapter 2, Lagacherie et al., 2007). Proximal soil sensors are devices that can
provide digital, quantitative information for DSM. Although PSS is commonly asso-
ciated with high-resolution soil mapping (resolutions < 20 m) for applications such
as precision agriculture, it can also be used for DSM of larger areas, for exam-
ple by spatially aggregating the sensor data. McBratney (1998) and Heuvelink and
Pebesma (1999) provide relevant discussions on spatial aggregation of soil data.
A further advantage of using high-resolution sensor data for DSM is that it can
be used to characterize the short-range spatial variation of soil properties, which is
often overlooked in DSM due to the limitations of conventional soil sampling and
analysis.

The potential for using proximal soil sensing in DSM is shown in Fig. 7.1, using
the proposed scorpan–soil spatial prediction functions framework described in the
review by McBratney et al. (2003). The figure shows where PSS may be used.

To clarify our descriptions, we have defined two types of proximal soil sensors:
those that may be used to measure covariates (PSSC) for scorpan, and those that



7 Using Proximal Soil Sensors for Digital Soil Mapping 81

Fig. 7.1 A framework for
DSM adapted from
McBratney et al. (2003). It
shows where proximal soil
sensors can be used. We
defined two types of proximal
soil sensors: those that are
used to measure covariates
(PSSC) and those that can be
used for measuring soil
attributes, or variates (PSSV)

can be used to measure soil attributes, or variates (PSSV) (e.g. soil chemical, phys-
ical, biological, mineralogical properties). The distinction is not absolute; we cite
literature where techniques for PPSC have been used to measure soil attributes (e.g.
Viscarra Rossel et al., 2007). The important points are: (i) PSS can be used to mea-
sure covariates for scorpan as well as soil attributes, and (ii) PSS overcomes the
difficulty and expense of soil measurements associated with conventional sampling
and laboratory analysis.

Figure 7.1 shows the typical framework for DSM. The steps and methodologies
are well documented by McBratney et al. (2003). In this framework, PSS could be
incorporated at steps (ii), (iv) and (vii) (Fig. 7.1).

7.2.1 Acquiring Soil Data Using PSSC

Environmental covariates to describe the scorpan factors (Chapter 2) may be
acquired from various sources, such as, RS from satellite or airborne platforms,
including imaging spectroscopy (e.g. Chapters 8) and airborne γ -radiometrics
(Wilford, 2008). Proximal soil sensors such as those used in geophysical research
can also be used. Most PSSC use near-surface, non-invasive techniques that can be
used for “on-the-go” surveying. Digital elevation models (DEM) and derived terrain
attributes can also be used as environmental covariates because local variations in
terrain affect the movement of sediments, water and solutes within the landscape.
Table 7.1 lists some of the methods that might be used to covariates for scorpan
using PSSC.
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EM induction is a highly adaptable non-invasive technique that measures the
apparent bulk electrical conductivity of the soil (ECa). It has been used extensively
in soil science since De Jong et al. (1979) first reported it. EM induction is particu-
larly useful for mapping saline soils and for precision agriculture.

Electrical resistivity is used to determine the resistivity of the measured soil vol-
ume. Measurements of resistivity usually require four electrodes; two electrodes
are used to apply the current (current electrodes) and two are used to measure
the resulting potential difference (potential electrodes). The electrical resistivity
of the soil is determined from these data and measurements of the electrical con-
ductivity (ECa) are possible because resistivity is the reciprocal of conductivity.
Samouëlian et al. (2005) reviews the use of electrical resistivity surveys in soil
science.

Induced polarisation (IP) measurements are essentially an extension of the four-
electrode resistivity technique. IP operates by first applying an electric current
between a current electrode pair and the resulting voltage induced in the soil is
measured between a potential electrode pair. However, IP captures both the charge
loss (conduction) and the charge storage (capacitance) characteristics of the soil.
IP instruments have been used in hydrogeophysical applications, e.g. to look at
hydraulic properties of soil in the vadose zone (Börner et al., 1996).

Magnetics sensors, or, magnetometers, measure variations in the strength of the
earth’s magnetic field and the data reflect the spatial distribution of magnetisation
throughout the ground. Magnetisation of naturally occurring materials and rocks is
determined by the quantity of magnetic minerals and by the strength and direction
of the permanent magnetisation carried by those minerals (Hansen et al., 2005).
Typically, magnetics has been used for the detection of geological bodies. However,
there is increasing use of the technique for near-surface applications, for example, to
better understand soil genesis and formation (Mathé and Lévêque, 2003); to detect
anthropogenic pollution on topsoils; through their associations with Fe-oxides; and
for rapid identification and mapping of soil heavy metal contamination (Jordanovaa
et al., 2008).

Gravity data can be collected using gravimeters (or gravitometers) and pro-
vide information on the local gravitational field. There are two types: relative
and absolute gravimeters. A relative gravimeter measures relative differences in
the vertical component of the earth’s gravitational field based on variations in
the extension of an internal spring in the gravimeter. The technique has typi-
cally been used to determine the subsurface configuration of structural basins,
aquifer thickness and geological composition. An absolute gravimeter measures
the acceleration of free fall of a control mass. Absolute gravimetry can be used
to measure mass water balances at regional or local scales (Nabighian et al.,
2005).

Seismic reflection methods are sensitive to the speed of propagation of various
kinds of elastic waves. The elastic properties and mass density of the medium in
which the waves travel control the velocity of the waves and can be used to infer
properties of the earth’s subsurface. Reflection seismology is used in exploration for
hydrocarbons, coal, ores, minerals, and geothermal energy. It is also used for basic
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research into the nature and origin of rocks that make up the Earth’s crust. It can
be used in near-surface application for engineering, groundwater and environmental
surveying. A method similar to reflection seismology, which uses electromagnetic
waves is ground penetrating radar (GPR).

Ground penetrating radar uses the transmission and reflection of high frequency
(1 MHz to 1 GHz) electromagnetic waves in the soil. The resolution of GPR images
can be varied through the use of different antennae frequencies. Typically, higher
frequencies increase the resolution at the expense of depth of penetration. Daniels
et al. (1988) describes the fundamental principles of GPR. Knight (2001) pro-
vides an overview of GPR in environmental applications and Huisman et al. (2003)
reviews its use for soil water determinations.

Magnetic resonance sounding uses a nuclear magnetic resonance (NMR) princi-
ple that is used in medical brain scanning (i.e. MRI or magnetic resonance imag-
ing) to measure subsurface free water and hydraulic properties (Lubczynski and
Roy, 2004). It is also known as surface nuclear magnetic resonance and can be used
to measure water content and porosity to depths up to 1,500 m. Paetzold et al. (1985)
used the technique to measure soil water content and concluded that the NMR signal
is a linear function of volumetric water content and is not affected by clay mineral-
ogy, soil organic matter, or texture. They concluded that the NMR signal is uniquely
related to liquid water in soils and rocks.

The basis of passive γ -radiometrics is that γ -ray photons have discrete energies,
which are characteristic of the naturally occurring radioactive isotopes from which
they originate. By measuring the energies of these photons, it is possible to deter-
mine the source of the radiation. While many naturally occurring elements have
radioactive isotopes, only potassium (40K), caesium (137Cs) and the decay series of
uranium (238U and 235U and their daughters) and thorium (232Th and its daugh-
ters) have long half-lives, are abundant in the environment, and produce γ -rays
of sufficient energy and intensity to be measured by γ -radiometric sensors. The
conventional approach to the acquisition and processing of γ -ray data is to monitor
four broad spectral windows or regions of interest (ROI) corresponding to K, U, Th
and the total count (e.g. Viscarra Rossel et al., 2007).

7.2.2 Acquiring Soil Attributes Using PSSV

Proximal soil sensors can also be used as alternatives to conventional soil sampling
and laboratory analyses, which as we have mentioned, are slower, can be difficult
and more expensive than PSS. The rationale here is that although PSS may pro-
duce results that are not as accurate as conventional laboratory analysis, it facilitates
the collection of larger amounts of quantitative spatial data using cheaper, simpler
and less laborious techniques. Furthermore, the measurements may be made in
situ, providing information of the soil at field conditions and in a timely manner.
The interaction of PSS with GPS allows the signals to be processed and mapped
digitally. Table 7.2 provides a summary of the techniques that are currently being
developed to measure various soil properties, showing the approximate frequency
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and wavelengths at which these sensors operate and whether the measurement is
physically based (P) or correlative (C).

There are various techniques that can be used to measure soil attributes
(Table 7.2). These range from those that are direct and physically based to those
that are indirect and correlative (Table 7.2). For example, soil pH can be measured
directly using ion-sensitive field effect transistors (ISFET) (Viscarra Rossel and
Walter, 2004), or indirectly using vis–NIR spectroscopy. Indirect techniques rely on
empirical calibrations and are therefore invariably less accurate than direct methods.
Indirect methods also tend to work better under restricted local soil conditions and
often fail when generalised. This conditional success is controlled by the type of
soil: its mineralogy, particle-size distribution, presence of segregations (e.g. iron
oxides and oxyhydroxides), soluble salts, water content, and the abundance and
composition of organic matter. However, indirect techniques are also generally less
expensive, technologically and methodologically better developed and more readily
available to users.

7.2.3 Diffuse Reflectance Spectroscopy (DRS)

There is widespread interest for using DRS in DSM because it is rapid, requires
minimal sample preparation, is non-destructive and requires no hazardous chemi-
cals (Viscarra Rossel et al., 2006). However, the principal reason for this interest is
that unlike other sensing techniques, several soil properties can be measured from
a single scan (Table 7.2). This multi-parameter feature of diffuse reflectance spec-
troscopy implies that one spectrum holds information about various soil constituents
and indeed, soil mid-IR and vis–NIR spectra are sensitive to both organic and inor-
ganic soil composition. Nonetheless, for the most part, the techniques are correlative
so that soil attributes cannot be measured directly from the spectra (Table 7.2). In
these cases, to be useful quantitatively, spectra must be related to a set of known
reference samples through a calibration model. The set of reference samples used in
the models need to be representative of the range of soils in which the models are to
be used. A discussion on the use of diffuse reflectance spectroscopy for DSM can
be found in Viscarra Rossel and McBratney (2008).

An initiative to develop a global soil spectral library was started in April 2008
(Viscarra Rossel, 2009a). The aim was to help soil spectroscopy progress from
being almost purely a research tool to become a more widely adopted and useful
technique for soil analysis, PSS, soil monitoring and DSM. Currently, the spec-
tral library contains 14695 vis–NIR (350–2,500 nm) spectra from 89 countries
(Fig. 7.2), most with laboratory measurements of soil organic carbon and clay
content. The library also contains laboratory measurements of other soil attributes
(e.g. pH, CEC, carbonate content) as well as soil classification by FAO-WRB
(FAO, 1998), land use and spatial co-ordinates. All spectra, however, do not have
the full set of these data. The library is growing as more countries are joining the
initiative.
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7.2.4 Multi-sensor Platforms

As every soil sensing technology has strengths and weaknesses and no single sensor
can measure all soil properties (Table 7.2), the selection of a complementary set
of sensors to measure the required suite of soil properties is important. Integrating
multiple proximal soil sensors of both types (PSSC and PSSV) in a single multi-
sensor platform can provide a number of operational benefits over single-sensor
systems, such as:

• robust operational performance
• increased confidence as independent measurements are made on the same soil
• extended attribute coverage
• increased dimensionality of the measurement space (i.e., different sensors mea-

suring various portions of the electromagnetic spectrum).

There are few reports of multi-sensor systems in the literature. For example,
Christy et al. (2004) reported the use of a mobile sensor platform that simultane-
ously measures soil pH and EC. An NIR sensor has also recently been added to this
multi-sensor platform (Christy, 2007). Taylor et al. (2006) reported the develop-
ment of a multi-sensor platform consisting of two EMI instruments, an ER sensor, a
γ -radiometer and a high resolution DGPS. Yurui et al. (2008) reported the develop-
ment of a multi-sensor technique for measuring soil physical properties (soil water,
mechanical strength and EC).

7.3 A Framework for Proximal Soil Sensing in Digital
Soil Mapping

Figure 7.3 shows a framework for DSM using proximal soil sensors and a global
soil spectral library.

Briefly, once the scorpan layers are assembled, the legacy data defined, one may
select areas across the landscape where the sensing will take place. The multi-sensor
platform is used to quantify soil variability in these areas using a suite of PSSC.
For example, PSSC using a γ -radiometer and EM induction instruments may be
used to characterise soil variability of areas in the landscape (Fig. 7.4). These data
can be spatially aggregated and combined with the scorpan layers to help charac-
terise soil spatial variability at different scales and to determine an optimal sam-
pling strategy. The multi-sensor platform moves to each location and samples a soil
core. A suite of PSSV is used to measure the soil properties of the core at specific
depth intervals (e.g. 1 m down the soil profile) and transfer functions are used to
estimate the soil properties of interest. For example, using soil vis–NIR spectra to
measure clay content and mineral composition (Fig. 7.5a) or mid-IR to measure
soil organic carbon content (Fig. 7.5b). Spectroscopic estimates of clay content and
organic carbon are made using soil spectral libraries (Fig. 7.3). The PPSV allow
collection of many more observations than would be possible using conventional
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Fig. 7.3 A framework for
digital soil mapping using
proximal soil sensors (PSS).
Here, PSS to measure soil
covariates (PSSC) and PSS to
measure soil attributes
(PSSV) are mounted on a
multi-sensor platform (MSP).
A global spectral library can
be used with the
spectroscopic proximal
sensors and hyperspectral
remote sensors, for prediction
of soil properties

Fig. 7.4 Proximal soil
sensors can be used to
measure covariates (PSSC) to
quantify soil spatial
variability in selected areas
across a landscape. The figure
shows the sensing locations,
the DEM of the area, the total
count, potassium, uranium
and thorium regions of
interest from a γ -radiometer,
and the EC at different depths
from an EM-38 and an
EM-31. Data from Viscarra
Rossel et al. (2007)

Sensing locations

Elevation

 total count

potassium

uranium

thorium

EM38

EM31
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(b)

(a)

Fig. 7.5 Proximal soil sensing of (a) soil clay content and mineral composition using a vis–NIR
spectrophotometer, adapted from Viscarra Rossel et al. (2009b) and (b) soil organic carbon using
a mid-IR spectrophotometer

soil sampling and analyses. Nonetheless, at selected sites, soil samples are col-
lected and taken back to the laboratory for analysis and verification. Of course,
this additional data will also be used to improve the global spectral libraries and
transfer functions in the current and future surveys. Importantly, a greater amount
of spatial data is collected using the multi-sensor platform. The spectral libraries
may also be used in the laboratory analysis of the sampled soil (e.g. soil organic
carbon by laboratory-based mid-IR spectroscopy). Soil observations collected by
the multi-sensor platform are then combined using multi-sensor data fusion. The
data may then be spatially aggregated to the required support for modelling and
mapping. The spatial information collected from the soil (i.e. both horizontally and
vertically down the profile) can be used for the assessment of soil properties and
processes.
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7.4 Conclusions

Digital soil mapping encompasses a powerful suite of technologies that can be used
for soil resource assessment and management. However, it is limited by expensive,
time-consuming fieldwork and laboratory analysis. This paper suggests that:

• Further developments in, and adoption of, digital soil mapping depends on the
use of proximal soil sensors to overcome the constraints imposed by conventional
soil survey

• There are various techniques that can be used for proximal soil sensing, which
can be used to measure covariates for scorpan and soil chemical, physical, bio-
logical, mineralogical attributes

• No single sensor can measure all soil properties, therefore integrating multiple
proximal soil sensors in a single multi-sensor platform can provide operational
benefits over single-sensor systems

• There is widespread interest in the use of diffuse reflectance spectroscopy
because several soil properties can be measured from a single scan. Development
of the global soil spectral library is important and will enhance the adoption of
DSM.

• Proximal sensing can be integrated into a digital soil mapping framework.
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Chapter 8
The Use of Hyperspectral Imagery for Digital
Soil Mapping in Mediterranean Areas

P. Lagacherie, C. Gomez, J.S. Bailly, F. Baret, and G. Coulouma

Abstract Hyperspectral imagery is considered as a promising source of data to
overcome the lack of soil information that often hamper digital soil mapping. We
have tested it in the vineyard plain of Languedoc (southern France) using an 5 × 5 m
resolution HYMAP image and 52 calibration-validation points. Satisfactory predic-
tions of clay content and calcium carbonate (CaCO3) content were first obtained
from HYMAP spectra over bare soils, partial least-squares regression performing
better than continuum removal technique. These predictions were however less
precise than using laboratory spectra. An examination of the possible factors that
could explain this decrease showed that calibration uncertainties of the HYMAP
sensor and of atmospheric effects were largely predominant. Secondly, since the
HYMAP image was largely covered by vegetation with few pure bare soil pixels,
an interpolation-aggregation procedure was proposed to obtain a 100 × 100 m dig-
ital soil map of the whole study area from a set of scattered bare soil fields with
hyperspectral soil characterization. Interpolation was performed by a conditional
simulation algorithm to estimate the within pixel soil pattern parameters. Validation
results showed that satisfactory estimates of local means can be obtained whereas
the variations of local variances were only partly represented.

In the near future, a new proof-of-concept zone will be implemented in Tunisia
to confirm these encouraging results and to examine how hyperspectral imagery can
be used in association with soil legacy data and digital terrain models to produce
digital maps of soil properties in the Mediterranean areas.
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8.1 Introduction

It has been largely recognized in the previous digital soil mapping workshops
(Lagacherie, 2008) that poor soil datasets have been (and still remain) a factor that
can severely limit digital soil mapping progress. It is thus important to include the
use of soil sensors that can deliver precise soil property estimates over large areas in
the digital soil mapping toolbox. Among the large set of possible soil sensors, visi-
ble and near infrared (vis-NIR) hyperspectral imagery is one of the most promising
candidates since it is derived from reflectance spectroscopy, a laboratory technique
that was proved as being a good alternative to the costly soil physical and chemical
laboratory analysis for the estimation of a large range of soil properties (Viscarra
Rossel et al., 2006; see also Section 7.2.3), and the few studies that exist in the
literature show promising results (e.g., Ben-Dor et al., 2008; Gomez et al., 2008b).
It is important to note that hyperspectral imagery can estimate the properties of the
immediate soil surface only (e.g., the first millimetres). However, it provides a new
soil covariate layer that may serve to estimate soil properties of deeper soil layers
and to predict soil classes.

Hyperspectral imagery looks particularly promising in Mediterranean areas
where bare soil surfaces and dry soil conditions are frequent, easing the interpre-
tation of hyperspectral images. This is why our research team was early to work
(since 2003) on hyperspectral imagery. The first exploratory results were presented
in the first digital soil mapping workshop in Montpellier, France in 2004 (Madeira
et al., 2007). Since then, further research has been undertaken on three questions
that must be addressed for an effective use of hyperspectral imagery in digital soil
mapping: (i) How to derive soil property estimates from Vis-NIR spectra? (Gomez
et al., 2008a; Lagacherie et al., 2008), (ii) what are the main perturbing factors when
passing from laboratory to remote sensing spectra? (Lagacherie et al., 2008), and
(iii) how to obtain a digital soil map from a hyperspectral image with high fraction
of pixels covered by the vegetation?

This paper summarizes the main findings of the research listed above.

8.2 The “Peyne Experiment”

8.2.1 Study Area

The study was carried out in la Peyne catchment, South of France (43◦ 29′ N
and 3◦22′ E) (Fig. 8.1), which is dominated by vineyard land cover. Marl, lime-
stone and calcareous sandstones coming from Miocene marine and lacustrine sed-
iments (Fig. 8.2) formed the parent material of several soil types observed in this
area: Lithic Leptosols, Calcaric Regosols and Calcaric Cambisols. These sediments
were partly covered by successive alluvial deposits ranging from the Pliocene to
Holocene and differing in their initial nature and in the duration of weathering
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Fig. 8.1 Location of the
study area

conditions (Fig. 8.2). They have produced an intricate soil pattern that includes a
large range of soil types such as Calcaric, Chromic and Eutric Cambisols, Chromic
and Eutric Luvisol and Eutric Fluvisols. Local transport of colluvial material along
slopes added to the complexity of the soil pattern.

Fig. 8.2 Geology of the study
area and the masked image
showing only data on bare
soil fields
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8.2.2 The Hymap Image

The HYMAP airborne imaging spectrometer measured reflected radiance in 126
non-contiguous bands covering the 400–2,500 nm spectral domain with around
19 nm bandwidths and average sampling intervals of 17 nm in the 1,950–2,480 nm
domain. The HYMAP image was acquired on July 13th 2003 with a spatial resolu-
tion of 5 × 5 m. This image was geometrically, atmospherically and topographically
corrected (see details in Lagacherie et al., 2008).

Living (essentially vineyard) and dry vegetation were masked on the HYMAP
image using respectively the NDVI and the cellulose absorption band (2,010 nm).
The final result was a masked image covering 23.5 km2 with data only on bare soil
fields (Fig. 8.2).

8.2.3 Field Data

Clay and CaCO3 contents were selected as examples of target soil properties since
they are widely used by soil surveyors to describe soil types and are essential to
quantify the soil erodibility. These two properties were determined by routine soil
analysis for 52 sites collected over bare soil fields. The sampling was designed
to capture the variability of the properties of interest within the study area (clay
contents from 65 to 452 g/kg and CaCO3 contents from 0 to 360 g/kg). Laboratory
vis-NIR reflectance spectra were recorded for these 52 samples with an ASD pro FR
Portable Spectro-radiometer, and field vis-NIR reflectance spectra were recorded
for the 19 samples collected in 2005 with the same tool. Detailed measurement
protocols are available in Lagacherie et al. (2008).

8.2.4 Methods

Two well-known techniques were used to infer the soil properties from laboratory
and HYMAP spectra; the continuum removal analysis (CR) and the partial least
square regression (PLSR).

CR is a means of normalizing reflectance spectra to allow comparison of indi-
vidual absorption features from a common baseline (Clark and Roush, 1984).
The CR technique presents the advantage of targeting specific absorption features
that should be resistant across scales and observation conditions. After contin-
uum removal, absorption band depth values are calculated from vis-NIR spectra
to estimate mineral, rock, and soil properties. Specific absorption features of min-
erals, rocks, and soil properties, including clay and CaCO3, have been widely stud-
ied under laboratory conditions. The absorption band depth values at 2,206 and
2,341 nm, calculated from laboratory spectra after continuum removal, can be used
to estimate clay and CaCO3 content, respectively.
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PLSR is one of the most common multivariate statistical techniques for spectral
calibration and prediction of soil properties (e.g., Viscarra Rossel et al., 2006). In
the PLSR approach, the full spectrum is used to establish a linear regression model
where the significant information contained in the vis-NIR spectra is concentrated
in a few latent variables that are optimized to produce the best correlation with the
desired property of interest.

8.3 Results

8.3.1 How to Derive Soil Property Estimates from Vis-NIR
Spectra? (Gomez et al., 2008a; Lagacherie et al., 2008)

Table 8.1 shows the performance of the two tested methods for predicting clay and
calcium carbonate content from laboratory and remote sensing (HYMAP) spectra.
It shows that the two soil properties can be predicted with an acceptable preci-
sion although a decrease of precision is observed when passing from laboratory to
HYMAP spectra. The PLSR technique performs better than the CR approach when
the absorption peak selected in the CR approach corresponds to a chemical species
that does not match perfectly the soil property of interest (e.g., OH− for clay con-
tent), or when applied to the lower quality spectra provided by an airborne sensor
like HYMAP. In these situations, PLSR is able to find surrogate spectral features
that retain satisfactory estimations of the studied soil properties. However, these
surrogate spectral features correspond to soil properties that have only area-specific
correlations with the soil property of interest (e.g., soil colour with clay content), or
to chemical species that cannot be related with any explainable soil features. This
means that extrapolations to larger pedological contexts must be envisaged with
care (Gomez et al., 2008a). Conversely, in the case of CaCO3 estimations from lab-
oratory spectra, CR overcame PLSR since it nearly equals the PLSR results while
using a more parsimonious model. Although these results only concern two soil
properties, this will certainly be extended in the near future to other soil properties
that are known to be suitable for spectrometry analysis (granulometric fractions,
carbon content, iron content, salinity, . . . ).

Table 8.1 Estimations of Clay and CaCO3 contents of soil surface from laboratory and HYMAP
spectra using the continuum removal method and the PLSR regression (after Gomez et al., 2008a)

Laboratory spectra HYMAP spectra

Clay CaCO3 Clay CaCO3

CR R2 0.73 0.92 0.58 0.47
RMSE (g/kg) 44 52 82 132

PLSR R2 0.85 0.94 0.64 0.77
RMSE (g/kg) 31 39 50 77

Abbreviations: CR: continuum removal method, PLSR : partial least squares regression method,
RMSE: root mean square error, R2: determination coefficient (obtained by cross-validation)
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8.3.2 What Are the Main Perturbing Factors When Passing from
Laboratory to Remote Sensing Spectra? (Lagacherie et al.,
2008)

Nine intermediate stages from the laboratory up to HYMAP sensor measurements
were considered for separately evaluating the factors of confusion that may decrease
the estimation performances when going across scales and sensors (Fig. 8.3). These
stages were either characterised by additional measurements or by simulations (see
details in Lagacherie et al., 2008). The importance of each factor of confusion was
evaluated by examining the correlations between the soil property predictions using
the CR method with data from the two corresponding consecutive measurement
stages.

Results show that the main uncertainty factor in scaling up laboratory to air-
borne measurements is the capacity of airborne reflectance measurements to be
spectrally consistent (good inter-band relative radiometric accuracy), and well cor-
rected from atmospheric effects, particularly regarding water vapour (first line in
Fig. 8.3). A small effect on the degradation of the radiometric performances was
observed as well. The influence of pebbles was found generally limited except for
CaCO3 estimates with calcareous pebbles and high CaCO3 contents. More sites

Fig. 8.3 The different possible factors of confusions across scale and sensors and their influence
on soil property predictions. A low R2 between consecutive stages means a strong influence of the
corresponding confusion factor (after Lagacherie et al., 2008)
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will be necessary to identify situations where pebbles have to be taken into consid-
eration. The other factors considered (i.e., spectral and spatial resolutions, surface
roughness, illuminations conditions and soil moisture) played a minor role.

8.3.3 How to Obtain a Digital Soil Map from a Hyperspectral
Image Partly Covered by the Vegetation?

An interpolation-aggregation procedure has been developed to derive a 100 × 100 m
resolution digital soil map of clay content of the entire study region from a hyper-
spectral image where pixels with vegetation cover were masked. In this situation,
the source of data is the set of scattered bare soil fields with hyperspectral soil

Fig. 8.4 Map of the local
means of clay content at the
soil surface
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property estimations. The procedure includes two steps: (i) interpolation of the soil
properties predicted from HYMAP spectra in the bare soil fields, and (ii) pooling of
the interpolation outputs to obtain the soil pattern parameters (mean, variances and
semi-variances at lags 0–50 m and 50–100 m) of the pixels of the targeted digital soil
map. A conditional simulation approach was selected as the interpolation function
since it can predict the local values of the property of interest while giving a realistic
representation of its spatial structure.

The procedure was applied using the absorption band depth values at 2,206 nm
(CR2,206) that satisfactorily mapped clay content of the soil surface in bare soil
fields as input data (Table 8.1). A double-log transformation of CR2,206 was applied
to obtain normal distributions. The conditional simulation was performed from the

Fig. 8.5 Maps of the (a) local
variances, (b) semi-variances
at lag 0–50 m and (c)
semi-variances at lag
50–100 m

a) b)

c)
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variogram of the double-log transformed CR2,206 computed from the set of bare soil
pixels with CR2,206 values. It was conditioned by bare soil pixels randomly sampled
from this set. The Circulant Embedding (CE) simulation algorithm was selected
for its ability of handling large datasets. Double log transformed outputs were
finally back transformed into CR2,206 estimates and the linear formula calibrated
by Lagacherie (2008) was applied to obtain clay content values (clay% = 3,790∗
(1 − CR2,206)).

Figure 8.4 shows the map of local means of clay content at 100 × 100 m resolu-
tion variances that were obtained from the interpolation-aggregation procedure, and
Fig. 8.5 shows the corresponding maps of local variances and semi-variances. The
spatial distribution of these two soil pattern parameters seems to be in relation with
the geological pattern of the region shown in Fig. 8.2.

As validation was not possible on pixels directly, a cross validation procedure
was performed from the set of bare soil parcels. It showed that local means were
estimated with an acceptable accuracy (R2 = 0.62). The quality of estimations
of the local variance and semi-variances was not so good (R2 = 0.30, R2 = 0.29,
R2 = 0.22 for local variance, local semi-variance at lag 0–50 m, local semi-variance
at lag 50–100 m, respectively) since the procedure failed to reproduce the small
number of erratic large local variances and semi-variances that was observed in the
study region. However, the part of the variation of local variance in relation with
geological variations seemed to be correctly represented (Fig. 8.5).

8.4 Conclusion

The following conclusions can be drawn from the first results of the Peyne
experiment:

– Satisfactory predictions of bare soil surface properties can be obtained from
hyperspectral imagery, although a decrease of precision is observed when passing
from laboratory to airborne reflectance spectra.

– Calibration uncertainty of the airborne sensor and non-corrected atmospheric
effects are by far the main factors that explain this decrease of precision.

– A digital soil map at medium resolution (100 × 100 m) can be derived from a
hyperspectral image with part of the pixels covered by vegetation.

In the near future, a proof-of-concept zone located in the gouvernorat of Nabeul
(northern Tunisia) will be implemented. It is expected to demonstrate that a digital
soil map of the Mediterranean areas that fit the standards of the GlobalSoilMap.net
project (see Chapter 33) can be produced using hyperspectral imagery associated
with digital terrain model and legacy soil data. The added value of this digital soil
map will be evaluated for the spatial assessment of soil vulnerability to erosion and
the mapping wheat yield in water limited situations.
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Chapter 9
Automatic Interpretation of Quickbird
Imagery for Digital Soil Mapping, North
Caspian Region, Russia

M.V. Konyushkova

Abstract The digital analysis of a Quickbird image has been conducted to develop a
procedure for automatic interpretation of soils within the north Caspian Depression.
The soil cover in the study area has a spotted pattern and consists of contrasting
soils (in terms of the humus content, salinity, pH, etc.): chernozem-like soils, light
chestnut soils, and solonetzes (sodic soils). Multispectral data from the Quickbird
satellite (September 13, 2006) of 2.4 m spatial resolution were used. Computer-
based image analysis was conducted using the ILWIS Open GIS software (ITC,
the Netherlands) and STATISTICA 6.0. This work represents the results of image
interpretation for rangeland subjected to low grazing pressure. The ground truth data
were collected in 2002–2004 and 2007. The original DN values (pixel brightness)
of different soil types in the near-infrared (NIR), red, green, and blue bands were
analyzed and NDVI values were calculated. Two methods to analyze DN values
were used: descriptive statistics and discriminant analysis. The spectra showed that
the brightness in the NIR band and the NDVI values are the most informative indices
to discriminate soils. The indices were put into the image classification by threshold
values obtained from descriptive statistics and by classification functions obtained
from discriminant analysis. Both methods of image classification gave similar self-
test and cross validation results, with an accuracy of classification of about 80%.
Chernozem-like soils were best discriminated. Light chestnut soils and solonetzes
were not delineated as well by automatic methods. The approach developed in this
study can be used to map regions with contrasting soils changing within short dis-
tances, provided that the average soil area is 2–3 times more than a pixel area on
the image (e.g., for solonetzic complexes of semiarid regions or for some cryogenic
complexes in the tundra zone).

Keywords Solonetzic complex · Sodic soils · ILWIS software · Nonparametric
Analysis
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9.1 Introduction

The soil cover in the northern Caspian Depression is mainly represented by soil
combinations (solonetzic complexes, according to Russian terminology). The com-
plexes consist of solonetzes, light chestnut soils, and chernozem-like soils alternat-
ing with one another at short distances of about 10–30 m. Landsat imagery, which
is widely used for digital soil mapping (see Chapters 2, 27 and 32), is not of use in
the regions with small soil polygons, as in our case where one pixel of the Landsat
image often covers several contrasting soil types of the solonetzic complex.

Before the advent of the fine spatial resolution satellite imagery (Quickbird,
SPOT, Ikonos, OrbView, etc.), several attempts were performed to map the soils
of solonetzic complexes using aerial imagery (Simakova, 1959; Kornblum, 1985).
Those approaches were based on the visual interpretation of aerial imagery. The
drawbacks of the visual processing of aerial images for large areas are described
in Section 31.1. Due to these drawbacks, no large-scale soil maps of the Caspian
Depression have been developed.

The first attempt to develop a procedure for automated interpretation of aerial
imagery for large-scale mapping of solonetzic complexes was made by Kozlovskii
and Korolyuk (1980) and Kozlovskii et al. (1975). The authors demonstrated a the-
oretical possibility for automated image analysis. However, the absence of adequate
technical facilities at that time made it impossible to put their approach into practice.
Beyond the area of the Caspian Depression, automated interpretation of solonetzic
spots was realized at the Hortobagy region (Hungary) with the use of field reflec-
tometry and discriminant analysis (Toth and Pasztor, 1996).

The goal of this study was to develop a procedure for an automated interpretation
of the high-resolution spaceborne (Quickbird) imagery for large-scale soil mapping
in the northern part of the Caspian Depression. The methods of digital soil mapping
made it possible to simplify the mapping of solonetzic complexes in comparison
with conventional procedures.

9.2 Materials and Methods

9.2.1 Study Area

The study was conducted in the area of the Dzhanybek research station of the
Russian Academy of Sciences. The station is located in the east of Volgograd oblast,
close to the border with Kazakhstan, 49.35–49.43◦N and 46.75–46.84◦E (Fig. 9.1).
This area belongs to the northwestern part of the Caspian Depression and to the
geobotanical zone of desert grassland (desert steppes). The study area represents an
extremely flat plain with absolute heights ranging from 27 m a.s.l. in the northeast-
ern part to 25.5 m a.s.l. in the southwestern part. The soil cover is represented by
solonetzic complexes (Fig. 9.2). Chernozem-like soils occupy shallow (10–30 cm
deep) micro lows, solonetzes occupy flat-topped micro highs, and light chestnut
soils occupy intermediate positions (micro slopes and micro saddles) (Fig. 9.3).
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Fig. 9.1 Study area. Legend:
1 – Russia – Kazakhstan
border; 2 – Boundary of
Caspian Depression

Fig. 9.2 Soil pattern of a
solonetzic complex (Rode
and Polskii, 1961)

Fig. 9.3 Soil and vegetation
change along the micro
catena. Soil names according
to the WRB (2006) are given
in parentheses
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Fig. 9.4 Chemical properties of soils in solonetzic complex. Salts and gypsum are absent in
chernozem-like soil. Legend: 1 – carbonates; 2 – gypsum; 3 – humus; 4 – water-soluble salts;
5 – toxic salts. The graphs are plotted according to the data of Rode and Polskii (1961)

These soils are very contrasting in terms of the humus, carbonates, gypsum, and
salt contents (Fig. 9.4), which predetermines the high correlation between soils and
vegetation (Fig. 9.3).

9.2.2 Digital and Field Data

High-resolution multispectral data from the Quickbird satellite (USA) acquired on
September 13, 2006 were used (Table 9.1). The image had been subjected to stan-
dard corrections for radiometric and geometric sensor distortions and orthorectifica-
tion. Image analysis was performed with the use of the ILWIS Academic 3.4 Open
software (International Institute for Geo-Information Science and Earth Observa-

Table 9.1 Quickbird spectral ranges and spatial resolution

Sort of data Band Wavelength range, nm Spatial resolution, m

Multispectral Blue 450–520 2.44
Green 520–600 2.44
Red 630–690 2.44
Near infrared 760–900 2.44
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tion, ITC, the Netherlands). Statistical and discriminant analyses were performed
using the STATISTICA 6.0 software.

The total area of investigation was 30 sq. km of rangelands subjected to low graz-
ing pressure. Ground truth data were collected in 2002–2004 and 2007. Soil types
and vegetation were determined and topographic leveling was performed along
four 100 m-long transects crossing all the components of solonetzic soil complexes.
Transects were geo-positioned using a Garmin Emap GPS receiver. Positioning of
transects on the Quickbird image was performed in the field. Since the average
area of a certain soil was several times more than the area of the Quickbird pixel
(Fig. 9.2), it was possible to position ground truth data with sufficient accuracy.
Besides, micro depressions with chernozem-like soils were good landmarks as they
were clearly seen both on the image and in the field. The sample set included pixels
both along transects and in their neighborhoods. The DN values of pixels associated
with different soil types in the near-infrared (NIR), red, green, and blue bands were
obtained by the “mapvalue” command in the ILWIS, and then NDVI values were
calculated. The total amount of pixels was 200 per soil type (600 pixels for the
entire soil combination). Out of that sample set, 60 pixels per soil type (180 total)
were randomly selected for the control set. Thus, data for 420 pixels were put into
analysis.

9.2.3 Inference Models

Two methods of digital analysis were used: model 1 – descriptive statistics (nonpara-
metric) and model 2 – discriminant analysis (parametric). In the first method, min-
imum, maximum, lower, and upper deciles of brightness distribution in 4 spectral
bands and of the NDVI distribution were calculated for 3 soil classes (solonetz, light
chestnut and chernozem-like soils). The thresholds separating different soil types
were then chosen. In the second method, classification functions were computed for
each soil type.

9.3 Results and Discussion

9.3.1 Results from Models

9.3.1.1 Analysis of NDVI and DN Values Distribution

The ranges of DN values and NDVI of different soils are shown in Fig. 9.5. The
values of different soils partially intersect due to the high variability (Fig. 9.5a).
If extreme values (lower and upper deciles) of distribution are discarded, solonetz
soils can be separated from the other two soils by the low DN values in the NIR
band (less than 370 for solonetzes), and chernozem-like soils can be separated by
the high NDVI values (more than 0.13) (Fig. 9.5b). Those thresholds have been put
into the algorithm for automatic image classification. If NIR > 370 and NDVI >
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Fig. 9.5 Range plots of DN values in different spectral bands (a – from minimum to maximum; b –
excluding the lower and upper deciles of distribution; medians are depicted by marks). N = 140
for each soil class

0.13, then a pixel is classified as chernozem-like soil; if NIR <= 370 and NDVI
<= 0.13, then a pixel is classified as solonetz; all remaining pixels are classified as
light chestnut soils.

9.3.1.2 Discriminant Analysis

Two parameters have been put into the discriminant analysis: the brightness in the
NIR band and the NDVI. In the STATISTICA program, the coefficients of classifi-
cation functions have been calculated (Table 9.2).

The classification functions are calculated in the following way:

A = 0.548∗NIR + 439.203∗NDVI − 153.97;
B = 0.507∗NIR + 272.55∗NDVI − 114.186;
C = 0.4445∗NIR + 288.3561∗NDVI − 93.0152,

where NIR and NDVI are the brightness in the NIR band and the NDVI of the
classified pixel, A is the classification score for chernozem, B is the classification
score for light-chestnut soil, and C is the classification score for solonetz.

These functions allow us to compute classification scores for each pixel. Thus,
each pixel has three classification scores (as many as there are soil types). A pixel
belongs to the class, for which it has the highest classification score. Hence, if the

Table 9.2 Coefficients of classification functions. N = 140 for each soil class
Variable CHERN CHEST SOLON

NIR 0.548 0.507 0.4445
NDVI 439.203 272.55 288.3561
Constant −153.97 −114.168 −93.0152

Abbreviations: CHERN – chernozem-like soil; CHEST – light chestnut soil;
SOLON – solonetz
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Fig. 9.6 The results of automatic interpretation of Quickbird imagery (at the top): A – classification
by threshold values, B – discriminant classification. Soil designations are the same as in Fig. 9.2

maximum of A, B, and C is A, then a pixel is classified as chernozem-like soil; else,
if the maximum of B and C is B, then a pixel is classified as light-chestnut soil; all
remaining pixels are classified as solonetzes.

The results of the automatically interpreted Quickbird image are shown in
Fig. 9.6. As seen from this figure, both classification methods give similar pictures.

9.3.2 Accuracy Assessment of the Models

The visual comparison of the Quickbird image and the digital maps illustrates that
both methods of the classification provide quite satisfactory results.

Both models give similar self-test and cross validation results: the accuracy of
classification is about 80% (Table 9.3). The accuracy of the discriminant classifica-
tion is slightly higher (by 6%) than that of the threshold classification. Chernozem-
like soils are best classified by both models (with an accuracy of about 90%). The
final maps compiled by the two methods show unambiguously (with 100% accu-
racy) 87–93% of the actual area of chernozem-like soils. Despite the high accuracy
of the automated classification of solonetzes (about 90%), they are not discriminated
as well because they intermix with chestnut soils, and 30-40% of chestnut soils are
misclassified as solonetzes.
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Table 9.3 Self-test and cross validation results (model 1 – above the line; model 2 – under the
line). N = 60 for each soil class

Self-test Cross validation

Soil class CHERN CHEST SOLON % CHERN CHEST SOLON %

Observed
class

CHERN
116

117

24

19

0

4

83

84

52

56

8

3

0

1

87

93

CHEST
4

0

97

115

39

25

69

82

0

0

36

40

24

20

60

67

SOLON
2

0

29

29

109

111

78

79

0

0

8

5

52

55

87

92

%
95

100

65

70

74

79

77
82

100

100

69

83

68

72

78
84

Abbreviations are the same as in Table 9.2.

9.4 Conclusions

The use of high-resolution (2.4 m) multispectral Quickbird images has allowed us
to compile a large-scale soil map of solonetzic complexes characterized by small
areas of soils composing a complex. The maps developed with the use of automatic
interpretation of Quickbird imagery display a detailed and accurate soil pattern of
the study area.

The automatic interpretation of soils (solonetzes, light chestnut, and chernozem-
like soils) has been performed using two parameters of Quickbird images, NIR band
brightness and NDVI. Two methods used to classify soils, classification by threshold
values and by discriminant functions, have given similar results. The accuracy of
classification as determined by cross validation is 78% (threshold values) and 84%
(discriminant functions).

It can be supposed that this approach can be used to create digital large-scale
soil maps of regions with contrasting soils changing within short distances (e.g.,
solonetzic complexes of semiarid regions or some cryogenic complexes of tundra
regions).
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Chapter 10
ASTER-Based Vegetation Map to Improve Soil
Modeling in Remote Areas

E. Meirik, B. Frazier, D. Brown, P. Roberts, and R. Rupp

Abstract Soil scientists are using spectral data from vegetation to help predict soils
for the North Cascades National Park (NCNP) Complex in Washington State, USA.
Vegetation is a proxy indicator for the soil forming factors organisms and climate.
Two objectives of this research are: (1) can spectral remote sensing data be used to
accurately map vegetation in the NCNP; and (2) are soil characteristics and proper-
ties significantly correlated with vegetation cover? We characterized soil profiles
and vegetation cover at 70 sites within the 30,000 ha Thunder Creek Watershed
(TCW) in the summer of 2007. These ground truth locations were used to manu-
ally interpret 1 m resolution National Agricultural Imagery Program (NAIP) color
photography and classify 700 randomly selected validation locations as coniferous
forest, shrub, meadow, heather, rock and snow. We applied Spectral Angle Mapper
(ENVI version 4.3, ITT Visual Information Solutions; Boulder, CO) to July, 2007
ASTER data to classify vegetation cover for the TCW, with 3600 ground truth pix-
els and the 700 NAIP photograph pixels employed for calibration and validation
respectively. This classification yielded an overall accuracy of 67% with coniferous
forest having a producer’s and user’s accuracies of 84 and 91% respectively.

Standard Analysis of Variance (ANOVA) models were used to examine the cor-
relation of genetic horizon thicknesses with vegetation cover. A-, O-, E- and Bs-
horizon thickness were all highly significantly different (N = 70, p < 0.01) for
these two classes. Moreover, the results confirmed conventional soil genesis theory
with coniferous forest having thicker E, Bs and O-horizons but thinner A-horizons.

Keywords ASTER · Vegetation classification · Vegetation-soil relationships ·
Podzolization · Melanization
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10.1 Introduction

The Remote Area Soil Proxy (RASP) model was developed as a method of pre-
dictive soil mapping with a geographic information system (GIS) (Briggs, 2004;
Rodgers, 2000; Ufnar, 2004). RASP is a heuristic method reliant on tacit knowledge
gained through minimal strategically located fieldwork. The RASP model combines
digital landform and land cover maps with attributes derived from a digital elevation
model (DEM) to predict soil distribution in remote areas. Detail and accuracy of the
final soil map are dependent on the digital inputs used to proxy the soil-formative
factors. All past iterations of the RASP model have incorporated previously existing
vegetation maps or unsupervised classifications of 30m resolution LANDSAT data.
Methods such as illustrated in Chapter 31, Fig. 31.3 have been used.

This project focuses on quantifying soil-vegetation interactions thought to be crit-
ical to soil formation and creating a more useful and accurate digital vegetation map
to proxy the soil properties. Improved resolution is sought from an orthorectified
ASTER (Advanced Spaceborne Thermal Emission and Reflectance Radiometer)
scene from 4 July 2007. The objectives of this paper are to analyze soil-vegetation
interactions and answer two questions: (1) can spectral remote sensing data be used
to accurately map vegetation in the North Cascades National Park (NCNP); and (2)
are soil characteristics and properties significantly correlated with vegetation cover?

10.2 Materials and Methods

10.2.1 Study Area

The study area is Thunder Creek watershed (TCW) located in the North Cascades
(NOCA) National Park complex, Washington (Fig. 10.1). The map is to serve as a
proxy for soil properties resulting from vegetation.

Site stability and vegetation are the most significant predictors of soil develop-
ment in TCW (Briggs et al., 2006). Various combinations of parent material and
vegetation support Andisols, Spodosols, Inceptisols and Entisols of U.S. Soil Taxon-
omy (Soil Survey Staff, 2006). Stable landforms support coniferous forests, creating
a cool and moist soil climate that facilitates podzolization and Spodosol formation.
Andisols, Inceptisols and Entisols form on active landscapes under deciduous and
herbaceous vegetation. Soil development corresponds to unique interactions of the
five soil-forming factors (Jenny, 1941), which are observed in the field, analyzed in
the lab and modeled in RASP.

10.2.2 Field Data

Field data were used to establish soil-vegetation relationships and guide vegetation
mapping. Sampling procedures were designed to maximize time at each location,
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Fig. 10.1 Location of the Thunder Creek watershed in northern Washington, USA

having 10 sample sites in a cluster at each location, and having clusters designed
to cross landform and cover variation at each location. Potential sample locations
(clusters of sample sites) were pre-selected in areas of maximum variation based
on prior mapping of landform and a preliminary classification of land cover. This
procedure is efficient for inaccessible areas, but is somewhat different from other
DSM projects as reviewed in Chapter 6.

The clusters of 10 sample sites were arranged in a star shape (Fig. 10.2). The
central point was located at the theoretical center of an ASTER scene pixel. It is not
possible to know the true location of a pixel center since there is assumed error in the
orthorectified image (though not visible by alignment with the DEM) and in the GPS
location (± one half pixel). Cluster center points were located by GPS during daily
time periods when satellites were most available. Each cluster consisted of three
transects radiating from the central point, and each transect included three sample
sites. The sample points were spaced one, three, and 10 pixels from the center point.
One of the cardinal directions was assigned to each cluster prior to fieldwork. The
first transect pointed in this cardinal direction and the other two were calculated
using simple geometry and point projection.

Vegetation and land cover were described for a circular plot of 15 m diam-
eter surrounding each soil pedon at each sample site. Plot size was chosen to
represent one pixel of ASTER data. Pedon descriptions were written and soil
samples collected and geomorphology and landform data were recorded for each
plot as well. Elevation was determined from a topographic map and recorded by
the Garmin GPS unit. Aspect was measured with a compass and slope with a
clinometer.
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Fig. 10.2 GPS locations for
cluster 26 with vegetation
plot and soil pedon locations

10.2.3 Soil-Vegetation Interactions

Field data were used to compare genetic soil horizon thicknesses by vegetative
cover. Interquartile range (IQR) box plots were constructed to compare horizon
depth by vegetation class. Box plots were constructed for A-, O-, E- and Bs-
horizons. The vegetation types mapped with ASTER data are compared: coniferous
forest, heather, meadow and deciduous shrub. Vegetation classes were condensed for
statistical analysis because of the low sample size for heather and meadow. Soil hori-
zon depth was compared for deciduous and woody evergreen vegetation communi-
ties. Analysis of variance (ANOVA) models were applied to the log transformed
data to quantify soil-vegetation relationships for the broad classes of deciduous and
woody evergreens.

10.2.4 Image Classification Procedures

This project analyzes ASTER (Advanced Spaceborne Thermal Emission and
Reflectance Radiometer) data to create land cover maps. ASTER data is provided
at 15 m spatial resolution for visible and near infrared bands. Previous develop-
ment of the RASP model used Landsat Thematic Mapper (TM) data with 30 m
spatial resolution. Field investigators of NOCA have questioned the integrity of
the Landsat TM-derived classification of vegetation. Visually the TM-based map
appears pixilated with pure stands of pacific silver fir (Abies amabilis) adjacent
to stands of western hemlock (Tsuga heterophylla) and Douglas fir (Pseudotsuga
menziesii). While the legend lists species, in the natural setting it is more com-
mon to find mixed stands. The current research aims to independently assess that



10 ASTER-Based Vegetation Map to Improve Soil Modeling in Remote Areas 117

accuracy of TM-based map and to present an alternative vegetation map using
ASTER data.

Thematic maps were produced with image processing software by super-
vised classification of ASTER data. Field observations were used to drive the
process. Regions of interest (ROIs) were digitized on the ASTER scene using
georeferenced field observations. Each ROI is a combination of points and
polygons for a known land cover type. Six land cover and vegetation types
were distinguished and classified: coniferous forest, deciduous shrub, herbaceous
meadow, heather, rock and talus, and snow and ice. ROIs were located more
than three pixel widths into a cover type to avoid any influence from border
pixels.

These land cover and vegetation classes were chosen because they communicate
information about the soil and they are distinguishable on a 1 m resolution NAIP
image. The georeferenced NAIP image and field observations were used to deter-
mine cover types at validation sample points. The NAIP image was not classified,
but used to observe cover conditions at validation points. This supported our aim
to create a reliable vegetation map with class distinctions for vegetation types that
support different soil types.

The mean spectral signatures for each ROI are displayed in Fig. 10.3. The
greatest separability is observed in the VNIR bands (1–3) and two SWIR bands
(4 and 5), while spectra for the longer SWIR bands (6–9) are similar for these
land cover classes. Consequently, bands 1–5 (VNIR and 2 SWIR) were used
to classify the ASTER scene. The classifier that makes greatest use of spec-
tral curve data is the Spectral Angle Mapper (SAM) (ENVI 4.3). We used the
algorithm with a single threshold of 0.3 radians. Lakes were masked in the
classification process with a polygon layer that was digitized from the ASTER
scene.
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Fig. 10.3 Mean spectra for ROIs
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10.3 Results and Discussion

10.3.1 ASTER Image Classification

Spectral Angle Mapper produced a thematic map of TCW with seven classes
(Fig. 10.4). The six specified land cover types as well as an “unclassified” type
are included. According to this classification coniferous forests cover the majority
of TCW (34%), followed by snow/ice (28%) and heather (17%). Rock/talus covers
13% of TCW, followed by meadow (4%), shrub (3%), unclassified pixels (0.5%),
and the lake mask (0.5%).

Classification accuracy was assessed by comparison to the NAIP validation
dataset in the form of an error matrix (Table 10.1). Overall accuracy of this classifi-
cation is 67%. Snow has the highest producer’s accuracy (100%) followed by forest
(84%), shrub (67%) and rock (67%). These classes have low errors of omission;
they are being mapped with high accuracy. The heather class has a lower producer’s
accuracy (44%) and meadow is much lower (9%). These vegetation communities
are being mapped as other classes. By looking at the error matrix, we see that mead-
ows are commonly included in the heather class (37% of the time). Meadows are
difficult to map using a single ASTER image because of seasonal variation and
a short growing season. Meadow growth stage varies by elevation and aspect. A
meadow on a north-facing slope may be covered in snow late into the summer, while
one on a south-facing slope is green and flowering. This causes great variation in
spectral signature for the meadow class, from dead and dry grasses to moist and

Fig. 10.4 Cover map of Thunder Creek watershed from ASTER data. Cover amounts listed as a
percentage of the watershed



10 ASTER-Based Vegetation Map to Improve Soil Modeling in Remote Areas 119

Table 10.1 Accuracy assessment for the SAM classification from ASTER data

Actual NAIP

Snow Forest Shrub Heather Rock Meadow Total UA EC

Predicted-
ASTER
Classes

Snow 72 4 2 25 14 18 135 53 47

Forest 0 242 10 5 1 9 267 91 9
Shrub 0 1 59 0 0 4 64 92 8
Heather 0 32 5 39 8 32 116 34 66
Rock 0 1 0 17 50 16 84 60 40
Meadow 0 9 11 3 0 8 31 26 74
Unclass 0 0 1 0 2 0 3

Total 72 289 88 89 75 87 700

PA 100 84 67 44 67 9 67
EO 0 16 33 56 33 91

green. Mapping accuracy of the meadow class could be increased by having more
meadow classes, one to represent each of the phenological stages that meadows are
found in on the image date. The disadvantage of having more than one meadow
class is that it will increase the complexity of the over-all classification and require
more validation points for a relatively minor landscape class.

User’s accuracy and omission errors provide additional information for the clas-
sification. The snow class has a low user’s accuracy (53%) and high commission
errors (47%). The snow class encompasses 25 heather validation points. While all
snow points were included in the snow category (PA 100%) we see that the snow
class includes other vegetation types (UA 54%). This may be an artifact of varying
snow levels between the ASTER and NAIP images. The shrub class had the highest
UA (92%), followed closely by forest (91%) and meadow (60%). The rock class
included many heather (17) and meadow points (16) and had relatively high error of
commission (66%). The meadow class has a higher user’s accuracy (34%) than pro-
ducer’s accuracy (9%). This means that the meadow class is adequate for mapping
meadow; however the meadow areas are also being detected by other classes.

10.3.2 A-Horizon Thickness

A-horizon thickness was compared for vegetation classes (Fig. 10.5a). The median
value is denoted by the thick line, while shaded boxes signify the IQR. The IQR
is the middle 50% of the data, with the upper limit being half-way between the
median and the largest value (0.75 quartile), and the lower limit being the midpoint
of median and the lowest value (0.25 quartile). Box width is proportional to sample
size (n), with the largest n being the widest. Hollow circles on the graph denote
outliers in the dataset.

Forest and shrub categories had the greatest n, followed by rock, while meadow
and heather have much smaller n; these differences are expressed by the width of
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Fig. 10.5 Interquartile range box plots showing soil-vegetation interactions

each box. Shrub, meadow and heather classes have thick A-horizons, while forests
generally had no A-horizon. Organic matter accumulation, or melanization, is occur-
ring in shrub, meadow and heather but not in forest or rock. There are a few outliers
in both the forest and shrub classes.

The ANOVA model indicated that A-horizon thickness is significantly differ-
ent for deciduous and woody evergreen vegetation (p-value < 0.001). The mean
difference for deciduous and woody evergreen A-thickness is 9.88 cm; on aver-
age deciduous vegetation had 9.88 cm thicker A-horizon than woody evergreen
cover. Deciduous leaf litter leads to the accumulation of deep, dark, organic-rich
A-horizons. Melanization is occurring beneath deciduous vegetation communities.
Woody evergreen litter, on the other hand does not lead to A-horizon formation.

10.3.3 O-Horizon Thickness

Forests support the thickest O-horizons (0–47 cm) in TCW. Some shrub zones
also have O-horizons (median 4 cm), while the heather, and meadow classes lack
O-horizons (Fig. 10.5b). Organic matter is accumulating beneath coniferous forests
and shrub, but not beneath meadow, and heather. This results from varying residence
times and deposition rates for different litter types. Thick organic layers accumu-
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late beneath forests because the trees are continually dropping needles and beneath
shrub zones because of the annual fall leaf deposition. Meadows do not accumulate
organic horizons on the soil surface because grasses break down more quickly than
leaves and needles. Organic litter type varies for forest (coniferous needles) and
shrub (deciduous leaves), causing varying sub-surface chemical reactions expressed
in horizon sequence. Deciduous leaf litter is alkaline, promoting organic matter
accumulation; while coniferous litter is acidic causing organic matter to complex
with iron oxides and leach through the system. This process is known as podzoliza-
tion and results in the eluvial (E)-illuvial (Bs) horizon sequence. The ANOVA model
for total O-horizon thickness reveals that deciduous and woody evergreen vegeta-
tion are significantly different (p-value 0.007). On average, coniferous vegetation
supports a 4.6 cm thicker O-horizon than woody evergreen cover.

10.3.4 E-and Bs-Horizon Thickness

The process of eluviation or leaching causes E-horizon formation. E-horizons are
light colored because of an absence of mineral and organic coatings on grains and
peds. Thick E-horizons develop beneath forested regions, but not under meadow or
heather (Fig. 10.5c).

A few of the shrub plots had E-horizons, however these are outliers and not con-
tained within the IQR. Field notes reveal that these pedons contained charcoal, and
it is likely that the E-Bs horizon sequence is remnant of a forest which has burned.
These outliers from the shrub class for E-horizon are also noted in the Bs-horizon
plot (Fig. 10.5d). Eluviation is occurring beneath forests in TCW because of the
acidic leaf litter. Organic acids readily complex with iron and aluminum oxides,
and the complexes leach through the solum causing E-horizon formation. The com-
plexes are deposited in the sub-soil in an area of illuviaiton promoting Bs-horizon
formation. This eluvial-illuvial process is called podzolization and results in the
E-Bs horizon sequence. Deciduous leaf litter is not associated with podzolization.
Average E-horizon thickness is 5.05 cm thicker for woody evergreen communities
than deciduous vegetation and the difference is significant (p-value < 0.001).

There are a few outliers in the shrub category with Bs horizons. Bs horizons are
not forming beneath heather or meadow. Illuviation of Fe and Al-oxides is occur-
ring in forest soils but not beneath shrub zones. ANOVA results show that woody
evergreen vegetation has an average of 9.79 cm thicker Bs-horizon than deciduous
vegetation (p-value < 0.001). Woody evergreen vegetation is associated with the
O-E-Bs horizon sequence, while deciduous vegetation supports O and A horizon
development.

10.4 Conclusions

Supervised classification of ASTER data with SAM procedures is a good method of
producing thematic maps in remote areas. We produced a classification with 67%
overall accuracy and provided a reliable method of image pre-processing, training
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and classification. Genetic horizon thickness was correlated with vegetation cover.
A-, O-, E- and Bs-horizon thickness were all highly significantly different (N = 70,
p < 0.01) for these two classes. The vegetation layer will be useful to predict soil
properties in the next step of this work when these data are combined with landform
and DEM derived covariates as discussed in Chapter 15.
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Chapter 11
Digital Soil Boundary Detection Using
Quantitative Hydrologic Remote Sensing

E.M. Engle, J.B.J. Harrison, J.M.H. Hendrickx, and B. Borchers

Abstract Creating accurate soil maps at small scales using traditional methods is
a time consuming and expensive process. However, remote sensing techniques can
provide spatially and spectrally contiguous data in a timely manner. For this study,
20 root zone soil moisture maps derived from Landsat images during the grow-
ing season were used for the detection of soil boundaries. A split moving window
analysis along two demonstration transects in, respectively, a semi-arid desert and
riparian area located in the Middle Rio Grande Valley of New Mexico showed that
remotely sensed root zone soil moisture can reveal subsurface trends that can be
used to identify soil boundaries which do not have a strong surface expression.
Overall, the use of multiple remotely sensed root zone soil moisture images for
soil boundary delineation shows great promise of becoming a valuable tool in the
field of digital soil mapping.

Keywords Remote sensing · Boundary detection · Surface Energy Balance
Algorithm for Land (SEBAL) · Split moving window · Soil mapping

11.1 Introduction

GIS and remote sensing are the basis of digital soil mapping (Lagacherie
et al., 2007). For example, the Landsat Multispectral Scanner (MSS) and Thematic
Mapper (TM) have been successfully used to map land cover, soils, terrains and
man-made features such as dams and urban areas (Baban and Yusof, 2001). The
use of the India Remote Sensing satellite Linear Imaging Self-scanning Sensor
(IRS-1B LISS-II) can provide details about soil classes that are often not found on
existing soil maps produced by more traditional means (Karale et al., 1991). While
these are only two examples of the types of surveys and methods using remotely
sensed data, they have one facet in common with most other studies: all use digital
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values from a single image that only provide information about the land surface, i.e.
reflectances of the visible, near- and mid-infrared bands and long wave emission of
the thermal infrared band. For example, the interesting studies in Chapters 8 (one
HYMAP image), 9 (one Quickbird image), 10 (one ASTER image), 17 (one set of
high resolution pseudo-RBG color composite images), 29 (one Landsat image), and
32 (one ASTER image) are based on one single image reflecting soil surface con-
ditions on one specific day. In general, such data represent the top few centimeters
of the soil surface at best or under full vegetative cover represent the characteristics
of the vegetation that may or may not be related to soil type. Since in semi-arid
New Mexico some soil boundaries have surface expressions while others do not
(Gile, 1975a, b), it is expected that the use of digital values only will not be sufficient
to detect all soil boundaries in the landscape.

Gile and his co-workers used the traditional approach for soil boundary detec-
tion that is based on qualitative evaluation of soil morphological characteristics
with emphasis on texture. Because texture strongly effects soil moisture properties
(Taylor and Ashcroft, 1972) it was expected that boundaries based on soil mois-
ture conditions would show good agreement with those detected using soil mor-
phological characteristics. Hendrickx and his colleagues analyzed several data sets
along transects in southern New Mexico using the moving split window technique
(Webster, 1973, 1978) and found good agreement with boundaries located qualita-
tively based on soil morphological characteristics and those located quantitatively
based on soil water content measurements with depth (Hendrickx et al., 1990, 1986;
Wierenga et al., 1987). An important observation of these studies was that using
multiple days of soil moisture observations over longer periods yields more infor-
mation that one single data set representative for 1 day only. Therefore, these studies
firmly established that series of soil water content measurements with depth provide
sufficient information for soil boundary detection in semi-arid New Mexico.

Unfortunately, taking soil water content measurements along transects on the
km-scale requires much effort. Even when non-invasive electromagnetic induction
is used for soil water content measurements (Kachanoski et al., 1988, 1990, 2002;
Sheets and Hendrickx, 1995) the effort is too large to obtain data sets that can cover
an entire watershed. Only by using operational remote sensing satellite imagery
one can prepare regional root zone soil moisture maps at acceptable cost (Flem-
ing et al., 2005; Scott et al., 2003). The objective of this study was to investigate
whether remotely sensed root zone soil moisture maps can be used for soil boundary
detection.

11.2 Study Area

Two field areas in central New Mexico, USA, were used in this study: the Sevilleta
National Wildlife Refuge (NWR) and the Hilton Ranch (Fig. 11.1). These areas
were chosen in part because the soils had been previously mapped by the Natural
Resources Conservation Service (NRCS) and the landforms were mapped by New
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Fig. 11.1 Location of Sevilleta National Wildlife Refuge and Hilton Ranch in central New Mexico,
USA

Mexico Tech Ph.D. geology student Alex Rinehart (unpublished data, 2009). These
soil and landform maps were used to evaluate our novel method for detection of soil
boundaries using remotely sensed satellite imagery.

The Sevilleta National Wildlife Refuge is located in central New Mexico and
covers an area of approximately 1,000 km2. This area contains four major ecosys-
tems: the Chihuahuan desert, Great Plains grasslands, Colorado Plateau shrub-
steppe and conifer woodlands. Landforms include alluvial fans, pediments and ter-
races of various ages and active channels. The NRCS map includes 17 soil associa-
tions and complexes (Johnson, 1984).

The Hilton Ranch is located on the east side of the Rio Grande opposite the
town of Socorro, NM. The range of landforms is similar to those of the Sevilleta.
However, due to its proximity to the Rio Grande more riparian vegetation is present
along the floodplains. There are six soil complexes and associations in this area
(Johnson, 1984).

11.3 Methods

Just as in our previous studies (Hendrickx et al., 1986; Wierenga et al., 1987) we
used the split moving window technique (Webster, 1973, 1978) for soil boundary
detection. However, instead of ground-measured soil water contents we employed a
novel technique for determination of root zone soil moisture content from Landsat
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Table 11.1 Date, path and row numbers of Landsat 5 and Landsat 7 images

Date Path number Row number Satellite Study area

4/7/2000 33 36 Landsat 7 Sevilleta, Hilton
5/6/2002 34 36 Landsat 7 Sevilleta, Hilton
5/9/2000 33 36 Landsat 7 Sevilleta, Hilton
5/12/2004 33 36 Landsat 5 Hilton
5/22/2005 34 36 Landsat 7 Sevilleta, Hilton
5/28/2004 33 36 Landsat 5 Hilton
5/31/2002 33 37 Landsat 7 Sevilleta, Hilton
6/4/2001 34 36 Landsat 7 Sevilleta, Hilton
6/13/2004 33 36 Landsat 5 Hilton
6/16/2002 33 36 Landsat 7 Sevilleta, Hilton
7/2/2005 33 36 Landsat 5 Hilton
7/6/2004 34 36 Landsat 5 Sevilleta, Hilton
7/28/2000 33 36 Landsat 7 Sevilleta, Hilton
7/31/2004 33 36 Landsat 5 Hilton
8/3/2005 33 36 Landsat 5 Sevilleta, Hilton
8/19/2002 33 36 Landsat 7 Sevilleta, Hilton
9/14/2000 33 36 Landsat 7 Sevilleta, Hilton
9/17/2004 33 36 Landsat 5 Hilton
9/30/2000 33 36 Landsat 7 Sevilleta, Hilton
10/14/1999 33 36 Landsat 7 Sevilleta, Hilton

images (Fleming et al., 2005; Scott et al., 2003). Twenty Landsat 5 TM and Land-
sat 7 ETM+ images captured during the growing season from April to October
(Table 11.1) were used to map root zone soil moisture using the Surface Energy
Balance Algorithms for Land (SEBAL). Fourteen of the images were used for the
Sevilleta, due to lack of full coverage, and all 20 were used for the Hilton Ranch.

11.3.1 Surface Energy Balance Algorithm for Land (SEBAL)

Each image was processed through SEBAL by Hendrickx and postdoctoral research
associate Sung-ho Hong. SEBAL is a remote sensing flux algorithm that solves the
surface energy balance on an instantaneous time scale for every pixel of a satellite
image (Allen et al., 2007a, b; Bastiaanssen, 2000; Bastiaanssen et al., 1998a, b,
2002). The method computes evapotranspiration and root zone soil moisture. It con-
siders a user-defined wet and dry pixel to assume the sensible heat flux is zero and
the latent heat flux is zero, respectively. The radiation balance can then be solved for
each pixel in the entire image relative to those two points (Bastiaanssen et al., 1998a;
Bastiaanssen, 2000). SEBAL is a physically based analytical method that evaluates
the components of the energy balance and determines the ET rate as the residual

Rn − G − H = λE (11.1)

where Rn is the net incoming radiation flux density (W m−2), G is the ground heat
flux density (Wm−2), H is the sensible heat flux density (W m−2), and λE is the
latent heat flux density (W m−2), which is converted to the evapotranspiration (ET)
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rate. The parameter λ is the latent heat of vaporization of water (J kg−1) and E is
the vapor flux density (kg m−2 s−1). Evaporation E includes both bare soil evapora-
tion and canopy transpiration. SEBAL uses an internal auto-calibration process that
greatly eliminates the need for atmospheric corrections and it does not require actual
measurements on the ground. The method computes the surface albedo, surface tem-
perature and vegetation index from multispectral satellite data. The surface albedo
is used to calculate net short wave radiation, and surface temperature for the calcula-
tion of net long wave radiation, soil heat flux and sensible heat flux. The vegetation
index governs the soil heat flux by incorporating light interception by canopies, and
is used to express the aerodynamic roughness of the landscape. The latent heat flux is
computed as the residue of the surface energy balance. Air humidity measurements
are not needed because evaporation is computed from the latent heat flux. SEBAL
has been applied for water balance estimations (Pelgrum and Bastiaanssen, 1996),
irrigation performance assessment studies (Roerink et al., 1997), and for weather
prediction studies (van den Hurk et al., 1997).

Hendrickx and his research group have applied SEBAL in the United States,
Panama, Morocco, and West Africa (Compaoré et al., 2008; Hendrickx and
Hong, 2005; Hendrickx et al., 2005, 2006; Hong et al., 2009). Soil moisture con-
ditions in the root zone can be determined from the evaporative fraction using the
empirical relationship (Ahmad and Bastiaanssen, 2003):

S = θ

θsat
= e

�−1
0.42 (11.2)

where S is relative degree of saturation, θ is volumetric water content, and θs is
volumetric water content at saturation. The validity of Eq. (11.2) has been tested in
several studies (Ahmad and Bastiaanssen, 2003; Scott et al., 2003) including one in
New Mexico (Fleming et al., 2005).

11.3.2 Split Moving Window Analysis

Sixteen transects were randomly selected in our field areas for analysis
(Engle, 2009) but for this chapter we will only present data from transects 3 and
10. For the split moving window technique (Webster, 1973, 1978) a window size
of 5 pixels was selected because it is sufficiently narrow to capture boundaries that
occur over short distances but also adequate to minimize noise. A t-test was used to
determine the statistical difference between the windows; boundaries are supposed
to coincide with maximum t-values. In order to test the threshold at which a t-value
is high enough to be considered a boundary, we used four “critical” t-values, 6, 8,
10, and 12.

In general, sharp boundaries such as landscape boundaries are distinct. How-
ever, gradational boundaries are harder to detect because they do not exhibit the
sudden change in properties that generates a large t-value in the split moving
window analysis. Transitional boundaries (boundaries that shift locations due to
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Table 11.2 Classification scheme for detected boundaries
Percentage of days Boundary strength Range (m) Boundary type

0 – 30% Strong 0 – 100 Stable
30 – 60% Intermediate 100 – 200 Intermediate/stable
60 – 100% Weak 200 – 300 Intermediate/transitional

300 – 400 Transitional

antecedent conditions) are also hard to detect because they may occur in slightly
different locations on different days. All boundaries detected were classified based
on two properties: the percentage of image days over which each boundary is
present (the boundary strength) and the spatial range over which they occur
(Table 11.2).

The split moving window technique was applied to four different sets of vari-
ables: (i) the first principal component of the digital values of the seven Landsat
bands for each day (daily DV PCA); (ii) the first principal component of the digital
values of the seven Landsat bands for all days (overall DV PCA); (iii) the root
zone soil moisture values of each day (daily RZSM); and (iv) the first principal
component of the root zone soil moisture values for all days (overall RZSM). The
principal components were calculated using ERDAS Imagine and captured about
70% of the variability in the data.

11.4 Results and Discussion

Figures 11.2, 11.3 and 11.4 show the results of the split moving window technique
along transects 3 and 10. Transect 3 (Fig. 11.2) crossed a number of landform and
soil map boundaries including the ephemeral stream channel of the Rio Salado.
In the daily data (Fig. 11.2), the northern boundary of the Rio Salado was clearly
seen in all datasets while the southern boundary was not readily apparent. Some of
the boundaries corresponded with landform and soil map boundaries. Other bound-
aries that did not correspond to landform or soil boundaries could have either been
false detections or more importantly, boundaries that were not detected previously.
The overall PCA data showed similar results (Fig. 11.3) but use of the daily data
yielded more boundary information (Fig. 11.2). The northern boundary of the Rio
Salado appeared in only one dataset (overall digital value PCA). The third and fourth
boundaries seen at 2,280 and 2,500 m in the daily data appeared in the overall PCA
data also. There were boundaries, mostly in the northern section of the transect, that
did not correspond to preexisting boundaries. However, they were also identified in
the daily data, which is further evidence that they are real boundaries that have not
previously been mapped.

Transect 10 (Figs. 11.4 and 11.5) is an example of a transect crossing agricultural
fields and the Rio Grande floodplain representing the most complex soil landscape in
both study areas. As a result, many boundaries were detected in both the root zone
soil moisture and the digital value PCA. Because the fields were often irrigated
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Fig. 11.2 Graphical representation of the boundaries generated using daily digital value (DV) PCA
and daily root zone soil moisture (RZSM) at critical t-values of 6, 8, 10 and 12, respectively,
compared to landform and soil boundaries mapped along transect 3. The dot size represents the
percentage of days the boundary occurs and the line length represents the spatial range over which
it occurs

Fig. 11.3 Graphical representation of overall root zone soil moisture (RZSM) and overall digital
value (DV) PCA data at critical t-values of 6, 8, 10 and 12 along transect 3. The size of the dot
represents the t-value of each boundary
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Fig. 11.4 Graphical representation of the boundaries generated using daily digital value (DV) PCA
and daily root zone soil moisture (RZSM) at critical t-values of 6, 8, 10 and 12, respectively,
compared to landform and soil boundaries mapped along transect 10. The dot size represents the
percentage of days the boundary occurs and the line length represents the spatial range over which
it occurs

separately, the moisture content in each field was different so that the boundaries
detected were the edges of the field. Most of the boundaries detected had high t-
values which attest to their strength. The start of the fields can be detected easily
with this method due to the difference between the fields and the surrounding desert.
The overall PCA data showed similar results (Fig. 11.5) but use of the daily data
yielded more boundary information (Fig. 11.4).

In these two examples along a one-dimensional transect both the daily root zone
soil moisture and daily digital value PCA (Figs. 11.2 and 11.4) were successful
at detecting boundaries, while the overall datasets (Figs. 11.3 and 11.5) were not
as efficient. There were cases where daily root zone soil moisture detected soil
boundaries better than the daily digital value PCA. For example, the daily DV
PCA 12 detected only one boundary compared to four boundaries detected by daily
RZSM 12 in transect 3 (Fig. 11.2). Similarly, daily DV PCA 12 detected three
boundaries compared to eight boundaries detected by daily RZSM 12 in transect
10 (Fig. 11.4). This suggests that the root zone soil moisture detected changes at
depth that did not have a surficial expression detectable by Landsat digital values.
Because most of these images were taken during the growing season, the root zone
moisture conditions varied temporally and spatially across the study areas. By com-
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Fig. 11.5 Graphical representation of overall root zone soil moisture and (RZSM) overall digital
value (DV) PCA data at critical t-values of 6, 8, 10 and 12 along transect 10. The size of the dot
represents the t-value of each boundary

bining multiple images, we reduced this effect while still incorporating a sequence
of varying levels of soil moisture. Thus, we are able to enhance the spatial trends
while minimizing the temporal effects of localized wetting due to precipitation or
irrigation.

Valuable information can be gained from the SEBAL-derived root zone soil
moisture; but under certain environmental conditions, valuable information can also
be taken from the daily digital value PCA. When all datasets were combined, the
efficiency of the methodology at detecting confirmed boundaries decreased as the
t-value increased (Figs. 11.3 and 11.5). This was expected because as the t-value
increases the boundaries with lower differences across the windows will be filtered
out leaving only the strongest boundaries.

The overall digital value PCA performed better than the overall root zone soil
moisture data in transect 3 (Fig. 11.3), but not in transect 10 where the overall root
zone soil moisture detected more boundaries. This suggests that root zone soil mois-
ture images might be more useful in areas of high soil moisture such as close to the
rivers and streams or agricultural areas. On the other hand, the daily digital value
PCA can convey a great deal of information in areas where there is little change
in the soil moisture because the digital values will be detecting surficial properties
such as color when there are few other physical changes.
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11.5 Conclusions

Analysis of multiple images collected over several years revealed consistent
response patterns in all data sets. The boundaries of these response patterns as
determined by a split moving window technique frequently coincided with soil map
unit and/or landform boundaries. Root zone soil moisture identifies boundaries best
under conditions when the moisture content is higher. The daily PCA data tends
to identify landform boundaries and is more efficient when the soil moisture con-
tent is low indicating that in conditions where soil moisture variability is low the
calculation using the SEBAL model may be unnecessary.

The advantage to this method is that it is not expert knowledge-based, unlike
traditional soil mapping methods. At a low t-value over 70% of previously detected
boundaries can be identified, however, the data suggests that there are previously
undetected boundaries which may be also identified by this approach. Future work
will focus on validating these boundaries and identifying the physical processes
which produced changes in the satellite images. Overall, the use of remotely sensed
root zone soil moisture for soil boundary delineation shows great promise of becom-
ing a valuable tool in the field of digital soil mapping, especially when combined
with the predictive soil maps described in Chapter 32.
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Chapter 12
Homosoil, a Methodology for Quantitative
Extrapolation of Soil Information Across
the Globe

B.P. Mallavan, B. Minasny, and A.B. McBratney

Abstract In many places in the world, soil information is difficult to obtain and
can be non-existent. When no detailed map or soil observation is available in a
region of interest, we have to extrapolate from other parts of the world. This chap-
ter will discuss the Homosoil method, which assumes homology of soil-forming
factors between a reference area and the region of interest. This includes: climate,
physiography, and parent materials. The approach will involve seeking the smallest
taxonomic distance of the scorpan factors between the region of interest and other
reference areas (with soil data) in the world. Using the digital information of soil
climate from the Climate Research Unit (CRU) (solar radiation, rainfall, temper-
ature, and evapo-transpiration), topography from the HYDRO1k (elevation, slope,
and compound topographic index), and lithology of the world on a 0.5◦ × 0.5◦ grid,
we calculated Gower’s similarity index between an area of interest and the rest of
the world. The rules calibrated in the reference area can be applied in the region of
interest realising its limitations and extrapolation consequences.

Keywords Global soil mapping · Homoclime · Climate · Map extrapolation · Soil
forming factors

12.1 Introduction

In many places around the world, legacy soil information is difficult to obtain and is
practically nonexistent. With limited time and practically no resources to collect new
soil samples in these areas, we have to develop a new methodology for estimating
soil attributes based on our knowledge of soil forming factors and pedogenesis.

In Australia, at the system level (ASRIS, mapping scale 1:100,000) only about
60% of the intensive land-use zones, and less than 5% of rangelands, are covered
by soil information (McKenzie et al., 2005). Countries in South America, South
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East Asia, and Africa only have 10–30% of landscape coverage for maps finer than
1:100,000 (Hartemink, 2008). When no detailed maps or soil observations are avail-
able in a region of interest, we have to extrapolate from other areas or other parts
of the world. If we are only dealing with global modelling at a coarse resolution,
we can extrapolate soil observations that are available from other similar areas (that
are geographically close) or by using spatial interpolation or spatial soil prediction
functions (Schenk and Jackson, 2005). However if we wish to map the soil at a much
finer resolution, such as the target resolution of GlobalSoilMap.net (90 m × 90 m),
geographical extrapolation may not work (See Chapter 33). In this case, a new
approach is required that allows extrapolation of spatial soil prediction functions,
realising that similar areas could be in other parts of the region or other parts of the
world.

Given severe prior soil information crisis, we introduce a new method for digital
soil mapping called Homosoil, which aims to find areas in the world with similar
soil-forming factors for the purpose of extrapolation of soil mapping rules.

The idea of extrapolating environmental variables has been explored previously,
mainly to identify areas in the world with similar climates for crop production.
Prescott (1938) coined the term “homoclime” referring to areas or regions in the
world with similar climate. In Australia, studies of homoclimes have been carried
out with reference to particular economic crops (Prescott, 1938, 1943). However
these early studies simply compared some climatic variables that were consid-
ered to be critical and no quantitative similarity index was developed. Russell and
Moore (1970) define homoclimates (similarity between weather stations) based on
various similarity coefficients. They also noted that the detection of areas of similar
climate could be of interest in pedology.

Jones et al. (2005) revisited the homoclime approach and defined the homologue
approach to determine which crops could be grown at a specific site in the world.
The principle is that crops will perform in a similar fashion in similar environments
wherever they happen in space and time. The algorithm calculates the similarity
between monthly climate variables and soil data at the place of interest and else-
where in the tropical world.

Defining areas with similar soil-forming factors is not as straightforward as
homoclime estimation. While climate defines the weathering regime of the soil,
the parent materials and the age of the soil play a more important role in defining
the type of soil that is formed. Topography and landuse also influence the distri-
bution of soil. Nevertheless, results from spatial data mining from the Australian-
wide mapping project ASRIS (Bui et al., 2006) showed that the state factors of
soil formation form a hierarchy of interacting variables, with climate being the
most important factor at a continental scale and different climatic variables dom-
inating in different regions. It was shown that lithology is almost equally impor-
tant to climate in defining broad-scale spatial patterns of soil properties, whereas
shorter-range variability in soil properties appears to be driven more by terrain
variables.

This paper will investigate methods to find areas in the world with similar soil-
forming factors as expressed by environmental covariates. We will demonstrate
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an algorithm for calculating the taxonomic distance of the environmental vari-
ables between the region of interest and other reference areas with good soil data
coverage.

12.2 Conceptual Framework

The homosoil approach involves finding areas in the world with similar soil-forming
factors. One can start by identifying areas where reliable and adequate soil maps or
soil data are available, then use them to search for the homologous areas in envi-
ronmental space. The methodology of this approach is represented in Fig. 12.1 and
summarised as follows:

(1) Mapping areas in the world for soil donor and recipient sites. The first step is
to delineate areas in the world where sufficient soil information is available. There
are many areas in the world where soil information is not available at a resolution
finer than 1:100,000. The level of soil information coverage in areas of the devel-
oping world is only available as estimates of percent coverage in the country based
on questionnaires (Hartemink, 2008; Zinck, 1990). With the development of Glob-
alSoilMap.net consortium, we can now access global soil information and identify
areas in the world where adequate soil information is available. These areas are

Donor Site Recipient Site

Covariates 90 m x 90m 
(scorpand)

Soil Data (Sd)
-Soil maps (≥1:100 000)
-Soil data

Soil rules (fd)
Sd = fd (scorpand)

Homosoil

Covariates 90 m x 90m
(scorpanr)

Environmental variables
Ed1 km x 1 km 

Environmental variables
Er1 km x 1 km

Taxonomic distance

D(Ed,Er)

S(Ed,Er)
Similarity Index

Similar?

Apply
fd to scorpanr

Sr= fd (scorpanr)

Calculate Mahalanobisdistance
between scorpand and scorpanr

yes
no

No
extrapolation

allowed

Uncertainty

Define area –Catchment 
based on stream order

Define area –Catchment
based on stream order

Within training domain

Outside
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Sampling

(2) (2)

)3((3) (4)

(5)

(5)

(5)

(3)
(4)

(5)

(5)

(5)

(6)

~

Fig. 12.1 A framework for developing Homosoil. Numbers in brackets represent the steps in the
methods as outlined in the proposal
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called “donor sites”, where potentially, the soil mapping rules developed can be
exported to other areas. Areas with inadequate soil information are called “recipient
sites”, where soil rules from the donor sites may be applied.

(2) Definition of donor and recipient sites. We need to define the appropri-
ate scale for the donor and recipient sites, which can be represented as catch-
ments. While calculation of the similarity index can done by a pixel-by-pixel
comparison; for soil landscape analysis, it is more realistic to define the areas or
sites as a catchment based on stream order. Mourier et al. (2008) found that the
Strahler stream order is a crucial hierarchical descriptor of the distribution pat-
tern of soil. Our initial investigation suggests that the 4th and 5th order catchment
maybe appropriate for comparison of the soil-forming factors. This will need further
investigation.

(3) Building a spatial database for environmental variables. A spatial database
that serves as a proxy to represent soil-forming factors and will allow us to define
areas of homosoil. This spatial database will contain information on environmental
variables over large areas (e.g. a continent) with a resolution of 1 km × 1 km. The
important environmental variables governing soil formation are: climate, topogra-
phy, lithology, and age. At the global scale, only coarse climate and lithology maps
are available at a resolution of 0.5◦ × 0.5◦. The global climate data are available
from the ERA-40 reanalysis and the Climate Research Unit (CRU) dataset (New
et al., 1999) and the lithology data are available from a global digital map (Durr
et al., 2005). However, for global soil map prediction, a finer resolution is required to
capture the local environmental heterogeneity. Therefore we shall build a database
of environmental variables (climate, lithology, topography, age) at a resolution of
1 km × 1 km.

We can derive global topographic information from elevation data provided by
the SRTM. Elevation, slope, and compound topographic index (CTI) are important
topographic variables. However regional-scale indices representing physiography,
erosional and depositional areas may play more important roles in this broad-scale
landscape analysis. Lithology must reflect the soil parent materials, and the age of
the land surface is also an important factor in defining the type of soils. Age of
the land can be defined in a number of ways, e.g. the time since the last glaciation
(Adams, 1997).

(4) Calculating the taxonomic distances of environmental variables. The homol-
ogy of soil-forming factors requires aggregation of the various components: cli-
matic factors (homoclime), lithology (homolith), topography (homotop), and age
(homochron).

Similarity Indices
The monthly climate data need to be converted to climatic indices (Booth
et al., 1987) so that the taxonomic distance of the climate variables can be calculated.
This also attempts to standardise climatic events across various parts of the world,
such as the differences arising between the Northern and Southern hemispheres. For
the climatic variables (e.g. rainfall, temperature, solar radiation and evapotranspira-
tion) we can calculate various indicators, such as: annual mean, mean of the driest
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period, mean of the wettest period, annual range, driest quarter mean, wettest quarter
mean, coldest quarter mean, hottest quarter mean, seasonality, etc. Thus we obtain
an abundance of climatic information. Using these climatic variables, we can calcu-
late the climatic similarity (homoclime) between two areas either by Mahalanobis
distance or by a Gower similarity measure (Booth et al., 1987; Gower, 1971). The
Gower distance measures the similarity Si j between sites i and j , each with p num-
ber of variables, standardised by the range of the variable k:

Si j = 1

p

p∑

k=1

(

1 −
∣
∣xik − x jk

∣
∣

range k

)

where p denotes the number of climatic variables;
∣
∣xi − x j

∣
∣ represents the absolute

difference of climate variables between site i and j . The similarity index has a value
between 0 and 1. Initial investigations suggest that the Gower’s similarity works
better than the Mahalanobis distance, but further investigation is needed. All studies
of homoclimes are based on comparison between two pixels on a grid, whereas for
homosoil, the comparison will be based on two catchments.

Similarity Index for Soil-Forming Factors
Considering the scale and the resolution of this study and the available global and
regional data, the climatic factor is probably the most important and reliable soil-
forming factor (Bui et al., 2006). However other factors are still equally important,
therefore we need to define our Homosoil based on homoclimes, areas with similar
lithology (homolith), similar age (homochron), and similar topography (homotop).
One approach could be to apply a hierarchical approach, i.e. by first calculating a
similarity index based on the most important factor (e.g. climate or age) and then
refining the selection of homologous areas based on the second most important fac-
tor (e.g. lithology), and so on. However this approach requires an assumption of the
hierarchical nature of the soil-forming factors, which may not work in every area.
Another approach includes assigning different weight to each of the factors. We will
make a thorough comparison of the various approaches

(5) How to import soil mapping rules. The principle of the method for build-
ing soil mapping rules is based on the scorpan spatial soil prediction functions
(McBratney et al., 2003). The function or mapping rules f is usually calibrated
in an area where soil information is available. This function is then applied to the
area of interest for interpolation (and limited extrapolation) of soil properties. In
this project, we will extend the application of f into geographic areas other than
the one used for calibration, in this sense f is used for extrapolation in other areas
in the world. The requirement for this extrapolation is that both areas (the donor
and recipient) should have the same scorpan factors, which cover both areas at a
resolution of 90 m × 90 m. The scorpan factors define soil distribution at a local
catchment scale. This is in contrast with the broader district scale environmental fac-
tors (1 km × 1 km) for defining soil-forming factors. The commonly used function
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for f is the classification or regression-tree approach (Bui and Moran, 2001). In
the Bui and Moran (2001) approach, the decision-trees have two levels: one is used
to capture mapping rules from the training area, and another one is used to define
the domain over which those rules can be extrapolated. We can also evaluate the
appropriate domain of the mapping rules f using distance metrics of the scorpan
factors (Tranter et al., 2009). The Mahalanobis distances will be used to determine
the distance between the mean of the donor’s scorpan factors and the recipient’s
scorpan factors. Distances exceeding a designated cutoff limit are deemed distinct
from the calibration data and as such unsuitable for function application.

12.3 Examples

We illustrate the application of the homosoil approach using coarse resolution global
climate and elevation data. This is the first attempt to demonstrate the homosoil
concept.

12.3.1 Global Data

We compiled 3 data sources for the global climate, topography, and lithology data,
all on a regular 0.5◦ × 0.5◦ grid as matrix of 360 × 720 pixels. In total, there are
62 254 pixels with all data available. The data were kindly provided by Prof. Marc
Bierkens and Dr. Rens van Beek from Utrecht University.

We used the long-term mean monthly temperature, rainfall, solar radiation and
evapotranspiration data to represent the climate. We also use the DEM representing
topography, and lithology, which gives broad information on the parent material.
The climate data come from the ERA-40 reanalysis and CRU dataset. Maps rep-
resent the monthly average course over the year. The period corresponded to the
datasets are 1961–1990 for the CRU (temperature, rainfall and solar radiation),
and September 1957–August 2002 for the ERA-40 analysis (evapotranspiration).
Temperature data is in Celsius degree, and we have the monthly value for the min-
imum temperature, mean temperature and maximum temperature. Rainfall value
is in meter per day. Evapotranspiration is in meter per day and it is calculated
with Penman formula. More details on the datasets are available on the website
http://www.ipcc-data/obs/cru_climatologies.html.

The DEM is from the HYDRO1k dataset, which includes the mean elevation,
slope, and compound topographic index (CTI). Details of the dataset are available
at: http://eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gtopo30/hydro
(accessed 21 April 2010).

The lithology is from a global digital map (Durr et al., 2005) with 7 values which
represent the different broad groups of parent materials. The lithology classes are:
non- or semi-consolidated sediments, mixed consolidated sediments, silic-clastic
sediments, acid volcanic rocks, basic volcanic rocks, complex of metamorphic and
igneous rocks, and complex lithology.
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12.3.2 Climatic Indices

The monthly climate data was first converted to climate indices (Booth et al., 1987)
so that the taxonomic distance of the climate variables can be calculated. This also
attempts to standardize the climatic events that can vary in various parts of the world
such as the difference in the Northern and Southern hemisphere.

For each of the 4 variables climatic (rainfall, temperature, solar radiation and
evapotranspiration), we calculated 13 indicators: annual mean, mean for the driest
month, mean at the wettest month, annual range, driest quarter mean, wettest quarter
mean, coldest quarter mean, hottest quarter mean, lowest ET quarter mean, highest
ET quarter mean, darkest quarter mean, lightest quarter mean, and seasonality. Thus
we obtain 52 climate variables.

12.3.3 Similarity Index

The climatic similarity between the indices values of two points of the grid is calcu-
lated by a Gower similarity measure (Booth et al., 1987; Gower, 1971). Considering
the scale and the resolution of this study and the available global data (0.5◦ × 0.5◦),
the climatic factor is probably the most important and reliable soil forming factor
(Bui et al., 2006). Thus as our first attempt, we define our Homosoil based on three
steps. First is to identify the homoclime around the world. The next step, within
the homoclime, we find areas with similar lithology (homolith) and similar topogra-
phy (homotop).This is summarized as a decision tree in Fig. 12.2. For the lithology

Climatic Similarity for an area of interest
(SC)

Threshold Tc

If SC < Tc
→ excluded

SC ≥ Tc : Homoclime: areas withsimilar climate

Calculate Lithology Similarity (SL)

If SL = 0
→ excluded

SL = 0.5 or 1 : Homolith

Calculate Topography Similarity
(ST)

Threshold Tt

If ST < Tt
→ excluded

ST ≥ Tt : Homotop

Homosoil

Fig. 12.2 A simple decision tree for homosoil
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similarity index, a value of 1 is given when the same lithological class is encoun-
tered, 0.5 if the complex lithology class is encountered, and otherwise a value of 0 is
given.

12.4 Results

12.4.1 Homoclime

To assess the method we calculate the similarity for a sample of 42 known locations,
and see the coherence of the homoclime results. The locations are chosen follow-
ing the climate classification of the ecozones (Schultz, 2005). Figure 12.3 shows
the homoclime results for 4 different places in the world with variation in seasonal
climate:

– A Mediterranean climate (Montpellier) where the rainfall and the temperature are
seasonal

– Sydney where the temperature is seasonal but not the rainfall
– Harare where the climate is tropical with a seasonality of rainfall
– Manaus with an equatorial climate without seasonality.

The results showed that the Gower similarity index gives areas that are in accor-
dance with the ecozones of the world (Schultz, 2005). It seems to be an appropriate
method to the homoclime analysis.

Fig. 12.3 Homoclime degree for 4 locations around the world
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12.4.2 Homosoil

Figure 12.4 shows the similarity index for homoclime, homolith, and homotop for
Harare. A combination for these factors gives the homosoil similarity index for the
area. This is illustrated in Fig. 12.5 for defining homosoil for an area in the South
of Somalia (1.5◦N 42◦E). The first step is to calculate the climate similarity index
for Somalia; the second step is to select a threshold for the climate similarity index
for homoclime. The selection of similarity based on a threshold of 1-std. dev. of
the similarity index. The second step is within the homoclime, to select areas with
lithology similarity ≥ 0.5. This is homolith. The final step is, within the area of
homoclime and homolith, to select areas with similar topography. We select areas
with the topography similarity index > 1 – std. dev. The final selection represents
area of homosoil.

Homosoil only identifies area with similar soil forming factors, given an area
with no soil data, we find other homosoil areas. Within the homosoil areas,
we identify are where soil data is available. The soil landscape rules or spa-
tial prediction function from the known area then can be transferred to the area
with no soil data. Figure 12.6 shows an illustration of the homosoil concept.
Soil information in the Democratic Republic of Congo (2◦ N, 20.5◦ E) is not
available, so we calculated homosoil areas in the world. It identifies an area
in Peru (12.5◦ S, 69.5◦ W) as homosoil, and in this area soil information are
available. Therefore the soil-landscape rules in Peru can be exported to areas in
Congo.

Climatic similarity with Harare

Topography similarity with Harare

Lithology similarity with Harare

Fig. 12.4 Homoclime, homotop, and homolith for Harare
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(a) Climate similarity index for
an area in the South of
Somalia 1.5°N 42°E with
values scaled between 0 
and 1.

(b) Homoclime. The first
selection of similarity based
on a threshold of 1-std dev
of the similarity index.

(c) Homolith
The second step is to select
similar lithology ≥ 0.5.

(d) Homotop, Homosoil.
The final step, within the
area of homoclime and
homolith, to select areas
with similar topography.
The areas in red represent
the selection with value > 
1- std dev of similarity index.

Fig. 12.5 Decision tree for selecting homosoil for an area in Southern Somalia
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Fig. 12.6 An illustration of the homosoil concept. Soil information in the Democratic Republic of
Congo (1.5◦N, 20.5◦E) is not available, meanwhile areas in Peru (12.5◦S, 69.5◦W) soil information
is available. Therefore the soil-landscape rules in Peru can be exported to areas in Congo

12.5 Discussion and Conclusions

The homosoil approach allows us to export soil-landscape rules from one area to
unmapped area. The first approach is based on the hierarchical nature of soil forming
factors: climate, lithology and topography. In reality the interaction within these
three factors and also biological factors maybe the same. We choose this approach
as the first step considering the scale we are working, and at the moment, we can
only validate the approach to well known global climate pattern. We have attempted
to define homosoil areas with equal weighting for climate, lithology, and topography
and the result is not promising, as the result showed patches of local homosoil near
the location of interest.

Biological factors and local topography are important, but this factor hopefully
will be taken care of when we use the local rules which are exported from other
areas in the world. Of course, extreme landuse will influence soil properties, thus
homosoil results with soil-landscape rules from an area with homosoil but com-
pletely different landuse may not work. An important factor of the age is not yet
taken into account in this example (See Chapter 4 for the development of the age
factor).

The decision-tree approach has other limitations, such as it is an aggregated result
with no uncertainty estimation. The assumption is that it is not possible to have a
similar area if the lithology group is different. This condition may restrictive con-
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sidering the rough scale of the lithology and lithology groups. A better taxonomic
distance for the lithological groups is required.

There are other important issues and questions that still need to be addressed:

– Which are the most important soil forming-factors? This of course partly depends
on the scale and resolution of the global dataset, and their accuracy.

– How do we define the threshold that quantifies similarity for homoclime,
homolith, and homotop? We need empirical studies to find the appropriate values.

– Uncertainty estimation, which will involve the uncertainty of climate similarity,
lithology and topography. At the local scale, the uncertainty due to landuse and
local topography may be more important.
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Chapter 13
Artificial Neural Network and Decision Tree
in Predictive Soil Mapping of Hoi Num Rin
Sub-Watershed, Thailand

R. Moonjun, A. Farshad, D.P. Shrestha, and C. Vaiphasa

Abstract The demand for high-resolution soil mapping is growing increasingly, in
particular for the purpose of land degradation studies. The objective of this study
focuses on applying the methods for digital predictive soil mapping in inaccessible,
land degradation-prone areas. Artificial Neural Network (ANN) and Decision Tree
(DT) were employed within the GIS environment to comply with the complexity
of the soil forming factors governing the soil formation. Following the principles
of the geopedologic approach to soil survey, a digital predictive soil mapping was
carried out in Hoi Num Rin sub-watershed, covering an area about 20 km2. Both
ANN and DT were applied to properly integrate the parameterized soil forming
factors. To describe soil predictors to train the ANN and to formulate the decision
trees, 4 organism types, 7 relief type units, 9 lithological units, 3 time series, 4
landscape units and 8 landform units were extracted from the map and databases.
The results, the 10 soil class names were extrapolated to the unsampled areas to
obtain the geopedologic map. In conclusion, the geopedologic approach to soil sur-
vey, which is based on understanding of landscape-soil relationship, is helpful to
obtain spatial soil information in inaccessible areas, using ANN and/or DT are use-
ful techniques in modeling the complex interactions among the soil forming factors.
The difference, however, is that ANN, once it is well learnt, is faster, thus more
recommendable in terms of time and cost saving.

Keywords Geopedologic approach · Predictive soil map · Digital soil map ·
Artificial neural network (ANN) and Decision Tree (DT)
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13.1 Introduction

There is an ever growing need for soil data in land degradation studies, particularly
in deforested mountains. In Thailand, most of the available soil maps only cover
valley floors. Conventional soil mapping in mountainous areas is said to be too
expensive, mainly because of long fieldwork periods. Digital soil mapping, also
known in the literature as predictive soil mapping, is considered as the solution.
Digital (predictive) soil mapping is the computer-assisted production of digital maps
of soil classes and/or soil properties (McBratney et al., 2003; Scull et al. 2003).
Geographic information dystems (GIS), digital elevation models (DEM) and remote
sensing are widely used in different ways in predictive soil mapping. So far, fuzzy
logic (Burrough et al., 1992; McBratney and Odeh, 1997), statistical techniques (De
Gruijter et al., 1997) (see also Chapter 19) and, to lesser extent, artificial neural
networks (ANN) (Zhu, 2000) have been used.

In digital soil mapping, the equation S = f (cl, o, r, p, t) is the theoretical back-
bone, where cl: climate, o: organisms, p: parent material, r : relief, and t : the time for
soil development. The state factor theory was originally developed by Jenny (1941)
to relate soil properties to the state factors abbreviated in clorpt. Digital terrain
model (DTM) is an ordered array of numbers that may be translated to represent
spatial distribution of some terrain attributes (forming the clorpt backbone), which
can be derived from DEM (Bishop and Minasny, 2006) (see also Chapter 5).

McBratney et al. (2003) introduced the SCORPAN model, a modification of
the Jenny’s applied to digital soil mapping, to explain the relationships between
soil and other spatially referenced environmental factors or covariates: S (c,a) =
f (S, C, O, R, P, A, N, ) (see also Sections 4.1 and 14.1). All environmental covari-
ates are represented by Jenny’s letters, except for soil age (time) abbreviated by A,
and a new covariate “spatial position” represented by N. The lower case c and a with
S symbolize “soil class” and “soil attribute”, respectively.

The geopedologic approach to soil survey (Zinck, 1988/1989; Zinck and Valen-
zuela, 1990) opens the way to properly define the interactions between the state
forming factors and the relationships between the soil and/or its selected proper-
ties with the environmental components (e.g., climate, geology, etc.). The approach
includes image interpretation, sample area selection, and extrapolation of the soil
information from the sample areas to the unsampled areas (Moonjun, 2007).
Aerial photo interpretation (API) leads to the delineation of landforms (see Sec-
tion 29.2.3.1). In the absence of API, DTM and Landsat remotely sensed data can
be used.

The overall objective of this study was to develop a GIS-based method for soil
mapping in poorly accessible areas, in an efficient and cost-effective manner. This
study focuses on the geopedologic approach as the conceptual framework and on
artificial neural network (ANN) and the decision tree (DT) for integration purposes.
The intent of this chapter is to demonstrate some of the difficulties of how to predict
the soil (class) content of pre-established (geopedologic-based) map units.
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13.2 Material and Methods

13.2.1 Study Area

The study area, Hoi Num Rin, is located in the south of Mae Ka Chan district, in
Chiang Rai province, Thailand, between 99◦2′ and 99◦7′ East longitude, and 19◦25′
and 19◦27′ North latitude, with an altitude varying between 700 and 1,720 m above
sea level.

13.2.2 Materials and Methods for Deriving the Geoform Map

We acquired aerial photographs (1:25,000 and 1:4,000), a digital orthophoto
(1:4,000; accuracy of 1 m), topographic map sheet (4748-II, of Royal Thai Survey
Department; 1:50,000), and the geological map by the Mineral Resource Depart-
ment (1:50,000; Fig. 13.1a). Various maps of the study area were prepared and
produced by Land Development Department (LDD) (Soil Survey Division, 2004):
digital contour map with an elevation interval of 2-m, drainage map, road map, pond
map, and soil map with the map unit description (all maps are at scale 1: 25,000).
Climate data of the study area (temperate, rainfall and humidity) were obtained

Fig. 13.1 Geological map (a) and geoform map with three sample areas (b)
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from Hoi Num Rin Royal project station. Laboratory data (soil chemical properties
for cation exchange capacity [CEC] and base-saturation) obtained from Office of
Agriculture Research and Development Region 1.

All digital data were processed in ArcGIS and/or ENVI. A DEM was created
from the contour line map, with contour interval of 2-m. The DEM was then used
to generate some of the spatial data such as aspect, curvature, and hill-shade, which
form backbone of some of the state factors (e.g., relief, parent material).

A visual image interpretation map at scale 1:25,000 (geoform map, see
Fig. 13.1b) was prepared by applying the geopedologic approach (Zinck and Valen-
zuela, 1990). The flow diagram for creating the image interpretation map is shown
in the pre-field work section of Fig. 13.2. Several iterations of maps were pro-
duced and/or improved. For instance, the image interpretation map (here referred
to as the geoform map) was improved, adjusted also to the commonly used cat-
egorical legend, where landscape, relief-type, lithology and landform are used
(Table 13.1).

Four major geoform units were defined in the mountainous areas, namely (1) the
mountain in the Carboniferous lithologic formation (coded as MoC1 on the geology
map), characterized by ridges/hills stretching northeast to southwest; (2) the moun-
tain in Triassic volcanic rock (coded as MoTRv); (3) the mountain in Post-Triassic
volcanic rocks (coded as MoPTRv), and valley (coded as Va). Table 13.1 is a part
of the legend of the geoform map in Fig. 13.1b where details on the types of relief,
lithology, and landform are indicated.

13.2.3 Sample Areas (Training Map)

Sample areas were selected based on landscape, relief, lithology, and landform.
Selection of the sample areas is an important step, as these are the areas where
landform units are examined for their soil (class) content. Three sample areas were
selected and labeled as A, B, and C (Fig. 13.1b). Area A in the northern part of the
study area crossed through two dominant of lithologic formations indicated on the
geology map as MoPTRv and MoTRv. The second area, B, in the middle part of
the area occurs in the lithologic formations MoC1 and MoPTRv. The third area, C,
in the southern part crosses MoC1 and MoPTRv lithologic formations. The sample
areas were used to train the relationships between the soils and the environmental
conditions. Several observations were made in these areas to get acquainted with the
soil-landform relationships.

The three sample areas A, B, and C were studied in detail using 57 soil obser-
vations. There were 32 landform units represented in these areas (Fig. 13.1b,
Table 13.1).

The sample area A included 6 soil units, classified at subgroup level as: Typic
Hapludalfs, Typic Paleudalfs, Typic Paleudalfs/Typic Hapludalfs, Typic Haplu-
dalf/Typic Paleudalfs, Typic Udifluvents, and Typic Udifluvents/Typic Argiudolls
(Table 13.2).
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Fig. 13.2 Methodological framework
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The sample area B included 7 soil units, classified at subgroup level as: Lithic
Halpludults, Typic Hapludults, Typic Paleudults, Rhodic Paleudalfs, Typic Haplu-
dalfs, Typic Paleudalfs and Typic Udifluents (Table 13.2).

The sample area C included 7 soil units, classified at subgroup level as: Lithic
Hapludults, Typic Hapludults, Typic Paleudults, Rhodic Paleudalfs, Typic Haplu-
dalfs, Typic Paleudalfs and Typic Udifluents (Table 13.2).

Soil map units in these sample areas were field-checked. There were 10 soil
classes determined the soil maps of these sample areas served as the training map
(see field work section of Fig. 13.2).

13.2.4 Data for Predictive Soil map

13.2.4.1 Climate

In this study, 15 years of climate data from Hoi Num Rin Royal Station and parti-
cle size classes (LDD method described in Treesuwan, 2002 and Kunaporn, 1991)
were used to determine the soil moisture and temperature regime according to Soil
Taxonomy (USDA, 1975). From the climate data, the study area has a udic moisture
regime and hyperthermic soil temperature regime. Therefore, there is no variation
in climate throughout the area.

13.2.4.2 Organism Map

Organisms are related to native vegetation, the primary forest of the study area.
Vegetation is the best indicator of the environment wherein the soil has been formed.
The data of the primary forest report by the LDD and the Hoi Num Rin Royal
project were used, and the paper map was digitized. There were four types of forest
vegetation (Table 13.2).

13.2.4.3 Relief Maps

Relief represents the Earth’s surface and the position where the soils occur, the com-
bination of topographic system and geological structure. Aerial photographs and
the orthophoto were used to define the correlation between the different attributes
and the slope-related features (gradient, form, curvature, etc.). Landscape can be
interpreted by grouping soils with similar morphological and hydrological charac-
teristics. Landform represents the position in a landscape, and comprises the litho-
logical unit, and several other characteristics such as elevation, slope, orientation,
stratification, rock exposure, relief unit, slope facets and soil type. There were four
landscape units, seven relief-types, and eight landforms represented on the three
relief maps (Table 13.2).

13.2.4.4 Lithology (Parent Material) Map

This is the most difficult layer to produce, as geological map is often available in
small scale, wherein lithologic formations (quite complex in nature) are indicated.



13 ANN and DT in Predictive Soil Mapping of Hoi Num Rin Sub-Watershed 159

However, a lithologic map includes detailed information, in terms of rock types,
and sediment types (alluvium, colluvium, etc.). In this study, geology map, aerial
photographs, orthophoto, slope, aspect and field observation were used to generate
a lithological map, with a relatively high degree of uncertainty. The map contains
10 units (Table 13.2).

13.2.4.5 Time Map

The time or soil age (degree of soil development) map represents the age of the
soil that is different from the geological time of the parent material. In this study,
the development stage of soil (the line of soil evolution, e.g., from entic to cam-
bic to argillic to oxic) was taken into account. We tried to find a correlation
between the observed data (in the sample areas) and the environmental charac-
teristics derived from the DEM. Three relative soil ages could be distinguished
(Table 13.2): old (Ultisols, Oxisols), mature (Alfisols), and young (Inceptisols and
Entisols).

13.2.5 Digital Predictive Soil Mapping

To extrapolate the knowledge, obtained from studying the soils and their associated
environment at 69 soil profile sites in, in 32 landform units, to the unsampled areas,
we used artificial neural network (ANN) and decision tree (DT) techniques.

13.2.5.1 Deriving a Soil Map from the ANN

Using the standard back-propagation algorithm in ENVI software, a number of three
layer sets – an input layer, a hidden layer, and an output layer (Fig. 13.3) – was
trained for the purpose of prediction of soils in unsampled areas. In the input layer
the number of input nodes was fixed as the number of predictors, which are the six
soil forming factor maps (Table 13.2). The number of hidden layers was 1, and the
number of output nodes was fixed by the 10 soil classes.

The other network parameters were adjusted after the stage of learning to train
the network and to select the parameters, which should give the best fit:

– Training threshold contribution is 0.9
– Training rate is 0.2; training momentum is 0.9
– Training RMS exit criteria (error) is 0.0001
– Number of training iterations is 1,000

The networks were trained until the error calculated over the testing data was
judged to have reached a minimum. The best result of training process shows that
the selected parameters and iteration of 1,000, 38.93 min time is required to train
the network, with the training accuracy of 98% and the training error of 0.003.
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Fig. 13.3 Exemplified
topology of feed-forward
multi-layer neural network
used

13.2.5.2 Deriving a Soil Map from the Decision Tree

To implement the decision process, the same parameters as used in the ANN
(Fig. 13.4) were used. In this study, ArcGIS was used to establish a decision tree.
There were 10 soil classes in three sample areas on the basis of which the tree was
established. The unsampled areas were searched to find areas with the similar envi-
ronments as the known sites in the sample areas. The decision tree (DT) algorithm
was formulated based on the “if, then, else” logic. The ArcGIS raster tool was used
for the calculation procedure and then the resulting layers (maps) were combined in
the data management tool. The relationships between soils and their environments
(based on soil forming factors) were learned in sample areas, thereafter predicted
(extrapolated) to unsampled areas.

Fig. 13.4 The exemplifier of a simple decision tree structure
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13.2.5.3 Map Validation

To validate the maps produced by ANN and DT, 57 auger observations of soil were
made in the unsampled areas in the different landform units and landuse types. The
data were taken to validate and result maps from the two methods were compared.

13.3 Results and Discussion

The resulting soil maps produced by ANN and DT are shown in Fig. 13.5a and b,
respectively. Both ANN and DT could predict and transfer 10 soil classes (classified
to subgroup level) from the sampled sites to unsampled areas.

Legend
Lithic Hapludults
Rhodic Paleudalfs
Typic Hapludalfs
Typic Hapludalfs/ Typic Paleudalfs
Typic Hapludults
Typic Paleudalfs
Typic Paleudalfs/Typic Hapludalfs
Typic Paleudults
Typic Udilfuvents
Typic udifluvents/ Typic Agriudolls

a) 

b) 

Fig. 13.5 The predictive soil map (a) derived from ANN and (b) derived from the decision tree
technique
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Table 13.3 Data validation
Percent matching level

Validation Order Ordera Suborder Suborderb Great group Subgroup

Auger hole and
ANN-based soilmap

87.50 95.00 94.00 100.00 75.00 90.00

Auger hole and
DT-based Soilmap

72.30 89.23 80.00 98.46 67.69 89.23

Decision tree-based and
ANN-based soil map

97.00 100.00 97.00 100.00 96.50 95.00

Overall 87.45 95.31 91.75 99.62 81.30 91.56
a and b after having combined Alfisols & Ultisols, and Inceptisols & Entisols

The results of comparison between the validation soil descriptions versus the
ANN and DT based predictive soil maps are presented in Table 13.3. To com-
pare soil classification maps, soil classification names were extracted to four lev-
els (order, suborder, great group and subgroup) and compared by overlay map in
each level in three ways: the auger hole descriptions versus the soil map from ANN
method, the auger hole descriptions versus the soil map from DT method, and the
soil map from ANN with the soil map made by DT method. The ANN-based map
is quite satisfactory if no distinction is made between Alfisols and Ultisols (base
saturation ≥ or < 35%), and between Inceptisols and Entisols (relative degree of
incipient development) (Table 13.3). Great group level is based on properties such
as subsurface diagnostic horizons, and is thought to reflect the current processes and
properties critical to plant growth, such as soil depth and degree of development
(Soil Survey Staff, 1975). Subgroup is meant to differentiate several soil morpho-
logic features, which cannot be defined at the great group level, such as redoxi-
morphic features, and the depth of the control section, which represents soil depth
related to the root zone (Soil Survey Staff, 2006). The high correlation between
ANN and DT techniques likely occurs because similar predictors were used in both
cases.

13.4 Conclusions

Soil maps in poorly accessible areas can be produced in a predictive way using
the geopedologic approach to soil survey (an ITC approach), which is based on the
understanding of soils/landscape relationships. Application of artificial neural net-
work (ANN) and decision tree (DT) techniques considerably facilitated the extrapo-
lation process. The ANN proved to be faster (important in terms of time-saving and
cost effectiveness) than applying the decision tree. On the other hand, the ANN is
more difficult in the training phase.
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Chapter 14
Evaluation of the Transferability
of a Knowledge-Based Soil-Landscape Model

J. McKay, S. Grunwald, X. Shi, and R.F. Long

Abstract Knowledge-based digital soil mapping has been used extensively to
predict soil taxonomic and physico-chemical soil characteristics. Fuzzy logic
knowledge-based models allow explicit integration of knowledge and expertise from
soil mappers familiar with a region. Questions remain about the transferability of
soil-landscape models developed in one region to other regions. Objectives of this
study were to develop and evaluate a knowledge-based model to predict soil series
and fuzzy drainage classes and assess its transferability potential between similar
soil landscapes in Essex County, Vermont. Two study areas, study area W1, 3.5 km2

in size and study area W2, 1.9 km2 in size, were sampled at 128 and 42 sites,
respectively. Both study areas are located in Essex County, Vermont. Rule-based
fuzzy inference was used based on fuzzy membership functions characterizing soil-
environment relationships to create a model derived from expert knowledge. The
model was implemented using the Soil Inference Engine (SIE), which provides
tools and a user-friendly interface for soil scientists to prepare environmental data,
define soil-environment models, run soil inference, and compile final map products.
Defuzzified raster predictions were compared to field mapped soil series and fuzzy
drainage class properties to assess their accuracy.

In W1 the model was 73.7 and 88.8% accurate, respectively, in predicting soil
series and fuzzy drainage classes using an independent validation set. In W2, similar
results were achieved, with 71.4 and 89.9% accuracies, respectively. It was shown
that the prediction model was transferable to a landscape with similar soil charac-
teristics. For future soil prediction applications it is critical to identify constraints
and thresholds that limit transferability of prediction models such as SIE to other
soil-landscapes.

Keywords Digital soil mapping · Transferability · Soil inference engine ·
Vermont · Knowledge-based
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14.1 Introduction

For years, soil scientists have been working to build quantitative predictive mod-
els to a large extent based on the five factors of soil formation as described by
Jenny (1941):

S = f (Cl, O, R, P, T) (14.1)

where soil is a function of climate, organisms, relief, parent material, and time.
McBratney et al. (2003) pointed out that soils can be predicted from their properties
in combination with CLORPT factors, where soil properties can be derived from
remote or proximal sensing or from expert knowledge.

Knowledge-based models are composed of three main elements: environmen-
tal data, a knowledge base, and an inference engine which combines the data and
the knowledge base to infer logically valid conclusions about the soil (Skidmore
et al., 1996). See Section 26.2 for a discussion on different types of expert knowl-
edge.

The Soil Inference Engine (SIE) is an expert knowledge-based inference engine
designed for creating soil maps under fuzzy logic. There are two main types of
knowledge that SIE uses: rules, which are defined in parametrical space; and cases,
which are defined in geographical space. Both rule-based reasoning (RBR) and case-
based reasoning (CBR) can be used to perform inference. SIE also provides tools
for result validation, terrain analysis, pre- and post-processing of raster data, and
data format conversion (Shi et al., 2009).

Predictive models are often based on the catena concept (Milne, 1935), which
indicates that soil profiles occurring on topographically associated landscapes will
be repeated on similar landscapes.

One major question that remains in the field of soil landscape modeling is that
of model transferability. In particular, knowledge-based empirical models are con-
strained by soil geographic space boundaries, whereas mechanistic pedogenic sim-
ulation models do not face this constraint. Boundary conditions that describe the
attribute space used to develop specific soil prediction models are often not well
defined in digital soil mapping studies (Grunwald, 2009). Local or site-specific
predictions that are implemented within limited geographic extent are documented
extensively in the literature (Baxter and Oliver, 2005; McKenzie and Ryan, 1999;
Mitra et al., 1998) but their transferability to other regions is unclear.

Predictive capabilities are limited, especially over large areas, because the rela-
tionships between soil properties and landscapes are either nonlinear or unknown
(Lagacherie and Voltz, 2000). Prediction of soil properties becomes even more dif-
ficult when factors other than topography begin to play more of a role, such as
different parent materials or changes in climate (Thompson et al., 2006). However,
Lagacherie et al. (2001), in studying the applicability of detailed soil surveys to
larger areas, found some factors to be especially important, including the expert
delineation of reference areas and the necessity of those reference areas of being
highly representative of the prediction zone. Keeping these factors in mind, it is
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reasonable to expect that expert soil scientists can achieve high model transferabil-
ity. Section 24.6 contains a good discussion on the inherent bias in expert driven
methods.

This study aims to take a soil prediction model developed for a relatively small
study area in a complex landscape and test how well it transfers to another, sim-
ilar study area a few kilometers away. The specific objectives are to populate a
knowledge-based soil model to predict soil series (classified according to U.S. Soil
Taxonomy (Soil Survey Staff, 2006)) and fuzzy drainage classes in one soil region
in Vermont and validate model predictions in a nearby soil region.

14.2 Materials and Methods

14.2.1 Study Area

Two study areas were used to empirically evaluate the transferability of soil scien-
tists’ knowledge; specifically, the extent to which a soil-landscape model built by
soil scientists for one area is applicable to a second, “similar” area. Both study areas
W1 and W2 are in Essex County, Vermont and a comparison of their biophysical
characteristics is given in Table 14.1.

Study areas W1 and W2 are assumed to be dominated by one catena of soils,
and the model reflects this assumption. Three soil series that dominate these
areas are Cabot, Colonel, and Dixfield (Table 14.2). Dixfield soils are found

Table 14.1 Study area comparison

Study areas

W1 W2

U.S. geological survey
(USGS) Quad

Averill lake Bloomfield

Size (km2) 3.5 1.9
Elevation (m) Min: 468 Max: 833 Mean: 664

Std. Dev.: 51.9
Min: 375 Max: 618 Mean: 475

Std. Dev.: 49.67
Geology Phyllite and schist (Gile mountain

formation)
Phyllite and schist (Gile

mountain formation)
Vegetation Mixed northern-hardwood and

spruce-fir forests
Mixed northern-hardwood and

spruce-fir forests
Topography Hills and narrow valleys Hills and narrow valleys
Slope (%) Min: 0.02 Max: 86.08 Mean:

15.42 Std. Dev.: 12.02
Min: 0.10 Max: 54.82 Mean:

12.93 Std. Dev.: 7.38
Mean annual temperature 6◦C 6◦C
Mean annual precipitation 97 cm 97 cm
Land use Long term timber management Long term timber management
Soils (general knowledge) Deep, loamy basal till; some very

poorly drained organic
materials in depressions

Deep, loamy basal till; some
very poorly drained organic
materials in depressions
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Table 14.2 Soil series modeled in W1 and W2
Series name Drainage class Taxonomic class according to U.S. soil taxonomy

Cabot Poorly Loamy, mixed, active, nonacid, frigid, shallow
Typic Humaquepts

Colonel Somewhat poorly Loamy, isotic, frigid, shallow Aquic Haplorthods
Dixfield Moderately well Coarse-loamy, isotic, frigid Aquic Haplorthods

highest on the landscape, on the steepest, most convex slopes, and Cabot soils
are found lowest on the landscape, on the flattest, most concave slopes. Colonel
soils occur between Cabot and Dixfield both in terms of hillslope position and
slope shape. Soils that occur to a lesser extent on the landscape were desig-
nated based on which of the three dominant series they most closely resembled
morphologically.

14.2.2 Digital and Field Data

Two factors that were proven to provide a good basis for rules based on expert
knowledge were slope and compound topographic wetness index. Other layers, such
as vegetation, landform, and relative position were investigated and ultimately not
used in this study. Investigation of potential data layers involved a visual assess-
ment and comparison to known soil locations by expert soil scientists. Landform
and relative position were too general, because the soils being investigated occur
on multiple landforms and positions on the landscape. Vegetation showed limited
correlation with soil series, and land cover was relatively homogenous, thus was
not considered a promising predictor. On the other hand, wetness index is a pow-
erful data layer that gives information not only on flow accumulation, but also
indirectly on curvatures and, in addition, serves as a large scale relative position
map. Both of the layers used were derived from a 5 m digital elevation model
(DEM), aggregated from 1 m Light Detection and Ranging (LiDAR) data. The
terrain attributes (slope and wetness index) were created using SIE. The neigh-
borhood size for slope was 30 m, with a square neighborhood shape. The lag in
calculating slope for wetness index (known as multi-path wetness in SIE) was
1 pixel.

Field sampling in W1 consisted of 128 points randomly chosen from a previously
laid out grid design. Seventy percent (90 points) were used to aid model develop-
ment and 30% (38 points) were used for model validation within W1.

In order to validate the model in W2, a sampling design similar to random
catena sampling (McBratney et al., 2006) was used. Six randomly placed sampling
sites along seven catenas were selected, for a total of 42 sampling points. At each
of the selected sampling locations in both W1 and W2, a soil pit was exposed
and taxonomic soil descriptions were derived to the soil series level. Drainage
classes were identified at each site, as represented by depth to redoximorphic
features.
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14.2.3 Inference Models

For model development, the soil scientists provided global knowledge, which cov-
ers the entire mapping area (Shi et al., 2009), prepared data layers and rules, and
ran SIE. The initial round of output maps was verified by the soil scientist and the
rules were adjusted to fit known sample points. This verification and rule adjustment
process was repeated multiple times. After the last round of output maps was veri-
fied, post-processing tools from SIE and other geographic information system (GIS)
tools (specifically ArcGIS spatial analyst (ESRI, 2010)) were used to integrate the
results and generate hardened (defuzzified) maps. The hardened maps are created
by aggregating all three of the fuzzy membership maps for each study area using
SIE to assign, at each pixel, the soil series with the highest fuzzy membership.

Once the model was fully developed for W1, it was run on the W2 study area and
evaluated using an independent validation dataset consisting of 42 sample points.

The rules (Table 14.3) developed for the three soil series are straightforward and
represent the understanding of the soils as they occur on the landscape in relation
to one another. Figure 14.1 illustrates an example of the inference interface which
shows the membership function.

Table 14.3 Rules for Cabot, Colonel, and Dixfield soils

Full membership at 0.5 membership at Curve shape P function

Wetness Wetness
Series Slope % index Slope % index Slope Wetness Slope Wetness

Cabot 8 6.3 20 4.8 Z-shaped S-shaped Limiting
factor

Limiting
factor

Colonel 15 3.9 35 2.4, 5.4 Z-shaped Bell-
shaped

Limiting
factor

Limiting
factor

Dixfield 15 3.4 8 4.9 S-shaped Z-shaped Limiting
factor

Limiting
factor

14.2.4 Evaluation

The results were evaluated in two ways. First a one-to-one comparison of the hard-
ened map and the soil series name at the calibration and validation sample points
was done and represented in confusion matrices.

Second, the soil series delineations were further modified using fuzzy drainage
class classifications as outlined in Table 14.4. A set of criteria (Table 14.4) was
developed which allows illustration of typical and atypical conditions within each
soil series based on drainage characteristics. For example, the Dixfield series falls
into the “moderately well drained” drainage class, and has a range of characteristics
defined that allows all soils that have redoximorphic features between 41 and 101 cm
to be grouped in the same category. Some soils that are classified as Dixfield may
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a

b

Fig. 14.1 Inference interface for Colonel (ArcSIE). (a) Bell-shaped curve for wetness index,
(b) Z-shaped curve for slope

be considered more typical of Dixfield while some are still Dixfield but are on the
dry fringe and others are on the wet fringe.

Every validation point was then assigned a fuzzy value (Table 14.5) based on a
comparison of the SIE results and the evaluation of whether the field results were
typical for the series’ drainage class. Average accuracy numbers were determined
based on these fuzzy membership designations.

Drainage class was the key characteristic, or interpretation, used to decide if the
highest fuzzy membership was correct when compared to the mapped soil series at
the sample points. In this particular soil survey area, parent materials were pre-
viously identified, so the difference in these catena members is essentially soil
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Table 14.4 Evaluation criteria for fuzzy drainage class

Drainage class (soil Wetter fringe Drier fringe
series) Typical characteristics characteristics characteristics

Poorly drained
(Cabot)

O horizon 0–15 cm,
chroma 2 in profile

O horizon 15–20 cm Chroma 3 within 76 cm
of top of mineral
soil; must be chroma
2 somewhere

Somewhat poorly
drained (colonel)

Redox between 23 and
36 cm

Redox between 0a and
23 cm

Redox between 36 and
41 cm

Moderately well
drained (Dixfield)

Redox between 56 and
86 cm

Redox between 41 and
56 cm

Redox between 86 and
102 cm

a Includes morphologically similar soils.

Table 14.5 Matrix of fuzzy membership designations comparing SIE results and fuzzy drainage
classes
Field results

SIE Output
Cabot (poorly
drained)

Colonel (somewhat
poorly drained)

Dixfield (moderately
well drained)

SIE
output

Wet
fringe Typical

Dry
fringe

Wet
fringe Typical

Dry
fringe

Wet
fringe Typical

Dry
fringe

Cabot 1 1 1 0.75 0.5 0.25 0 0 0
Colonel 0.25 0.5 0.75 1 1 1 0.75 0.5 0.25
Dixfield 0 0 0 0.25 0.5 0.75 1 1 1

wetness, which is represented by drainage class. There are no other significant inter-
pretive differences that affect use and management of these soil series.

14.3 Results

14.3.1 Results from Model

The initial output maps from SIE show fuzzy results for each soil series (Figs. 14.2
and 14.3). Darker colors represent higher fuzzy memberships for that soil.

The final prediction maps (Figs. 14.4 and 14.5) for each study area are hardened
maps of the SIE results, and also serve as a proxy for drainage class maps, because
each soil type has a drainage class associated with it.

14.3.2 Accuracy Assessment of Model

The one-to-one comparison of the hardened map to the soil series found in the field
yielded 42.6% accuracy for the calibration sites in W1.
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Dixfield
High : 100

Low : 0

Colonel
High : 100

Low : 0

Cabot
High : 100

Low : 0

Fig. 14.2 Fuzzy prediction maps for study area W1 (McKay, 2008)

Fig. 14.3 Fuzzy prediction maps for study area W2 (McKay, 2008)
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Fig. 14.4 Final prediction map of soil series for study area W1 (McKay, 2008)

The one-to-one comparison of the hardened map to the soil series found in the
field yielded 73.7% accuracy overall in W1 (validation sites) and 71.4% accuracy
overall in W2. The percent accuracy results by series name are represented in con-
fusion tables (Tables 14.6, 14.7, and 14.8).

Nine iterations of statistics were done using different arrangements of points to
represent calibration versus validation points within W1 (Tables 14.9 and 14.10) to
accommodate for bias in splitting the dataset.

The fuzzy drainage class results show an overall average between classes of
88.8% accuracy in W1 and 89.9% accuracy in W2 (validation sets). The calibration
points were 62.6% accurate overall when comparing fuzzy drainage class prediction
results. While the calibration points still had lower accuracy numbers than the vali-
dation points, the drainage class results show higher accuracy (Tables 14.11, 14.12,
and 14.13) than the one-to-one soil series comparison.
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Fig. 14.5 Final prediction map of soil series for study area W2 (McKay, 2008)

Table 14.6 Calibration prediction results based on SIE compared to observed soil series using 90
model development sites in W1

Observations

Calibration sites (n:90) % Cabot Colonel Dixfield

Predictions Cabot 42 25 33
Colonel 21 47 33
Dixfield 9 52 39

Table 14.7 Validation prediction results based on SIE compared to observed soil series using 38
independent evaluation sites in W1

Observations

Validation sites (n:38) % Cabot Colonel Dixfield

Predictions Cabot 73 27 0
Colonel 15 77 8
Dixfield 0 30 70
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Table 14.8 Validation prediction results based on SIE compared to observed soil series using 42
validation independent evaluation sites in W2

Observations

Validation sites (n:42) % Cabot Colonel Dixfield

Predictions Cabot 69 31 0

Colonel 11 63 26

Dixfield 0 10 90

Table 14.9 Calibration prediction results based on SIE compared to observed soil series using 90
model development sites in W1 using 9 calibration runs

Observations

Calibration sites (n:90) % Cabot Colonel Dixfield

Predictions Cabot 42–56 (mean: 51) 18–32 (mean: 26) 18–33 (mean: 23)

Colonel 18–27 (mean: 22) 40–58 (mean: 50) 21–40 (mean: 28)

Dixfield 0–10 (mean: 7) 36–55 (mean: 47) 35–55 (mean: 47)

Table 14.10 Validation prediction results based on SIE compared to observed soil series using 38
independent evaluation sites in W1 using 9 validation runs

Observations

Validation sites (n:38) % Cabot Colonel Dixfield

Predictions Cabot 50–73 (mean: 60) 9–45 (mean: 24) 0–27 (mean: 16)

Colonel 6–31 (mean: 19) 38–77 (mean: 52) 8–40 (mean: 29)

Dixfield 0–18 (mean: 5) 30–64 (mean: 43) 36–70 (mean: 52)

Table 14.11 Calibration prediction results based on SIE compared to observed drainage classes
using 90 model development sites in W1

Observations

Calibration sites (n:90) % Poorly drained
Somewhat poorly
drained

Moderately well
drained

Predictions Poorly drained 68 32 0

Somewhat poorly
drained

17 54 29

Moderately well
drained

0 33 66
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Table 14.12 Validation prediction results based on SIE compared to observed drainage classes
using 38 independent evaluation sites in W1

Observations

Validation sites (n:38) % Poorly drained
Somewhat poorly
drained

Moderately well
drained

Predictions Poorly drained 78 21 0

Somewhat poorly
drained

7 87 6

Moderately well
drained

0 15 85

Table 14.13 Calibration prediction results based on SIE compared to observed drainage classes
using 38 independent evaluation sites in W2

Observations

Validation sites (n:42) % Poorly drained
Somewhat Poorly
drained

Moderately well
drained

Predictions Poorly drained 76 24 0

Somewhat poorly
drained

6 73 21

Moderately well
drained

0 5 95

14.4 Discussion

The results from both the direct comparison between the hardened map and field
results and the fuzzy drainage class comparison show that the model is highly trans-
ferable between the two study areas. The model should therefore transfer well to
other areas that are similar to these study areas. As one or more environmental
factors change, the transferability of the model can be expected to decline. The
hierarchy of these environmental factors may depend on the scale of mapping (see
also Chapter 12). The calibration points showed lower accuracy than the validation
points (single run), which could be a result of the fact that the calibration set is larger
than the validation set in W1; thus capturing more variability in the landscape. This
effect was less pronounced when multiple iterations (runs) were used.

Assigning fuzzy drainage class memberships not only improves accuracy num-
bers; but it also points to the concept of a continuous field model, with soils changing
gradually across the landscape rather than having discrete boundaries between one
another.

Fuzzy results for each series can be used to depict the uncertainty associated with
the hardened map.

There are constraints to this model. Of the five CLORPT factors (climate, organ-
isms, relief, parent material, or time), relief most likely plays the biggest role in vari-
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ability in this region, corresponding to the environmental factors that were used to
create the model: slope and compound topographic wetness index. This is supported
by the conceptual catena model that attributes variation in drainage and wetness to
topographic changes.

14.5 Conclusion

In summary, a knowledge-based model such as SIE can be formed and transferred
between similar areas effectively, as long as environmental factor constraints are
recognized.
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Chapter 15
Random Forests Applied as a Soil Spatial
Predictive Model in Arid Utah

A.K. Stum, J.L. Boettinger, M.A. White, and R.D. Ramsey

Abstract We sought to predict soil classes by applying random forests (RF), a deci-
sion tree analysis, to predict 24 soil classes across an arid watershed of western Utah.
Environmental covariates were derived from Landsat 7 Enhanced Thematic Mapper
Plus (ETM+) and digital elevation models (DEM). Random forests are similar to
classification and regression trees (CART). However, RF is doubly random. Many
(e.g., 500) weak trees are grown (trained) independently because each tree is trained
with a new randomly selected bootstrap sample, and a random subset of variables is
used to split each node. To train and validate the RF trees, 561 soil descriptions were
made in the field. An additional 111 points were added by case-based reasoning
using photo interpretation. As RF makes classification decisions from the mode of
many independently grown trees, model uncertainty can be derived. Furthermore,
the probability that a pixel belongs to one or more classes in the legend can be
determined. The overall out of the bag (OOB) error for discrete classes was 55.2%.
The confusion matrix revealed that four soils that frequently co-occurred on land-
forms were frequently misclassified as each other. These soils were combined into
six soil map units. To identify pixels that might belong to one of these newly created
combinations of soil classes, minimum threshold probabilities were set. Employing
probability by class can be an effective and objective method of determining mem-
bership in soil map unit associations and complexes mapped at the 1:24,000 scale.

Keywords Soil components · Soil map units · Digital soil mapping · Digital
elevation model · Satellite imagery

15.1 Introduction

The incorporation of topographic and remotely sensed (RS) data into the study of
soil systems has increased our ability to predict the spatial distribution of soils across
the landscape (e.g., Chapter 2). Often, soils are traditionally represented as a the-
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matic map made up of polygons representing individual map units. Each map unit
represents the generalized distribution of soils in the landscape as an association,
complex, or a consociation (Moran and Bui, 2002). Soils known to occur within a
map unit are referred to as components. Each map unit delineation is a prediction of
the soil based on the conceptual model of a soil scientist. Typically rangeland in the
western United States is mapped at order three mapping (1:24,000). At this scale
of mapping, most map units are associations and complexes (U.S. Department of
Agriculture, 2007).

Spatial data analysis seeks to understand patterns or processes that occur
in space, allowing predictions where no observations have been made (Bailey
and Gatrell, 1995). Based on Jenny’s soil-forming factors (1941), McBratney
et al. (2003) proposed scorpan, an empirical formulation to quantitatively find rela-
tionships between spatially explicit data and soils. There are seven environmental
covariates in the scorpan model. The five soil forming factors from Jenny (1941)
are present: “c” climate; “o” organisms; “r” topography and landscape attributes;
“p” parent material; and “a” time or age. Two scorpan environmental covariates are
directed towards spatial predictive models: “s” soil or soil properties, and “n” space,
spatial position, or relative position.

We sought to predict the distribution of individual soil components within a
rangeland watershed in western Utah, USA. We incorporated topographic and
remotely sensed data representing environmental covariates and applied random
forests coupled with a geographic informations system (GIS) as a soil spatial pre-
dictive model.

15.2 Materials and Methods

15.2.1 Study Area

The study area is The Big Wash watershed in the Basin and Range physiographic
province, northwest of Milford, Beaver County, Utah (Fig. 15.1). The area is pre-
dominantly fan remnants fed by mountains composed of Pre-Cambrian quartzite,
Paleozoic dolomite, and Tertiary extrusive igneous rocks. The soil moisture regime
is dominantly aridic bordering on xeric (xeric aridic) and the average precipitation
ranges from 20 cm at the basin floor (1,490 m) to 41 cm atop the San Francisco
Mountains (2,944 m). The soil temperature regime is mesic with an annual average
temperature of 9.3◦C at Milford (Soil Survey Staff, 2006).

15.2.2 Digital and Field Data

Field observations that trained the random forests were >90 m apart so no pixel
was double-sampled (561 points). Each soil observation was classified to the family
level of Soil Taxonomy and many were correlated to existing soil series and assigned
to a class (see Table 15.2 and legend in Fig. 15.2) (Soil Survey Staff, 2006). Five
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Fig. 15.1 The study area (red) encompasses ∼47,000 ha in Beaver County, Utah. The Big Wash
study area shown in Landsat 7 scene false color (RGB: 5, 7, 1)

classes in our legend were broader classes (associations) as there were insufficient
observations to predict them individually. Several soil classes were under-sampled
in the field and accurate prediction suffered. Three of these classes were easily
indentified in aerial photography, classes 6, 15, and 18. A case-based reasoning
approach (Shi et al., 2004) was applied to supplement these classes. This increased
the training sample from 561 to 672 points.

The scorpan environmental covariates in the study area were represented by 21
spatially explicit digital data layers (Table 15.1). These covariates were derived
from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and digital elevation
models (DEM). Preparation of the Landsat image was done with ERDAS Imag-
ine 9.1TM(Leica, 2006). The digital elevation models were processed in ArcGIS
9.2TM(ESRI, 2007). Digital data were projected into Universal Transverse Mercator
(UTM) and North American Datum 1983 (UTM 12S North, datum NAD83).

The study area is covered by one Landsat 7 scene, path 038 and row 033, acquired
July 31, 2000 (Fig. 15.1). The Landsat scene was standardized using the cosine theta
(COST) method without tau (Chavez, 1996; Nield, 2007; RSGIS: script no. 3, 2003).
The normalized difference ratio of bands 4/3 represented vegetation (NDVI), bands
5/2 distinguished most igneous formations (andesite) from sedimentary formations
(limestone). In addition, normalized band ratios 4/5, 3/7, 5/1, and 4/7 exhibited
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Table 15.1 Environmental covariates represented by digital data (raster)

Environmental covariates Representative digital data Source data

Vegetation NDVI: Bands (4–3)/(4+3) Landsat 7
Soil moisture regime Aspect; Elevation; Bands 3 and 4 10-m DEM and Landsat 7
Relief Slope 10-m DEM

CTI
Filtered CTI (5x5)
Aspect (−π to π)
Filtered slope (11 × 11) curvature 30-m DEM

Parent material and soil Standardized Landsat scene Landsat 7
Bands 1–7

Normalized difference ratios: Landsat 7
Bands (4–5)/(4 + 5)
Bands (3–7)/(3 + 7)
Bands (5–2)/(5 + 2)
Bands (5–1)/(5 + 1)
Bands (4–7)/(4 + 7)

Lake Bonneville Shoreline 10-m DEM

unique patterns wherein distinct landforms and vegetation communities could be
identified and were thought to be useful in the model. The 10- and 30-m DEM were
used to represent topography and some derivations from the DEM were filtered with
a low pass filter (Gesch, 2007; Utah GIS Portal, 2009).

15.2.2.1 Customized Data Layers

Two customized data layers, the Lake Bonneville shoreline and the Xeric-Aridic
soil moisture regime (SMR) raster layers, were created to stratify the study area into
pedo-geomorphic regions (Soil Survey Staff, 2006).

The shoreline features of ancient Lake Bonneville range in elevation due to iso-
static rebound. The elevation trend of the shoreline was estimated by simple linear
regression to be 1.99 × 10−4 m rise in elevation per meter in distance northward.
From this the approximate extent of ancient Lake Bonneville was determined. Land-
forms are younger (e.g., Chapter 4) and parent materials are generally finer textured
below the Lake Bonneville shoreline.

Within the study area there is strong climosequence relative to aspect and ele-
vation where relative soil moisture increases with elevation and northerly aspects.
The break between xeric and aridic soil moisture regime is often characterized by
the dominance of Pinus edulus (Single-leaf Pinyon) over Juniperus osteosperma
(Utah Juniper). Spectrally, these two plant communities were distinguishable as
two distinct clusters in a feature space plot of Landsat bands 3 and 4. Pixels
within these two clusters were selected within the feature space viewer in Imag-
ine to produce a supervised classification of pinyon and juniper plant communi-
ties (Leica, 2006). This supervised classification of pinyon and juniper was further
refined by establishing an elevation threshold relative to the inverse tangent of aspect
(transformed).
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Fig. 15.2 (a) The results of grove 2A. (b) The results of grove 2B. (c) The white pixels indicate
where models 2A and 2B were in agreement

15.2.3 Inference Models

Random forests (RF) is similar to the decision trees used in classification and regres-
sion trees (CARTs) (Breiman and Cutler, 2009). Random forests is as accurate as, or
more accurate than, adaptive boosting, yet computationally lighter (Breiman, 2001;
Gislason et al., 2006). Random forests is doubly random. Instead of growing one
tree, many (hundreds to thousands) unpruned trees are grown. This ensemble of
trees is a grove.

Each tree is trained from a random bootstrap sample, where a random subset of
the sample dataset is used to grow (train) the tree and the remaining points are left to
validate the tree. At each split a random subset of predictor variables is chosen (e.g.,
if there were 100 predictor variables, 10 could be selected at random). The strongest
variable of this random subset is selected to split the data. Unlike boosting, each tree
is grown independent of each other to the maximum depth. Like boosting, the modal
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result of the entire grove determines the class membership. By making many weak
trees, RF discerns other patterns in the data that are overlooked when few strong
trees are grown.

Each sample point was attributed with the values of the independent variables
using the spatial analyst toolbox→ extraction toolset→ sampling tool (nearest
neighbor) in ArcGIS (ESRI, 2007), piercing through the stack of covariates. A raster
mask (30-m resolution) of the study area was converted into a point shapefile. This
was done so that each pixel could be attributed with the independent variables and
imported into Random Forests where they were thrown down the trees for classifi-
cation. These points were attributed with the sampling tool mentioned above.

Random Forests software by Salford Systems (2004) was used to grow the grove
of trees to make the soil class predictions. Model outputs were validated with “out of
the bag” (OOB) testing, which is the total number of misclassified cases divided by
the total number of cases or for a particular class. Each tree was trained with an inde-
pendent bootstrap sample, a random selection of sample points with replacement.
Within an individual bootstrap sample some points are drawn one or more times
while others may not be drawn. On average, one-third of cases are not selected for an
individual bootstrap sample (Breiman, 2001). The points not drawn into a bootstrap
sample (left out) are the “out of the bag” (OOB) samples. The OOB points are used
to test the tree; OOB samples are thrown down the tree to predict the classification.
Several parameters can be manipulated with Random Forests that can have signifi-
cant impact on the model results, e.g., variable selection, class weighting, number of
variables randomly selected at each node, bootstrap sample size, and number of trees
grown for the grove. For all iterations we grew 500 trees and the bootstrap sample
size was the same as the original sample. We ran several iterations comparing the
OOB error with and without weighting and by changing the number of predictive
variables selected at each node.

Each tree is grown with an independent bootstrap sample and a new set of OOB
samples are thrown down that tree. After all trees are grown (500), each sample point
is assigned a final classification based on the mode of predicted classes. The overall
OOB error is based on the OOB classification of all the sample cases. For each
point, the proportion of “votes” received for each class is reported, which represents
the probability of membership in a given class. These ratios are used to estimate
uncertainty, determine the extent of individual components, and create new soil map
units (associations).

Since the probability that an individual point belongs to a soil class is known,
the second and third most probable classifications can be determined. Minimum
probability thresholds were established in determining the second and third most
probable classifications. Three threshold values were established based on potential
limitations to use and management; where the most limiting soils (e.g., Petrocal-
cids) had the lowest threshold (0.1). We applied these same probability thresholds
to determine the possible inclusion of classes in addition to that of the final classifi-
cation (Table 15.2).

The purpose in determining these alternate classifications is to determine a mea-
sure of proximity between pixels. For example if pixel i is predicted to be class α
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Table 15.2 Summary of model output from grove 2B

Class
Number
of cases Count

Mean
of first

OOB
error (%)

Probability
threshold

Component
count

1 77 98,179 0.296 54.6 0.25 78,403
2 38 14,199 0.413 63.2 0.25 20,279
3 61 59,546 0.359 67.2 0.25 52,779
4 19 12,245 0.325 63.2 0.25 12,889
5 18 15,053 0.477 27.8 0.15 23,671
6 16 7,844 0.311 43.8 0.25 8,762
7a 13 156 0.186 100.0 Not considered Not considered
8 65 57,216 0.326 43.1 0.15 119,136
9a 10 24 0.254 100.0 Not considered Not considered

10b 5 2,604 0.289 80.0 0.15 6,626
11 10 11,837 0.362 50.0 0.25 12,203
12b 2 71 0.231 100.0 0.15 6,626
13 13 41 0.284 100.0 0.15 3,668
14 18 1,688 0.244 72.2 0.15 4,820
15 41 11,697 0.304 56.1 0.15 32,832
16 26 14,936 0.299 65.4 0.15 40,077
17 20 3,696 0.228 80.0 0.1 14,106
18 62 65,231 0.394 24.2 0.15 94,759
19 12 18,907 0.422 50.0 0.15 38,444
20 11 17,082 0.517 45.5 0.15 33,927
21 53 39,417 0.260 84.9 0.15 95,265
22 29 55,932 0.344 51.7 0.15 81,646
23 8 993 0.247 75.0 0.25 406
24 45 7,137 0.365 8.9 0.5 1,498

Number of cases is the observed occurrences of class. Count is the number of pixels in the study
area that were predicted to belong to that class. Mean of first is the average probability of all pixels
predicted to belong to the class. OOB error is the class OOB error. Probability threshold is the
minimum probability. Component count is the number of pixels that had a probability greater than
or equal to the specified threshold probability for the given class
aClasses 7 and 9 were not evaluated as individual components due to poor performance
bClasses 10 and 12 were combined as one class before determining the potential extent of
individual components

with a probability of 0.60 and pixel y is predicted to be class β with a probability
of 0.55 the two pixels are said to be different. But how different? If pixel i also
has a 0.31 probability of belonging to class β and pixel y has a 0.37 probability of
belonging to class α, pixels i and y are arguably similar.

Similar pixels can be indentified and aggregated (clumped) to represent map unit
associations and complexes. This was done with the Knowledge Engineer in Imag-
ine. A simple Boolean argument (rule) can be established where all pixels that have
a high probability (≥ 0.25) of belonging to both classes α and β can be determined.
Similarly, for each predicted soil class a raster layer of the probable predicted extent
was created where all pixels greater than that class’s threshold probability were
identified.
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15.3 Results and Discussion

Weighting had a much greater impact on the OOB error rate and the output of the
classification than changing the number of independent variables selected at each
node. We selected two groves based on their overall OOB error and OOB error by
class. These models will be referred to as groves 2A and 2B. Classes were weighted
inversely proportional to sample size in grove 2A and no weighting was applied in
grove 2B. Three variables were randomly selected at each node in both 2A and 2B.

Grove 2A had a greater overall OOB error at 64.9% and grove 2B had a 55.2%
OOB error. Weighting sacrificed the overall accuracy to improve the classification
of minority classes. The outputs were also significantly different (Fig. 15.2a and b).
Also, the OOB error rate by class was notably different (Table 15.2). Classes with
smaller sample sizes had lower error rates than classes with larger sample sizes in
2A due to weighting; the opposite was true for grove 2B. This difference in class
error was reflected in the predicted outputs of each grove. The predicted outputs
of the two models were compared and only 37.6% of the pixels were classified the
same across the study area (Fig. 15.2c). From a tacit perspective of the authors,
grove 2A did not represent the soil distribution across the study area as well as
grove 2B. For example, 9.1% of pixels were predicted to be class 7 in grove 2A
but only 16 observations were made of this class, whereas only 0.12% of pixels
were predicted to be class 1 which was observed 77 times. While weighting may be
desirable for imbalanced data sets; it is undesirable for very imbalanced data sets
(Chen et al., 2004). The rest of this paper will focus on grove 2B (Fig. 15.2).

Individual components of the landscape can still be easily identified in the model
confidence images (Fig. 15.3). Some surfaces with unique signatures may not have
been sampled sufficiently or were not represented at all in the sample. This can be

Fig. 15.3 Confidence image
showing the probability that a
pixel belongs to the class
predicted by majority of all
trees in the grove. Landform
patterns can be discerned in
the image, demonstrating that
certain surfaces were strongly
predicted while other surfaces
may need further
documentation
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used as a guide for future sampling. Every pixel in the study area was predicted by
at least one tree to belong to a class other than the final classification.

Many pixels had a low probability of belonging to any class. For example, 7.7%
of the pixels had ≤ 0.20 probability of belonging to any class in the legend. An addi-
tional 17.3% of the pixels had 0.20–0.25 probability of belonging to any class in the
legend. Model uncertainty may be the result of: (1) none of the predicted soil classes
in the legend represented the soils in the pixel; (2) the pixel represents a transition
soil between several other classes; (3) several soil classes may exist in an individual
30-m pixel; (4) there were insufficient predictive variables to distinguish spectrally
and topographically similar soil classes, (5) or there was insufficient observation
data to train the model.

Most pixels had a second most probable classification greater than the minimum
threshold probability indicated in Table 15.2. Many pixels had a third component
identified. Because relatively few pixels had a fourth class higher than the minimum
threshold probability, the fourth most likely soil class was not determined.

While grove 2B (no weighting) had the lowest overall OOB error rate, it was
still quite large (55.2%). In analyzing the error matrix there are several soil classes
which co-occurred on landforms and were frequently misclassified as each other
(Table 15.3). Four soil classes which co-occurred on landforms and were spatially
extensive (predicted to cover > 60% of the area) were singled out to create six soil
map units. These four soils, Dixie, Garbo, Crestline, and Hiko Peak made up six of
the 18 consociations in our legend: classes 1, 2, 3, 8, 21, 22. Areas that were mapped
in adjoining areas by the Natural Resources Conservation Service (NRCS) had these
four soil series as major components in 19 different soil map units. We adapted six
of these map units to create broader classes in our legend (the number of times
the two soil components were misclassified as each other are in parentheses): Hiko
Peak – Dixie (50); Crestline – Hiko Peak (33); Dixie – Garbo (22); Sevy – Crestline
(18) (Sevy is very similar to Dixie); and all the phases of Hiko Peak with different
dominant vegetation types were combined (20). Again, this was done by identifying

Table 15.3 Condensed error matrix with the six soil classes that were combined into broader
thematic classes

Actual
class

Total
cases

Percent
correct

Predicted as class

1 2 3 8 21 22Allothers

1 77 45.5 35 6 2 11 5 6 12
2 38 36.8 16 14 1 4 1 1 1
3 61 32.8 16 2 20 15 3 2 3
8 65 56.9 10 0 8 37 1 0 9
21 53 15.1 14 0 5 12 8 3 11
22 29 48.3 4 0 0 0 4 14 7
All others 349 49.6 36 3 8 35 12 18 173

Total 672 131 25 44 114 34 44 324

Percent false positive 73.3 44.0 54.5 67.5 76.5 68.2 46.6

The other 18 classes are represented as “All Others”. The numbers on the diagonal represent the
times the observations were predicted correctly
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Fig. 15.4 Pixels that have a
probability ≥ 0.25 of being
Dixie (green); a probability
≥ 0.25 of being Garbo (red);
and probabilities of ≥ 0.25 of
being Dixie and ≥ 0.25 of
being Garbo (yellow)

individual pixels that had a high probability of belonging to both components within
the six map units. Pixels where two of these soil series overlapped were identified as
the newly combined soil associations and complexes. The example of Dixie, Garbo,
and Dixie-Garbo is illustrated in Fig. 15.4.

15.4 Conclusions

Random forests is a useful model to predict soil components as individual soil
classes (see also Chapter 29). As the classification is the result of many weak trees,
model uncertainty and alternate probable classifications of pixels can be determined.
By defining alternate classes for individual pixels, the probable extent of minority
classes expanded without sacrificing the prediction of larger classes. This provided
an effective and objective method of determining membership in soil map unit asso-
ciations and complexes mapped at the 1:24,000 scale.
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Chapter 16
Two Methods for Using Legacy Data in Digital
Soil Mapping

T. Mayr, M. Rivas-Casado, P. Bellamy, R. Palmer, J. Zawadzka,
and R. Corstanje

Abstract Legacy data are useful sources of information on the spatial variation of
soil properties. There are, however, problems using legacy data, and in this paper we
explore some of these problems. A common issue is often the uneven sample dis-
tribution over geographical and predictor space and the problems this generates for
the subsequent modelling efforts. Furthermore legacy soil data often has a mixture
qualitative and quantitative data. The current need is for quantitative data, whereas
the available datasets are often qualitative; e.g. auger bores. In this paper we com-
pare two methods: (i) a Generalized Linear modelling (GZLM) approach which uses
scarce, measured soil property data and (ii) Bayesian Belief networks (BBN) which
uses extensive but generic values of the soil property, linked to soil classes. We used
digital soil mapping covariates such as small scale soil maps, geology, digital terrain
model, climate data and landscape position in order to predict continuous surfaces
for sand, silt, clay, bulk density and organic carbon. The objective is to present a
qualitative comparison between the two methods, as a direct comparison was not
possible due to the number and distribution of the legacy data. We found that the
GZLM approach was significantly impacted by an uneven sampling of the predictor
space. This study suggests that a more generalist approach such as BBN is better in
the absence of few hard data but in the presence of many soft data.

Keywords Generalized linear models · Bayesian belief networks · Auger bores ·
Legacy data · Soil properties

16.1 Introduction

There is an increasing demand for spatial information on soil properties by envi-
ronmental and agronomic scientists to better understand the effect of a changing
environment, and also form an important input into the decision making by policy-
makers. Funding to obtain new soil surveys is increasingly scarce and use must be
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made of existing data (legacy data). There are numerous problems that arise when
using legacy data. For example, conclusions are obtained from data whose original
sampling designs may not be appropriate for these post hoc analyses. Other practi-
cal issues that arise when legacy data are used are: the mixture of quantity, quality
and types of data (ordinal, continuous and categorical); mapping problems such as
non contiguous coverages, differences in taxonomic or other classification schemes
and divergences in legends; scale and support issues (Chapter 5), where data are
obtained and represented at different scales. These problems are known in digital
soil mapping (DSM), see for example Bui and Moran (2001, 2003) who discuss and
supply a number of possible remedies by which to obtain spatial information from
existing data; also McBratney et al. (2003) who provide an overview of the possible
methods to use legacy data.

In England and Wales, an important source of soil information is the 1:250,000
National Soil Map (NATMAP), in which the spatial distribution of 297 soil associa-
tions is represented. Each soil association is identified by a dominant soil subgroup
and contains between one and ten individual soil series (soil types). The soil classi-
fication is based on predominant pedogenic characteristics, observed at a density of
2–3 per km2. This information is catalogued as a set of descriptive features obtained
by surveyors from auger bores. The information is spatially exhaustive with over
150,000 observations across the area and it is therefore an essential source of infor-
mation on the spatial variability of soil and can be linked to specific soil properties
via the soil series.

Much of the current demand is for quantitative rather than categorical informa-
tion on the spatial variation of soil properties. This is partially model driven as soil
information is used as inputs into environmental, climatic or agronomic models.
This type of data is more expensive to obtain as laboratory analysis is required and
therefore national data coverage tends to be patchy and scarce. In the National Soil
Map, for instance, there are 6,000 observations that contain quantitative information
like particle size distribution, bulk density and organic carbon.

There are disadvantages to using either form of data. Uncertainty is intro-
duced when categorical data is converted to quantitative forms using generic soil
properties associated to soil series. It is not certain, for instance, that a given
value is the best estimate for that soil property in that series. On the hand, the
sparse coverage of quantitative observations could introduce considerable spatial
uncertainty.

In this paper, we report on an exploratory study in which we predict soil prop-
erties required for a related project in which they will be introduced to a biomass
model (Yield-SAFE; van der Werf et al., 2007) from both forms of information.
We obtain these predictions by modelling their relationship with a set of covariates
for which we have exhaustive information, such as small scale soil maps, geol-
ogy, a digital terrain model, climate data and landscape position. The basis of this
approach is the “soil-landscape” paradigm, in which the spatial variation of soils
can be expressed as a function of the underlying rocks, landforms, and vegetation
patterns (Hudson, 1992).

The objective was therefore to explore and compare different methods for gen-
erating continuous primary soil property surfaces based on data typically that are



16 Two Methods for Using Legacy Data in Digital Soil Mapping 193

available at a national level. In order to predict the input variables required by the
crop model, continuous surfaces for sand, silt, clay, bulk density, organic carbon and
soil depth are required.

16.2 Material and Methods

Two approaches to digital soil mapping were taken: (i) using measured soil prop-
erty data and (ii) using generic values of the soil property linked to soil classes. A
10 km × 10 km test area was selected which contained the highest number of mea-
sured soil property data available, and thus providing the best possible conditions
for modelling the spatial distribution of primary soil property data using laboratory
measurements. This was also one of the few areas for which a detailed soil map
exists (1:25,000), and the map was used as a benchmark for comparing the output
from the two approaches.

16.2.1 Study Area

The 10 km × 10 km test was identified. Situated in the county of Warwickshire, it
contains the 1:25,000 Stratford-upon-Avon (SP25) map sheet which contains the
largest number of representative profiles (39 profiles). This detailed soil map and
associated data cover 100 km2 in the Avon valley, a tributary of the river Severn in
the SW Midlands of England. The whole area is low lying, generally between 40 and
100 m above Ordnance Datum and underlain by soft argillaceous sediments, mainly
Jurassic and Triassic mudstones and clay shales. Locally some soils are formed in
superficial deposits; alluvium and gravel river terraces of the Avon; and extensive
spreads of glacial till. The majority of soils are slowly permeable and clay rich,
developed either in solid rocks (Whimple and Worcester series in Triassic mud-
stones and Evesham and Denchworth in Jurassic Lias clays) or glacial till (Salop
and Flint series). Permeable, well drained soils are restricted to the dissected patches
of gravel river terraces (Wick series) or narrow outcrops of Lias Limestone (Haselor
series) that form narrow ridges in the clay vales.

16.2.2 Digital and Field Data

16.2.2.1 Covariates

A wide range of variables were collated for the test area, including small scale
soil maps, geology, digital terrain model, climate data and landscape position. The
digital terrain model was processed using the LandMapR software (LandMapper
Environmental Solutions Inc.) taking care to provide realistic critical upslope area
for stream initiation based on existing river network coverage. In total, 54 covariates
were assembled. Both the training data as well as the model implementation was
undertaken by attaching all covariates to a point file centred on the 20 m grid of the
digital terrain model (DTM).
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16.2.2.2 Training Data

Quantitative data were obtained from representative profiles, which are sites where
soil pits had been dug to characterise the soil (39 profiles). For these profiles, the
descriptions are more detailed than the auger bores and laboratory analysis of soil
samples on sand, silt and clay contents, pH, CaCO3, organic carbon or loss on igni-
tion, and in some cases (4 profiles) nitrogen, CEC, exchangeable cations (K, Na,
Ca, Mg) and extractable Fe and Al. Undisturbed cores (222 cm3) were collected in
triplicate from each soil horizon in the soil pit and laboratory analysis of these cores,
using sand suction baths and pressure membrane apparatus, provided data on bulk
and packing density, total pore space, and retained (at 5 kPa suction) and available
water (between 5 and 1,500 kPa) capacities. For the test area, 39 sites had analytical
information on sand, silt, clay, organic carbon as well as soil depth information from
the profile descriptions. Bulk density data were available for 15 sites.

Auger bore descriptions were recorded in the field by the soil surveyors. The
information was recorded on RUFF cards and later transferred into the Land Infor-
mation System (LandIS). The records hold information on the location and profile
descriptions including the soil series identified by the surveyor. The standard terms
used to describe soil profile characteristics are defined in the Soil Survey Field
Handbook (Hodgson, 1997). These terms include the colour, particle-size class,
stoniness, soil structure, consistence, porosity and roots in each horizon. For the
test area, no auger bore descriptions were available electronically and the approach
relied on auger bores outside the study area but within the same physiographic
domains. In total, 14,936 observations were available.

16.2.3 Inference Approaches

Spatial estimates of sand, silt, clay, bulk density, organic carbon and soil depth were
obtained using two inference approaches: one based on quantitative data using gen-
eralized linear modelling, the direct approach, and a second based on the qualitative
soil series identification within the auger bore descriptions using Bayesian belief
networks, the indirect approach. In each method, the predictors were the set of 54
covariates described earlier.

16.2.3.1 Generalized Linear Models, the Direct Approach

A generalized linear model was created to obtain predictions of soil properties at non
measured locations. The advantage of using a GZLM is that it does not require nor-
mally distributed dependant variables. The model was developed using the covari-
ates as independent variables and the soil properties at dependent variables. Model
dimensionality was reduced to 26 as there was a degree of colinearity between
some of the predictor variables. Those variables with more than two significant
(p < 0.05) pair-wise correlations were not included in the analysis. The model
used was:
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y =
n∑

i=1

βi xi + ε,

where xi is the i th covariate used to predict the soil property, y and ε is the error.
The analysis was carried out using functions in the R software (R Development
Core Team, 2005). The GZLM was fitted using an inverse Gamma link function and
Gamma error distribution and this gave the best fit to the data. Predicted values were
obtained for silt, clay and organic carbon on a 50 m grid for the test area. The sand
predictions were made by subtracting the sum of the clay and silt predictions from
100% so that these variables were consistent. Sand was chosen to be estimated this
way as it appeared to be the most difficult to predict using a GZLM.

16.2.3.2 Belief Networks, the Indirect Approach

We developed a set of Bayesian Belief Networks to predict soil series using all
54 predictor variables in NETICATM (NORSYS Software Corp). From these soil
series, in combination with associated modal soil property values, we generated a
set of continuous soil property surfaces for sand, silt, clay and organic carbon. In
this approach, soil properties were calculated using weighted probability values, an
approach proposed by Zhu et al. (2006), which couples the raster representation in
the spatial domain with the probability representation in the attribute domain. For
this study, the five highest probabilities were selected in order to remove contribu-
tions from entities with very small probability values.

NETICA uses Bayesian Belief Networks and influence diagrams, and provides
a methodology for representing relationships between positions or variables, even
if the relationships involve uncertainty, unpredictability or imprecision. The algo-
rithms used are described in Spiegelhalter et al. (1993) and Neapolitan (1990). We
used forward stepwise selection in this study to reduce the dimensionality of the
covariates.

Vi j =

n∑

k=1
Sk

i j V k

n∑

k=1
Sk

i j

(16.1)

Where Vij is the predicted soil property value at location (i, j), Sk
i, j is the fuzzy

membership value in soil type k for the soil at the given location, and V k is the
typical soil property value for soil type k (Zhu et al., 2006).

16.3 Results

This digital soil mapping study relied entirely on legacy data. Due to the number
and distribution of the legacy data, a direct comparison of both methods was not
possible, so we present a feasibility study of the two approaches. With legacy data,
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Clay Content %
# Error
# 0 - 5
# 5 - 10
# 10 - 15
# 15 - 20
# 20 - 25
# 25 - 30
# 30 - 35
# 35 - 40
# 40 - 45
# 45 - 50
# 50 - 55
# 55 - 60
# Error

Fig. 16.1 Clay content (%) predictions using GZLM

the quality of the inference depends largely on the amount and spatial distribution
of the raw data as it determines the feature space in which the model is valid. In
the subsequent sections, we present and discuss the results for all predictions (sand,
silt, clay and carbon) but supply figures of the predictions of clay and carbon only
as examples of the predictive output (Figs. 16.1, 16.2, 16.3, 16.4, 16.5, and 16.6).
The interest in the related study was for information over the soil profile; inputs are
therefore weighted averages over the soil profiles.

16.3.1 Generalized Linear Models, the Direct Approach

The GZLM was fitted to the 39 observations using 24 variables for each of the soil
properties silt, clay and carbon – of those variables, 10 made a significant (p < 0.05)
contribution to the predictions for silt, 16 for clay and 3 for carbon. Sand could not
be predicted using a GZLM as none of the variables made a significant contribution
to the model. In Table 16.1 the goodness of fit of the model is presented as well as
the prediction error for clay, silt and carbon. The GZLM modelling performs better
for silt and clay than for soil organic carbon.

The results for the predictions of clay and carbon for a 50 m grid are presented
in Figs. 16.1 and 16.2. Within the test area, there were values of the predictor vari-
ables that exceeded the range observed in the dataset of predictors used to formulate
the model. In these cases we have reported this as no predictions (white) or where
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Fig. 16.2 Organic carbon content (%) predictions using GZLM

predicted values of clay were less than 0% or exceeded 60% (grey). For soil organic
carbon, values identified as grey were those outside of the observed range in the
test dataset (0–8%). These predictions were not possible as combinations of the
variables were not present in the dataset on which the model was developed.

Fig. 16.3 Clay content (%) predictions using Bayesian belief networks
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Fig. 16.4 Organic carbon content (%) predictions using Bayesian belief networks

16.3.2 Belief Networks, the Indirect Approach

The maximum membership model produced reasonably good performance mea-
sures compared to the two statistical models. The two statistical models (terrain-
based and membership based) used all field points in the model development, which
means that the error measures (or performance measures) are those of model devel-
opment and not those of model validation. The maximum membership model only
used one field sample per soil series (the sample with the maximum membership in
that series) for model development. In addition, the performance measures for the
maximum membership model are those of model validation (that is, only the field

Fig. 16.5 Nominal clay
content (%) for every map
symbol from the detailed
(1:25,000) soil maps

Clay content %
5 - 10
10 - 15
15 - 20
20 - 25
25 - 30
30 - 35
35 - 40
40 - 45
45 - 50
50 - 55
55 - 60
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Fig. 16.6 Nominal organic
carbon content (%) for every
map symbol from the detailed
(1:25,000) soil maps

Carbon content %
0.00 - 0.44
0.44 - 0.88
0.88 - 1.32
1.32 - 1.76
1.76 - 2.20

Table 16.1 Summary of the goodness of fit of the GLZM and associated prediction error. In this
case clay, silt and carbon were predicted. Note that the error of the predicted values was a factor of
ten larger for the carbon model than for the silt and clay models

Variable ME MSE RMSE

Silt 0.0006 0.0002 0.01
Clay 0.0009 0.0002 0.01
Soil organic carbon 0.0004 0.03 0.17

Mean error = predicted − observed
MSE = (predicted − observed)2/N = average ((predicted − observed)2)

RMSE = sqroot (MSE)

samples not used in the model development, were used to compute the performance
measures). In this sense the maximum membership model may have out performed
both regression models (Zhu et al., 2006).

16.4 Discussion

A limitation of any model development is that the training dataset must contain and
represent the full range of variation in the landscape (feature space) that exists in
the area over which predictions are needed (see Section 6.1). This limitation was
evident for the GZLM approach, which is a function of the sparse data on which
this model was built. The problem was not presented with the Bayesian network
as it was based on considerably more data. It illustrates a consistent problem with
some of the more parametric techniques such as GZLM in that they are generally
less capable of dealing with missing or sparse data and may therefore not be the
most appropriate techniques for this type of exercise. We could have considered
alternative approaches such as cokriging (Webster and Oliver, 2007) or more com-
plicated mixed modelling approaches that consider the spatial autocorrelation struc-
ture present in the data. These approaches require, however, a larger number of data
points (in excess of 100 according to the same paper) than was available in this area.
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In Figs. 16.5 and 16.6 we present the detailed soil maps for the test area in
which we have carbon and clay estimates for each polygon. These are our best
estimates of the spatial variation in carbon and clay content. It shows that there is
very little agreement between observed and predicted values obtained from either
method. The GZLM approach, where predictions are available, provided a poor
reproduction of the spatial patterns. The Bayesian Belief networks were more suc-
cessful in reproducing some of the spatial features (Figs. 16.3 and 16.4). However,
this method tended to underestimate larger clay content and over estimate carbon
content. It is not surprising that the predictions from Bayesian Belief networks con-
form better to a landscape described by the detailed soil maps as this information
is included in the Bayesian inference process in the form of a coarser set of soil
associations. That is not the case for GZLM where the output does not adhere to soil
boundaries.

Interpretation of validation statistics is equally fraught as there is no independent
validation data. A comparison of Tables 16.1 and 16.2 suggests that the GZLM
approach is much more precise than the Bayesian Belief networks. This finding is a
function of the fact that they measure two different things: In the case of the GZLM,
the validation is obtained at the point observations at which the model is formulated.
The error reported in this table represents model error, or the uncertainty introduced
by the model itself relative to the point observations. It is not a measure of the
spatial accuracy of model performance. In the case of Bayesian Belief networks,
these predict a soil class, to which a generic soil property value is associated. The
error reported in Table 16.2 is therefore a composite error of model formulation,
misclassification and the uncertainty introduced by using a generic value which may
not be an accurate estimate of the mean value for that series.

There is also an associated divergence of support between predicted and observed
and that introduces errors in the validation process. The independent, observed
primary properties represent point observations whereas those predicted by the
Bayesian model represent a mean value for a soil series. Validation is obtained
by comparing these to the generic values associated to the soil series. The current
validation approach is therefore misleading as it is unlikely that these generic values
are robust independent estimates of the class mean. This divergence in support can
be addressed using conditional simulations to obtain estimates at a coarser scale

Table 16.2 Summary of the goodness of fit of the Bayesian Belief Network and associated predic-
tion error. In this case sand, silt, clay, bulk density and carbon were predicted

Variable ME MSE RMSE

Sand 2.67 594.50 24.38
Silt 2.57 86.57 9.30
Clay −2.89 185.50 13.61
Bulk density 0.074 0.038 0.20
Carbon 0.73 1.04 1.02

Mean error = predicted − observed
MSE = (predicted − observed)2/N = average ((predicted − observed)2)

RMSE = sqroot (MSE)
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(e.g. incorporating a block kriging step). The disadvantage of this approach, how-
ever, is that this assumes stationarity across the area, which may not be the case. We
expect discontinuities between soil series and the variation in the primary soil prop-
erties will not be similar across all soil series. Stratification by landscape attributes
coupled to sequential indicator simulation, may resolve units that can effectively
be viewed as stationary and the primary property values can then be estimated
within these. Although computationally complex, the approach could be considered
in future endeavours.

It was beyond the scope of this study to compare a comprehensive suit of infer-
ence approaches. We used a Generalized Linear Model approach which does not
consider any spatial correlation between observations. The model is not so widely
used in digital soil mapping since it is not spatial and comparison with other tech-
niques like regression-kriging would be of interest for future studies. For the indirect
approach, comparison with alternatives such as extrapolation methods developed by
Lagacherie et al. (2001) may be of interest.

There are also practical issues associated with legacy data that we encountered
in this project. For instance, the geographic position of auger bores is generally
recorded only to the nearest 100 m as no Global Positioning System was available
at that time and surveyors generally paced their distances from reference points
and were sampled to support a soil survey programme. A digital soil mapping
programme requires a different sampling strategy which would be driven more
by sampling the feature space than finding the extent or characterising individ-
ual soil polygons (see Section 6.3). Auger bores are also often sampled to repre-
sent the entire spectrum of a soil series rather than to obtain a central or mean
description of that series. This can introduce considerable confusion when there
are transition zones. We also encountered well known issues associated to using a
DTM such as artefacts observed in the 2nd derivatives and divergencies in scale
between that of the DTM and the scale at which the predictions were made. Finally,
the absence of a particular type of glacial geology (drift) as another covariate
meant that that we lacked an important driver of soil formation (Equation (14.1) in
Chapter 14).

16.5 Conclusions

This paper compared two methods and illustrated some of the pitfalls associated
when using legacy data for digital soil mapping. We found that parametric meth-
ods can be limiting when the input data is scarce and their sampling was not
designed to cover the existing feature space. This study suggests that more gen-
eralist approaches such as Bayesian Belief networks might be more appropriate but
due to the limitations of this study we were not able to do a rigorous compari-
son. This study does illustrate, however, that with legacy data, careful consideration
has to be given to the merits of different inference approaches before selecting any
given one.



202 T. Mayr et al.

Acknowledgments We wish acknowledge the European Joint Research Centre (JRC) for provid-
ing the funding for this project (Contract Number 382468 F1SC).

References

Bui, E.N., and Moran, C.J., 2001. Disaggregation of polygons of surficial geology and soil maps
using spatial modelling and legacy data. Geoderma 103:79–94.

Bui, E.N., and Moran, C.J., 2003. A strategy to fill gaps in soil survey over large spatial extents:
an example from the Murray-Darling basin of Australia. Geoderma, 111:21–44.

Hodgson, J.M., 1997. Soil Survey Field Handbook, 3rd ed. Technical Monograph No. 5. Soil Sur-
vey and Land Research Centre, Silsoe.

Hudson, B., 1992. The soil survey as a paradigm-based science. Soil Science Society of America
Journal 56:836–841.

Lagacherie, P., Robbez-Masson, J.M., Nguyen-The, N., and Barthes, J.P., 2001. Mapping of refer-
ence area representativity using a mathematical soilscape distance. Geoderma 101(3):105–118.

McBratney, A.B., Mendonca Santos, M.L., and Minasny, B., 2003. On digital soil mapping. Geo-
derma 117:3–52.

Neapolitan, R.E., 1990. Probability Reasoning in Expert Systems: Theory and Algorithms. John
Wiley & Sons, New York.

van der Werf, W., Keesman, K., Burgess, P.J., Graves, A.R., Pilbeam, D, Incoll, L.D, Metselaar,
K., Mayus, M., Stappers, R., van Keulen, H., Palma, J., and Dupraz, C., 2007. Yield-SAFE:
a parameter-sparse process-based dynamic model for predicting resource capture, growth and
production in agroforestry systems. Ecological Engineering 29:419–433.

R Development Core Team 2005. R: A language and environment for statistical computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-
project.org (Last accessed 21 April 2010).

Spiegelhalter, D., Dawid, A.P., Lauritzen, S.L., and Cowell, R.G., 1993. Bayesian analysis in expert
systems. Statistical Science 8(3):219–283.

Webster, R., and Oliver, M.A., 2007. Geostatistics for Environmental Scientists, 2nd edin. Wiley
and Sons Ltd., New York, NY.

Zhu, A.X., Moore, A., and Burt, J.E., 2006. Prediction of soil Properties Using Fuzzy Membership.
2nd Global Workshop on Digital Soil Mapping, Rio de Janeiro, Brazil 4 to 7 July 2006.



Part III
Environmental Application

and Assessment



Chapter 17
Mapping Heavy Metal Content in Soils with
Multi-Kernel SVR and LiDAR Derived Data

Cristiano Ballabio and Roberto Comolli

Abstract Support vector regression (SVR) is a powerful machine learning tech-
nique in the framework of the statistical learning theory; while Kriging is a
well-established prediction method traditionally used in the spatial statistics field.
However, the two techniques share the same background of reproducing kernel
Hilbert space (RKHS).

SVR has recently shown promising performance in different spatial mapping
tasks. In the present work, the problem of spatial data mapping is addressed using a
multi-scale SVR (MS-SVR) approach. This can be considered as a multi-resolution
analysis of the observed process. The multi-scale SVR approach is particularly
attractive for its capability to deal, at the same time, with the nonlinear regression of
the dependent variable on auxiliary variables and with the spatial interpolation. This
capability makes the MS-SVR an optimal choice for automatic mapping system.

In the present work MS-SVR was applied to soil heavy metal content mapping, in
a study area site in the Italian Alps. The area complex landscape, modelled by both
glacial and karsts phenomena, along with an heterogeneous nature of the parent
material, makes the mapping of heavy metal content a difficult task to approach
with linear regression or mixed geostatistical techniques.

The result obtained outlines the Multi-scale SVR as a powerful technique for
general inference and automatic mapping, with the only constraint of the require-
ment of a multi-parameter optimization.

Keywords Support vector regression · Multi-scale modelling · LiDAR · Heavy
metals
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17.1 Introduction

Geostatistics is widely used to predict soil properties. This is usually approached
using Ordinary Kriging (OK), or Regression Kriging (RK) if suitable spatial covari-
ates are available.

Although kriging estimation is known to be a Best Linear Unbiased Estimator
(BLUE), the quality of the OK interpolation is usually strongly dependant on the
analysis and the modeling of the spatial correlation variable; moreover, kriging is
subject to several requirements: intrinsic stationarity and a number of observations
large enough to estimate the variogram. If any of the assumptions of OK does not
hold, the outcome of OK might be suboptimal (Cressie, 1993). RK tries to overcome
some of these shortcomings by detrending the data with linear regression, but this
leads to further assumptions about the relation between the studied property and the
spatial covariates.

Despite these limitations, OK and RK are usually the best choice for spatial inter-
polation and both produce high quality results in term of accuracy and precision.
However, when the dataset is sparse, and the relation with spatial covariates is not
linear, RK is usually not feasible.

Dealing with noisy and sparse datasets is common in some fields of machine
learning (i.e., image recognition), and several techniques were developed to gather
information from this kind of data. One of the most promising approaches is the
Support Vector Regression (SVR). SVR is a nonparametric technique, based on
Structural Risk Minimization (SRM), which has shown promising performances in
regression based digital soil mapping (Ballabio, 2009). SRM approaches the prob-
lem of model optimization, minimizing both the error and the model complexity.
This makes it possible to achieve a good balance between bias and error.

In this work we propose an approach to soil properties mapping based on Multi-
Scale SVR (MS-SVR), which can overcome most of the limitations of the SVR in
mapping tasks, by using multiple basis expansion.

17.2 Materials and Methods

17.2.1 Study Area

The case considers an area of about 2 km2 located in the Italian Central Alps, along
the San Giacomo Valley, by the side of the artificial lake created by the Isola dam
on the Liro Torrent (Fig. 17.1). The valley follows an almost N-S-striking tectonic
lineament, parallel to the main geomorphologic feature, the Andossi high-plain. The
Andossi area is a high-plain 2,000 m a.s.l., whose substrate is composed by a two
different metamorphic units: a marble-dolomite unit, spanning the entire study area,
and an altered schist formation intercalating the marble unit in the southern part of
the area. In the same area a “cornieule” (vacuolar dolomitic rocks) alternates with
the marble.
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Fig. 17.1 Overlaid on the hill-shaded relief map of the upper Valchiavenna, the area delimited
by the dark grey outline corresponds to the study area. The figure in the bottom-right corner of
the larger picture depicts the position of the Valchiavenna (light grey square), across the Italian-
Swiss border

The area has a complex geomorphology due to a polycyclic evolution. It is pos-
sible to identify two different kinds of geomorphologic processes that shaped the
landscape of the area: a karst phase, acting during a tropical interglacial period
(Messinian), and multiple glacial phases. The outcome of these processes is clearly
evidenced by the presence of large complex dolines in the southern part of the area
and by an extensive till cover in the northern-western part of the study area.

The area is a meadowland, used as a pasture during the summer season since
historical times. Most of the area was deforested approximately 3,000 years ago, as
a forest and shrub cover was documented before this period.

Cambisols and Podzols and a wide range of intergrades (WRB) occur in the
area. Leptosols are most common on the steepest slopes. Cambisols and Podzols
present in the area have a sandy to sandy-loam texture, a high content of organic
carbon (OC) (up to 300 g kg−1 in the O horizons) and a low degree of stoniness.
Podzol occurrence is likely to be related to the Holocene Climate Optimum and the
presence of coniferous cover in the area.
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17.2.2 Digital Data

A high resolution digital elevation model (DEM) of the area was obtained from a
Light Detection and Ranging LiDAR survey. LiDAR is a technique able to capture
high density points and high accuracy digital elevation data. LiDAR uses a pulse
laser to determine distance between the sensor and the target. For terrain mapping
purposes, an airborne LiDAR system is typically composed of the laser-sensor sys-
tem, an inertial navigation system, and a differential GPS; a multiband optical sensor
may also be present to gather high resolution ground images. LiDAR data allow the
derivation of high accuracy and high resolution DEMs, with a minimum vertical
Root Mean Square Error (RMSE) close to 15 cm in optimal conditions (Hodgson
and Bresnahan, 2004).

Digital Elevation Models (DEM) have become very popular in the last two
decades to describe the topographic surface and model relationships between differ-
ent components of the landscape. DEMs can be produced in a number of different
ways, most of them by direct field measurements of elevations at specific locations
or by photogrammetry. LiDAR surveys are the current “state of the art” technique
for DEM reconstruction.

LiDAR data were obtained from an airborne survey which was performed at
the beginning of November 2004. The data were collected using an Optech 3100
ALTM with a nominal frequency of 105 laser pulses s−1 with an elevation RMSE
of less than 45 cm. The on-field pixel resolution of the DEM is sub-metrical, but
for practical purposes the obtained DEM was resampled to a 2-m pixel scale which
corresponds to an appropriate scale for the terrain features present in the area. The
effect of DEM scale in mapping is discussed in Chapter 5.

Along with LiDAR data, a set of high resolution images were collected using
an Optech 4K02 ALTM camera. These images are a pseudo-RBG color compos-
ite, with a spectra shifted between near-infrared and green and a ground resolution
of 25 cm. Despite the few bands available, the spatial resolution of these images
makes it possible to use pattern-based techniques for segmentation and classification
(Lucieer and Stein, 2005). The segmentation was performed using an IDL language
script within the ENVI software environment. Land cover was classified into 8
classes using a supervised procedure similar to the one described in Section 10.2.4,
the resulting map was included in the analysis along with DEM-derived maps. The
resulting map of vegetation cover classes provides useful additional information for
the mapping procedure (as also shown in Fig. 10.5).

The DEM-derived descriptors were:

• altitude,
• slope (Zevenbergen and Thorne, 1987) and its 1st and 2nd directional derivatives,
• Compound Terrain Index (CTI) (McKenzie and Ryan, 1999),
• Seasonal solar radiation (Dubayah and Rich, 1995),
• RUSLE “LS” factor (Van Remortel et al., 2001),
• Sediment Transport Index (STI) (De Roo, 1997).

These topographic descriptors were derived by using the routines implemented
in the SAGA GIS software.
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17.2.3 Field Data

Within the study area 140 soil samples were collected with a stratified ran-
dom sampling scheme. Heavy metal content was measured by atomic absorp-
tion spectroscopy (AAS) after samples dissolution with aqua regia. The spatial
distribution of each element was studied, but Cu proved to have the most spa-
tially structured distribution and for this reason was chosen for this investigation.
The Cu content in these soils is likely to be related exclusively to the nature of
the parent material, as well as to the pedogenetic processes active in the area.
The range of concentrations of Cu and several other elements (ppm) is shown in
Table 17.1.

Table 17.1 Concentration range of some elements in the sampled soils

Cu (ppm) Cr (ppm) Ni (ppm) Zn (ppm) Mn (ppm)

Min 3.28 2.07 N.d. N.d. 30.69
Mean 36.27 16.35 28.26 35.40 324.67
Max 95.62 46.10 72.44 424.92 4, 667.67

N.d. = not detected.

17.2.4 Inference Models

Support Vector Regression (SVR) approximates a non-linear system with input
x ∈ Rp and output y ∈ R, as f (x) = 〈w,�(x)〉 + b; where �(x) is a map-
ping function from data space into feature space specified by a kernel function
k(x, x′) = 〈

�(x),�(x ′)
〉
.

The kernel function is based on the dot product of feature vectors, which in the
linear forms can be expressed as

〈
x, x′〉 = X T X ′ = ∑n

i=1 xi x ′
i . The kernel function

is analogous to a covariance function, and the aim of the kernel projection is to
transform non-linear data from a Rp space into linear data in a Rn space.

The SVR training produces a solution as f (x) = ∑N
n=1 αnk(xn, x) + b where

the coefficients α equal to 0 are the Support Vectors (SV) all of which define the
training model.

Usually the Structural Risk Minimization (SRM) is achieved by and minimizing:

R = 1
2 ||w||2 +C

l∑

i=1
|y − (w, xi )|ε where ||w||2 is the Euclidean norm, and the sec-

ond term in the equation bounds the complexity of the model (Drucker et al., 1997).
Under specific assumptions SVR and ordinary kriging are mathematically equiv-

alent (Wensen and Yanguang, 2006).
The critical point in the SVR is the choice of the kernel function, which is

user defined and whose choice influences the fitting of the model. The most
common non-linear kernel function is the Gaussian Radial Basis (GRB): k(xi , x j ) =
exp(−σ ||xi − x j ||2), which provides a good degree of generalization.

However, all single kernels suffer a shared problem: the model cannot globally
fit the system if regions with different data trends are present.
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This issue is especially felt when dealing with spatial data, since the typical scale
dependence of the feature space derived from the covariates is usually different from
the one deriving from the geographical space distribution.

To overcome this issue a Multi-Kernel SVR was proposed which utilizes a set
of kernels sharing the same function, but spanning the feature space at different
resolutions, thus the definition of “Multi-Scale SVR”. This approach yields a more
complex solution in which more than one kernel is used for the projection: f (x) =∑M

m=1
∑N

n=1 αnk(xn, x) + b.
The main drawback of the approach is further complication of the training

(finding the M × N coefficients). This approach is easily implemented as each
linear positive definite combination of kernels, is itself a regular kernel. On the
other side, it is not known beforehand, which combination of kernels is optimal.
To solve this problem is it possible to use a sequential training on the residu-
als; a single kernel is used to achieve a coarse approximation of the data, then
other kernels are used to, sequentially, approximate the residuals of the fitted
model.

This approach and can be implemented using a semiparametric Support Vector
Machine (SVM) (Smola et al., 1998). The semiparametric SVM approach decom-
poses the function into two parts: f (x) = 〈w,�(x)〉 + ∑n

i=1 βiφi (xi ), where the
second term expresses the previous knowledge about the model. In this way it is
possible to update the model with the information previously collected by other
kernels.

In this work the MS-SVR was performed using the Lib-SVM (Chang and
Lin, 2001) and the R package kernlab (Karatzoglou et al., 2004), while we devel-
oped our own testing and kernel combination algorithms.

17.3 Results

17.3.1 Results from Model

The MS-SVR outperformed both single kernel SVR and regression-kriging (see also
Chapter 22) for most of the mapped elements. Figure 17.2 compares the prediction
of soil’s Cu content obtained from different models with the actual data; in this case
the MS-SVR appears to produce far less dispersed values than the other models.

This is not surprising since MS-SVR implements a non-parametric regression
approach for both the covariates and the spatial component of the data, while the
linear model limits the performance of RK and the single kernel of SVR is clearly
suboptimal for this kind of environment.

While it is still possible to use non-parametric regression in the RK procedure,
this can lead to unpredictable results, because the stationarity is usually not assured.
On the other hand MS-SVR eschews this issue, not requiring any particular data
distribution.
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Fig. 17.2 Predicted/observed plot for single kernel SVR, RK and MS-SVR. The dark grey band
represents the 0.95 confidence interval for the regression line (solid line)

There is a little difference between SVR and RK performance in the prediction
of the Cu content is soils, but RK performs slightly better than single kernel SVR
(Fig. 17.2).

Anyway, the result of single kernel SVR, shows an interesting property: regard-
less of the relative complexity of the prediction, the outcome is based only on a
limited number of support vectors (between 8 and 28). Despite the simplicity of
the model, the performance of single kernel SVR is very similar to that of the RK.
This strongly suggests a relatively simple underlying physical model, although not
a linear one.

As shown in Fig. 17.3, the residuals of MS-SVR are less dispersed than those of
RK or SVR. In particular SVR tends to produce a more “depressed” shape of the
distribution around zero; this feature is due to the choice of the loss function of the
SVR model, which weights the data pairs falling outside the region defined by SV
in model optimization.
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Although MS-SVR residuals are less dispersed than those from RK, the model
seems to perform slightly worse on outliers (Fig. 17.3), as few residuals with
extreme values (± 40) are present; this is hardly a model issue, as these extreme
values appear as outliers in each model. MS-SVR seems to favour a low residual
mean, sacrificing some extreme value.

17.3.2 Model Validation

To assess model accuracy, a bootstrapped “leave one out” (LOO) procedure was
used. The LOO procedure recursively trains the model on all, but one, observations.
Then the performance of the model is tested by comparing the missing observation
and its predicted value. The procedure is then repeated for all the available obser-
vations. Although usually “overoptimistic” for real model validation, due the high
ratio between the number of observations used to train the model and the single
observation used for testing it, LOO was chosen because of the small size of the
dataset. Moreover, the aim of the evaluation was to compare different models, so the
overoptimistic outcome of the LOO is likely to affect each model in equal measure.

A bootstrap procedure was used for the LOO error estimation to improve the
reliability of error measurement, thus the procedure was repeated 100 times for each
of the observations. This stabilizes the error, since the MS-SVR hyper-parameters
optimization procedure can sometime lead to slightly different results.

As shown in Table 17.2, MS-SVR is usually a better predictor of Cu content.
Although, in this instance, the values of R2 and RMSE shown are somewhat deceiv-
ing; as MS-SVR performs worse than the other models on extreme values.

More information could be gathered from the distribution of studentized resid-
uals: As shown in Fig. 17.3 and Table 17.2, the distribution of residuals from MS-
SVR is less dispersed than that of the other models, but this feature comes at the
expense of some skewness of the residuals. This is probably due to the re-tuning of
the weights βm−1 = {βo , . . . , βm−1} of the parametric part.

Table 17.3 depicts the performance of the model when validated in a more real-
istic way. In this case the data set was randomly subdivided into training and testing
sets with a ratio of two to three (3-fold cross validation). There is a general decrease
in the performance of the models with 3-fold cross validations compared to the LOO
procedure. However, in this situation the model is fitted on a suboptimal sample, thus
limiting the prediction capabilities of any statistical model.

Table 17.2 Summary of statistics obtained from model comparison with the LOO procedure

Prediction Residuals

R2 RMSE Mean Std Kurtosis Skewness

SVR 0.47 12.30 0.059 14.36 1.51 0.29
RK 0.45 14.50 0.027 14.63 1.69 0.36
MS-SVR 0.66 10.50 0.024 10.55 3.90 0.74
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Table 17.3 Summary of
statistics obtained from
model comparison
performing a cross-validation
on 1/3 of the samples (3-fold
cross validation)

Prediction

R2 RMSE

SVR 0.30 19.07
RK 0.29 18.08
MS-SVR 0.50 11.77

17.4 Discussion

Given its landscape complexity, the area was clearly undersampled. Therefore, the
suboptimal performance of RK is probably due to the small number of observa-
tions available. On the other hand, SVR is known to perform very well on sparse
datasets (Cherkassky and Mullier, 2007; Meyer et al., 2003; van der Walt and
Barnard, 2006). So the superior performance of MS-SVR could be due to the par-
ticular structure of the analyzed data. Nevertheless, on simulated random fields, this
performance difference is still present, albeit to a lesser degree.

The MS-SVR has been widely utilized for image segmentation, signal decom-
position and gene analysis. Several algorithms were developed in the last year to
simplify the optimization procedure (Bi et al., 2004; Sonnenburg et al., 2006).

The main drawback of the multi-scale approach resides in computational com-
plexity. Each kernel increases the number of variables to optimize, as well as the
number of hyper-parameters to be tuned. Anyway, the use of two or three kernels
usually leads to very good results, thus limiting model complexity. For example,
the MS-SVR outcome shown in Fig. 17.4 is obtained using a combination of two
Gaussian kernels.

There are several optimization strategies available to try to lessen these shortcom-
ings and the optimization of SVR is a very active field of research in the machine
learning community.

Figure 17.4 shows the distribution of Cu content in the soil as predicted by the
best performing MS-SVR model. The studentised residuals shown as a percent of
the total value are plotted as bars over the map in correspondence of the sampling
sites.

The prediction obtained from the model for the spatial distribution of the Cu
content seems to reflect what is known about Cu chemistry in soils and the lithology
of the area (Fig. 17.4).

In the northwest part of the study area, where an extensive cover of glacial till
is present, the concentration of Cu is minimal; this is probably due to the relatively
recent deposition of this material, as well as its chemical composition.

On the southern slopes, the presence of Cu seems to be related to the presence
of the schist substrate, as well as the redeposition of fine material due to soil ero-
sion. This is more evident in the karst area, which approximately corresponds to the
southern half of the study area.
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17.5 Conclusions

Given its superior performance, MS-SVR is a promising approach to digital soil
mapping.

Besides the quality of the results, the approach is particularly attractive for build-
ing automatic mapping systems. An automatic mapping system could be used for
environmental modeling and surveillance, in case of hazardous events. For instance,
in case of radioactive or chemical fallout, a fast mapping of the contamination in
soils is needed for emergency management. In these occurrences, timing is relevant,
and a system requiring few or no user input is especially useful, as it can be operated
without the need of an expert, as long as data from soil samples are available.

Another possible use of automatic mapping systems is in the “real-time” produc-
tion of maps for the end user querying geographic relational databases.
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In both of these potential applications the use of a semiparametric SRV approach,
both with single or multiple kernel, would make it possible to update existing well
assessed models with new data.

Moreover all SVR related methods, could be joined with other kernel based
methodologies, such as ranking, spectral clustering and kernel PCA algorithms.
As one of the major limitations shown by all the models is the poor performance
on extreme values. The implementation of kernel ranking and clustering can prove
especially useful in the identification of spatial outliers and in the stratification of
the data into more homogeneous groups, defined on the basis of the feature space
properties. Further studies will be required to assess the full capabilities of these
types of models in mapping tasks.
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Chapter 18
Mapping the CN Ratio of the Forest Litters
in Europe-Lessons for Global Digital Soil
Mapping

F. Carré, N. Jeannée, S. Casalegno, O. Lemarchand, H.I. Reuter,
and L. Montanarella

Abstract The Carbon/Nitrogen ratio (CN) of forest soils is one of the best predic-
tors for evaluating the soil functions mainly involved in climate change issues.

The CN ratio of forest litters depends generally on tree species and forest man-
agement which are local factors, but also on broader environmental factors. Thus,
the European forest litter CN ratio map is predicted using: (a) punctual CN ratio
measurements collected systematically every 16 km in European forests and ana-
lyzed according to a common European laboratory method; (b) spatially continuous
information on tree species abundance (derived from interpolation) and climate,
landform and lithology at 1 km resolution.

The spatial modeling of the CN ratio is done according to complementary
approaches: first, a classical kriging approach done on the CN ratio measurements;
and second, a neural network approach using a set of nonlinear equations on the
environmental predictors. Other multivariate geostatistical approaches were tested
but not retained for final results due to lack of correlation between environmental
factors.

Twenty percent of CN ratio measurements are kept for validation purpose. The
two approaches are compared using coefficient of determinations and Root Mean
Square Errors on the validation dataset. Surprisingly, the best approach is the classi-
cal kriging, meaning that the spatial structure and variability of CN ratio cannot be
explained by the environmental factors, which show high local variation. This leads
to a discussion of the quality of the data and to envisage possible risks for global
digital soil maps.

Keywords CN ratio · Kriging · Neural network
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18.1 Introduction

As an indicator of soil mineralization processes, the Carbon/Nitrogen (CN) ratio
of the forest soils is one of the best predictors for evaluating soil functions such
as biomass production and carbon storage capacity of forest soils. When integrated
into risk assessment, these functions can serve for modeling scenarios of soil sus-
tainability with climate change issues (gas fluxes emissions, biofuel production . . .).
For instance, for a soil having a relatively high CN ratio, the mineralization process
tends to be slower and the weak leaching of nitrogen results in a weak quantity of N
gas flux emission.

The CN ratio is very dependent on the forest species (see Section 10.3.3 for
more explanations on processes in the litter), management, and environmental fac-
tors (Burke et al., 1989) such as climate, relief, soil type and parent material. Fur-
thermore, since forest management is done locally, the CN ratio variability has
to be analyzed locally. The final objective is to model and map the local spatial
distribution of the forest soil CN ratios for the entire area of Europe based on an
European dataset. To this aim, different soil inference systems are tested (spatial
and aspatial) based on the European CN ratio database and environmental data.
In order to analyze the consistency of the data for such a large extent, a prelim-
inary data analysis is performed. Then, three complementary soil inference sys-
tems are developed and compared. The results are then discussed relative to the
dataset.

18.2 Material

18.2.1 The CN Data

There are 5,289 CN ratio measurements (see Fig. 18.1) available from the 1st For-
est Focus campaign database (the official date is 1996 but the measurements are
from 1987 up to 1995). The plot sampling and analysis are done according to the
common manual which must be followed by the Member States (UNECE, 2003).
The plots are analyzed systematically, usually every 16 km where forest exists. The
plots are described according to 5 strata: the soil litter, the topsoil horizon (0–10 cm)
and lower horizons (10–20 cm; 20–40 cm; 40–80 cm). Each strata measurement is a
composite of at least 4 soil samples about 50 m from each other. For this study, we
focus only on the litter dataset.

Out of the 5,289 measurements, 1,929 were lacking either the CN ratio infor-
mation, or the coordinates. Moreover, due to possible errors of laboratory analysis,
the 3,360 measurements were analyzed using classical statistics and an indicator of
the spatial variability (variogram cloud analysis). Twenty outliers were detected and
removed. At the end, there were only 3,340 remaining measurements of CN ratio
for the litter.
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Fig. 18.1 The sample locations of CN ratio across Europe and the location of the study subarea

18.2.2 The Environmental Dataset

In order to improve the spatial prediction of the CN ratio for the forest soil litters,
39 soil covariates which can influence the CN ratio were considered. These are:

– The 23 main abundant tree species in Europe (representing 98% of the total
number of trees) as of 1996. The tree species were punctual information for
which only 58% had correspondence with soil sample locations. They were
then transformed into raster grid cell by an Inverse Distance Weighted Inter-
polation, consistent with the European Forest species map estimation of 2004
(Casalegno, 2009). For the tree species prediction we also tried to use the FAPAR
(Fraction of Absorbed Photosynthetically Active Radiation) of Europe for the
period 1997–2000 (Gobron et al., 2006). Unfortunately, there was no correla-
tion. We prefered a bottom-up approach compared to a top-down approach for
predicting forest vegetation cover;

– Landform attributes derived from the SRTM (mean altitude, standard deviation
altitude in a 1km raster grid cell, slope, aspect, curvature and moisture index-see
Section 20.2.3 for more explanation on covariates);
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Fig. 18.2 (a) The bioclimatic map of Europe (1 km resolution); (b) the associated legend

– Principal components (see Fig. 18.2) on climatic data over the 1950–2000 period
(annual mean temperature, mean diurnal range of temperature, temperature sea-
sonality, isothermicity, annual rainfall) and on derived bioclimatic variables
(ombrothermic index, drought stress index, thermicity index, continentality);

– Mean annual evapotranspiration, cumulated evapotranspiration and box moisture
index, also derived from climatic data;

– Latitude and longitude coordinates.

All the raster grids were at the resolution of 1 km × 1 km and projected according to
the European INSPIRE standards (ETRS89 Lambert Azimuthal Equal Area).

18.3 Methods for CN Ratio Modeling and Mapping

The modeling efficiency of the CN ratio using spatially continuous covariates was
assessed on a subarea having transboundaries (Fig. 18.1 – see Central Europe),
which contain 739 CN ratio measurements. 80% of the measurements were ran-
domly selected for modeling (616 measurements) and 20% for validation (123).
Different approaches were tested and developed.

(a) The first approach simply consisted of a classical ordinary kriging approach
(Wackernagel, 1995) on the CN ratio measurements. The modeling was based
on the following equation:

CN(x0) =
∑

λi CN(xi )

Where λi are the kriging weights, CN(xi ) the measurements at location xi and
CN(x0), the prediction at location x0.

(b) The second approach was done using a neural network approach (see
Section 13.2.5.1) on the CN ratio predictors. This two-stage classification
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approach consisted of a set of nonlinear equations that predicted the CN ratio
from the soil covariate predictors in a flexible way, using 8 node layers of linear
regressions and S-shaped (1/1 + e−x ) functions. The modeling was based on the
following equation:

CN = β0 +
∑

βi Hi

with Hi = 1/(1 + e−xi ) are the node layers (hidden layer)

xi = αi,0 +
∑

αi, j
∗ p j

p1, . . . , pn are the predictors and α1, . . . , αn are the regression coefficients.

Other multivariate geostatistical approaches were tested, such as cokriging and
Min/Max Autocorrelation Factors, first using a reduction of the number of environ-
mental predictors and then a kriging with external drift on the resulting MAF factors
(Desbarats and Dimitrakopoulos, 2000). They were not retained for further analysis
due to weak correlation between CN ratio and environmental factors and high small
scale variability of the predictors.

The first approach (a) is spatial whereas the second one (b) is aspatial. For com-
paring the efficiency of the two approaches and to reach a conclusion on the need of
using spatial or aspatial approaches, the percentage of good prediction (R2 adjusted
coefficient of determination) and RMSE were computed on the validation dataset.

Final mapping was limited to the areas covered by more than 10% of forests
in Europe to get the final distribution of the CN ratios in the forest litters. For-
est occupation data was derived from the Pan European Forest/Non-Forest map
2000 (Pekkarinen et al., 2009). All maps followed the standards of the predictors
(INSPIRE resolution and projections).

18.4 Results

The three approaches are discussed and then compared.

18.4.1 The Classical Kriging Approach

The CN ratio variogram (Fig. 18.3) was obtained after a preliminary Gaussian trans-
formation to reduce the impact of data variability. The variogram shows important
small scale variability (50% of total variability), attributable to local forest man-
agement and potential measurement errors and/or inconsistencies in measurement
procedures between adjacent countries (this point will be discussed later). More-
over, there was a clear spatial structure with a range approximately equal to 250 km
(maximum distance of correlation).
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Fig. 18.3 The variogram of
Gaussian transformed CN
ratio measurements in the
subarea. Experimental points
in black, modeled variogram
in red. Statistical variance is
also displayed (black line)

Fig. 18.4 (a) Map of the CN prediction derived from classical kriging; (b) map of the standard
deviations of the kriged errors. Red rings are the validation points, Black crosses are the model-
ing points

The resulting maps of the kriging (CN ratio prediction in Fig. 18.4a) show
a smoothed CN ratio prediction as expected, increased by the modeled nugget
effect. The standard deviation error map allows for future possible sampling areas
(Fig. 18.4b).

The adjusted coefficient of determination between predicted data and measure-
ments was 0.60 and the Root Mean Square Error was 4.91 (Fig. 18.6a).

18.4.2 The Neural Network Approach

The neural network, contrary to the kriging, shows high local variability of the CN
ratios (Fig. 18.5), respecting in some parts, boundaries of tree species and relief. The
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Fig. 18.5 Map of the CN
ratio prediction derived from
the neural network approach

adjusted coefficient of determination between predicted data and measured data was
0.40 and the Root Mean Square Error was 4.85 (Fig. 18.6b).

The comparison of the two maps (Figs. 18.4a and 18.5) reveals global trends in
the CN ratios of Central Europe. The CN ratio is globally medium in this area but
high in the northern part of Croatia and the eastern French border. However, the neu-
ral network map clearly shows shapes of environmental factors, particularly land-
form, but also some round spots which represent artifacts in the prediction of tree
species. This map gives more importance to local variability than the kriged map.
Both maps are defendable from a methodological point of view. For an assessment
of the CN ratio, we would recommend the kriging method due to the reasons in the
following discussion.

Fig. 18.6 (a) Scatter plot of validation against predicted values for the ordinary kriging; (b) scatter
plot of validation against predicted values for the neural network
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18.5 Discussion

The results of both methodologies are not satisfying and should be improved for risk
assessments. Moreover, it is interesting to observe that taking into account spatial
variability of the CN ratio without considering potential predictors sometimes gives
better results than taking into account the predictors without considering spatial
trends. This could be due to four main reasons:

(a) High local variability of the CN ratio which can be modeled at 1 km resolution.
The four sampling repetitions are then not sufficient;

(b) The measurement errors due to sampling and laboratory analysis as shown by
the variogram analysis, increased by an expected lack of consistency between
sampling/analysis protocols on adjacent countries (see hereafter);

(c) The problem of Inverse Distance Weighted (IDW) interpolation of the tree
species abundances. Indeed, tree abundances show a high spatial variability, and
as a consequence, the IDW approach probably gives poor estimates of tree abun-
dances outside of data locations.

(d) The models may not be efficient enough to predict the CN ratio.

These different issues are now studied. The prediction of tree species for the year
2004 shows that regression trees on environmental predictors should be preferably
used (Casalegno et al., 2010). Concerning the study of local variability and other
model tests, they should be studied once the quality of the data has been estimated.

For that, we launched inquiries asking each Member State the final methodol-
ogy used for collecting and analyzing data. These inquiries demonstrated that each
Member State followed its own methodology, the one they traditionally used con-
cerning sampling strategy, even when common standards should be followed. Fur-
thermore, the laboratory measurements are also very dependent on the calibration of
the materials. It is then difficult to compare transboundary samples and also national
samples, since sometimes different laboratories were used for the chemical analyses.
Some work should be done on transboundary corrections of the measurements. To
this aim, the new BIOSOIL project (IES, 2008) aims to collect data from existing
and new samples in Member States and to analyze them at a central laboratory,
in order to cross-check the previous measurements and to study soil and forest
biodiversity in Europe. But, even using a central laboratory, possible errors due to
transport and instability of soil samples could be introduced.

18.6 Conclusion

The spatial predictions of the CN ratio over European forest litters was done from
CN ratio measurements across Europe and potential predictors related to climate,
relief and tree species. Climate and relief are spatially continuous information
whereas tree species have been interpolated by inverse distance weighting from
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punctual information. Two predictions were completed: one using a classical kriging
on the CN ratio measurements and another one using a neural network approach on
the environmental predictors. Both methods are quite similar and show globally the
same spatial trends (same order of magnitude of the predictions and higher values
in the southern and western parts of Central Europe). Therefore, the use of spatial
predictors is not necessary when kriging. This allows for discussing and reanalyzing
the quality of the data. A first check on data quality demonstrates that even with a
common base methodology and common criteria, errors are introduced in the mea-
surements, due mainly to cultural heritage, but also due to technical issues (material
calibration, transport and instability of the samples . . .). The issue Europe is fac-
ing is quite representative of potential problems we can face during the building
of global digital soil maps. The solution provided here for a worldwide mapping
of soil attributes with legacy data is then to deal with prior information, containing
prior metadata (when existing). Then make a first spatial prediction which allows for
identifying errors or gaps in the metadata and then make a final prediction. Rescuing
the data appears to be the most difficult problem for the final mapping. In terms of
economics, it should be necessary to check if the rescue cost is not more than cost
of getting new data.
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Chapter 19
Spatial Prediction and Uncertainty Assessment
of Soil Organic Carbon in Hebei Province, China

Yong-Cun Zhao and Xue-Zheng Shi

Abstract To quantify the spatial distribution of SOC in Hebei Province five mod-
els were compared: multiple linear regression (MLR), universal kriging (UK),
regression-kriging (RK), artificial neural network combined with kriging (ANN-
kriging), and regression tree (RT). The modelling was supported by 359 SOC den-
sity (total SOC by volume, SOCD) data points, as well as relief parameters derived
from a 100 m × 100 m resolution DEM, and NDVI calculated from NOAA AVHRR
data to map SOCD (to a depth of 1m) spatial distributions. Only 19.5% of the total
SOCD variation can be explained by MLR method, the UK method resulted in
a wider range of SOCD compared with MLR method. The UK method and RK
method explain 53 and 65% of the total variation, respectively, and the local varia-
tion of lower SOCD in the southeast of the province was detected. The ANN-kriging
and RT mapping both explained 67% of the total variation. Compared to ANN-
kriging, the RT method has lower root mean square prediction error. The sequential
indicator simulation (SIS) was applied for assessing topsoil SOCD (0–20 cm) uncer-
tainty at unsampled locations. The conditional variance of 1,000 realizations gen-
erated by SIS was greater in mountainous areas where SOCD fluctuated the most,
and the uncertainty was less on the plain area where SOCD was consistently low.
The RT model is of best performance for mapping the spatial distribution of SOCD,
and the SIS technique can quantitatively assess the local and spatial uncertainty of
SOCD being greater than a given threshold.

Keywords Soil organic carbon (SOC) · Spatial prediction · Uncertainty
assessment · Environmental correlation · Sequential indicator simulation
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19.1 Introduction

Digital mapping of soil organic carbon (SOC) has many applications including
site-specific crop management or in environmental modeling. Spatial prediction
of SOC involves uncertainties that need to be made explicitly because they can
be propagated into subsequent modelling. Existing methods for predicting the spa-
tial distribution of soil properties includes linear regression, geostatistical methods,
and advanced nonlinear regression methods such as regression trees, neural net-
work (McBratney et al., 2003). Wherever secondary attributes are used for mapping
the spatial distributions of SOC, they are most commonly sourced from DEM and
remote sensing. Several studies have illustrated the potential for utilizing exhaustive
secondary information such as terrain indices (Mueller and Pierce, 2003) or remote
sensing (Chen et al., 2000) for making more precise maps of SOC.

Arrouays et al. (1998) generated SOC predictions in temperate forest soils of
France using a simple linear regression model, and utilized the multiple linear
regression model of parent material, elevation, and slope. Cheng et al. (2004) pre-
dicted the spatial distributions of SOC in Xingguo county of China. Thompson and
Kolka (2005) developed soil-landscape models that quantify relationships between
SOC and topographic variables derived from DEMs within a 1,500-ha watershed in
eastern Kentucky, and the results showed that, despite low coefficients of correla-
tion between measured SOC and individual terrain attributes, the developed robust
linear regression models can explain up to 71% of SOC variability using three to
five terrain attributes. With respect to geostatistical methods, hybrid geostatistical
procedures that account for environmental correlation allow utilizing secondary
information that is often available at finer spatial resolution than the sampled values
of target variable. If the correlation between primary and secondary variables is
significant, hybrid techniques generally result in more accurate local predictions
than ordinary kriging or other univariate predictors (Simbahan et al., 2006). Terra
et al. (2004) determined relationships between SOC, terrain attributes, soil elec-
trical conductivity, soil texture and soil survey map units in a 9 ha coastal plain
field, and compared the ordinary kriging, co-kriging, regression kriging and mul-
tiple regression method for mapping the spatial distributions of SOC. Ping and
Dobermann (2006) evaluated the precision of ordinary kriging (OK) and regres-
sion kriging (RK) for mapping the spatial patterns of SOC in two irrigated maize
fields in Nebraska; exhaustive ancillary variables used included relative elevation,
slope, soil electrical conductivity, and remotely sensed soil surface reflectance. The
results showed that the relative improvement of RK techniques over OK largely
depended on the strength of the correlation between SOC and ancillary variables.
Adaptive and non-parametric models used to predict the spatial patterns of soil
properties may also be applied to predict the spatial distribution of SOC. These
include artificial neural networks and regression trees. An important characteris-
tic of the two techniques is their adaptive nature to learning for solving prob-
lems (Park et al., 2005). They are also an illustration of complex and non-linear
relationships without rigorous assumptions regarding the distribution of samples
(Bishop, 1995).
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Hebei Province surrounds Beijing, the capital of China. Digital mapping of SOC
is important for site-specific crop management and for environmental modeling
and planning in the province. Therefore, the specific objectives of this study were:
(1) to identify useful environmental variables for predicting spatial distributions of
SOC in Hebei province; (2) to evaluate how the precision of SOC maps is affected
by multiple linear regression, universal kriging, regression kriging, artificial neural
network combined with kriging, and regression tree methods; and (3) to assess the
uncertainty of mapping SOC in Hebei province.

19.2 Materials and Methods

19.2.1 Study Area

Hebei Province surrounds Beijing, the capital of China (Fig. 19.1). The province is
characterized by high mountains and tablelands in the northwest and low plains in
the southeast. The mountains and tablelands are mostly over 1,000 m in elevation
with peaks exceeding 2,000 m, while the plains are only 3–5 m above sea level.
The total land area of Hebei Province is 187,693 km2. The tablelands occupy about
9% of the province, the mountains 50%, and the plains 41%. Hebei Province has a
mean annual temperature ranging from 0 to 13◦C and annual precipitation between
300 and 800 mm (temperate continental monsoon climate) (Ding, 1992). Signifi-
cant differences in climate, geomorphology, geohydrological conditions, and parent
materials throughout the province result in a great variety of vegetation and soil
types and distribution patterns. Therefore the province is ecologically representative
for much of northern China.

Fig. 19.1 Distribution pattern of SOC data in Hebei Province of China
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19.2.2 Digital and Field Data

Digital data used in this study included relief parameters (elevation, slope, aspect,
plan curvature, profile curvature, compound topographic index CTI) derived from
a 100 m × 100 m resolution DEM, and NDVI calculated from NOAA-AVHRR
images. The NDVI data was obtained from the Chinese Natural Resources Database
using the equation NDVI = max [(b2i − b1i )/(b2i + b1i )] i = 1, . . . , n (where b1
and b2 are the first and second band of AVHRR image, respectively, n is number of
scenes for the province obtained in July, 1998).

Field soil data included 359 SOC density (total SOC by volume, SOCD) data
points (see Zhao et al., 2006 for the SOCD calculation method), and each point has
two SOCD values calculated to a maximum depth of 1 m and 20 cm, respectively.
The data were from the second national soil survey of China, and the sampling
density was about one profile per 500 km2. Since 1 m and 20 cm are widely used
depths in SOC storage estimates and mapping, the 359 SOCD data to 1 m depth was
randomly divided into an interpolation (300 points) and validation set (59 points)
for comparing different spatial prediction methods (Fig. 19.1). The 359 SOCD data
of 20 cm depth were used to quantify uncertainties.

19.2.3 Inference Models

For mapping the spatial distribution of SOCD to 1 m depth, five inference models
were used:

(i) Multiple linear regressions (MLR) with the classical least-squares regression
model (see Section 21.2) SOCD data was taken as response variables, and relief
parameters (i.e. elevation, slope, aspect, CTI and etc.) and NDVI were treated
as independent variables for mapping the SOCD spatial patterns

(ii) Universal kriging (UK): the trend component of SOCD data was modeled as a
function of sample coordinates, and residues of SOCD data were estimated by
ordinary kriging.

(iii) Regression kriging (RK): the trend component of SOCD data was modeled
using MLR, and then ordinary kriging estimates of the residues were added to
the MLR predictions. A linear relationship was assumed between secondary
variable and target variable.

(iv) Artificial neural network combined with kriging (ANN-kriging): the trend
structure of SOCD data was modeled using a feed-forward back-propagation
network (FFBP) model (this method is described in Section 18.3), and then the
ordinary kriging estimates of the residues were added to the FFBP predictions.
Here a non-linear relationship was assumed between the secondary variable
and the target variable.

(v) Regression Tree (RT): The tree structure was generated by splitting the data
into nodes in a binary fashion until the node was too homogenous or until there
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were too few observations. Splitting was optimized by minimizing residual
deviance. The advantage of the regression tree method over the linear model
is the ability to deal with nonlinearity. In addition, the RT method requires no
assumptions about the data and is able to deal with non-additive behaviors.

The prediction performance was evaluated using interpolation and validation
sets. The interpolation set was used to derive the sum of squares of residuals (SSE).
The true prediction accuracy was evaluated by comparing estimated values ẑ(s j )

with actual observations at validation points z(s j ) in order to assess the systematic
error, calculated as mean prediction error (MPE):

MPE = 1

l

l∑

j=1

[ẑ(s j ) − z(s j )] (19.1)

The accuracy of prediction, calculated as root mean square prediction error
(RMSPE):

RMSPE =

√
√
√
√
√

1

l

l∑

j=1

[ẑ(s j ) − z(s j )]2 (19.2)

Where l is the number of validation points.
The sequential indicator simulation (SIS) was used for quantifying uncertainties

of mapping topsoil SOCD (0–20 cm). Detailed descriptions about the SIS algo-
rithm and procedures can be found in several geostatistical books (i.e. Deutsch and
Journel, 1998; Goovaerts, 1997). One thousand times of SIS were carried out in this
study and the search radii were set as the ranges of the semivariogram models. The
sisim subroutine in GSLIB software package was used to perform the SIS.

19.3 Results and Discussion

19.3.1 Results from Model

19.3.1.1 Descriptive Statistics

The descriptive statistics (Table 19.1) showed considerable variation in the SOCD
data. The randomly separated interpolation and validation sets are of similar statis-
tical characteristics with the full data set, i.e. mean, median, standard deviation as
well as coefficient of variation, indicating that the separation of interpolation and
validation sets were representative and appropriate.
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Table 19.1 Descriptive statistics for SOC density (SOCD) in Hebei Province of China

Mean Min Median Max STD CV

Field data kg C m−2 %

SOC density (0–1 m) Full data set
(n = 359)

8.03 0.20 6.73 39.28 6.37 79

Interpolation set
(n = 300)

8.02 0.20 6.81 38.98 6.10 76

Validation set
(n = 59)

8.08 0.25 6.79 39.28 6.26 77

SOC density (0–20 cm) Full data set
(n = 359)

2.75 0.13 1.94 17.15 2.44 89

Abbreviations: STD = standard deviation; CV = coefficient of variation

19.3.1.2 Spatial Predictions of SOCD (to 1 m Depth)

MLR, UK, and RK

Correlation analysis showed significant positive correlation between SOCD and ele-
vation and slope with r = 0.425 and r = 0.172 (p < 0.01), respectively. Correla-
tion between SOCD and NDVI was also significant with r = 0.129 (p < 0.05)
whereas correlation between SOCD and CTI was negative with r = −0.183
(p < 0.01); correlations between SOCD and the other relief parameters were not
significant. The multiple linear regression equation between SOCD and elevation,
slope, CTI and NDVI was:

SOCD = 4.96 + 0.0041Elevation + 0.156Slope − 0.0261CTI + 1.66NDVI (19.3)

where R2 = 0.195 (p < 0.001).
Figure 19.2a shows the SOCD distribution maps obtained by MLR method,

which reflect the spatial relationships of SOCD, elevation, slope, CTI, and NDVI.
The SOCD values are large in the northwestern mountainous areas where elevation
is high and the land is sloping, while SOCD in the southeastern plain is low when
the CTI is high. A strong smoothing effect can be observed in the MLR method.

There were significant positive correlations between sample ordinates Y,
co-located log-transformed SOCD values, elevation, slope, CTI, and NDVI (p <

0.05). The sample abscissas X is also significantly correlated with elevation, CTI,
and NDVI (p < 0.05) indicating that the universal kriging method can be used for
mapping the SOCD distribution. Estimates of the UK method (Fig. 19.2b) showed
similar SOCD distribution patters with MLR except that more detailed SOCD vari-
ations in the plains were detected using the UK method. Prediction using the RK
method (Fig. 19.2c) showed detailed SOCD variations in the mountainous areas
(northwestern parts) and plains of the province and the smoothing effect of RK
method was much smaller compared to the MLR and UK method.
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Fig. 19.2 Spatial distribution maps of SOC density (to a depth of 1 m) for Hebei Province

ANN-kriging and RT

Since the SOCD values in the province were closely related to the elevation, slope,
CTI, and NDVI, a general function f (Elevation, Slope, CTI, NDVI)−→SOCD was
established. A multi-linear regression was applied to create this function, but this
functional relationship probably is a nonlinear function because complex nonlinear
interactions may exist between SOC and landscape as well as vegetation (Somaratne
et al., 2005). The artificial neural network (ANN) and regression tree can be used to
map nonlinear relationships.

The ANN structure used in this study is a multilayer perceptron (MLP), which is
the most popular neural network structure in ecological modelling and soil science.
In order to introduce nonlinearity during the ANN training, the hyperbolic tangent
function is used. The MLP models with the following parameters were used in this
study: four input neurons, elevation, slope, CTI, and NDVI, one hidden layer and
output neuron describing SOCD trends. Backpropagation training with Levenberg-
Marquardt followed by conjugate gradient algorithm was used in order to avoid local
minima; the learning rate was 0.01. Variogram analysis of the obtained residuals for
the trained neural networks with varying number of neurons in the hidden layer
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showed optimal results (in the sense of modeling non-linear trends) using MLP
with five neurons in a single hidden layer. Further increase of the number of hidden
neurons led to extracting more detailed local peculiarities of the pattern reflected by
the correlation range. There is no theory for determining the optimum numbers of
hidden layers to approximate a given function. The decision was made in order to
reduce the complexity of the models and prevent overfitting of the SOCD trends, the
variogram of the SOCD residue of ANN-kriging method was fitted with a spherical
model, with a nugget C0 of 12, sill of 17.4, and range of 26,000 m. The RMSE of the
fitted spherical model was 0.009. The variogram range of the residue of MLP pre-
diction was much smaller than those of MLR and first order trend surface methods,
indicating that the ANN method was better than the other two methods.

The spatial patterns of SOCD obtained by ANN-kriging (Fig. 19.2d) were more
complex than when using RK method, and the range between the minimum and the
maximum was wider than the RK method.

The tree structure was generated by partitioning the data recursively into a num-
ber of groups, whereby each division maximizes some measure of difference in the
response variable in the resulting two groups (McBratney et al., 2003). The global
distribution patterns of SOCD obtained by RT method (Fig. 19.2e) were similar to
those of other four methods. Most local variations of SOCD can be detected by the
RT method. The SOCD range with the RT method was much wider than the MLR
and UK methods as the smoothing effect of kriging method narrowed the SOCD
range.

19.3.1.3 Uncertainties for Mapping Topsoil SOCD (to 20 cm depth)

The E-type estimates (Fig. 19.3a) showed the global distribution trends of SOC den-
sity in topsoil of Hebei province, and the conditional variance (Fig. 19.3b) reflects
the fluctuation of simulated SOC density values at any unsampled locations. The
conditional variance of simulated values was zero at sampled locations because the
SIS employed by this study is conditional simulation and the SOC density values
of sampled locations are maintained. The conditional variance was larger in the
high-valued parts of the study area where SOC density fluctuated the most so that
the largest uncertainty was expected. The uncertainty decreased in the southeast
of the study area where SOC density was low. Areas with larger uncertainty were
mainly located in the mountainous parts, implying that topography has played a role
in SOC density, and the topographic factors must be considered for more accurate
predictions of SOC density of the province

19.3.2 Accuracy Assessment of Model

19.3.2.1 Validation for Spatial Prediction of SOCD (to 1 m depth)

The analysis of SOCD prediction accuracy (Table 19.2) showed that the sum of
squares of SOCD residuals (SSE) using MLR method was large and only 19.5%
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Fig. 19.3 The E-type estimates, conditional variance, probability map of SOC density (to a depth
of 20 cm) being greater than 2.41 kg C m−2 (calculated from the 1,000 SOC density realizations
generated by SIS), and the areas obtained by the rule Prob [z(x ′) > 2.41] ≥ pc at three given
critical probability values

of the total variation was explained. The UK method resulted in a lower SSE and
a wider range of SOCD compared to the MLR method. The UK method and RK
method explained 53 and 65% of the total variation of SOCD, respectively. After
the ANN-kriging and RT methods were applied, the SSE decreased significantly
and 67% of the total variation was explained by both ANN-kriging and RT method.
Moreover, compared to the ANN-kriging method, the RT method had a lower root
mean square prediction error.

Table 19.2 SOC density (0–1 m) prediction accuracy at validation points

Interpolation set Validation set

Prediction method TSS SSE MPE RMSPE

MLR 11,127 8,832 2.13 9.80
UK 11,127 5,227 –1.57 8.80
RK 11,127 3,896 –1.35 8.06
ANN-kriging 11,127 3,683 –1.38 7.89
RT 11,127 3,679 –1.27 7.78

Abbreviations: TSS = total sum of squares; SSE = sum of squares of residuals; MPE = mean
prediction error; RMSPE = root mean square prediction error; MLR = multiple linear regression;
UK = universal kriging; RK = regression kriging; ANN-kriging = artificial neural network
combined with kriging; RT = regression tree
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19.3.2.2 Local Uncertainty and Spatial Uncertainty for Mapping Topsoil
SOCD (to 20 cm depth)

Since the SOCD for the topsoil fluctuates in areas with high SOCD, a relatively
higher SOCD threshold, Zt = 2.41 kg C m−2 (60% percentile), was selected to
calculate the probability for SOCD values that are larger than a specified threshold
value. This was also done to to assess the uncertainty of SOCD at any unsampled
locations using the SIS method. Figure 19.3c shows that SOCD in most parts of the
province is less than 2.41 kg C m−2. With a given critical probability pc, e.g. 0.90,
Fig. 19.3c can be used to obtain the areas where SOCD of all locations is greater
than Zt based on the rule Prob[z(x ′) > 2.41] ≥ 0.90 (black zones in Fig. 19.3f;
where z(x ′) is the unknown SOCD value at location x ′). However, the probability
map in Fig. 19.3c can not provide a measure on the reliability of the obtained areas
because the ccdf obtained by SIS only provides a measure of local uncertainty,
and a series of single-point ccdfs provides no measure of spatial uncertainty. The
joint probability obtained from the realizations generated by the SIS method can
be used to assess spatial uncertainty. If the given critical probability is 0.95, the
joint probability will be only 0.12 for 3,240 simulated locations (Table 19.3) in the
areas obtained by Prob[z(x ′) > 2.41] ≥ 0.95 (Fig. 19.3e). There is a high spatial
uncertainty although the critical probability is high for a single location selected
for delineating the areas. When the selected critical probability is 0.99, the areas
obtained by Prob[z(x ′) > 2.41] ≥ 0.99 are presented in Fig. 19.3d. The probability
is 800 out of 1,000 realizations where the SOCD of 975 simulated locations all being
greater than Zt and, therefore, the spatial uncertainty is much smaller.

Table 19.3 Assessment for spatial uncertainty of areas where SOC density (0–20 cm) is greater
than 2.41 kg C m−2 based on joint probability

Critical probability (pc)

0.99 0.95 0.90

Number of cells 975 3,240 6,305
Joint probability 0.80 0.12 0.01

19.3.3 Comparisons of Prediction Methods in Other Parts
of the World

Mathematical modeling has been widely used to the predict spatial distribution of
SOC, and numerous ancillary variables, particularly parameters derived from DEMs
and remotely sensed data, had been applied for improving the prediction accuracy
of SOC distribution (Chai et al., 2008; Chen et al., 2008; Mueller and Pierce, 2003;
Simbahan et al., 2006; Somaratne et al., 2005; Venteris and Slater, 2000;
Wu et al., 2008). Generally, the MLR model with ancillary variables such as
DEMs and satellite images had the worst performance compared to the ANN/
geostatistics-related hybrid models. The spatial prediction of SOC in Coshocton
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(Ohio) using MLR and terrain attributes derived from high resolution DEMs indi-
cates that the model explained only 55% of the variation in A horizon SOC (Venteris
and Slater, 2000). The MLR prediction in this study was even worse, with only
20 % of SOC variation explained. The geostatistics-related hybrid models that uti-
lized secondary information usually produced SOC maps of higher quality than
those that did not. For example the co-kriging with remotely sensed data (Wu
et al., 2008) and RK model with terrain attributes (Chai et al., 2008) significantly
improved the SOC prediction accuracy. The RK model used in this study also
showed that its performance was obviously higher than that of MLR in predicting
SOC distribution of Hebei Province, with 65% of SOC variation explained when
the RK model was applied. As for ANN, results of SOC prediction in Sri Lanka
(Somaratne et al., 2005) suggested that the predictive performance was also higher
than that of MLR models. Our results for Hebei Province showed that the SOC vari-
ation explained up to 67% when the ANN model was combined with the ordinary
kriging. This indicates that ANN-kriging hybrid model performed better in terms of
consistently increasing prediction accuracy and flexiblity in modeling of the multi-
variate relationships between SOC and secondary information. The RT model used
in this study explained 67% of SOC variation, and the interactions between SOC,
terrain attributes, and vegetation were easy to interpret, but the interpretation of the
results of neural network was more difficult.

19.4 Conclusions

Large variation exists in measured SOCD data of Hebei province. The SOCD is
closely related to the elevation, slope, CTI, and NDVI. Validation results showed
that the RT method is the best for predicting the spatial patterns of SOCD in our
study area. Realizations generated by SIS can represent the possible spatial distri-
bution patterns of SOC density without a smoothing effect. Once a threshold value
of SOC density is given, SIS can quantitatively assess both local uncertainty and
spatial uncertainty of SOC densities larger than the selected threshold.

The poor prediction performance for MLR probably resulted from the rela-
tively low resolutions of DEM and NDVI, which may have blurred the rela-
tionships between SOC, topographic factors and vegetation (NDVI). This is
the reason that the residues of SOC were further predicted by ordinary krig-
ing to obtain better prediction results. The RT method had the lowest RMSPE.
In fact, the RT method divided the study area into smaller regions where the
topography and vegetation (NDVI) are relatively homogenous. The different lin-
ear functions were applied to each small homogenous regions, thus the com-
plex landscape was decomposed first then the SOC was predicted. The ANN-
kriging method utilized a nonlinear function to separate the SOC trend and
then predict the SOC residues using ordinary kriging. The results of the RT
method are easy to interpret whereas the results of neural network is more
difficult.
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Soil sampling and measurements for mapping the spatial patterns of SOC are
costly and time-consuming, especially in large areas and over time. Spatially cor-
related secondary information, e.g. DEMs and satellite data provide indirect infor-
mation on spatial distribution of many soil properties (see Section 20.2). Hence, the
possibilities for future applications of the MLR, RK, RT, and ANN-kriging lie in
their ability to integrate secondary information into spatial prediction, which may
improve the mapping process, especially for areas with few measurements.
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Chapter 20
Estimating Soil Organic Matter Content
by Regression Kriging

A. Marchetti, C. Piccini, R. Francaviglia, S. Santucci, and I. Chiuchiarelli

Abstract In Mediterranean countries soil organic matter (SOM) depletion is a key
factor in land degradation. Here, climate (temperate winter/dry summer) and water
scarcity give rise to faster mineralization rates and lower accumulation intensities,
particularly in association with intensive and non-conservative agronomic practices.

The study area is located in central Italy, in the Soil Region 61.3 as defined by the
European Soil Bureau, where soil erosion is the main cause of the low SOM con-
tent. In this area, about 250 georeferenced samples were collected from the surface
horizon (plough layer) of agricultural soils. These samples have been analyzed for
particle size distribution and soil organic carbon (SOC) content.

The use of regression kriging (RK) is proposed to predict SOC content and
soil texture using the following attributes as predictors: (a) soil subsystems map
(1:250,000) derived from pedological survey, (b) terrain parameters derived from
DEM (elevation, slope, plan and profile curvature, TWI, incoming solar radiation),
and (c) other indexes derived from Landsat TM imagery (e.g. NDVI, Grain Size
Index, Clay Index).

Since the same level of SOM differently influences soil functions depending on
soil texture, the values of SOM obtained from SOC were classified in four classes
(very low, low, medium, high) based on the estimated USDA texture, and RK was
applied. This map was compared with the soil subsystems map to evaluate the influ-
ence of the prevalent land use on SOM levels.

Keywords Soil organic matter · Land evaluation · Regression kriging · Italy

20.1 Introduction

In central and southern Italy the problem of soil organic matter (SOM) depletion
is of particular concern due to the Mediterranean climatic conditions. In areas
with Mediterranean climates, organic matter degradation is higher due to faster
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mineralization rates and lower accumulation intensities resulting from often inten-
sive and non-conservative agronomic practices. In these areas, deep tillage is often
conducted to improve soil structure, permeability, and aeration, and to improve crop
growth in clayey soils. These practices are especially common in the hills. This kind
of soil management increases SOM degradation rates, due to higher aeration, and
causes a dilution of SOM in the arable layer because of mixing with underlying hori-
zons with lower SOM, thus leaving the soil susceptible to wind and water erosion
(Bot and Benites, 2005).

When using SOM to evaluate “soil quality”, we should consider that soil organic
carbon (SOC, the carbon fraction of SOM) varies among environments and man-
agement systems, and generally increases: (a) with higher mean annual precipita-
tion (Burke et al., 1989); (b) with lower mean annual temperature (Jenny, 1980);
(c) with higher clay content (Nichols, 1984), (d) with an intermediate grazing
intensity (Parton et al., 1987; Schnabel et al., 2001); (e) with higher crop residue
inputs and cropping intensity (Franzluebbers et al., 1998), (f) with native vegetation
compared with arable crops (Burke et al., 1989); and (g) with conservation tillage
compared with conventional tillage (Rasmussen and Collins, 1991). Therefore, to
prevent or at least to limit any negative effects that could arise from specific land
uses, the knowledge of the current state of SOM is essential for site-specific crop
management and for environmental modeling and planning.

In soil mapping, one of the primary difficulties is the lack of detailed soil surveys.
As field data collection is often the most expensive part of a survey, usually only a
limited number of locations is sampled, and point samples at local scale are more
easily available. As a consequence, all soil information needs to be interpolated
in space from a finite number of observations, inferring soil characteristics for the
whole area of interest.

The OM content of the soil is strongly related to the land use, vegetation, climate
and terrain features, which can be modelled with digital elevation model (DEM)
and satellite data. The type and the amount of SOM are strongly related to the
presence of water and the lateral redistribution of the surface material by erosion.
Both of these phenomena are partially controlled by the terrain parameters (Dobos
et al., 2006).

It is well established that kriging procedures based on auxiliary information usu-
ally result in maps with high accuracy, provided that the primary and secondary
variables are well correlated (McBratney et al., 2003). The use of environmental
covariates have improved several aspects of soil surveying in many parts of the
world (see Chapter 2). Regression kriging (RK) is a spatial interpolation technique
that combines a regression of the dependent variable on auxiliary variables with
simple kriging of the regression residuals (Goovaerts, 1997; Hengl et al., 2007;
Odeh et al., 1994). RK method generally produces realistic spatial representations,
as the smoothing effect is much smaller than other interpolation methods (see Sec-
tion 19.3). The aim of this work is to provide an evaluation of SOM from point-type
data, estimating values in non-sampled locations by means of RK, and finally trans-
ferring them into GIS software to obtain a reliable framework and a valid tool for
decision makers.
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20.2 Materials and Methods

20.2.1 Study Area

The surveyed area (about 100 km2), located in central Italy, comprises four munic-
ipalities in the Teramo province (Controguerra, Corropoli, Colonella and Martinsi-
curo). The most economically important zone falls in the Controguerra viticultural
district (DOCG1 area of Colline Teramane). The area is part of Soil Region 61.3 as
defined by the European Soil Bureau (European Soil Bureau, 2001): Hills of Cen-
tral and Southern Italy on Pliocene and Pleistocene marine deposits and Holocene
alluvial sediments along the Adriatic Sea. In this framework, soil regions – areas
with similar soil-forming conditions and as the largest units of soil description –
are defined as typical associations of dominant soils occurring in areas which are
limited by a special climate and/or a special association of parent material.

The main soils of the Soil Region 61.3 are: eroded soils with reorganization of
carbonates (Eutric and Calcaric Regosols, Calcaric Cambisols, Haplic Calcisols);
soils with clay accumulation (Haplic and Calcic Luvisols); soils with vertic proper-
ties (Vertic Cambisols and Calcic Vertisols); and alluvial soils (Calcaric, Eutric, and
Gleyic Fluvisols). Climate is Mediterranean and Mediterranean suboceanic. Mean
annual air temperature is between 12.5 and 16◦C and mean annual precipitation is
between 700 and 1,000 mm. The rainiest month is November and the driest months
are July and August. The soil moisture regime is xeric, locally udic, and the soil
temperature regime is thermic (Costantini et al., 2004).

Severe and continuous soil erosion is one of the major causes of the low organic
matter content of many soils of this region, and causes the deterioration of an attrac-
tive traditional landscape, as well as of the agricultural value of the soils.

20.2.2 Field Data

The dataset used in this work is made up of 250 georeferenced samples collected
by the Regional Agency for Agricultural Extension Services of Abruzzo Region
(ARSSA) from the surface horizon of agricultural soils (plough layer, from the sur-
face to about 50 cm in depth), in accessible agricultural lands. Sample collection
was performed during spring and summer 2006.

The physical and chemical routine analyses included the determination of the
SOC content according to the modified Walkley-Black method (Nelson and Som-
mer, 1982). SOM was evaluated from SOC (Jackson, 1965) by means of the
formula:

SOM = SOC × 1.724 (20.1)

A descriptive statistical analysis was performed on collected data, determining
also data distribution and the correlation matrix for the studied parameters.

1 Denominazione di Origine Controllata e Garantita, attesting the origin and the quality of a wine
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20.2.3 Spatial Analysis and Estimation

Auxiliary data for this area were derived from a DEM with a 40 m resolution pro-
vided by the Land Information Service of the Abruzzo Region, from Landsat 7 TM
images (3 visibile bands and 4 infrared bands), and from the 1:250,000 Soil Subsys-
tems Map of Abruzzo compiled by ARSSA (Chiuchiarelli et al., 2006).

From the DEM, the following morphometric parameters were derived (described
in Section 22.2): elevation; slope gradient; curvature plan and profile (PLANC
and PROFC); solar radiation; and Topographic Wetness Index (TWI). TWI is a
parameter correlating topography and the water movement in slopes, used to dis-
play the spatial distribution of soil moisture and the shallow saturation degree:
TWI = ln(As/ tan β), where As is specific catchment area and β is slope (Beven
and Kirkby, 1979).

From Landsat 7 TM images (July 2007, cloud cover 0%), the following indexes
were derived: Grain Size Index (GSI); Clay Index (CI); and Normalized Difference
Vegetation Index (NDVI). GSI is correlated with the fine sand content of the soil
and is computed with the equation:

GSI = (R − B)/(R + G + B) (20.2)

where R is Red, B is Blue, and G is Green (Xiao et al., 2006). CI is correlated with
the clay content of the soil and is computed with the equation:

CI = MIR/MIR2 (20.3)

where MIR is Mid Infra Red (band 5) and MIR2 is Mid Infra Red (band 7)
(Hengl, 2007). NDVI provides a quantitative and qualitative estimation of the vege-
tation and is computed with the equation:

NDVI = (NIR − R)/(NIR + R) (20.4)

where NIR is Near Infra Red and R is Red (Colwell, 1974).
The last index, SST86, was derived from the 1:250,000 Soil Subsystems Map

of Teramo Province compiled by ARSSA (Chiuchiarelli et al., 2006), reported in
Fig. 20.1.

According to this map, eight different soil subsystems (Table 20.1) were defined.
These soil subsystems have been grouped in a single index, obtained by converting
the map into a raster.

The computational procedure we used to estimate SOC with RK is as follows:

1. set up and import predictor data layers (land-surface parameters and soil subsys-
tems map);

2. match soil samples with land-surface parameters and setup the regression matrix;
to avoid multicolinearity effects, instead of using directly the derived indexes
as predictors, a Principal Component Analysis (PCA) was performed, since
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Fig. 20.1 Soil subsystems map of Teramo Province 1:250,000 (Chiuchiarelli et al., 2006)

principal components are orthogonal and independent. In the present study, 10
different components related to the 10 indexes were defined;

3. linear regression analysis and derivation of the regression residuals; regression
coefficients were resolved by means of a maximun likelihood algorithm (Bailey
et al., 2003);

4. analysis of residuals for spatial autocorrelation and fitting of the variogram
model;

5. run the interpolation;
6. visualization and validation of the results using control points.

The derivation of indexes and the PCA was performed in SAGA 2.0.3 (SAGA
User Group Association, 2008) and ILWIS 3.4 Open (52 North Initiative, 2007).
For the regression analysis, the statistical software R 2.8.0 together with its
main packages (i.e. sp and rgdal for spatial data preparation, and gstat for
geostatistical modeling and prediction) was used (R Development Core Team,
2008).

The whole dataset was not used for the estimation, but it has been divided ran-
domly in two numerically equivalent parts, the training part and the test part, so that
a quota of the measured points could be used to validate the estimation results. For
this operation, the Geostatistical Analyst extension of the software ArcGIS 9.2 R©
was used. The goodness of the statistical estimation model is expressed by the root
mean square prediction error (RMSE).
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Table 20.2 Soil organic matter evaluation (SILPA, 1999)

Texture

Loam
Sandy clay Clay

Sand Sandy clay loam Clay loam
Classes Loamy sand Silty loam Silty clay
(USDA) Sandy loam Silt Silty clay loam

Soil organic matter

Level %

Very low <0.8 <1.0 <1.2
Low 0.8–1.4 1.0–1.8 1.2–2.2
Medium 1.5–2.0 1.9– 2.5 2.3– 3.0
High >2.0 > 2.5 > 3.0

Maps in GIS environment showing soil texture (USDA classification), SOC
in kg m−2, and four levels of SOM related to the three main classes of texture
(SILPA, 1999) as specified in Table 20.2 were derived from the estimated values, by
means of the software ArcGIS 9.2 R©.

20.3 Results and Discussion

20.3.1 Statistical Elaboration

In Table 20.3 basic statistics of the considered variables are reported. Frequency
histograms were used to identify outliers for each parameter. These observations
were removed, and the remaining data have frequency distributions that approach
normal (Webster, 2001). New statistics are reported in Table 20.4.

A PCA was performed on the 10 indexes derived from auxiliary data (ELE-
VATION, SLOPE, PROFC, PLANC, TWI, SOLAR, GSI, CI, NDVI, SST86). In
Table 20.5, the matrix of transformation coefficients, calculated from the covariance

Table 20.3 Basic statistics of sand, clay and SOC

Count Minimum Maximum Mean Median SD Variance Skewness Kurtosis

Sand 250 0.00 66.80 20.52 19.30 11.32 128.1424 1.05 5.05
Clay 250 3.70 45.30 31.56 32.30 6.86 47.0596 −0.91 4.09
SOC 250 0.04 3.46 1.03 0.94 0.57 0.3249 1.77 7.48

Abbreviations: SD: standard deviation

Table 20.4 Basic statistics of sand, clay and SOC without outliers

Count Minimum Maximum Mean Median SD Variance Skewness Kurtosis

Sand 241 0.0 46.2 19.23 19.2 9.2 85.32 0.287 3.207
Clay 241 15.0 45.3 32.07 32.5 6.1 37.25 0.546 3.003
SOC 238 0.04 2.07 0.94 0.91 0.39 0.62 0.22 1.77

Abbreviations: SD: standard deviation
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matrix, is reported. The PC10 component has been excluded a priori to avoid any
rounding effect in PCA computation with ILWIS (Hengl, 2007). The coefficient
matrix has shown that some components are mainly correlated with the DEM
parameters (TWI and SLOPE), as they show the higher absolute values.

RK was applied to the sand and clay data to estimate soil texture, and to the SOC
content of the training dataset. The correlation of the target variables with the prin-
cipal components was very strong, as shown by R2 values of the linear regression.
The choice of predictors was performed by the step-wise regression, considering
a significance level of 0.05. For sand estimation, PC4 component was chosen as
predictor; for clay estimation, the sum of PC1 – PC4 – PC7 – PC9 components was
used; all these components are linked to the soil type and position. For SOC estima-
tion, the sum of PC8 and PC9 was used, essentially linked to grain size distribution
of soil and to the elevation.

20.3.2 Estimated Maps

In Figs. 20.2 and 20.3, the estimated map of SOC and of USDA soil texture respec-
tively are reported. USDA texture was estimated from sand and clay data using the
training dataset. The boundaries of the soil subsystems are depicted on each map
for an easier interpretation. It should be noted that the same SOC content and soil
texture not necessarily correspond to the same soil type.

Fig. 20.2 Soil organic carbon content by RK
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Fig. 20.3 Soil texture by RK (USDA)

Over 90% of the surveyed area has a SOC content between 0.4 and 0.8 kg m−2,
as indicated in Table 20.6. The prevailing texture classes in this area, as shown by
the texture map and reported in Table 20.6, are clay loam and silty clay loam.

The precision of prediction can be assessed by comparing the values estimated
from the training dataset with the correspondent values from the test dataset that
were not used in the estimation process. The prediction errors for each parameter
are reported in Table 20.7. For SOC, sand and clay, RMSE was 0.39, 8.96 and 5.44
respectively. These can be considered good results since they are lower than or close
to the standard deviation of the data. Moreover, a prediction is good when RMNSE
is close to one: this condition is fully verified for the three considered variables.

From an agronomic point of view, the climatic and especially the pedological
context cannot be neglected in the evaluation of SOM, because the same level of

Table 20.6 Percentage distribution of classes in the surveyed area

Soil organic carbon
(kg m−2)

% of the
surface

Soil texture % of the
surface

SOM vs
texture

% of the
surface

0.1–0.2 0.005 Clay C 0.11 Very low 4.48
0.2–0.4 1.50 Silty clay SiC 0.98 Low 88.48
0.4–0.6 47.15 Loam L 14.95 Medium 6.95
0.6–0.8 47.45 Clay loam CL 38.22 High 0.09
0.8–1.0 3.76 Silty clay loam SiCL 40.13
1.0–1.2 0.13 Silty loam SiL 5.60
1.2–1.4 0.005 Sandy loam SL 0.01
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Table 20.7 Prediction errors
Mean SD ME RMSE RMNSE

Sand (%) 21.32 11.40 −1.63 8.96 1.00
Clay (%) 31.39 7.23 0.39 5.44 1.01
SOC (kg m−2) 0.95 0.37 −0.01 0.39 1.10

Abbreviations: SD: standard deviation; ME: mean error; RMSE: root mean square error; RMNSE:
root mean normalized square error

SOM can have different effects on soil functions in different soil types. Thus, from
SOC values, SOM in g kg−1 was evaluated, and the values of SOM were classified
in four classes (very low, low, medium, high) based on the estimated USDA texture,
according to the scheme reported in Table 20.2. The obtained map is reported in
Fig. 20.4.

The mean values of SOM calculated for each of the soil subsystems range from
1.43 to 1.70 g kg−1. Subsequently, about 88 % of the area can be classified in the
“low” SOM class in relation to soil texture (Table 20.6), regardless of the prevalent
land use or the soil type.

The role of topography is very important (see Section 19.3): the low levels of
SOM are strictly linked to the erosive processes active on hills (Fig. 20.5), and to
the intensive agricultural practices adopted in these areas.

Fig. 20.4 SOM levels based on the USDA texture by RK
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Fig. 20.5 SOM map draped over a hillshade of the area

20.4 Conclusions

In natural environments, SOM content is mainly controlled by climate, while in
agricultural lands it is strongly affected by agronomic management. Thus, a spatial
representation of SOM is essential to facilitate regional planning and to provide
decision makers with a reference tool. In the Province of Teramo, the analysis of the
available data, and the estimate in non-sampled locations by means of RK allowed
us to create maps for SOC, soil texture, and SOM levels with a reasonable degree of
accuracy.

RK produced a realistic spatial distribution of SOM, which showed a low content
in relation with the texture in most of the surveyed area, regardless of the prevalent
land use or the soil type. Here the adoption of measures to manage SOM content
should be strongly recommended since the loss of SOM is often both a cause and a
result of erosive processes on hills, and is usually coupled with the effects of inten-
sive agricultural practices. Intervention in agronomical and environmental planning
is required to provide soils with an appropriate OM content for the maintenance of
their ecological and socio-economical functions and yield sustainability. Stimulat-
ing the adoption of good agronomical practices is also necessary to preserve soil
resources, improve the SOM cycle, and significantly contribute to climate change
mitigation through carbon sequestration via agricultural soils. Sound cropland man-
agement can play a positive role in reducing Green House Gas emissions, and carbon
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dioxide emissions in particular, through a decrease of soil organic carbon losses, by
increasing the organic matter input, or through a combination of both.

These results encourage to apply RK at a wider scale, and it is to be hoped that
in the near future this method should be successfully integrated with traditional soil
surveying procedures (see Section 28.1).
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Chapter 21
Digital Soil Mapping of Topsoil Organic Carbon
Content of Rio de Janeiro State, Brazil

M.L. Mendonça-Santos, R.O. Dart, H.G. Santos, M.R. Coelho,
R.L.L. Berbara, and J.F. Lumbreras

Abstract A database with 431 soil profiles of Rio de Janeiro State was used in
a research project entitled “Quantifying the magnitude, spatial distribution and
organic carbon in soils of Rio de Janeiro State, using quantitative modeling, GIS
and database technologies” (Projeto Carbono_RJ, sponsored by FAPERJ – Carlos
Chagas Filho Foundation for Research Support in Rio de Janeiro State). These soil
data were collected for other purposes and there were only limited soil bulk den-
sity data (103), which is needed for estimating soil organic carbon (SOC) stocks.
Pedotransfer functions (PTFs) were estimated to be used in the modeling of organic
soil carbon of topsoil (0–10 cm), using the scorpan model. The following environ-
mental correlates were used as predictor variables: satellite data (Landsat ETM+),
lithology and soil maps, and a DEM and its derivatives. This dataset represents
the best organized soil dataset in Brazil and is working as an educational trial for
Digital Soil Mapping using a variety of methods for predicting soil classes and
their properties. Multilinear analysis and regression-kriging were used to perform
the modeling. Seven different models were built and compared through statistical
methods. The main difference between the models was the set of predictor variables
used to perform them. In general, all models performed well to predict the SOC
stock. Nevertheless, model 6 was considered the best one since it presented the
smallest AIC and RMSE as it used existing soil information (polygon soil maps)
as a predictor variable, in addition to the variables used in the other models. The
results obtained with this model were used to map topsoil carbon stock at a spatial
resolution of 90 m.
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21.1 Introduction

Estimates of organic carbon stock in soils is important for a range of issues including
climatic change, soil fertility and soil water storage capacity (see also Section 22.1).
According to Batjes and Sombroek (1997), the soils of the world are one of the
five main reservoirs of carbon, together with oceans, lithosphere, atmosphere and
terrestrial biomass. Soils are essential for carbon sequestration representing approx-
imately 75% of the carbon accumulation in the terrestrial ecosystem. The dynamics
of carbon sequestration depend on many variables based on thermodynamic ele-
ments, characteristics of biomes and the responses to different land uses and man-
agement systems (Batjes, 1998). The soil works as source and reservoir (or sink)
of carbon, depending on the relative rates of incorporation and decomposition of
carbon by soil organisms. In order to estimate the net flow of carbon in terrestrial
ecosystems, an understanding of the processes of soil formation and the spatial
variability of organic carbon in the landscape is needed. Spatial variability data
are important for estimating the stock of soil carbon and also for understanding
the biophysical processes that can influence the flow of organic carbon in soils. The
patterns and processes vary considerably in the landscape which limits extrapolation
of point data as discussed in Chapter 26. Therefore, specific regionalized studies
are important to assure a proper scale of study, as well as establish rules for the
extrapolation of results and detailed understanding of soil carbon dynamics.

For prediction and mapping of the carbon stocks we used digital quantitative
techniques named Digital Soil Mapping, defined by Lagacherie and McBratney
(2007) as “the creation and population of spatial soil information systems by numer-
ical models inferring the spatial and temporal variations of soil types and soil proper-
ties from soil observation and knowledge and from related environmental variables”.
The main use of the this approach is to replace the polygon-based soil maps of
the past with digital maps of soil classes and properties and their associated uncer-
tainties for areas previously mapped, or for new areas. These maps are stored and
manipulated in a GIS environment, creating the possibility of vast arrays of data for
analysis and interpretation.

Predictions of soil classes and properties in digital mapping are based on relation-
ships among soils and the factors and processes of soil formation that enter in the
equations as predictor variables. The logic of this reasoning is based on the equation
of Jenny (1941) formulated from the recognition of the factors of soil formation, in
a more quantitative formulation,

S = f (cl, o, r, p, t)

Where, S represents the soil, cl = climate, o = organisms, including human-
induced activities, r = relief, p = parent material and t = time.

McBratney et al. (2003) generalized and formulated a new equation, with the
objective of modeling the variables responsible for the processes of soil formation,
through an empiric quantitative description of the relationships among other spa-
tially geo-referenced factors (environmental covariates), used as spatial prediction
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functions (see Chapter 2 and Section 16.1). This is the scorpan function with seven
factors: s = soil and other properties of the soil in a given location; c = climate,
climatic properties; o = organisms, vegetation or fauna or human activities; r =
topography, attributes of the landscape; p = parent material, lithology; a = age,
time factor; n = space, spatial location. Each factor is represented by a group of
one or more continuous or categorical variables; for example, r for elevation, slope
or other derived attribute of a DEM. The sources of data, the methods to estimate
f from the equation, as well as the steps to execute the scorpan are presented and
discussed in McBratney et al. (2003).

In this study, digital mapping techniques were used to predict the stocks of
organic carbon of the topsoil (0–10 cm) in the Rio de Janeiro State. A multi-
linear analysis was used as the predictive model and several environmental vari-
ables as predictors. Seven different models were built and statistically compared.
The choice of the best model was based on Akaike’s Information Criterion (AIC)
(Akaike, 1973), a quality index that represents a balance among the goodness of fit
and the parsimony of the model. The best model is that with the smallest AIC. This
model (M6) was then applied to the digital mapping of the soil carbon stock.

21.2 Materials and Methods

21.2.1 Study Area

The study area is the State of Rio de Janeiro located between the geographical coor-
dinates 41◦ and 45◦ W and 20◦30′ and 23◦30′ S and is about 44,000 km2 (Fig. 21.1).
The area is characterized by eight large landscape types known as Serra da Bocaina,
Coastal Plains, Mountainous Area, North-Northwest Fluminense, Paraíba do Sul
River (Middle Valley), Serra Mantiqueira, Serra dos Órgãos, and Upper Itabapoana
River (Plateau), described in Mendonça-Santos et al. (2008), where soil profiles
have been studied in order to characterizes the soil organic carbon.

21.2.2 Digital and Field Data

The soil database that has been used to estimate soil classes in Rio de Janeiro State
by Mendonça-Santos et al. (2008), was used in this study, to which we added 16
soil profiles from the RJ_Soil Carbon Project (Mendonça-Santos et al., 2005), sum-
ming 431 soil profiles for the whole state. The spatial distribution of soil profiles
is shown in Fig. 21.1. Considering that these soil data were collected for other pur-
poses, there were only scarce soil bulk density data, which is essential to estimate
soil carbon stocks. Pedotransfer functions (PTFs) for the upland and lowland soils
were used as auxiliary information for soil organic carbon estimation. The follow-
ing covariates were used as predictor variables: GeocoverTM mosaic (bands 7, 4
and 2 in RGB), from NASA (2008); the NDVI (using band 2 instead of 3); Land
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Fig. 21.1 The study area location and the soil profile distribution on the elevation map, extracted
from the SRTM DEM (Jarvis et al., 2006) at 90 m pixel resolution
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Use/Land Cover (LULC) map of Rio de Janeiro State, produced by Mendonça-
Santos et al. (2003); Lithology class map (Rio de Janeiro, 2001) and the SRTM
DEM 90 m, obtained from the CGIAR database at http://srtm.csi.cgiar.org (Jarvis
et al., 2006) and modified by Mendonça-Santos et al. (2008) and its derivates
extracted using the LandMapR software (MacMillan, 2003).

The soil dataset was complemented with the covariates of environmental factors
for each soil data point. An ancillary dataset representing the whole study area was
interpolated on a 90-m grid corresponding to the SRTM DEM, and populated with
environmental and soil variables. Exploratory statistical analysis was performed on
soil data. The modelling and prediction of soil carbon was performed using multilin-
ear regression and regression-kriging. The output results were imported and mapped
in a GIS environment.

21.2.3 Inference Models

Soil organic carbon stocks were calculated in mass per unit of volume, as follows:

StockC = C × d × p,

where: C is the carbon content (g/kg), d is soil bulk density (g/cm3) and p
is depth (cm).

Seven models of multilinear analysis were tested. The models were differentiated
by the number of predictor variables used, the use or not of the stepwise procedure
and the number of observations (profiles) used in the adjustment of each model. The
performance of the models was statistically estimated using both RMSE (estimate
of the standard deviation of the residual error) and the AIC (Akaike’s Information
Criterion), which is an index that considers the number of parameters used in the
model. This index represents a commitment between the adjustment and the parsi-
mony of the model. The model that presents the smallest AIC is the best. The AIC
was calculated in agreement with Akaike (1973):

AI C = −2 log like + 2m,

where log like is the logarithm of the prediction, and m it is the number of parameters
used in the model.

For continuous variables, as in the case of soil carbon stock, AIC was calculated:

AIC = N ln

(
N∑

i=1

(
ŷi − yi

)2

)

+ 2 m

Where N is the total number of soil profiles that were used in the model.
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The model with the smaller AIC value was used for the final prediction of the
soil organic carbon stock. The residues of the model were kriged and added to the
predicted values (regression-kriging).

21.3 Results and Discussion

21.3.1 Results from the Models

Developed PTFs, together with the predictor variables, are shown in Table 21.1.
Given the difference between carbon contents and soil texture of the soils in the
lowland and the others soils (here denominated as mineral soils), it was necessary
to build 2 PTFs. The PTFs were applied to estimate soil density and later on, to
calculate soil organic carbon stocks.

The soil-landscape model scorpan was applied using the soil and landscape infor-
mation. In Table 21.2 the different models are given with their details. Model M1
encompasses the extracted relief variables in LandMapR. In model M2 the same
relief derivatives were used, but in this model, a stepwise procedure was undertaken
in order to find which variables have larger correlation with the soil organic carbon
stocks. In the models M3 and M4 the relief variables and the Geocover mosaic were
used (Landsat 7 ETM+ with the bands 7-4-2, NDVI), with the difference that in
model M4 a stepwise procedure was applied. The stepwise in model M4 did not
allow the entrance of NDVI in the model. The variable NDVI excluded two profiles
out of the model (in these two profiles the reflectance in the bands 4 and 2 was 0). In
model M5, in addition to the terrain variables and the Geocover, the lithology map
was also used. Model M6 encompasses all the variables of model M5 and a polygon
soil map at a scale of 1:250,000. In the model M7 the variables of the model M5
were used, in addition to the LULC map.

21.3.2 Assessment of the Models Accuracy

The result of the carbon stock prediction, the performance of the indices AIC and
RMSE (estimate of the standard deviation of the residual error) and the number of
parameters (variables) used in each tested model is shown in Table 21.3.

Generally, all seven models presented a fair prediction of the carbon stocks
considering that the differences among the indices of the seven models did not
present a significant variation. The best result for modeling carbon stocks was model
M6 because it had the smallest AIC and RMSE values (Table 21.3). Figure 21.2
shows the result produced by the best model (M6) for the stock of organic carbon
(0–10 cm) of Rio de Janeiro State, including the estimates (predicted values), the
residuals and the final result obtained by the sum of the kriged residues with
the values predicted by multilinear regression (regression-kriging). The final map
(Fig. 21.3), obtained by modeling and digital mapping, allows the modeled property
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Table 21.2 Predictive models scorpan used to estimate the soil carbon stocks in topsoil (0–10 cm)

Models Predictors variables – SCORPAN model Stepwise
Number of
soil profiles

M1 R (ELEV, ASPECT, PLAN, PROF,
QWETI, SLOPE)

429

M2 R (ELEV, ASPECT, PLAN, PROF,
QWETI, SLOPE)

ELEV, ASPECT, PLAN,
QWETI, SLOPE

429

M3 O (Landsat ETM+ -B7, B4, B2 e NDVI),
R (ELEV, ASPECT, PLAN, PROF,
QWETI, SLOPE)

427

M4 O (Landsat ETM+-B7, B4, B2 e NDVI),
R (ELEV, ASPECT, PLAN, PROF,
QWETI, SLOPE)

B7, B4, ELEV, ASPECT,
PLAN, QWETI,
SLOPE

429

M5 O (Landsat ETM+-B7, B4, B2 e NDVI),
R (ELEV, ASPECT, PLAN, PROF,
QWETI, SLOPE), P (Litology Map –
vector format)

427

M6 S (Soil Map – polygon), O (Landsat
ETM+-B7, B4, B2 e NDVI), R (ELEV,
ASPECT, PLAN, PROF, QWETI,
SLOPE), P ( Litology Map – vector
format)

427

M7 O (Landsat ETM+-B7, B4, B2, NDVI
and LULC Map), R (ELEV, ASPECT,
PLAN, PROF, QWETI, SLOPE),
P (Litology Map – vector format )

427

to be spatially viewed in a continuous way in the grid determined by the availabil-
ity of data and objectives of the work, facilitating observation of the variation and
distribution of the stock of carbon in the landscape (see Fig. 20.5 for similar results).

Values of organic carbon stocks range from less than 3 to 70 Mg per hectare for
the topsoil (0–10 cm). The variations had a strong correlation with the soil type and
its position in the landscape (see also Chapter 22). The correlation with the land-
scape was clearer when analyzed in relation to the geoenvironments defined for Rio
de Janeiro (Lumbreras et al. 2003) (Fig. 21.3). This map shows that unit II (Costal
Plains) presents a higher stock of organic carbon in the lowland environments, such
as mangroves (surroundings of Guanabara Bay, Sepetiba Bay, Guaratiba, among

Table 21.3 Comparison
of the performance of the
models Models RMSE

Number of
parameters AIC

M1 14.26907 6 2,286.603
M2 14.25226 5 2,284.604
M3 14.15396 10 2,279.976
M4 14.08333 7 2,267.386
M5 13.09959 19 2,215.548
M6 11.95091 29 2,146.578
M7 12.68869 28 2,196.807
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Fig. 21.2 Digital soil map of organic carbon (0–10 cm) of Rio de Janeiro State. (a) Result of
the predictive s.c.o.r.p.a.n. soil-landscape modelling (multilinear regression); (b) kriging of the
modelling residues; (c) final result obtained by the sum of the kriged residues with the values
predicted by the multilinear regression (regression kriging)



264 M.L. Mendonça-Santos et al.

Fig. 21.3 The final map of the topsoil organic carbon of Rio de Janeiro State (0–10 cm) and land-
scape types

others), rivers, lakes (Lagoa Feia, Lagoa de Maricá among other) and areas close
to the coast and its corresponding soils. On the other hand, the unit IV (North-
Northwest Fluminense) presents the lowest stocks of organic carbon.

21.4 Conclusions

In this application of predicting the soil organic carbon stock, digital soil mapping
is demonstrated, using the soil formation factors as predictor variables for the con-
struction of different models. The work was designed to test the methodology of
carbon stock prediction in the soil at the depth 0–10 cm. Seven predictive models
were tested. The best result for carbon stock was obtained with application of the
model 6 that had the lowest indexes AIC and RMSE (Table 21.3). This model used
information from existing soil maps, satellite images, DEM and its derivates, and a
lithology map.

The spatial distribution of soil organic carbon has clear relationships with the
different geo-environments in the study area, e.g., the highest stocks of organic
carbon occur in the lowlands areas. Establishing a baseline for soil organic carbon
stock is very important for the definition of public policies maintaining agricultural
systems and environmental protection, and thus considers the potential of soil as a
carbon sink.
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Comparing Decision Tree Modeling
and Indicator Kriging for Mapping
the Extent of Organic Soils in Denmark
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Abstract Soil organic carbon (SOC) is of great importance in the global carbon
cycle. In ratifying the Kyoto CO2 Protocol, Denmark has chosen to fulfill article
3.4, which recognizes sources and sinks of biospheric carbon (including forest man-
agement, cropland management, and grassland management). As part of the four
year 3.5 million $ contract with the Danish environmental authorities, University of
Aarhus will assess the contemporary stock of organic carbon in the wet agricultural
lands, serving as a baseline for future studies of soil carbon changes. The first step in
the assessment process is to map the extent of the organic soils. This paper compares
two prediction methods for this mapping. One method is decision tree modeling
(DT) based on legacy soil information, DEM derivatives and RS indices, while the
second method, indicator kriging (IK) is a geostatistical model of ground samples
(point aggregation). On the decision tree modeling map 30% of the wetlands were
classified as organic. We compared the 63% probability map from the IK to the
decision tree modeling map. The similarity in the wetland areas between the DT
map (pixel to pixel) and the 63% probability map was 63%. We compared both the
63% probability map and the DT map to an independent point dataset, and the DT
classified 58% in the correct class, the 63% probability map classified 52% in the
correct class.
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22.1 Introduction

Soil organic carbon (SOC) is one of the most important carbon stocks globally and
has large potential to affect global climate. Accordingly, many scientists from all
over the world have initiated studies on SOC stock (e.g. Zhang and McGrath, 2004).
SOC stock in surface soils worldwide has been estimated to be 2011 PgC (Bolin
and Sukumar, 2000), twice the value in either living vegetation or atmospheric car-
bon. However, these estimates are highly uncertain largely because of data gaps
for many regions of the world. SOC stock depends on local climate, landscape
type, soil and other specific conditions; it is sensitive to human interference, and
to changes in land use and soil management. Protecting or increasing the exist-
ing soil C pool by sequestering C from the atmosphere could become crucial in
terms of future policies to mitigate the global greenhouse effect. As part of inter-
national efforts to stabilize atmospheric greenhouse gas concentrations, signato-
ries to the Kyoto protocol are committed to establish national inventories of the C
stock, and to estimate stock changes. In ratifying the Kyoto CO2 Protocol, Denmark
has chosen to fulfill article 3.4, which recognizes sources and sinks of biospheric
carbon (including Forest Management, Cropland Management, and Grassland
Management).

This requires reliable estimates of C stocks at one point in time for a base-
line. Recently, C stock inventories have been established in France (Arrouays
et al., 2001), in Europe (Batjes, 2002), in Denmark (Krogh et al., 2003), in North
America (Lacelle, 1997), and in China (Zhang et al., 2004). The existing Danish
inventory performed by Krogh et al. (2003) is based on historical soil samples
mainly from the top soil dating from 25 to 35 years back (in Chapter 21 carbon
stock is assessed using DSM techniques for a Brazilian case).

For this reason, this study was conducted to develop a method for delineation
of highly organic soils based on existing soil samples and using different predictive
geostatistical methods for arriving at the best approach for soil carbon mapping.
Two different prediction methods were applied: Decision trees (DT) and indicator
kriging (IK).

22.2 Materials and Methods

22.2.1 Study Area

The study area, covering 710,000 ha, is a 45 km wide strip crossing Jutland (within
56◦9′–56◦33′ N, and 08◦6′–10◦57′ E). See Fig. 22.1 for a map of the landscape
types in the study area. It has a temperate climate with a winter mean temperature
of 0◦C, and a summer mean of 16◦ C (Danmarks Meteorologiske Institut, 1998).
The average annual precipitation ranges from 800 mm in central Jutland (west) to
500 mm in the easternmost parts. In late autumn, winter and early spring, precipita-
tion exceeds evapotranspiration and between 150 (east region) and 400 (west region)
mm of water leaches through the soils (Aslyng, 1978).
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Fig. 22.1 Landscape types in the study area

About two-thirds of the area is intensively farmed with cereals as the main
crop. The cultivated areas are fertilized and limed, and low-lying areas and heavy
clay soils have been artificially drained. Ten percent is covered by forests, mostly
spruce plantations. In the eastern part the area is dominated by loamy weichelian
moraine, in the western part large sandy and coarse sandy glaciofluvial plains are
dominating.

22.2.2 Delineation of Wetlands

To focus the investigation to wetlands, different sources of legacy polygon data were
combined (Table 22.1) and the total wetland area of 15.5% was obtained for the
study area. The data are very different in age and quality, but for this preliminary
mapping we have allotted the same weight to all. The combined map of wetlands in
the study area is shown in Fig. 22.2.

Table 22.1 Data used in this study for delineating the wetlands

Year of
Type of data Description Scale compilation Reference

Wetland Delineated from old
topographic maps

1: 25,000 1910 Madsen et al. (1992)

Humus soil The humus soil type in
the Danish soil
classification

1: 50,000 1975 Madsen et al. (1992)

Peat and gytje Parent material at one
meters depth

Ranging from
1: 25,000 to
1: 200,000

1880–2008 GEUS (2009)
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Fig. 22.2 Wetlands in the
study area compiled by a
combination of historical
polygon data

22.2.3 Available Point Information

About 5,000 legacy point samples are available in the study area. In this study, the
point dataset was divided into a training dataset (80%) used in the modeling stage,
and a test dataset (20%) used in the validation phase. The point data derives from
four different surveys (see Table 22.2). From two of the surveys, The Danish Soil
Classification and The Danish Soil Profile Investigation, the Soil Organic Matter
(SOM) is known from laboratory analysis. This continuous variable is then con-
verted to a categorical variable using 10% SOM as a cut off value. In Denmark we
have traditionally defined organic soils as having more than 10% SOM and mineral
soil as having less than 10% SOM. The two other surveys give information on parent
material in classes (e.g. peat, gytje, sand, silt and clay). The organic parent material
classes are then reclassified to organic soils and the rest classified as mineral soils.
The legacy point samples have very different age and quality, this aspect is not taken
into account in this work. The resulting point dataset is containing 5,000 points of
which 45% is classified as organic soils and 55% is classified as mineral soils.

Table 22.2 Legacy point sample input for both the DT and the IK

Year of
Type of data Description compilation Reference

The Danish soil
classification

Top soil samples 1975
Madsen

et al. (1992)
Ochre classification Augerings with description of parent

material in the wetland areas
1985

Madsen
et al. (1985)

Well database Well data from the upper one meter. 1950–2008
GEUS (2008)

The Danish
soil profile
investigation

A nationwide 7 km grid, with detailed
information on the soil profile to a
depth of 1.7 meter

1990
Ostergaard (1990)

22.2.4 Other Geospatial Data

22.2.4.1 Historical Maps

Landscape Type

The landscape map was compiled based on topographic maps at a scale of
1:100,000. The delineations between different landscapes were drawn on basis of
the contour lines, former landscape maps, and geological surveys published at a
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scale of 1:100,000. The landscape has been divided into nine different landforms
(Fig. 22.1).

Parent Material

A nation-wide mapping of the geological origin of the sediments in the depth of
1 m was initiated in 1888 by the Danish Geological Survey, today known as GEUS.
At present about 90% of the country is mapped and published at scales of both
1:100,000 and 1:20,000. The mapping divides the sediments in genetic classes like:
till, eolian, outwash plains, and marine deposits. Furthermore, texture is indicated
as clayey, sandy, or silty (e.g. clayey till, sandy melt water deposits). The modeling
for our work was done using the update from February 2009 (GEUS, 2009).

Soil Type

The Danish Soil Classification was compiled from 1975 to 1978. The Danish Soil
Classification is a textural classification of the topsoil (0–20 cm) into eight soil
types, separated on the basis of the content of clay, fine sand, SOM and carbonate.
The survey had national coverage and is based on approximately one sample per
square kilometer.

22.2.4.2 Remote Sensing Derivatives

NDWI, NDVI and RS_Index3

Digital satellite data from the Landsat TM sensor, with a spatial resolution of 30 m
acquired in April 1987, was used in this study for crop identification and wetland
inventory, because the area covered with winter crops was much less in 1987 com-
pared to more resent images, and therefore the percentage of bare soils was higher.
The chosen images were free of clouds, and allowed us to interpret diverse types of
soils in cultivated lands harvested at that time. Data selection was also influenced by
the availability and relatively low cost of Landsat images. Data were registered and
ortho-rectified (RMS error of about 0.7 pixels) using ground control points (GCPs)
and digital road maps (Danish technical T0 maps) at a scale of 1:10,000. Two com-
mon band ratio indices were derived: (1) the normalized difference vegetation index
(NDVI) which computes the normalized difference of brightness values from TM4
(near infrared band) and TM3 (red band) and is used for monitoring the amount of
photosynthesizing present; and (2) the normalized difference wetness index (NDWI)
created using near infrared and short infrared TM bands (TM4 and TM5) and used
to compute soil moisture.

An index was developed also in this study for computing soil color, based on
blue, green, red and NIR bands. The formula of this index can be written as follows:
RS_Index3 = (3∗TM4 + TM3 − TM2 − 3∗TM1). Band TM1 is Blue, band TM2 is
Green, band TM3 is Red and band TM4 is NIR.
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22.2.4.3 Digital Elevation Derivatives

Generation of DEM

A digital elevation model (DEM) was generated by a private company (COWI) for
the area based on data acquired using airborne LIDAR (Light Detection and Rang-
ing) technology.

The initial DEM was produced as raster GRID with 2 m pixel resolution. To
increase the efficiency in terms of storage and manipulation, and to acquire homo-
geneity and standardization with ancillary maps and satellite imageries applied in
this study, the high-resolution DEM was coarsened to 24 m resolution (see Sec-
tion 5.3 for a discussion on coarsening of DEM).

Derivation of Terrain Attributes from DEM

Terrain attributes derived from digital elevation models (DEMs) are commonly use-
ful explanatory variables in predictive soil models (Gessler et al., 1995; Moore
et al., 1993; Odeh et al., 1995; Skidmore et al., 1996). Eight primary terrain
attributes were derived directly from a mosaic of DEMs with a resolution of
24 m using standard commands in ArcGIS 9.3 (attributes1-6) or TerraSTREAM
(attributes 7 and 8): (1) elevation; (2) slope gradient (radians); (3) slope aspect;
(4) profile curvature, (5) contour curvature, (6) mean curvature; (7) flow direction;
and (8) contributing area (flow accumulation). Attributes 1–7 were calculated based
on a window of eight pixels surrounding each pixel. This does not consider the
characteristics of the upslope contributing area of each pixel, nor does it consider
the relative position of each pixel within the toposequence. Therefore, the average
value of these terrain attributes for the upslope contributing area (attribute 8) of each
pixel was calculated.

Elevation (ranging between −4 and 123 m) is useful for classifying the local
relief, and for locating points of maximum and minimum heights. It has a high
correlation with SOC.

Slope gradient, S, characterizing the spatial rate of change of elevation in the
direction of steepest descent, affects the velocity of both surface and subsurface
flow, and hence organic carbon distribution. On steep slopes, dry soil conditions
prevail due to more rapid removal of water causing an important decrease in SOC.

As for slope aspect, ψ (orientation of the line of steepest descent), it is useful for
visualizing the direction of landscapes, and is frequently recorded in soil surveys.
Over the study area, the aspect varies from maximum (359◦) to minimum (0◦).
Aspect is divided into the eight major directions plus the non-oriented flat areas.
Slopes exposed to the south and west are more subject to runoff for two reasons: (1)
they are warmer with higher evaporation rates and lower moisture storage capacity,
thus less forested than those exposed to the north and east, and (2) rainfall affects
slope aspect depending on the direction of winds during rainfall, which commonly
has a west and south–west trend in Denmark.

Plan, profile and mean curvature, K , measures the distribution of convex and
concave areas; hence the propensity of water to converge or diverge as it flows
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across the land. Concave slopes can concentrate more water and sediments indicat-
ing the potential accumulation of a large quantity of soil organic carbon. Convex
slopes show an inverse effect, dispersing flow and limiting material accumula-
tion, therefore a lesser quantity of soil tends to accumulate than on concave
slopes. Flat areas (zero curvature) are without any effect on flow divergence or
convergence.

The drainage network provides an important indication of water percolation rate.
It is commonly accepted in some settings that the denser this network is, the lower
the recharge rate and vice versa. Flow direction was calculated for all pixels by
the direction of steepest descent from each cell. A stream network was derived by
connecting all pixels that accumulate flow from 100 pixels or more. Flow accumu-
lation grid and digitized outlets from the stream network were used to automatically
subdivide the whole area into small watersheds. Each watershed was subdivided
into two facets, separated by the streamline passing through the watershed.

In addition to the above attributes, a compound topographic wetness index
(CTI) was also calculated for each pixel using the specific catchment area (As)
and the slope degree (ß), according to the formula (CTI = ln[As/tanß]) (Moore
et al., 1993).This index is a predictor of zones of soil saturation. Small values of CTI
generally depict upper catenary positions and large values lower catenary positions
with an overall range typically from 2 to 12 for zero-ordered planar areas.

22.2.5 Inference Models

The spatial data was aggregated using two different approaches: decision tree mod-
eling and indicator kriging.

22.2.5.1 Decision Tree Modeling

The success of this type of modeling (i.e., decision-trees) relies on the strength
of the relationship between soil properties and environmental variables available.
Where these relationships are strong, the model will also be strong (see Chapters 20
and 21 for a comparable set of ancillary data used for prediction). Decision-tree
models (DT) can handle both missing values, continuous and categorical predictors,
are robust to predictor specification, and make very limited assumptions about the
form of the regression model (Henderson et al., 2005; Scull et al., 2005). They are
easier to interpret and discuss when a mix of continuous and discrete variables is
used as predictors. However, the most significant advantage of tree-based models
is the capacity to model non-additive and non-linear relationships in a relatively
simple way. This is particularly useful for soil data where interactions between the
response variable and environmental explanatory variables are often conditional on
other explanatory variables.

Estimation of organic soil class can be achieved using classification-tree mod-
eling through incorporating secondary spatial information into prediction (Mueller
and Pierce, 2003). Terrain attributes (e.g., elevation, slope, aspect, curvature) may
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Table 22.3 Input data for decision tree model

Variable Type Class Reference

Point information (organic or mineral) Target Categorical
Landscape type Predictor Categorical

Madsen et al. (1992)
Parent material Predictor Categorical

GEUS (2009)
Soil type Predictor Continuous

Madsen et al. (1992)

RS derivatives
NDWI Predictor Continuous

Gao (1996)
NDVI Predictor Continuous

Rouse et al. (1973)
Index3 Predictor Continuous Pers. kom. Keith

McCloy

DEM derivatives
Elevation Predictor Continuous
Profile curvature Predictor Continuous

Gallant and
Wilson (1996)

Plane curvature Predictor Continuous
Slope gradient Predictor Continuous
Aspect Predictor Continuous
Flow direction Predictor Continuous
Flow accumulation Predictor Continuous
Wetness index/CTI Predictor Continuous

Moore et al. (1993)

aid spatial estimation of soil carbon, because the relief has a great influence on soil
formation (Bou Kheir et al., 2007, 2008; McKenzie and Ryan, 1999).

Besides digital elevation models, one of the most interesting sources of secondary
information could be remote sensing (RS), if a relationship between soil proper-
ties and spectral data could be achieved. Remotely sensed data can be useful for
improving existing coarse-scale soil survey information at a regional scale (Daniel
et al., 2001). However, high carbon soils in Denmark cannot directly be differen-
tiated from moist soils using satellite images, since both appear as dark soils with
decreasing spectral reflectance as water or carbon content increases. However, some
RS indices such as Normalized Difference Vegetation Index (NDVI) and Normal-
ized Difference Wetness Index (NDWI) can be used to integrate vegetation status
and biomass or to compute surface moisture, and will be tested for spatial prediction
of soil carbon. Table 22.3 holds a comprehensive list of the predictor values used
for building the DT.

The decision tree modeling was done using the software DTREG and the result-
ing data layer was compiled using Model Builder in ArcGIS Spatial Analyst.

22.2.5.2 Indicator Kriging

Indicator kriging (described by Oliver and Webster, 1991) provides estimates at
unobserved location of the variable Z , based on the weighted average of adjacent
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observed sites within a given area. The theory is derived from that of regionalized
variables and can be briefly described by considering an intrinsic random function
denoted by Z(si ), where si represents all sample locations, i = 1, . . . , n. An esti-
mate of the weighted average given by the ordinary kriging predictor at an unsam-
pled site z(s0) is defined by:

z(s0) =
n∑

i=1

λi z(si ) (22.1)

where: λi are the weights assigned to each of the observed sample sites.
These weights sum to unit so that the predictor provides an unbiased estimation:

n∑

j=1

λi = 1 (22.2)

The weights are calculated from the matrix equation:

c = A−1b (22.3)

where A: a matrix of semivariances between the data points; b: a vector of estimated
semivariances between the data points and the point at which the variable Z is to
be predicted; and c stands for the resulting weights and the Lagrange Multipliers ψ

(Triantafilis et al., 2001). In this study, a binary SOC value has been considered for
all sample points as follows: if SOC is less than 10%, a score of 0 was attributed; if
it is higher than 10%, a score of 1 was attributed.

The probability maps generated on the basis of the indicator kriging show the
probability of a soil being organic, i.e. in a 63% probability map, all pixels classified
as organic have a 63% or higher chance of being organic.

The analysis was done using the Geostatistical Analyst extension in ArcGIS.

22.3 Results and Discussion

22.3.1 Decision Tree Modeling

The decision tree predicts two classes: organic soil or mineral soil. The full tree has
129 terminal nodes. In pruning the tree using cross validation, the tree with 21 ter-
minal nodes was optimal. The five branches leading to a classification in the organic
soil group are shown in Fig. 22.3. The prediction variables used in the pruned tree
and their relative importance are shown in Table 22.4.

Looking at the list of variables it is noteworthy that none of the remote sensing
indices are on the list, even if we only looked at pixels with NDVI > 0, 1 indicating



276 M.H. Greve et al.

Fig. 22.3 The five organic branches in the decision tree. The numbers next to the nodes are: top –
number of points, bottom – misclassification (percentage). Geology abbreviations refer to various
parent materials

bare soils, the NDWI and Index3 performed better than NDVI. Probably because
NDVI is a vegetation index and the other two RS indices are affected by soil.

Not surprisingly soil type turned out to be the most important variable since
organic top soil is one of the classes on this map. The initial split is done using this
variable.

The parent material is also important but more ambiguous and used in different
levels of the analysis. This is probably because this map shows the parent material
in the subsoil and a lot of the samples in the target variable are classified as organic
due to high SOM in the topsoil only.

Of all the DEM derivatives, slope and wetness index had the highest priority and
were of almost equal importance. Slope is used to split on two branches with slope
less than 1.1 radians and 1.4 radians respectively for classification in the organic
class. We had high expectation to the importance of the wetness index, but to our
surprise this variable was of less importance than slope. When we looked closer
into the data, we found that a lot of the large river valleys came out with very
low wetness indices (with very high wetness indices at the foot slope) and a lot
of the valleys were classified as relatively dry, despite of a very high groundwater
table.
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A test dataset comprising of 20% of the total points were used as an independent
test of the DT map. Fifty eight percent of the points in the test dataset were classified
correctly.

22.3.2 Indicator Kriging and the Probability Maps

The experimental variogram was calculated using a lag size of 2,000 m and 12 lags.
A spherical model was fitted, and sill, nugget and range were estimated to be 0.21,
0.11 and 16,700 m.

A low sill to nugget ratio (0.52), indicating a weak spatial correlation, and the
very long range leads to a SOC map with large scale (or REGIONAL) pattern and
high smoothing effect. This result indicates that too few points are available for this
technique. The map seems very unreliable by visual interpretation. Despite this first
hand impression, a comparison to the independent test dataset shows that 52% of
the test points were classified correctly by indicator kriging.

22.3.3 Comparing the IK Probability Map and the DT
Distribution Map

It is not straightforward to compare the results from DT analysis with the results
from IK. A map compiled on the basis of a DT analysis shows the distribution of
organic and mineral soils. The probability maps generated on the basis of the IK
show the probability of a soil being organic.

On the DT map, 30% of the wetland was classified as organic soils. We decided
to compare the probability map with the same percentage of organic soils as the DT
map, namely the 63% probability map.

The indicator map classifies the study area in large more or less uniform spots due
to the very long range and high smoothing of the kriging. The DT map shows more
fine scale variation due to variation in the input map with high statistical importance
(Fig. 22.4).

The similarities between the two maps are relatively high, as 63% of the wetland
area is classified similar by the two methods. Fifty three percent of the test points
are classified similar.

Table 22.4 The relative
importance of variables use in
the pruned tree analysis

Variable Importance

Soil type 100
Parent material/geology 39.8
Slope gradient 13.6
Wetness index/CTI 10.7
Landscape type 7.7
Elevation 2.2
Plan curvature 1.9
Aspect 1.7
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In this case indicator kriging performs worse; this is probably due to too few
sample points in the wetland areas for this method.

22.4 Conclusion

The modeling approaches (decision tree modeling and indictor kriging) adopted in
this study were easily implemented with available GIS software, and are suitable for
prediction of organic carbon at unobserved locations. They provided quick and sim-
ple methods for generating maps describing the extent of organic soils in Denmark.

Data derived from conventional soil surveys where the individual surveyors
select sites for sampling are less applicable for statistical mapping since there is a
risk of bias in the sample locations. The indicator kriging techniques require a fairly
dense network of sampling sites and the result of the geostatistical analysis shows
very long range (16,700 m) and a high nugget-to-sill ratio (0.52) indicating that too
few points are available for this technique. To further pursue these techniques it will
be important to increase the number of observations by including point information
from other databases, or include the data from the coming survey finishing in 2010.

The DT analysis gave a good impression and a fairly good classification result.
To further improve the results of the DT analysis we have to investigate the value of
other DEM derivatives and the importance of the spatial resolution of the DEM, in

Fig. 22.4 Zoom-in on a part of the study area to visually interpret the differences between the
indicator kriging map and the DT map
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this study we used 24 m resolution, and we might get a better result if we increased
the spatial resolution of the DEM or changed the size of the analysis window.

The geographic reliability of both the points and some of the predictors is very
varied and in several cases unknown. This could be the cause of the mediocre clas-
sification results.

References

Arrouays, D., Deslais, W., and Badeau, V., 2001. The carbon content of topsoil and its geographical
distribution in France. Soil Use Management 17:7–11.

Aslyng, H.C., 1978. Miljø og jordbrug. DSR Forlag, Copenhagen, Denmark.
Batjes, N.H., 2002. Carbon and nitrogen stocks in the soils of central and eastern Europe. Soil Use

and Management 18:324–329.
Bolin, B., and Sukumar, R., 2000. Global perspective, pp. 23–51. In: Watson, R.T., Noble, I.R.,

Bolin, B., Ravindranath, N.H., Verardo, D.J., and Dokken, D.J. (eds.), Land-Use, Land-Use
Change, and Forestry, A Special Report of the IPCC. Cambridge University Press, Cambridge,
Massachusetts, USA.

Bou Kheir, R., Chorowicz, J., Abdallah, C., and Dhont, D., 2008. Soil and bedrock distribution
estimated from gully form and frequency: a GIS-based decision-tree model for Lebanon. Geo-
morphology 93:482–492.

Bou Kheir, R., Wilson, J., and Deng, Y., 2007. Use of terrain variables for mapping gully erosion
susceptibility in Lebanon. Earth Surface Processes and Landforms 32:1770–1782.

Daniel, K., Tripathi, N.K., Honda, K., and Apisit, E., 2001. Analysis of spectral reflectance and
absorption patterns of soil organic carbon, 22nd Asian Conference on Remote Sensing, 5–9
November 2001, Singapore.

Danmarks Meteorologiske Institut. 1998. Danmarks Klima 1997. Danmarks Meteorologiske Insti-
tut, Copenhagen.

Gallant, J.C., and Wilson, J.P., 1996. TAPES-G: A grid-based terrain Survey Investigations Rep.
42, Version 3.0. USDA-NRCS, Linanalysis program for the environmental sciences. Computa-
tional Geosciences, NE. 22:713–722.

Gao, B., 1996. NDWI: A normalized difference water index for remote sensing of vegetation liquid
water from space. Remote Sensing of Environment 58(3):257–266.

Gessler, P.E., Moore, I.D., McKenzie, N.J. and Ryan, P.J., 1995. Soil-landscape modelling and the
spatial prediction of soil attributes. International Journal of Geographic Information Systems
94:421–432.

GEUS (Geological Survey of Denmark and Greenland) 2008. The Jupiter database,
http://www.geus.dk/jupiter/index-dk.htm (Last accessed 23 April 2010).

GEUS, 2009. Danmarks digitale jordardskort 1:25.000. CD-ROM. De Nationale Geologiske
Undersøgelser for Danmark og Grønland.

Henderson, B.L., Bui, E.N., Moran, C.J., and Simon, D.A.P., 2005. Australia-wide predictions of
soil properties using decision trees. Geoderma 124:383–398.

Krogh, L., Noergaard, A., Hermanen, M., Humlekrog Greve, M., Balstroem, T., and Breuning-
Madsen, H., 2003. Preliminary estimates of contemporary soil organic carbon stocks in Den-
mark, using multiple datasets and four scaling-up methods. Agricultural Ecosystem and Envi-
ronment 96:19–28.

Lacelle, B., 1997. Canada’s soil organic carbon database, pp. 93–102. In: Lal, R. (ed.), Soil Pro-
cesses and the Carbon Cycle. CRC Press, Boca Raton, FL, USA.

Madsen, H.B., Jensen, N.H., Jakobsen, B.H., and Platou, S.W., 1985. A method for identification
and mapping potentially acid sulfate soils in Jutland, Denmark. Catena 12(4):136–371.

Madsen, H.B., Nørr, A.H., and Holst, K.A., 1992. The Danish Soil Classification. Atlas of Dan-
mark I3. Reitzel, Copenhagen.



280 M.H. Greve et al.

McKenzie, N.J., and Ryan, P.J., 1999. Spatial prediction of soil properties using environmental
correlation. Geoderma 89:67–94.

Moore, I.D., Gessler, P.E., Nielsen, G.A., and Petersen, G.A., 1993. Terrain attributes: estimation
methods and scale effects, pp.189–214. In: Jakeman, A.J., Beck, M.B., McAleer, M. (eds.),
Modelling Change in Environmental Systems. Wiley, London.

Mueller, T.G., and Pierce, F.J., 2003. Soil carbon maps – Enhancing spatial estimates with simple
terrain attributes at multiple scales. Soil Science Society of America Journal 67:258–267.

Odeh, I.O.A., McBratney, A.B., and Chittleborough, D.J., 1995. Further results on prediction of
soil properties from terrain attributes: heterotopic cokriging and regression-kriging. Geoderma
67:215–226.

Oliver, M.A., and Webster, R., 1991. How geostatistics can help you? Soil Use and Management
7:206–217.

Ostergaard, H.S., 1990. Kvadratnettet for nitratundersøgelser i Danmark 1986-89 (in Danish). Dan-
ish Agricultural Advisory Centre, Skejby, Aarhus.

Rouse, J.W., Haas, R.H., Schell, J.A., and Deering, D.W., 1973. Monitoring vegetation systems in
the great plains with ERTS, Third ERTS Symposium, NASA SP-351 I: 309–317.

Scull, P., Franklin, J., and Chadwick, O.A., 2005. The application of classification tree analysis to
soil type prediction in a desert landscape. Ecological Modelling 181:1–15.

Skidmore, A. K., Gauld, A., and Walker, P., 1996. Classification of kangaroo habitat distribu-
tion using three GIS models. International Journal of Geographical Information Systems 10:
441–454.

Triantafilis, J., Odeh, I.O.A., and McBratney, A.B., 2001. Five geostatistical models to predict soil
salinity from electromagnetic induction data across irrigated cotton. Soil Science Society of
America Journal 65:869–878.

Zhang, G., and McGrath, J., 2004. Geostatistical and GIS analyses on soil organic carbon
concentrations in grassland of south-eastern Ireland from two different periods. Geoderma
119:261–275.

Zhang, S.R., Sun, B., Zhao, Q.G., Xiao, P.F., and Shu, J.Y., 2004. Temporal spatial variability of
soil organic carbon stock in a rehabilitating ecosystem. Pedosphere 14(4):501–508.



Chapter 23
Modeling Wind Erosion Events – Bridging the
Gap Between Digital Soil Mapping and Digital
Soil Risk Assessment

H.I. Reuter, L. Rodriguez Lado, T. Hengl, and L. Montanarella

Abstract Wind erosion submits fine as well as coarse soil particles into the
atmosphere, thereby affecting physical and chemical processes, affecting radiative
forcing, chemical reactions and biological systems. This study was conducted to
quantify wind erosion events by generating data for soil erodibility and wind ero-
sivity for the Danube Basin. Estimates of surface soil texture were generated from
∼8,000 soil profiles and 54 auxiliary datasets using the regression-kriging method.
The quality of the regression equation was not satisfactory. Validation showed an
RMSE of 8.6, 10.4 and 13.5 for clay, sand, and silt. Different texture scenarios were
generated and the number of wind erosion events for the year 2006 was modeled
using weather data from the European Centre for Medium range weather forecast.
Vegetation cover fraction was approximated from Meteosat data. Magnitude and
spatial extent of wind erosion estimations showed similar order compared to wind
erosion estimations based on the European Soil Database.

Keywords Danube basin · DSFM · DSRA · Digital elevation model · Data
harmonization

23.1 Introduction

Wind erosion is one of the soil threats outlined in the currently discussed Soil The-
matic Strategy of the European Union (European Communities, 2006). Under dry
conditions, the danger of wind erosion increases when plant coverage is sparse or
non existent in spring and autumn (Lóki et al., 2005). Wind erosion occurs on all
types of soil, however mainly on light, sandy soils (Chepil, 1960).

The transport capacity of the wind increases as a power function of the veloc-
ity, after exceeding a friction velocity threshold which depends on particle size
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Fig. 23.1 Image from a natural event of a dust storm on 2005-07-24 in Iraq over a US military
camp and from the MODIS satellite

(Bagnold, 1941). However, these transport equations are mostly developed for
desert conditions and do not necessarily reflect the conditions occurring in agri-
cultural soils (Fig. 23.1). The effects of the transport are driven by the movement of
soil particles due to the wind force and can lead to crop damage, air pollution and
decreased fertility of the top soil surface.

To estimate the extent of wind erosion in Europe, EEA-UNEP (EEA, 2000a)
created a map of European wind erosion risk based on local empirical data and
expert knowledge (see also Van Lynden, 1994). More advanced approaches exist to
quantify erosion rates on agricultural soils. Some of them are physically based like
the WEPS model (Hagen, 1996), WEAM (Shao et al., 1996) or the WEELS model
(Böhner et al., 2003), whereas others like the RWEQ model (Fryrear et al., 1998)
or the WFI approach (Beinhauer and Kruse, 1994) are based on empirical equa-
tions. One limitation is that these models usually require a number of input parame-
ters, which are rarely available for large areas (e.g., the field management practices
might be known for one single region, however they are usually not reported at the
regional/federal level), or the model domain might be limited (e.g., WEPS only one
field, WEELS only a maximum area of 25 km × 25 km). Global models used in
the climate change community are at a relatively coarse scale and cannot be used
for detailed assessments. For European-wide estimations (see also Chapter 18) of
wind erosion events, the dominant soil surface texture could be obtained from the
European Soil DatabaseV2.0, available at http://eusoils.jrc.it (EUR 19945EN) at
1:1 Million scale. However, wind erosion events are known to be localized and small
scale soil mapping of the 1:1 Million might not be sufficient. In the course of the
development of the Danube Soil Information System, soil profile information has
been obtained from the different member states of the Danube catchments system
in a harmonized and standardized way. Those soil profiles, in combination with
a digital soil mapping/digital soil functional mapping/digital soil risk assessment
approach, are assumed to represent a more detailed picture than a digital soil risk
assessment based on the European Soil Database alone.

The objective is to investigate different texture scenarios coming from traditional
soil mapping (ESDB) and digital soil mapping and to test the applicability of the
workflow using digital soil mapping for digital soil assessment in the context of
wind erosion modeling.
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23.2 Materials and Methods

We used a regression kriging (RK) approach to estimate clay, silt and sand con-
tent (in %), and its related uncertainty, for the Danube basin by means of soil pro-
file observations together with environmental information such as parent material,
DEM, climate parameters, remote sensing among others. These texture estimations
were then used to calculate the wind erosion susceptibility for the entire Danube
river basin.

23.2.1 Study Area

The extent of the study area corresponds to the Danube basin (817,000 km2) which
contains Europe’s second-longest river (2,860 km) after the Volga river. The Danube
flows from the Black Forest area in Germany to the Black Sea. It drains the north-
ern part of the Alps, the Pannonian and Rumanian lowlands, thereby providing
drainage to large areas of southern middle Europe and southeast Europe. Climatic
conditions are variable but mostly characterized as a moderate climate following the
Köppen-Geiger climate classification (Peel et al., 2007). There is a wide range of
soil types present, including Rendzinas (6%), Phaeozems (9%), Cambisols (30%),
Luvisols (18%), Fluvisols (8%) and Chernozems (11%) with varying texture con-
ditions. Several authors reported that as much as 650,000 km2 in eastern and south-
eastern Europe have severe wind erosion problems (Gross and Bärring, 2003; Lóki
et al., 2005).

23.2.2 Digital and Field Data

Soil profile data have been obtained from different member states of the Danube
Basin with the aim of creating a Danube Basin Soil Information System (SIS).
Although still not fully populated, the database represents a homogenized and stan-
dardized dataset of soil profiles containing sand, silt and clay content, OM, stones
and a number of other parameters (see also Chapter 25). In total, 8870 points have
been available in the Danube basin database for topsoil conditions. However, the
samples not containing data for all parameters have been excluded (Fig. 23.2).
For a more detailed description of the Danube Basin SIS please refer to Dobos
et al. (2006).

In addition, we used a set of auxiliary variables, which are either directly influ-
encing soil texture or might serve as a proxy for the factors in the scorpan model
(McBratney et al., 2003). A short overview of the auxiliary variables that were used
is given in Table 23.1.

All 54 auxiliary datasets have been organized in a multiband image from the
different single input datasets (1.5GB). We rescaled the bands to the same data range
to ensure similar weights in the PCA and converted them to 54 Principal Component
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Fig. 23.2 Soil profile description available from the Danube Soil Information System. Note that
(a) not all profiles contain a complete description and (b) several Danube-Basin member states did
not deliver data into the system

raster maps using Principal Component Analysis in ENVI V4.3 (ITTVIS, 2008)
in order to minimize possible collinearity between variables. For each of the soil
sampling points we obtained the value of the 54 PCA components to be used in the
inference model.

23.2.3 Inference Models

We used regression-kriging (RK, see Hengl, 2009) to estimate the sand, silt and
clay content in the topsoil. Firstly, we performed a stepwise-linear regression (back-
ward selection, significance 0.05) model for the measured texture components as
dependent variables against the auxiliary environmental variables (Table 23.2). The
derived regression equation was then applied using the 54, standardized, 1 km reso-
lution auxiliary raster grids to obtain a continuous linear regression surface.

In a second step we interpolated the residuals of this regression model by ordi-
nary kriging. The final map is an additive combination of both the stepwise regres-
sion and the ordinary kriging models. In case the texture components did not sum
up to 100%, we calculated the sum of all estimated texture components and adjusted
all three components accordingly.

The original dataset of observations was divided using a random sampling func-
tion into a model dataset, that includes the 80% of the samples and a validation
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dataset, containing the remaining 20% of the samples. The multiple linear regression
model was performed on the model points dataset.

23.2.4 Digital Soil Risk Assessment Model

Texture class percentages have been derived in four different ways: (1) using the
Dominant Soil Surface Texture of the European Soil Database (ESDB); (2) using the
estimated texture percentage based on the RK using the texture triangle, (3) as well
a Best Case scenario, and (4) Worst Case (minimum clay, maximum sand content)
scenario especially tailored for wind erosion. Depending on the various textured
materials reported, different friction velocity thresholds were assigned: 5 m/s for
coarse, 7 m/s for medium, 9 m/s for fine textured and 11 m/s for very fine textured
soils. Organic soils were assigned a threshold value of 8 m/s. Finally, the wind ero-
sion scenarios have been limited to soils which were under agricultural land use
according to Corine 2000 land use classification (EEA, 2000b).

The Wind Force Integral (WFI) has been used as a parameter to compare erosivity
of the meteorological conditions with respect to the underlying soil surface across
different years (Beinhauer and Kruse, 1994). The WFI defines the potential transport
capacity of the wind at the soil surface as a function of the wind force and the surface
moisture providing that the following conditions are met (i) precipitation < 0.3 mm
in that time step (e.g., no rain event), (ii) precipitation (m) < evaporation (m), and
(iii) the average wind speed (u) in m s−1 is above the soil friction velocity threshold
(uthr) in m s−1. If all three conditions are met, the WFI is computed for the time
steps (n) per day/month/or year:

WFI =
n∑

1

(u − uthr) × u2

All climate data/WFI computations were performed using the Climate Data Oper-
ators (CDO) version 1.0.1 (Schulzweida, 2006). The authors define an erosive day
(ED) as a day where the sum of all daily time steps (dn) of the WFI shows values
greater than zero.

Weather data have been obtained from daily forecasts from the European Cen-
ter for Medium Range Weather Forecast (ECMWF) for the years 2005–2007 in
the meteorological GRIB format (1.8 GB). The required parameters have been
extracted for the Danube Basin and joined to provide a single file with a 3 h time
step (180 MB). Spatial resolution of this dataset has been remapped using bilinear
interpolation to 0.1 degree resolution from the original 0.25 degree resolution. This
remapping constitutes a limitation for the accuracy of the modeling. However no
other dataset is available with a sufficient daily temporal and spatial resolution.

Finally, the surface vegetation cover was calculated using the daily surface veg-
etation cover fraction (FVC) derived from the Meteosat MSG/SEVIRI sensor. It
allowed a quantitative classification of the structure of the vegetation canopy. Areas
of no-data in the FVC dataset have been filled by time series interpolation. The
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original spatial resolution of the dataset (5 km × 5 km) has been resampled to a
0.1 degree resolution to match other datasets. As a rule of thumb based on expert
knowledge, we assumed that, for vegetation cover percentages above 20%, wind
erosion would be negligible. To account for subscale variability of the FVC we
chose a value of 30% as a threshold for wind erosion events.

23.3 Results and Discussion

23.3.1 Results from Digital Soil Mapping Model

The results from the developed stepwise regression model based on the PCA of the
54 auxiliary variables are quite poor with only a multiple R-squared of ∼0.2 for
sand, silt and clay. After the stepwise regression we retained for the prediction 41
PCA bands for silt and clay and 46 bands for sand. An analogous analysis for some
soil chemical parameters shows an explanation between 40 and 50% (Rodriguez
et al., 2008). Most of the variability was not captured by the deterministic model,
implying that (i) the auxiliary variables selected were not adequate to estimate soil
textural parameters at the basin scale, (ii) soil profile data were non-representative
due to poor sampling quality; and/or (iii) the soil profile data related to different
scales/periods. The adjusted R-squared values obtained in this work were 0.21, 0.17
and 0.17 for sand, silt and clay, respectively. Still, the final digital soil mapping
model is a combination of the regression model and the interpolation by ordinary
kriging of their respective residuals. A map of the predicted clay contents is shown
in Fig. 23.3.

23.3.2 Accuracy Assessment of Digital Soil Mapping Model

The accuracy of the results was evaluated by comparing the texture values in the
validation dataset (2,000 points) against the RK model predictions. The RMSE val-
ues for clay, sand, and silt were 8.6, 10.4 and 13.5, respectively. These values seem
on the first hand quite high. This uncertainty can be partially explained since a point
scale dataset is being compared with averaged texture values for a 1,000 m block
(the support size of our RK models). To obtain an estimation of the accuracy of the
input data we compared each soil profile with each neighbor in a maximum radius of
2,000 m, obtaining a RMSE of 9.9, 11.9 and 15.6 for clay, silt and sand respectively.
Thus, the RMSE values from our model validation were quite similar to the internal
variability found in the Danube Basin SIS.

23.3.3 Results for Digital Soil Risk Assessment Model

Estimated days for wind erosion events in 2006 ranged from 1 to 2 for the best
case scenario (BC), up to 3 days for the average scenario (AV) and up to 6 days
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Fig. 23.3 Predicted clay content using regression-kriging. Note that for parts of the Danube Basin
in Moldavia and Ukraine no prediction could be performed due to missing input data

for the worst case scenario (WC) which covered a total area of ∼ 14 + E3 km2.
In the AV scenario (Fig. 23.4), only half of the area would be affected (i.e., 8.5 +
E3 km2), whereas the BC scenario affected an area of ∼ 2.7 + E3 km2. The spatial
dimension and magnitude are close to the estimations performed with the ESDB
dataset, where ∼ 4 + E3 km2 have been influenced with one and two erosion days.
The extent of areas affected for Bulgaria, Czech Republic, Hungary and Slovakia is
∼ 2.5+E5 km2 (Funk and Reuter, 2006). This extent would represent the maximum
area assuming bare earth dry conditions without surface cover and wind speeds
above the threshold velocity. As the modeled area extent is an order of magnitude
smaller, the results seem plausible as “near real-time” modeling has been performed.

A validation of the estimated days against real measurements can not be per-
formed as no measurements of wind erosion events were available. A possible
approach for validation might be to use background or rural PM10 air quality station
data from the different EEA member states. However, especially in Eastern Europe
the density of the monitoring stations is rather limited for the year 2006.

Another limitation arises from the applied static threshold for friction velocity
based on texture classes. The authors assumed that a threshold friction velocity
for a sandy soil is the same across the Danube Basin, which may not be the case
due to additional influencing soil components (biological, chemical). For example,
organic matter content, which is known to stabilize the soil surface (e.g., crusting),
is one parameter which could have been integrated, but was not considered here.
Furthermore, besides the more stable soil properties, dynamic properties are more
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Fig. 23.4 Number of wind erosion days (ED) in 2006 in the Danube Basin using a digital soil
mapping generated soil texture map (AV), 3-hourly weather forecast from the ECMWF and daily
surface vegetation cover fraction (FVC) using the wind force integral. Note the extent of the Worst
Case Soil Texture Scenario (ED-WC-FVC-2006)

difficult to obtain and use for modeling purposes. The approach certainly lacks the
incorporation of factors like soil moisture content. Still, the use of evaporation in the
WFI improves the results at least for the top soil surface of sandy soils. The authors
are aware that any changes in land use and changes in land use cover percentage
are neglected between the time of creation of the land use classification and the
simulation. Still, these changes should be negligible on the rather coarse simulation
scale. Finally, temporal changes in development of soil crusting (Goosens, 2004)
and changes in time of the threshold friction velocity have been taken into account,
which might be influenced by management activities (ploughing, seeding).

23.4 Conclusions

We performed a digital soil mapping – digital soil functional mapping – digital soil
risk assessment workflow for the Danube Basin based on ∼ 8,000 single soil profiles
and 54 auxiliary datasets for the soil threat wind erosion on a daily basis in the year
2006. To perform such application, multiple data sources had to be fused (climate,
FVC, soil profiles, geology, DEM) into the modeling process allowing for “near
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real time” wind erosion events prediction. We expect that in the future many more
of these multi-data fusion applications will be used.

The digital soil mapping model was not satisfactory with the chosen auxiliary
parameters that can only explain a small percentage of the total variability. We can
already conclude that for the Danube Basin, estimations for soil physical param-
eters need a different set of auxiliary parameters than a European soil chemical
estimation. Further investigations need to be performed to determine parameters
or methods which allow for increased prediction accuracy for the digital soil map-
ping model. RK and WC scenario showed consistently slightly higher extent and
magnitude compared to the ESDB scenario, whereas the BC scenario shows sim-
ilar values. This is the big advantage of the digital soil mapping/digital soil risk
assessment approach - as uncertainties can be specified – to outline differences
in results which can be expected for policy relevant decision making. If new soil
information becomes available in the context of the GlobalSoilMap.net (see Chap-
ter 33) approach, the method as outlined in here, can be applied elsewhere to support
decision making.

The digital soil functional mapping/digital soil risk assessment allowed for an
approximation of the wind erosion events in 2006. However it became clear that
certain changes in temporal variability of crusting or changes in friction velocity
due to management activities require a substantial effort to (i) understand processes
at the Danube Basin scale and (ii) to generate models for future scenarios. Such
algorithm-coded models are required to perform policy relevant support to decision
making at European-wide scales.

References

Bagnold, R.A., 1941. The Physics of Blown Sand and Desert Dunes. Methuen, London, 265 pp.
Beinhauer, R., and Kruse, B., 1994. Soil erosivity by wind in moderate climates. Ecological Mod-

elling 75/76:279–287.
Böhner, J.B., Schäfer, W., Conrad, O., Gross, J., and Ringeler, A., 2003. The WEELS model:

methods, results and limitations. Catena 52:289–308.
Conrad, O., 2001. Tools for (grid based) digital terrain analysis V1.0 Program module for SAGA

GIS 2.0, Göttingen
Chepil, W.S., 1960. Conversion of relative field erodibility to annual soil loss by wind. Soil Science

Society of America Proceedings 24:143–145.
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Making Digital Soil Mapping Operational



Chapter 24
Soilscapes Basis for Digital Soil Mapping
in New Zealand

A.E. Hewitt, J.R.F. Barringer, G.J. Forrester, and S.J. McNeill

Abstract S-map is designed to deliver a new digital soil map, database, inference
system, and soil information system for New Zealand. The strategy integrates legacy
data and new data with digital soil mapping techniques. Legacy data include a
database of analyzed pedons; older soil surveys; and experienced pedologists with
knowledge of soil variability and soil–landscape relationships. Given the available
spatial prediction layers, digital soil mapping is most suited to hilly and moun-
tainous land. Definition of soilscapes is a key step for effective survey planning –
soilscapes will be used to match mapping techniques to land and soil type, analyse
legacy data gaps to plan further sampling, and identify potential areas suitable for
mining predictive relationships from legacy soil surveys. A two-stage approach is
proposed. In stage one first-approximation soilscapes are defined using legacy data,
and used to plan and complete a digital soil map. In stage two the new soil data
are used to derive improved second-approximation soilscapes. Two trial methods
were used to define and map soilscapes: data-driven clustering, and expert cluster-
ing from legacy data. The expert clustering result was evaluated by multivariate
regression. The factors used to guide clustering and classification included par-
ent rock, elevation, precipitation, slope, and the presence of thick (>2 m) loess.
The data-driven-clustering output expressed major soilscape transitions, but in
detail produced many inappropriate clusters. An expert-driven-clustering output
was less problematic but multivariate regression suggested that the adopted vari-
ables did not adequately describe the distinctions made by the expert for different
soilscapes.
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24.1 Introduction

New Zealand is under increasing pressure from intensifying land use. The profitable
dairy industry has grown rapidly over time, to the extent that immature pine planta-
tions have been clear-felled for new dairy operations. For some time New Zealand
land use patterns have been highly dynamic as enterprises have responded to market
signals in a relatively free regulatory environment. Now however, issues of water
quality, water scarcity, green house gas emissions, and soil quality have emerged
and land managers are facing pressures of environmental compliance enforced by
export customers and domestic law. Research funding has been released to provide
better planning and management mitigation models.

How then do we respond? We have a small number of senior pedologists, a rich
set of soil survey reports, and a good-quality national soils database. Digital soil
mapping techniques hold the promise of being able to deliver new soil information
cost-effectively. Clearly the way forward is to take the best of our legacy data and
integrate these with the best of our digital soil mapping techniques. This has to be
an important topic for this conference and this first session is welcomed.

This paper outlines the nature of the New Zealand soil data legacy and relates our
efforts to apply legacy data to the recognition of soilscapes as an aid in the planning
of digital soil mapping.

The origin and usage of the term soilscape is reviewed by Jamagne and
King (2002). In this paper we follow the soilscape definition of Lagacherie
et al. (2001) where a soilscape is “a landscape unit including a limited number
of soil classes that are geographically distributed according to an identifiable pat-
tern”. In the absence of prior mapping of soils to identify those soil patterns, our
aim is to estimate the distribution of soilscapes by mapping areas of similar arrays
of related land attributes and environmental factors of soil formation. The concept
of soilscapes differs from “soil associations” by explicit inclusion of characteristic
landscape attributes.

24.2 Legacy Data

24.2.1 Legacy Datasets in New Zealand

The New Zealand soil survey has a vigorous history (Tonkin, 2007) but it faced
drastic funding cuts from 1988. Full-time staff dedicated solely to soil survey and
related land resource mapping reduced from 49 to only 0.8 in 2007. The funding
drought has now partly eased and we may now build a new digital map using legacy
data from the earlier soil survey era.

The legacy data are:
Soil maps and reports National soil map coverage at 1:253,440 scale (inch:

4 miles) was achieved by mapping of soil associations (called soil sets) in 1954
for the North Island and 1968 for the South Island (Soil Survey Staff, 1954, 1968).
More detailed surveys followed at scales from 1:125,000 to 1:10,000, of counties,
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prominent arable areas, and parts of catchments. This legacy comprises a patchy
distribution of soil maps of varying scale, varying quality, and in parts poor soil
correlation. Section 16.1 further describes the characteristics of legacy data. Other
studies that have used legacy data are referred to in Section 24.1 above.

An independent land inventory and land capability survey, the New Zealand
Land Resource Inventory (NZLRI) (NWASCO 1979), was conducted rapidly to
achieve national coverage in 1979. It mapped five “themes”: soil, slope, ero-
sion status, vegetation, and rock type. This compiled all soil information pub-
lished at the time, to a scale of 1:63,360. The soil theme of the NZLRI remains
the only digital national soil coverage and receives extensive use. A relational
join of features from NZLRI, and the National Soils Database (NSD), with input
of expert judgement, allocated soil chemical and physical attribute classes to
polygons of the NZLRI. Sixteen attribute fundamental soil layer (FSL) maps
were generated and are accessible through the geospatial data integration portal:
http://gisportal.landcareresearch.co.nz/webforms/catalogue1.aspx.

Pedon databases. The National Soils Database has soil chemical analyses from
sampled pedons at 2,500 sites. Only 13% have soil physical analyses (bulk density,
water release, etc.). A further 800 sites have topsoil soil-quality-indicator analyses
(Sparling and Schipper, 2002). Samples are archived and available for further analy-
sis. In recent years, the soil carbon database has added 410 sites analyzed for carbon
and bulk density but potentially available for other analyses from archived samples.

Pedologists. Apart from the NZLRI and fundamental soil layer compilations, the
soil survey legacy data remain underutilized because they are scattered among many
reports, in which the data are inconsistent, qualitative, and with a nomenclature that
can be interpreted only by specialists. A key to extracting the richness of these data
is to use senior pedologists who understand the soils, landscapes, and the nature of
the data. Experienced pedologists are part of the legacy.

24.3 S-map

24.3.1 S-map Goal

S-map is a national soils database, soil map and soil information inference system
for New Zealand (Lilburne et al., 2004). The goal is one complete national digital
soil map with easily accessible, relevant data and inferred key information to support
sustainable development and management. The map scale will be at 1:50,000, or
more detailed.

S-map is designed to incorporate legacy data (Hewitt et al., 2006) by taking what
is best from the past and incorporating both new data and pedologist knowledge.
Legacy data are transformed into data that are interpreted by an inference system of
pedotransfer functions and used to generate soil information outputs including Web-
accessible, dynamic, soil fact sheets (http://smap.landcareresearch.co.nz ). Pedolo-
gists sift through old soil reports extracting soil profile data in the form of newly
defined soil functional horizons, estimate simple probability distributions of key
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attributes within classes, and estimate proportions of classes within new mapped
polygons. Uncertainty ratings are attached to these estimates to express the relative
contribution of data and judgment. Uncertainty estimates are vital for the continuing
progress of the new database because when national coverage is achieved, parts with
lower certainty may then be prioritized and become the focus for further database
investment.

24.3.2 S-map Strategy

Because effective spatial predictors are scarce in low-relief land, opportunities for
digital soil mapping are limited. Remote sensing solutions have yet to be adequately
investigated, but meanwhile soil survey is proceeding with conventional methods.
In land of moderate to high relief the national digital elevation model is the primary
source of spatial prediction layers together with climate surfaces, land cover and
land use. In the high-relief land, rule-based models are being used to relate soil
associations to land elements modelled from the 25-m-resolution DEM (Barringer
et al., 2008; Schmidt and Hewitt, 2004; Schmidt et al., 2005). Work proceeds on
the derivation of higher resolution DEMs using data from the PRISM sensor of the
ALOS satellite.

Definition and delineation of soilscapes is a key step for effective planning and
conduct of an S-map strategy to map the soils of New Zealand.

24.4 Soilscape Rationale

Soil mapping is more efficient if planned and focused on areas defined by soils and
landscapes rather than land administrative boundaries. We then need to stratify New
Zealand into soil and landscape areas that will most effectively serve operational soil
mapping. These strata, which we call soilscapes, should ideally delineate similar
soil–landscape predictive relationships, sampling strategies, survey methods, and
likely land use versatility. See Section 28.2 for a discussion of an analogous concept
(landscape stratification).

The primary digital soil survey planning applications of soilscapes include (1)
matching mapping techniques to land and soil type, (2) analyzing the density of
legacy observations to locate gaps for further sampling effort, and (3) indicating
potential areas that may be mapped by extrapolation of soil–landscape relationships
mined from quality legacy soil surveys. The value of an investment in data mining
may be judged by the size of the potential area of extrapolation.

An important secondary application of soilscapes is for planning and implement-
ing sustainable development and land management. Many applications of spatial
soil information require greater spatial and categorical generalization than provided
by soil maps of 1:50,000 or more detailed scales. Examples of such applications
of soilscapes include: recognition of areas of similar hydraulic behavior in catch-
ment studies (Elsenbeer, 2001), definition of study areas for pedotransfer func-
tion research (Scheinost et al., 1997), the presentation of national soil resources
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(National Soil Resources Institute, 2001), and its inclusion in the anthropological
concept of cultural soilscapes (Wells, 2006). Soilscapes have even been used as a
defining topic for artistic expression (Noller, 2009).

24.5 Methods

To achieve these goals a two-stage approach is proposed. In stage one first-
approximation soilscapes are defined using legacy data, and used to plan and com-
plete digital soil mapping coverage. In stage two the new soil data are used to derive
improved second-approximation soilscapes. We are at the first-approximation-
soilscapes stage.

We chose a collection of variables to classify and map soilscapes based on the
assumption that similar soilscapes should display similar suites of soil types, and
be subject to similar factors that drive soil pattern. One of the aims of this study,
then, was to determine whether this collection of classification variables adequately
describes the similarity within soilscapes, and distinctions between soilscapes, and if
the collection of variables adequately codified the expert’s knowledge of soilscapes.

Significantly different suites of soils were recognised by indicator soil orders
or soil groups of the New Zealand Soil Classification (Hewitt, 1998). For example
Semiarid Soils, Pallic Soils, Brown Soils, and Podzols were used to indicate the
climate sequence that dominates the soil pattern of the South Island. Each of these
indicator classes was associated with a suite of cohorts that typically included Gley
Soils, Recent Soils, and Raw Soils. The soil data inputs were soil sets as compiled
by the NZLRI from the 1:253,440-scale soil maps of the North Island and South
Island (Soil Survey Staff, 1954, 1968).

Significant factors that control soil patterns in New Zealand are rock type, tec-
tonic uplift rate, and rainfall (Basher and Tonkin, 1985). To infer these with available
mapped data we used classes of rock composition (classes aggregated from rock
types by silica, nickel, and calcium carbonate contents), elevation, precipitation,
slope, and the presence of thick loess.

In this paper, we describe three methods for exploring the current soils database
and the factors that we assume will discriminate soilscapes. First, we trialed a data-
driven clustering analysis in an attempt to aggregate previously classified soil associ-
ations with essentially similar soilscape characteristics. Second, we used an expert’s
knowledge to partition the soil types into a modest number of similar groups based
on landscape interpretation. Finally, we used the expert’s aggregate partition of soil
types in a regression analysis to find explanatory distinctions for model structure
within the potential soilscapes.

24.5.1 Data-Driven Clustering

Although the term can have several different meanings, here we take the term
clustering to be concerned with discovering groupings among the different cases
available to us (Venables and Ripley, 2002). The clustering procedure used a
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hierarchical data-driven method with hierarchical cluster routines from the clus-
ter package (Maechler et al., 2005) in the R statistical computing environment (R
Development Core Team, 2009). Hierarchical clustering was used to agglomerate
1:50,000-scale polygons of the NZLRI, using as inputs the rock and indicator soils,
as well as unprocessed ordinal data for precipitation, altitude, and slope. The North
Island and South Island were analyzed separately.

A practical limitation of this approach was the very large number of NZLRI
polygons, since a data-driven approach such as this requires synthesis of a distance
matrix of size N 2 for a dataset of length N . To avoid this difficulty, the polygons
were reclassified into groups based on the soil set classes and parent rock com-
position. For each of these classes, mean values were estimated for precipitation,
altitude, slope and rock composition, nickel content, and loess depth, yielding 437
classes for the South Island and 543 for the North Island. The cluster analysis in R
was used to determine similarity of these classes based on their average properties.
Maps were prepared for assessment by truncating the cluster trees at different levels
in the hierarchy to control the level of disaggregation in the landscape.

24.5.2 Expert Clustering

Soil map units were aggregated from the1:253,440-scale legacy soil sets. A total of
546 soil sets for the South Island (Soil Survey Staff, 1968) were aggregated into
55 soilscapes. Aggregation was based on the same factors used in the data-driven
clustering method, with the addition of landform dissection, and precipitous slopes.

24.5.3 Multivariate Regression Exploration of the Expert Clusters

Two aggregate soilscapes produced by the expert clustering were analyzed in a
regression or classification procedure (as appropriate) that attempted to predict the
categorical soilscape within the expert’s classification of soilscape. This process
used six explanatory variables, including parent rock type, precipitation, altitude,
and slope, as well as a variety of regression models (e.g. linear model, tree regres-
sion). The models were tested for single potential soilscapes; that is, a model was
tested for its ability to predict a soilscape given the other explanatory variables.
Then, models were tested between groups; that is, tested for their ability to pre-
dict several soilscapes. The model to test for single potential soilscapes was gener-
ally simpler, since testing between groups requires the modeller to decide how to
apportion the error between different soilscapes. The quality measures for this step
included the false classification rates for the different soilscapes.

24.5.4 Distribution of Legacy Data by Soilscape

The distribution of quality soil surveys and pedons of the National Soils Database
were compared with soilscape areas. Soilscapes represented in some part by a
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quality soil survey were identified as potential areas for extrapolation of the legacy
data by data mining.

24.5.5 Judging Success of Outputs

We judged the success of soilscapes qualitatively by degree of fit of soilscape classes
and their map delineations to known transitions in indicator soil classes, soil pat-
terns, and soil–landscape relationships. The level of stratification was judged by
assessing relationships with well-understood conceptual soil–landscape models. If
a soilscape spanned areas where two or more distinct sets of soil–landscape rela-
tionships exist then it was judged to be understratified. Alternatively, two or more
potential soilscapes that subdivided areas of similar soil–landscape relationships
were judged to be overstratified.

24.6 Results

24.6.1 Data-Driven Clustering

Data-driven clustering expressed well the major transitions across the North and
South islands, but there were many map units that did not adequately stratify
expected soil–landscape relationships. These resulted from the relative priority
assigned by the cluster technique to the input factors. For example, high-altitude
landscapes were clustered by elevation at high level in the hierarchy irrespective
of rock types that control soil types and patterns. Clearly, the hierarchy requires
judicious trimming.

Parts of the map were understratified. For example, on the Canterbury Plains
(Figs. 24.1 and 24.2) areas of Pleistocene gravel outwash sheets were not separated
from the contrasting highly variable Holocene fluvial landscapes. Generally the
data-driven clustering performed poorly in flat or gently undulating land because
spatial predictors adequate for discrimination of soilscapes were either lacking or
not employed for that land.

24.6.2 Expert-Driven Aggregation of Legacy Data

The expert-driven map output was less problematic than the data-driven clustering
output. This was to be expected because of the inherent bias in the expert-driven
method. Whereas the data-driven clustering method understratified soilscapes on
the Canterbury Plains (Fig. 24.2b), the expert-driven method overstratified them by
delineating soil texture and depth patterns within the Holocene fluvial landscapes
(Fig. 24.2a). It mapped out soil classes (that would be predicted by a soil–landscape
model) rather than merely estimating the area where that model should be applied.
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Fig. 24.1 Map of New
Zealand. The Canterbury
Plains feature in more detail
in Fig. 24.2

24.6.3 Multivariate Regression Exploration of the Expert Clusters

Since the multivariate regression approach uses a combination of machine and
expert analysis, its assessment contains elements of the results of Sections 24.6.1
and 24.6.2 above. The explanatory factors were highly collinear, so they were trans-
formed using principal components analysis and regression was based on all avail-
able principal components. In general, a single soilscape could be predicted with
good accuracy using the regression approach within a single soilscape (typically
better than 75% classification accuracy on a per-polygon basis). This result suggests
that the set of adopted explanatory variables adequately captured the variability of
a single class. However, adding additional soils to the regression or classification
procedure resulted in considerable misclassification. This suggests that the adopted
variables do not adequately describe the distinctions made by the expert for different
soilscapes.

There are several possible reasons for this result. First, there may be too few
explanatory variables available to describe the distinctions between soilscapes. Sec-
ond, the measures used to codify the presumed logic of the expert in the distinction
of each soilscape may have been faulty. For example, using mean altitude as an
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Expert clustering

Data driven clustering

Holocene
alluvium

Overstratified

Pleistocene alluvium

Understratified 

Fig. 24.2 Maps of provisional soilscapes for a portion of the Southern Alps, Canterbury Plains,
and Banks Peninsula, South Island. (a) The expert-driven clustering over stratified Holocene allu-
vium areas of the plain where one clearly recognised soil landscape relationship was split into two
soilscapes. (b) The data-driven clustering method understratified the Canterbury Plains because
more than one distinct set of soil-landscape relationships exist

input variable may fail to adequately distinguish soilscapes that were distinguished
primarily by change in altitude.

24.6.4 Distribution of Legacy Data by Soilscape

Of the 55 soilscapes provisionally defined for the South Island, 11 occupied areas
covered in part by quality soil surveys with potential for data mining. These were
areas of strongly rolling, hill or steep land where the available DEM may be read-
ily used. A further 9 soilscapes on low-relief land had potential for data mining if
remote sensing techniques can be applied.

24.7 Conclusions

Comparison of outputs from the two methods will be useful in producing a satis-
factory first-approximation soilscape coverage for New Zealand. The data-driven
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clustering output both confirmed and challenged the groupings of the expert-driven
clustering technique. The regression analysis refined this by examining the integrity
of the expert clusters. Reappraisal of the clusters will prompt a revision of the
expert-driven aggregation incorporating these insights.

Although inclusion of new input factors, prior processing of factors, weighting,
and improved pruning of the cluster hierarchy should result in a better product, it
will still carry elements of subjectivity in the choice of input attributes and their
weighting. High accuracy for the first-approximation soilscapes cannot be expected
because of comparative lack of knowledge at the beginning of this process. It is
accepted that in their application in planning digital soil mapping it is sufficient that
the soilscapes are only indicative.

This study has proposed that the primary purpose of a first-approximation map
of soilscapes lies in its application as a digital soil mapping planning tool. The
soilscapes will provide a template for application of the digital soil mapping plan-
ning methods described in Chapter 34.

We conclude that where legacy data and experienced pedologists with knowledge
of different patterns of soil variability across the landscape are available, then it is
effective to use a method for mapping soilscapes that is either totally expert driven
or data driven with strong expert supervision. It is important that the living legacy of
senior pedologists is captured while that legacy still lives. Involvement in soilscape
mapping and evaluation of results is one way this can be achieved.

The purpose of second-approximation soilscapes lies in providing a generaliza-
tion of patterns of soil variability and behavior for wide-ranging production and
environmental applications of soil information. For these consequent applications,
the soilscapes used to plan soil digital mapping may be updated and modified on the
basis of new evidence afforded by the newly generated digital data.
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Chapter 25
Legacy Soil Data Harmonization
and Database Development
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Abstract Many countries completed large scale (1:5,000 – 1:25,000) soil surveys
decades ago, and have since used their thematic and geographic information to
derive thematic soil property layers of the same or smaller scale (1:100,000 and
smaller). The new layers are often simply aggregates of the original soil polygons
and inherit the same geographic relationships that were delineated in the original
data source. In reality, this approach does not use all information of the input data.

Instead of aggregating existing maps, the original, non-interpreted field survey
point data can be gathered and used for deriving new property layers. The paper
aims to summarize a soil database development project using legacy data for a
transboundary area, representing two different systems of data collection, storage
and management. Recent and archived soil profile data have been collected, includ-
ing monitoring sites, soil nutrient status campaign data for different periods, and
recorded soil profiles from previous soil mapping activities. These data sources have
been transformed to have a common theoretical basis using commonly accepted
pedotransfer rules and an integrated profile database has been formed. It was used
to interpolate soil information and develop soil property maps and layers repre-
senting the WRB diagnostic properties and horizons. The creation of the prop-
erty layers was based on statistical/geostatistical interpolations of the soil profile
database using DEM derivatives, SPOT and Landsat satellite images as covariates
to provide information for the natural setting of the area. The interpolated values for
the numeric variables were estimated using regression kriging, while the classified
variables were calculated using the maximum likelihood classification algorithm. It
was concluded, that the development of WRB diagnostic criteria database is feasible
using raw data of different origin and a set of harmonization and digital soil mapping
tools.
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25.1 Introduction

Soil data of appropriate format and reliable accuracy are often the most limiting
factor of soil-related modeling and applications. Many countries have had several
data collection campaigns serving different goals, like mapping or agricultural fer-
tility testing. Besides a Canadian example using legacy data in a digital database
(see also Chapter 26), legacy data have also been used for several digital soil
mapping applications to derive updated information (Baxter and Crawford, 2008;
Bernoux et al., 2007; Dobos et al., 2007; Mayr and Palmer, 2007; Mayr et al., 2008;
Rossiter, 2008). The integration of several legacy data sources is a potential way
to create a product with great value added without the need of strong field data
collection. One of the key elements of database development is the appropriate den-
sity of input calibration/training data (see Section 29.3). However, the integration
of interpreted maps is often difficult. Thus, a different approach is demonstrated
here. A point database was created from each input dataset and an integrated, multi-
origin point database was developed after the necessary harmonization and data
filtering. Taxonomic harmonization was done using the WRB 2006 classification
system (IUSS Working Group WRB, 2006). This database is used as calibration
and training datasets for several digital soil mapping tools.

25.2 Materials and Methods

25.2.1 Study Area

The study area, called Bodrogköz, is located between the triangle of the Tisza,
Bodrog and Latorica Rivers along the eastern section of the Hungarian-Slovakian
border (Fig. 25.1). It represents a homogeneous landscape, a flood plain with some
windblown sand dunes, typical for the Pannonian plain. The areas along the major
rivers, the so-called natural levees, are a few meters higher than the area behind
(backwater area). Its soil texture is much coarser than the backwater area, which is
heavy clay overlaying the deeper sand strata. One to two meters of relative elevation
difference results in different texture, chemical properties, and also soil and landuse
types. The recent landscape-landuse-geomorphologic-parent material system of the
area is very much interrelated and defines the soils in an almost deterministic man-
ner. There is also a slight change along the NE-SW direction, which is the major axis
driving the surface water flow as well. The NE edge is higher, while approaching the
SW edge the elevation tends to be lower, have more frequent flooding, hydromorphic
impact, thus more leaching, lower pH, and higher humus content. This trend varies
a little bit in the SW edge, where the two levees of the Tisza and the Bodrog meet
and form a joint levee, with somewhat higher elevation, different water regime and
coarser texture.

The area has been cultivated for over a thousand years, with a strong intensifica-
tion starting in the nineteenth century. The soils were developing under the strong
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Fig. 25.1 The location of the study area and the sampling sites (in yellow) over a Landsat RGB
composite image (Bands 4,3,2)

impact of floods and high groundwater table. Flood protection and drainage systems
have been constructed since the second half of the nineteenth century, which has
changed the environmental system dramatically.

The landuse and the soil type are highly correlated. Low lying and high ground
water areas have pasture and Gleysols on them, while the areas with lower ground
water table have Vertisols, Arenosols and Luvisols. These soils are cultivated despite
their high acidity and unfavorable textures.

The study area has temperate climate with an annual precipitation of 550 mm and
a mean temperature of 10◦C. The altitude of the majority of the study area ranges
from 90 to 120 m. Only two small volcanic hills arise from the plain and reach
270 m. The parent material is mainly alluvial clay and loamy fluvic material. The
dominant landuse is farmland with some orchard, forest spots and wet pastures. The
most common soil types are Vertisols, Arenosols, Gleysols, Fluvisols and Luvisols
(Dobos and Kobza, 2008).

25.2.2 Digital and Field Data

25.2.2.1 Point Data

The area has 1,786 sampling sites, of which 1,616 fall to the Hungarian and 164
onto the Slovakian side (Fig. 25.1).

The highest number of points was imported from the Kreybig mapping cam-
paign. These points were chosen as representative and complementary profiles for
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the 1:25,000 scale mapping, started in the late 1930s. A total of 1,161 points were
processed, digitized and revalidated (Szabó et al., 2005). Five parameters, namely
the 5 h capillary rise, pH(KCl), humus%, CaCO3, and salt content were assigned to
each point.

The 164 Slovakian sites were part of the 1:10,000 mapping campaign started
in the 1980s and contained three parameters, namely the humus%, clay% and
pH(KCl).

Official monitoring sites for both countries (18/6, Hu/Sk) were also used for
interpolation and for data harmonization with the variables of CaCO3, texture,
humus%, and pH(KCl) (Várallyay et al., 1995).

Data from three soil nutrient survey campaigns (TVG) in Hungary between the
late 1970s and 1987 were used as well. A total of 422 data points were generated
having the following variables: the Arany-type cohesion measure (Ka), humus%,
salt content, CaCO3 and pH(KCl).

An additional 16 sites were also sampled as representative, calibration data –
benchmark soil sites – and used in the harmonization process. The majority of these
points were selected to revisit existing points of other datasets. These points were
sampled and lab analyzed for the humus%, texture, pH, CaCO3 and salt content.

Point Data Derivation from Averaged Field Data (TVG Data Processing)

In order to increase the data point density for areas where no reliable point data
source was available non-point data sources were used as well, namely the TVG
data. The TVG dataset is a non-point, field-based dataset, with 8 non-located com-
posite samples taken along a recorded transect. Their average was assigned to a
parcel, or a part of it, with the size ranging from 10 to 20 ha. These data were first
filtered for field homogeneity and only data representing homogeneous fields were
processed and used in this project. Field homogeneity was tested in two ways. First,
by looking at the site visually on orthophotos, SRTM terrain derivatives, and mul-
titemporal/multispectral Landsat/SPOT/IKONOS images representing six different
dates. Quantitative methods, like the spectral distance based region grow algorithm
of the ERDAS Imagine was tested as well (ERDAS, 1999). However, due to the
high diversity and variability of the input layers no successful method to define the
thresholds has been developed yet. Thus, the thresholds were increased continuously
to the point when the expert and measured results matched. If a match was not
obtained within a certain range of threshold values, then the test failed. The second
test was to check for deviation and outliers along the area selected in the first step.
The measurements obtained along transects within the selected areas were collected
and recorded. The acceptable absolute deviation from the average was set by expert
judgment for each variable, such as 0.5 for the pH. All measurements having greater
deviation than the set value were considered outliers. If any outlier was identified
then the area was dropped. If the tests were passed then the center or the most
representative point of the area was selected and the average value was assigned to
it. Data for 422 points were generated in this way having the following variables:
the Arany-type cohesion measure (Ka), humus%, salt content, CaCO3 and pH(KCl).



25 Legacy Soil Data Harmonization and Database Development 313

This procedure unavoidably introduces some uncertainty; therefore it was used only
for areas having limited data.

Point Data Harmonization

The European Union and its member states have several different ways of collecting
and analyzing soil samples, and different ways of expressing the results. Therefore
using these data sources is not straight forward. Much preprocessing is required to
import all of these data into the same reference system. The preprocessing means
both the spatial and the attribute data are transformed into a common system. This
procedure is called, in our terminology, “harmonization”.

The first step of the harmonization procedure was the field work, when repre-
sentative profiles were opened in the field, sampled, analyzed in lab, and classi-
fied according to WRB 2006. The sites were selected to represent the major refer-
ence/benchmark soils of the area. The site selection was based on existing soil maps,
satellite and orthophoto images and on the major geomorphologic units. The joint
field work was a crucial step for mentally harmonizing the group members from
the two countries, to reach a common understanding of the soil variable interpre-
tation and to develop a mental model of soil variability. Based on the expert/local
knowledge learnt from the reference profiles, each input data type was translated
to a common variable using existing transformation models or correlation functions
developed within the project. The result of this section was a harmonized soil profile
database, and a mental model of the soil resources.

Two major variables needed significant effort to harmonize, namely the taxo-
nomic groups (WRB major reference groups, diagnostic horizons and criteria) and
the texture. The taxonomic units were identified manually by the country repre-
sentatives after field harmonization of the interpretation of the diagnostic proper-
ties. Numerous misclassified profiles were identified, screened and replaced by a
commonly agreed unit. This work was crucial, and much less time-consuming than
anticipated. Having the mental model and the field correlation efforts, it was quite
easy and fast to screen the problematic profiles and modify/correct their classifica-
tion units.

The property having the highest representation diversity was the texture. Clay %
content, capillary water rise in 5 h, Arany-type cohesion measure (Ka) and inter-
preted texture classes were the input types of the different sources. Correlation
rules developed by Buzás (1993) were employed to reach the common platform
and convert all properties into the same variable. The less detailed variable, namely
the classified texture unit was chosen to serve as the final variable, to which we
could adjust/degrade the more detailed parameters. The correlation table is given in
Table 25.1. The rest of the given parameters (humus, CaCO3 and salt %) were in the
same units and were analyzed in the same way, so no further thematic harmonization
was needed.

Due to the temporal diversity of the input data sources some changes might have
happened in the chemical properties over time and could result in a shift of the
data values, which could significantly decrease the model performance. Therefore
a set of t-tests for the humus content and pH were calculated to make sure that all
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Table 25.1 The correlation table of the three input texture parameters

Clay% Ka
Capillary water rise in
5 h (mm)

Coarse sand Below 5 Below 25 Over 350
Sand 5–15 25–30 300–350
Loamy sand 15–20 30–37 250–300
Loam 20–30 37–42 150–250
Clay loam 30–40 42–50 75–150
Clay 40–45 50–60 40–75
Heavy clay Over 45 Over 60 Below 40

input data sets represent the same population. The values of these two classes were
close to normally distributed, skewness 0.6 and 0.5, while the Kurtosis was 3 and
3.3 for the pH and the humus, respectively. Because of the specific environmental
setting of the study area – where parent material expresses the geomorphology and
the terrain influence on the soils in the same time – a harmonized and simplified
quaternary geology database was used to pre-stratify the area. The simplified parent
material dataset contained four units: Holocene alluvial clay, Aeolian Dune Sand,
Holocene reworked clay-loam alluvium and recent loamy, loamy-sand alluvium.
The populations of the different point sources falling into the same parent material
class polygons were tested for having the same means at a level of significance equal
to 0.2. This value was chosen as a lowest acceptable level. Both of the humus and
pH tests were significant.

25.2.2.2 Other Digital Data Sources

Two Landsat and two SPOT images were selected for the work, both representing
different seasons and natural conditions. The SPOT images were taken in May and
October of 2006, while the Landsat images were acquired in March, 1999 and in
July 2006. The1999 image represents a flooded condition. These data sources were
combined into a 22 band image, resampled to 120 m and used as covariates for the
interpolation and classification procedures. The pixel size degradation was carried
out to decrease the impacts of artificial landscape patterns and increase the impor-
tance of the overall environmental condition.

High resolution digital data for validating the sites were also used. Digital
orthophotos from the summers of 2002 (for the Slovakian side) and 2005 (for the
Hungarian side) with 2 m resolution were created to cover the entire study area. An
IKONOS multispectral image with 4 m resolution was also acquired for the entire
area for the summer of 2007, when the field sampling campaign was running.

Terrain Information

The terrain was represented with the 90 m resolution SRTM data. These data were
preprocessed to remove the effect of forests, which was recognized as a major lim-
itation factor. The removal required a forest coverage map. It was created using
the SPOT images described above and field training samples. The training samples
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were taken based on high resolution orthophotos. Maximum likelihood classifi-
cation algorithm was employed to classify the entire image. The classified image
was resampled to the same resolution as the SRTM and then reclassified into two
classes, forest and non-forest. This image was used to identify the forest plot edges
and an estimated elevation difference was calculated based on the minimum and
maximum values within a given size of search window. This edge contour with the
estimated elevations was used for lowering the actual SRTM (with the canopy) data.
The resulting image was used for the terrain characterization.

Except for the two hills, the area is almost totally flat. Thus the absolute eleva-
tion and other commonly used parameters provided no useful information. There-
fore two other topographic parameters were tested to highlight the relative eleva-
tion, namely the low-lying and the elevated areas; the Topographic Position Index
(TPI) (Weiss, 2001) and the Potential Drainage Density (PDD) index (Dobos and
Daroussin, 2007).

25.2.3 Inference Models

Figure 25.2 shows the flowchart of the inference system. The work had three major
sections. The first step was the input data harmonization and the creation of the
training/calibration point dataset. The second section was the creation of continu-
ous property layers for the final and intermediate layers, like WRB Reference Soil
Groups (RSG), texture, pH(KCl) and texture. (Alternative approaches for estimating
soil properties based on legacy data of various origin are described in Sections 16.2,
29.2, and 32.2.) After checking for potential trends, Universal Kriging and cokriging

Fig. 25.2 The flowchart of
the inference system used
within this project

WRB Reference Soil
Groups

WRB Qualifiers
(diagnostic criterias)

Profile database development
(Variable harmonization)

Field survey for the identification
of existing classes and for data validation

Training class definition

Maximum likehood classification
(categorical variables)

Point interpolation

Universal and cokriging
(numerical variables)

Environmental covariates

Intermediate data layers

Pedotransfer functions to derive
WRB Qualifiers



316 E. Dobos et al.

Table 25.2 The pedotransfer
functions used for predicting
the WRB qualifiers

Predicted WRB qualifiers Pedotransfer functions

Vertic All areas where Vertisols exist
Mollic Humus>1% and Eutric
Arenic Having sandy texture
Clayic Having clay texture
Gleyic All areas where Vertisols,

Fluvisols and Histosols occur
Dystric pH(KCl)<5
Eutric pH(KCl)>5
Calcic CaCO3 % > 5

were used to interpolate the numerical data, namely the pH(KCl) and the humus con-
tent. Co-variables for the cokriging were selected by checking the cross-correlation
of the variable to predict and the terrain parameters derived from the SRTM, and
the best two were used. For the pH, 1,611 observations were used and Universal
kriging was selected as best performing model. The humus content was estimated
with Universal cokriging using PDD as covariable with 657 observations.

Categorical variables, like the WRB Reference groups and the texture, which
were only in classified format, were estimated by maximum likelihood classification
using the 22 layers combined SPOT and Landsat image, with a degraded resolution
of 120 m. The spatial distribution patterns of both variables were clearly visible on
the RGB composite images, thus good performance was expected. Regular accuracy
measures, like RMS, standardized RMS and average standard error were calculated
and error vs. measured plot was created to visualize the error trends. For the maxi-
mum likelihood classification the overall class performance (the correctly classified
training pixels / the total number of training pixel), the Kappa statistics and the
confusion matrix (user’s and producer’s accuracies) were calculated to characterize
the accuracy (Congalton, 1991).

In the last section, the WRB diagnostic properties and horizons were estimated
using the four intermediate data layers and pedotransfer functions. Pedotransfer
functions are simple or more complex rules/relationships to estimate missing prop-
erties based on existing, correlated, and easy to collect/measure properties (McBrat-
ney et al., 2002). Table 25.2 summarizes the pedotransfer functions used for esti-
mating the WRB qualifiers/diagnostics for the study area.

25.3 Results and Discussion

25.3.1 Results from Model

25.3.1.1 The WRB Reference Soil Groups

The WRB reference groups were estimated with maximum likelihood classification
of the combined SPOT/Landsat images. Eight soil types appeared on the classi-
fied image with a very pronounced spatial distribution pattern (Fig. 25.3). Fluvisols
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Fig. 25.3 The WRB
Reference soil groupings map

occur along the major rivers on the annually flooded areas. The backwater area
behind the sandy levees is covered by heavy textured Vertisols and Gleysols, with
tiny islands of the remaining Histosols. The Northern part of the area is dominated
by Luvisols, having a well developed B- horizon with strong clay skins. The small
sand dunes have Arenosols and Cambisols on their lower sections. Histosols and
Regosols occur as very small islands, representing small drained depressions and
loamy plateaus.

This soil distribution pattern was evident from the satellite images. RGB com-
posites of the images showed the extent of the major soil types for the experi-
enced eyes. The visual interpretation of the classified image showed a very good
match as well with our local knowledge and mental model. Quantitative tests are
given below. However, the risk of having too strong “landuse pattern”-dominated
classified soil image was a real possibility. This strong pattern was “softened”
by resampling the image to 120 m resolution and using PCA transformation.
The first component of the PCA transformed image always emphasizes the lan-
duse/landcover pattern, while the 2nd, 3rd, and 4th components are more related
to secondary variability within-the-1st -component, within the land cover pattern.
These secondary, hidden patterns are the ones we often need and are related to
the soil characteristics. Using these tools limited the occurrence of the land cover
pattern.

The transition zones between the Regosols, Arenosols and Fluvisols classes were
often quite difficult to handle, the separation of these taxonomically similar soil
types were not always easy to make, even in the field. The subtypes of the reference
groups were very similar in taxonomy to the neighboring reference soil group, often
representing the transitional types between the reference groups – like Fluvisols and
Fluvic Cambisols. However, as classified units they occur far from each other in the
classification system due to the hierarchy. This problem had a significant impact on
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the accuracy measures as well. However, this potential misclassification had more
impact on the quantitative accuracy measures, than on the real usefulness of the map.

25.3.1.2 The Property Maps

The texture map shows settings similar to the WRB one. The active flood plains have
loam and sandy loam texture. The inner part of the area is clay, with small islands of
sand dunes occurring in the area. Organic materials and Histosols are very rare. The
spatial patterns of the soil texture were easy to follow by simple visual interpretation
of the composite satellite images as well. The GB image of Fig. 25.1 nicely shows
the lighter colored levees of the recent and ancient rivers and the darker colored
clayey (Gleysol-Vertisol) inland areas.

Similar spatial pattern can be identified in the humus content (Figs. 25.4 and
25.5). The higher humus content occurs with the clayey soils, where the clay bounds
it strongly and the longer water saturation retards the organic matter decomposition.
An opposite trend can be identified in the pH map (Figs. 25.6 and 25.7). Low pH
is linked to the same low lying, clayey areas, where leaching was very active up to
the last century. Spherical models were used to fit the curve for both cases. Strong
nugget showing significant local variation has been found (Figs. 25.4 and 25.6).

A spatial trend in the E-W direction was identified for both the humus and the
pH value distributions. These two trends show converse ways, the pH values are the
lowest in the centre part and increases towards the ends, while the humus content
changes the opposite way. These are real trends, and were modeled with a second

Fig. 25.4 The humus content
layer and the calculated
semivariogram, where δ(h) is
the semivariance function of
the humus content in the
function of the lag
distance (h)
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Fig. 25.5 The trend analysis
diagram for the humus
content. The colors indicate
the different dimensions, red
is the horizontal plain, blue is
the North-South direction,
while the green color is the
East-West one. The red
points show the horizontal
distribution/location of the
points, while the blue and
green ones refer to the pH
values along the NS and the
EW directions respectively

XX

YY

ZZ

Trend Analysis

Data Source:
Layer: statprofiles
Attribute: HumuszOK

order de-trend algorithm. The phenomenon is easy to explain. The centre part is the
most typical backwater area, far from the major rivers and partly separated from
them by the natural levees. The flood water flowing over this natural levee slows
down, loses its heavy sediments and keeps only the small particles like clay. This
clay is deposited in the backwater area. The trapped water cannot flow back, even
after the flood is over, because the levee blocks its way back to the river. Therefore

Fig. 25.6 The pH(KCl) layer
and the semivariogram,
where δ(h) is the
semivariance function of the
pH in the function of the lag
distance (h)
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Fig. 25.7 The trend analysis
diagram for the pH. The
colors indicate the different
dimensions, red is the
horizontal plain, blue is the
North-South direction, while
the green color is the
East-West one. The red
points show the horizontal
distribution/location of the
points, while the blue and
green ones refer to the pH
values along the NS and the
EW directions respectively

XX
YY

ZZ
Trend Analysis

Data Source:
Layer: statprofiles
Attribute: pHKCl_OK

the water stays there longer and strongly leaches the soils lowering pH, while the
high clay content and the long saturation decreases the decomposition of the organic
matter and support the higher humus content.

The soils have seven major WRB diagnostic properties and horizons, which have
common occurrence and strong importance in defining the soil use (Fig. 25.8).
These diagnostics were created by manipulating the existing layers and combining
their information according to the pedotransfer functions of Table 25.2.

The spatial patterns of the final maps do not match the Hungarian or Slovakian
soil maps, which differ from each other and from the WRB classification. However,
the shape and extent of the soil regions coincide well with the geomorphologic and
agro-environmental patterns of area, and match our mental model well. The WRB
and texture maps correspond very well to each other, because they were derived
from the same integrated satellite image. However, a very good genetic coincidence
appears between the WRB/texture maps and the kriging based humus and pH data,
which provides a visual support to the results as well.

25.3.2 Accuracy Assessment of Model

The Landsat and SPOT image based classification resulted in an overall classifica-
tion performance of 77% and a Kappa statistic of 0.7. The confusion matrix is given
in Table 25.3. The User’s accuracy ranged between 37 and 99% with an average
of 64%, while the Producer’s accuracy was between 61 and 94% with an average
of 82%.

The most severe misclassification occurred in the Histosols and Regosols classes.
Both classes occur as small islands, often with a smaller extent than the pixel size
used for its classification, which explains their low performance.

RMS, standardized RMS and the average standard error were calculated for the
kriging based extrapolations. These values for the pH(KCl) are 0.76, 0.98 and 0.77
respectively, while the values for the humus estimation were 1.13, 1.03 and 1.1. The



25 Legacy Soil Data Harmonization and Database Development 321

Fig. 25.8 The WRB diagnostic properties and horizons

Table 25.3 The confusion matrix of the maximum likelihood classification of the WRB reference
groups

Classified Arenosol Fluvisol Histosol Regosol Luvisol Vertisol Cambisol Total

Arenosols 60.54 3 1.09 2.21 2.38 6.19 5.85 2, 218
Fluvisols 0.48 76.81 0 0 0.42 0.4 0.6 7, 095
Histosols 4.16 5.55 93.82 0.44 3.22 5.91 1.38 1, 491
Regosols 4.68 5.63 0 94.03 2.87 1.15 0.34 1, 162
Luvisols 5.04 1.62 0.91 1.77 84.81 1.98 5.08 1, 659
Vertisols 17.69 3.93 3.64 0.22 1.4 81.21 8.18 5, 033
Cambisols 7.4 3.45 0.55 1.33 4.9 3.15 78.57 1, 653
Total 2499 9178 550 452 1429 5041 1162 20, 311

The values in the matrix are percentages of training pixels from a given class classified into the
resulting classes. The values of the “Total” line and column represents training pixel numbers
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pH values range between 3.5 and 8. The humus values are between 0 and 8, but
can go further up for extreme hydromorphic soils. Both estimations are smoothing
the data, the estimation error increases towards the minimum and maximum values,
while decreases to 0 around the average.

25.4 Conclusions

Archived legacy data have great value for database development. Huge amounts
of data have been collected and recorded in many previous mapping and survey
campaigns. These data are often interpreted into thematic polygon maps, and used
for many applications. The integration of these types of data sources can improve the
reliability and accuracy of our soil databases, and creates new generation data with
added value. The best way to do so is to use the “raw” field survey observations as a
profile database, or derive representative point data from averaged polygonal infor-
mation. The integration and harmonization of these profile databases is the best and
most consistent way of combining and interpolating information of different origin
using digital soil mapping tools. It was also concluded that the diagnostic features,
materials and horizons of WRB can be estimated from harmonized, variable origin,
integrated data sources.
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Chapter 26
Toward Digital Soil Mapping in Canada:
Existing Soil Survey Data and Related
Expert Knowledge

Xiaoyuan Geng, Walter Fraser, Bert VandenBygaart, Scott Smith,
Arnie Waddell, You Jiao, and Gary Patterson

Abstract Digital soil mapping involves the creation of new raster-based soil
attribute datasets from existing soil and environmental data, coupled with other
spatial knowledge of soil distribution. The GlobalSoilMap.net project is intended to
provide a digital soil map of the world on a 90 m raster base derived from existing
soil data sources in each country. This paper provides an overview of the exist-
ing soil information holdings in the Canadian Soil Information System (CanSIS)
in terms of their scale, coverage, and potential suitability for digital soil mapping
applications. A description of a possible approach to the capture and transformation
of legacy soil survey knowledge for digital soil mapping purposes is also provided.
Most historical soil inventory maps and reports in Canada have been produced for
the southernmost 20% of Canada’s land area by a variety of federal and provincial
agencies at scales ranging from 1:20,000 to 1:250,000. Many of these datasets are
available in digital format as part of the National Soil Data Base (NSDB) within
CanSIS. The NSDB detailed soil map coverages provide the most precise spatial
data source for building raster based digital soil mapping products, but coverage
is incomplete. The Soil Landscapes of Canada (SLC) map series provides com-
plete coverage for all of Canada, at a scale of 1:1 million. SLC maps are less spa-
tially precise, but provide the national coverage needed for applications like the
GlobalSoilMap.net project. Pedon datasets provide spatial information at specific
points, but the sampling density is very low, and not well spatially distributed.
Understanding the status and relevance of the NSDB data holdings, and how they
can be effectively combined with expert knowledge, digital terrain models, and other
data sources are important for organizing our approach to future digital soil mapping
work in Canada.
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26.1 Introduction

Soil forms on a continuum of topography and surficial material and as such, soil
spatial variability should be inherent in models describing soil genesis and develop-
ment. In practice, soil survey is often characterized by treating soils as geographic
bodies. In the last 80 years, soil survey in Canada has focused on the identification of
bodies of related soils that can be recognized as natural units and on their prediction
and delineation on maps (Coen, 1987). Although the resulting maps and reports
are valuable information sources for users such as policy makers, land managers
or farmers, the true nature of soil spatial distribution is not well represented. This
lack of spatial specificity has meant that these map polygons are often not suitable
for system modeling or other needs for continuum soil property data (Behrens and
Scholten, 2006; Carre et al., 2007).

Currently there exists only limited effort in field survey in Canada for the pur-
poses of soil mapping, even though it is greatly acknowledged that such data are
necessary and useful for organizations and individuals working at local through
national scales. Recently there have been advances in techniques for the extrapo-
lation of existing soil map information along with the development of inference
models that can predict the spatial distribution of soil properties and/or classes at
varying scales that may not require expensive and timely field soil survey (Grinand
et al., 2008; Henderson et al., 2005). This field of work is broadly being termed
digital soil mapping.

In this paper we aim to review the data holding of the Canadian Soil Information
System (CanSIS), to briefly assess the adequacy and usability of the legacy soil sur-
vey data for GlobalSoilMap.net (see also Chapter 33) and other digital soil mapping
applications and to explore the methods to extract accumulated expert knowledge
that is embedded within the existing soil survey data. We expect that this work will
provide a much-needed start to national scale research and development on digital
soil mapping and will build on and apply the earlier foundational work on digital
soil mapping in Canada (MacMillan et al., 2004).

26.2 Materials and Methods

26.2.1 Legacy Soil Survey and Expert Knowledge

An inventory of current holdings of the Canadian Soil Information System was con-
ducted. The extent, scale and data structure of existing soil maps were categorized
and summarized into a set of map figures (Figs. 26.1 and 26.2) as part of the initial
overall assessment of suitability of soil survey maps and pedon data for digital soil
mapping.

Walter et al. (2007) identified five broad domains of expert knowledge that
are possibly useful for digital soil mapping: (1) relative distribution of soil enti-
ties within the landscape; (2) identification of soil development factors such as
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Fig. 26.1 Coverage of
detailed/semi-detailed soil
surveys in Canada. The
Canadian Soil Information
System (CanSIS) holds over
3,000 individual soil maps at
scales ranging from 1:20,000
to 1:250,000

Water

Not Surveyed

Not Digital
Not Online

Incomplete

Complete

Survey Status 
    Legend 

Fig. 26.2 Coverage of the national-scale Soil Landscapes of Canada (SLC) mapping. SLC version
2 covers all of Canada as shown by the polygon outlines. Within the agricultural extent of the
country mapping has been upgraded and published as SLC version 3. Locations of pedon samples
stored within CanSIS are heavily biased toward agricultural regions. SLC version 1, not shown,
was a non-digital hard copy map series with national coverage
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topography, parent material etc.; (3) correlation between soil properties; (4) spa-
tial structures of soil properties; and (5) temporal dynamics of soil processes.
The Canadian System of Soil Classification incorporates soil bio-geographic gen-
esis and physiographic concepts. In the National Soil Database (NSDB) within
CanSIS, some of the domain knowledge has been retained and embedded across
the NSDB relational entities. Typically within a given soil polygon, major land-
scape components are identified and linked to a soil name and representative
pedon/layer tables. However, currently there is no explicit spatial reference for soil
polygon components within the NSDB data structure. Nevertheless, it may be a
feasible and cost-effective measure to recover the lost geospatial linkage of soil
classes and properties from the legacy soil survey for digital soil mapping (see
Section 25.1). We tested state-of-the-art GIS capabilities to organize, visualize,
assess and extract soil-landscape relations. The extracted soil knowledge can be
stored within the well-structured Extensible Markup Language (XML) format to be
enriched and validated with additional related environmental covariates. The stored
structured knowledge can be further organized into semantic form as interoperable
inputs for various digital soil mapping methods as reviewed by McBratney et al.
(2003).

26.2.2 Evaluation of Effective Scale

Canadian soil resource data has been produced at various scales from many vin-
tages for different purposes. According to Forbes (1982), the various presentation
scales of resource data can be partially evaluated using the concept of “effective
map scale”. Effective map scale is defined as a precision measure that indicates if
the intricacy of the polygons depicted on the soil map corresponds to the claimed
presentation scale (Hengl and Husnjak, 2006). Effective map scale number (ESN)
can be calculated as:

ESN = NSN∗(IMR/2) (26.1)

Where

NSN is the nominal scale number of the presentation scale
IMR is the index of maximum reduction, that is, the factor by which the scale of

the map could be reduced before the average size delineation (ASD) is equal
to the minimum legible delineation (MLD) (Hengl and Husnjak, 2006) . In
Canada, MLD was defined as 0.5 cm2.

The ASD (converted to cm2 at a given presentation scale) and IMR are derived
as (Hengl and Husnjak, 2006):

ASD =
m∑

j=1

Aj/m (26.2)
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Where
Aj is the area of the j th polygon and m is the total number of polygons

IMR = √
ASD/MLD (26.3)

We selected a number of maps at detailed and semi-detailed scale and the national
Soil Landscapes of Canada scale to derive the ESN in order to assess the effective
scale of these key Canadian soil mapping products.

26.3 Results and Discussion

26.3.1 Mapping Procedures

Soil survey in Canada has followed methods not unlike those in other countries.
Major soil types have traditionally been identified, described and delineated on a
map based on direct field observations, supplemented by indirect inferences based
on aerial photo interpretation. The steps usually followed by a soil survey can be
summarized into 4 main stages:

(1) The soils observed within a survey area are arranged into a limited number of
soil names (series or associations) on the basis of properties that are relevant to
the survey objectives;

(2) Each major named soil is described and sampled as part of the field pedon
investigation and submitted for laboratory analyses, the results of which are
used to populate soil attribute tables;

(3) Soil map polygons are delineated and labeled to describe the portions of the
landscape that are associated with each soil name;

(4) Named soils are identified with a unique code (e.g. Province Code + Soil_Code
+ Modifier + Land_Use) which is used to reference relational soil information
within the NSDB.

26.3.2 Status of Canadian Soil Survey and the National Soil
Database Holding

The Canadian Soil Information System (CanSIS) publishes various scales of soil and
soil derived (interpretive) maps via the CanSIS website (http://sis.agr.gc.ca/cansis).
Detailed soil maps exist for approximately 20% of Canada’s total land area, consist-
ing mainly of the agricultural areas in each Canadian province (Fig. 26.1).

Over the last decade, Agriculture and Agri-Food Canada, together with provin-
cial partners, have attempted to create provincial seamless digital maps at standard
scales to replace the many individual detailed map sheets produced at a range of
scales and covering local, county or rural municipal jurisdictions. For these new
seamless coverages, not only are map polygons correlated and standardized but also
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are the soil naming conventions and the attribute data structures. These maps are
some of our most highly suited for digital soil mapping applications.

Soil Landscapes of Canada (SLC) maps are generalized maps published at
1:1,000,000 scale. Several versions of the SLC maps have been published over the
last 25 years reflecting changes in data availability, management and technology
(Fig. 26.2). These versions as well as various detailed map products, reports and
technical manuals are distributed freely via the CanSIS website.

CanSIS also holds about 6,500 pedons records from across Canada (average of 1
pedon/1,400 km2). However, most of the sampled pedons are located in the southern
regions of Canada where agriculture land predominates (Fig. 26.2). Many additional
pedon records are held outside of CanSIS by other agencies and organizations but
are not readily accessible. The overall distribution of pedon sample locations is
inconsistent and the usability of the pedon records has yet to be fully assessed in
terms of location accuracy and attribute completeness.

26.3.3 Canadian Soil Resource Data Structure and Linkages

The data model used to manage Canadian soil data has evolved to meet soil
resource data business needs and changing technology capacity. The current data
model of the NSDB within the Canadian Soil Information System (CanSIS) is
illustrated in Fig. 26.3. Pedon data including both point feature class and tabular

Fig. 26.3 Data model for the holdings of the National Soil Database contained within CanSIS
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field and laboratory information are the foundation of the soil layer table and
higher level data derivations. The layer table is constructed for each soil name
with attributes calculated by averaging values contained in all pedons represent-
ing that name. In cases where no analytical pedon data exist for a soil name,
layer table attributes are estimated or derived by pedo-transfer functions. The
layer tables are used to support both detailed and SLC mapping and accessed by
any algorithm or scientific model run against the NSDB. Further details of the
Canadian soil resource data structure can be found through the CanSIS web site
(http://sis.agr.gc.ca/cansis/nsdb/detailed/data_model.html).

26.3.4 Canadian Soil Survey and Effective Scales

Canada is a very large country with a relatively small population. As a result of the
dominant societal needs in Canada, 1:20,000 detailed and 1:50,000 semi-detailed
surveys were most often conducted in those regions of the country with agricul-
tural or in some provinces, forestry capability. As previously described this scale of
mapping covers less than a quarter of the country. Although so-called exploratory
or reconnaissance mapping was also conducted at scales of between 1:125,000 and
1:250,000, the second major mapping scale is the 1:1 million scale Soil Landscapes
of Canada series. These SLC maps are compiled by province and then merged to
form national coverages. We examined these two dominant map types for their
effective scale of spatial presentation (Table 26.1).

Many years ago pedologists defined a minimum delineation area or minimum
legible delineation (MLD) for CanSIS maps as 0.5 cm2 on the published map
scale. We used this standard in the calculation of the effective scale number
(ESN). With one exception, detailed and semi-detailed map polygons have aver-
age size delineations (ASD) between 2 and 8 cm2 which translates into ESN val-
ues slightly smaller than published presentation scales. One of our selected maps,
published at a 1:50,000 scale, had a very large average polygon size and an ESN
of 1:168,800. With respect to the SLC mapping, significant variation occurs with
respect to the density of information. Although the SLC maps are published at
a consistent scale for all regions of Canada, the effective map scale based on
polygon size for most provinces is much smaller than the published presentation
scale. The only exception is for the province of New Brunswick where the pub-
lished scale and effective scale are nearly identical. In provinces with northern
regions devoid of extensive resource development and hence detailed soil infor-
mation (i.e., Manitoba, Ontario, Quebec and Newfoundland and Labrador), the
effective scale number is smaller than 1:2M. For the northern territories (North-
west Territories, Yukon and Nunavut) the effective SLC mapping scale is closer
to 1:3M. We have not fully conducted position accuracy assessment on the legacy
soil survey datasets. However, it is clear that we will have to treat each dataset
individually given the variation in map data intensity observed at all scales of
mapping.
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Table 26.1 Effective scale number (ESN) of selected Canadian soil maps published at scales from
1:20,000 to 1:1,000,000

MLD
(0.5 cm2) Mapped area ASD

Presentation # of
Soil map_ID scale ha ha polygons ha cm2 IMR ESN

Detailed and semi-detailed maps
BCD070 1:20K 1 18,580 1,288 14 4 3 1:26,800
MBD065 1:20K 1 5,028 167 30 8 4 1:38,800
NBD066 1:20K 1 8,593 595 14 4 3 1:26,800
NSD008 1:50K 1 217,525 6,998 31 8 4 1;39,400
NSD005 1:50K 6 286,396 1,565 183 7 4 1:95,700
NFD008 1:50K 6 64,411 113 570 23 7 1:168,800
NBD005 1:50K 6 347,587 5,768 60 2 2 1:54,800
NFD002 1:50K 6 70,411 368 191 8 4 1:97,700

Soil landscapes of Canada maps
Alberta 1:1M 2,500 66,362,706 1,044 63,565 6 4 1:1,782,800
British Columbia 1:1M 2,500 101,000,000 2,651 38,182 4 3 1:1,381,700
Saskatchewan 1:1M 2,500 70,326,956 1,575 44,652 4 3 1:1,494,200
Manitoba 1:1M 2,500 70,505,963 454 155,299 16 6 1:2,786,600
Ontario 1:1M 2,500 120,000,000 866 138,369 14 5 1:2,630,300
Quebec 1:1M 2,500 172,000,000 1,389 123,474 12 5 1:2,484,700
New Brunswick 1:1M 2,500 9,271,646 471 19,685 2 2 1:992,100
Nova Scotia 1:1M 2,500 10,016,471 419 23,905 2 2 1:1,093,300
Prince Edward
Island

1:1M 2,500 1,842,357 33 55,829 6 3 1:1,670,800

Newfoundland 1:1M 2,500 61,634,667 677 91,040 9 4 1:2,133,500
Northwest
Territories

1:1M 2,500 192,000,000 999 191,845 19 6 1:3,097,100

Nunavut 1:1M 2,500 408,000,000 1,804 226,111 23 7 1:3,362,400
Yukon 1:1M 2,500 51,846,687 346 149,845 15 5 1:2,737,200

26.3.5 Data Mining of Legacy Soil Survey

Soil survey information contains various levels and aspects of knowledge about soil
distribution, environmental co-variables and soil properties. However the original
geographic location of identified soil types or classes within a map polygon is not
known. One only knows that there are one or more components or major soil types
in a soil survey polygon. Extracting and representing the embedded knowledge for
raster-based spatial inference or interpolation is the objective of legacy soil survey
data mining.

Given the ever increasing geospatial thematic information for Canada, we are
working toward the very first steps of digital soil mapping by gathering the expert
knowledge embedded in the legacy soil survey using in-house tools (Fig. 26.4).
By integrating soil survey data with other currently available environmental the-
matic data like digital elevation models and land cover, a component soil can be
allocated to a specific landscape (geographic) location (MacMillan et al., 2000).
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Fig. 26.4 Graphic user interface of the GIS-based tool for capturing expert knowledge about soil-
environmental relationships inherent within legacy soil survey data

Fig. 26.5 Process flow for captured expert knowledge within legacy soil survey data. The Soil
Type Identifier tool in Fig. 26.4 is shown as the extraction process which relates soil survey data
to existing thematic data and moves this into a soil knowledge database. These relations can be
enhanced by merging new thematic data as they become available. The XML database allows easy
transformation of data into formats suitable for use in a variety of potential statistical operations
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To enable this, a data mining tool kit has been developed. The Soil Type Identifier
tool compiles available spatially-specific (raster) environmental covariates under-
lying a given soil map polygon. An experienced pedologist then samples specific
points on the polygon for which covariate data are brought forward and using expert
knowledge, identifies the most likely soil component (name) that applies to that
specific set of conditions. Using this knowledge extraction process, the tool builds
a database of soil name – environmental covariate relationships (Fig. 26.5). The
captured geographic locations of a soil are then used as a linkage for both quanti-
tative and qualitative regression between soil classes/properties and environmental
covariates. This knowledge database can be further enriched by adding additional
soil pedon data, updating existing records, and merging new thematic data such as
new earth observation imagery to sampled points where the covariate relationships
can be broadened. This should greatly facilitate the application of various inference
system approaches (Henderson et al., 2005; McBratney et al., 2003; Zhu et al., 2001;
see also Chapter 34) such as decision trees or neural networks (Fig. 26.5). Testing
of the tool kit and use of the captured expert knowledge stored in XML form for
digital soil mapping is currently being conducted.

26.4 Conclusions

Existing Canadian soil resource information has many challenges for its incorpora-
tion into new digital soil mapping approaches. Detailed and semi-detailed soil map
coverages are incomplete and are in a variety of formats and scales. The creation of
seamless detailed coverages is underway but only complete for the agricultural por-
tions of some provinces. The national Soil Landscapes of Canada map (version 2)
is complete but the number of soil components and associated attribute data in each
map polygon are limited making it difficult to use this product to populate grid-
ded datasets like that proposed for GlobalSoilMap.net. For most northern regions
of the country, the effective map scale of the SLC is much smaller than the pub-
lished presentation scale further adding to the challenge. The latest version of the
SLC (version 3) is more data-rich and scale effective but its coverage is limited.
The soil pedon data holdings within CanSIS are of relatively low density and spa-
tially inconsistent, again presenting challenges to using pedon data as a substantive
source of information for digital soil mapping initiatives. Nonetheless, legacy soil
data mining tools are being developed to systematically formulate the quantitative
soil-environment relations inherent within the current CanSIS digital map files. We
expect these should be useful for compilation and use in future digital soil mapping
efforts in Canada.
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Chapter 27
Predictive Ecosystem Mapping (PEM)
for 8.2 Million ha of Forestland, British
Columbia, Canada

R.A. MacMillan, D.E. Moon, R.A. Coupé, and N. Phillips

Abstract Operational predictive ecosystem mapping (PEM) at a scale of 1:20,000
is described for an area of 8.2 million ha in the former Cariboo Forest Region of
British Columbia (B.C.), Canada. Mapping was conducted over 5 years by a small
team consisting of a knowledge engineer, a local ecological expert, a project tech-
nical monitor, a project manager and a number of short-term contractors. The total
cost for all project activities was $2.8 million Canadian dollars or 34 cents per ha.
The rate of progress was 2 million ha per year for the 2 person modeling team. The
predictive map was assessed for accuracy in terms of its ability to provide reliable
estimates of the proportions of ecological site types within small areas. Accuracy
assessments were made using 345 km of independently classified ecological obser-
vations collected along 230 randomly selected, closed linear field traverses of 1.5 km
total length. The final PEM maps achieved an average accuracy of 69% across the
entire map area. We summarize and generalize our experiences by recasting them in
the form of ten principles that we feel are applicable to all efforts to make predictive
mapping operational. We hope that these principles will stimulate discussion among
practitioners of digital soil mapping and may help others to consider how best to
achieve their own success in operational digital soil mapping.

Keywords Operational predictive mapping · Basic principles · Expert knowledge ·
Area-class maps · Accuracy assessment

27.1 Introduction

This paper presents a post-completion description and assessment of operational
predictive ecosystem mapping (PEM) at a scale of 1:20,000 for an area of 8.2 million
ha in the former Cariboo Forest Region of British Columbia (B.C.), Canada.
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As with most similar exercises reported in the literature (see Zhu et al., 2001), the
rationale for adopting predictive methods for the present project was to try to lower
costs and speed up rates of production while maintaining or exceeding currently
achievable levels of map accuracy.

Under licenses granted by the provincial government, forest industry companies
manage the forested land base within three timber supply areas (TSAs) that cover
the entire extent of the former Cariboo Forest Region. Part of their management
responsibility involves collecting and maintaining information about the forest and
land resources of the areas under their management. Several legislated and mandated
procedures and decisions require the use of 1:20,000 scale ecosystem maps at the
level of Site Series (Pojar et al., 1987) that have been demonstrated to have obtained
a minimum level of classification accuracy of 65% according to a provincially
approved accuracy assessment protocol (Meidinger, 2003 or Moon et al., 2005).
The forest industry companies that initiated and financed this project required a
methodology for operational production of predictive ecosystem maps that could
achieve or exceed the minimum required level of accuracy and that would be as
efficient and cost effective as possible.

As implemented for this project, PEM represents an exercise in predicting the
spatial distribution of discrete ecological classes by applying knowledge-based
fuzzy classification rules to selected predictor input layers. The intent is to produce
area-class output maps that capture the spatial distribution of previously defined
and described ecological-landform class spatial entities. These ecological-landform
class entities are direct equivalents to conceptual soil-landform models as described
by Hudson (1991) and Bockheim et al. (2005).

27.2 Materials and Methods

27.2.1 Study Area

The study area consists of the entire extent (8.2 million ha) of the former Cariboo
Forest Region in south central BC, Canada (Fig. 27.1). This area is approximately
416 km east-west by 304 km north-south.

The physiography of the area (Fig. 27.1) ranges from spectacular glacier-covered
alpine and sub-alpine mountain ranges with annual precipitation in excess of
2,000 mm to dry grassland valleys with annual precipitation of less than 400 mm.
The majority of the area consists of the broad, level to gently rolling, Fraser Plateau
with elevations of 900–1,500 m situated between mountain ranges that rise to eleva-
tions of over 3,500 m in the Coast Mountains on the west and to 2.500–3,000 m in
the Columbia Mountains on the east.

27.2.2 Digital Input Data for Supporting Predictive Mapping

The operational PEM mainly used a 25 m DEM and a limited number of terrain
derivatives computed from the DEM in the prediction process (Table 27.1). Other
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Fig. 27.1 Location, extent and physiographic subdivisions of the Cariboo PEM project area

layers of input data used in the PEM included a LandSat 7 ETM, false color com-
posite image, a manually prepared map of Biogeoclimatic Ecosystem Classification
(BGC) unit boundaries at the level of Subzones and Variants and a manually inter-
preted map of parent material depth, texture and exceptions classes.

27.2.3 Field Data for Supporting Assessments of Map Accuracy

No field data were collected or analyzed to assist in the preparation or finalization of
rules used to classify ecological entities. By design, all predictive rules were based
on trying to capture and utilize existing expert knowledge as presented in published
field guides, ecological keys, landscape profile diagrams and textual descriptions of
previously defined ecological entities.

A great deal of field data was collected to support a post-mapping assessment of
the relative accuracy and reliability of the completed PEM maps. These field data
were collected along closed triangular linear transects (Fig. 27.2) using a stratified
random design selected to ensure a sufficient number of observations were obtained
for each project area. Accuracy assessment procedures followed a double-blind
protocol in which the ecological experts collecting the field observations had no
knowledge of what had been mapped for any given area and the PEM modeler had
no prior knowledge of what locations were to be sampled for assessing accuracy.

The field sampling entity was a closed, three-sided, line-intercept traverse of
500 m on each side (see Fig. 27.2). A random number between 0 and 360◦
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Fig. 27.2 Illustration of closed triangular traverses used to collect and analyze accuracy data

determined the bearing of the initial leg of the traverse and the traverse proceeded
in a clockwise direction. Traverse stations, depicted by black squares, identified
changes in ecological sites (site series). The traverse was executed clockwise from
the Point of Commencement (PoC). Data recorded included descriptive site data, the
primary classification, and an alternate classification for the segment. Confidence
indexes were recorded for the primary classification and an alternate classification
if the classification of the segment was ambiguous. All stations were located using
high resolution, correctable GPS readings. All segment lengths and bearings were
confirmed with compass and hip chain measurements. These closed traverses were
used not for perceived statistical efficiencies but rather to minimize travel time by
returning the field crew to its starting point.

A staged sampling protocol was used to ensure that a sufficiently large sample
was obtained for each project area while at the same time minimizing the sam-
pling cost necessary to achieve the required level of confidence. Sample locations
(Fig. 27.3) were randomly selected points from the systematic sampling grid used
by the B.C. Ministry of Forests vegetation resources inventory.

27.2.4 Inference Models

The Cariboo PEM used a knowledge-based approach to prepare and apply predictive
rules. The process of creating knowledge-based, or heuristic, rule bases is relatively
straightforward and has been described in detail by MacMillan et al. (2007). Each
class to be predicted is defined using a fuzzy semantic import (SI) model, as pro-
posed by Burrough (1989) and applied by MacMillan et al. (2000, 2007). Each class
of ecological entity is defined as a weighted linear average of a series of defining
attributes; where attribute values are computed in terms of fuzzy membership func-
tions that relate the value of an input parameter (e.g. slope gradient) to the likelihood
of that value matching the concept of the class used to define the attribute (e.g. steep
slopes).

The procedures did make extensive use of existing knowledge and local eco-
logical expertise to develop rules for classifying ecological entities. In particular,



27 PEM for 8.2 Million ha of Forestland, British Columbia, Canada 343

Fig. 27.3 Location of field accuracy assessment traverses relative to project and TSA boundaries

the procedures were strongly based on the ability to consult, and make use of, the
extensive local experience and knowledge of the Regional Research Ecologist (see
Section 14.1). In this and many other respects, the predictive procedures used here
exhibit strong similarities to the expert-knowledge based approach of SoLIM (Zhu
et al., 2001) and in particular to the prototype category theory implementation of
SoLIM described by Qi et al., (2006) (see also Bayesian Belief Networks, Sec-
tion 16.3.2).

27.2.5 Accuracy Assessment Calculations

Calculations of map accuracy adhered to a provincially published and accepted pro-
tocol (Moon et al., 2005). The intent of these procedures was not to assess the degree
of exact categorical match between predicted and observed ecological classes at
exact point locations. Rather, the intent was to assess how closely the proportions
of ecological classes predicted to occur within a small area, equivalent in size to
the area for which management decisions are typically made for forested areas,
matched the proportions of those classes observed within such an area in the field (a
similar intent is evident in the estimates of proportions of predicted soil classes in
associations and consociations discussed in Chapter 15).

For analysis purposes, each closed triangular traverse is considered to define a
corridor extending approximately 30 m on either side of the traverse. The proportion
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Table 27.2 Example of calculation of overlap between predicted and observed ecological classes

Site Series % Composition

Trans Classif’n
Data
Source 01 02 03 04 05 06 07 08 09 99

Traverse
Overlap

T21SB Primary Call Map 57 0 7 21 1 2 11 0 0 1
Traverse% 36 0 0 21 0 28 1 4 4 6
% Overlap 36 0 0 21 0 2 1 0 0 1 61

Alternate Call Map 57 0 7 21 0 2 11 0 0 1
Traverse% 50 0 0 21 0 14 1 3 4 6
% Overlap 50 0 0 21 0 2 1 0 0 1 75

of each ecological site series for each traverse was computed as the sum of intercept
distances of each site series along the traverse divided by the total traverse length.
The map’s prediction of site series occurring along the traverse was determined
by generating a 30-m buffer around the traverse (see Fig. 27.2). This created a 60-m
corridor centered on the traverse. Summation of the area of each site series predicted
to fall within the corridor, divided by the total area of the corridor, yielded the map
prediction of ecological site series composition.

Thematic accuracy is based on a measure of classification overlap (Meidinger,
2003). Two measures of overlap were used. The first measure was primary overlap
based on comparing the primary site series call to the observed site series. The
second measure was alternate overlap and uses the alternate Site Series call for the
observed site series rather than the primary call, if such use increases the degree of
overlap. Alternate calls were only used if the confidence attached to the primary call
was moderate or low.

Table 27.2 presents an example overlap table for one traverse. Primary call over-
lap was 61%. The map over-predicted site series 01 (57 versus 36%) and under-
predicted site series 06 (2 versus 28%) relative to the traverse. Fourteen percent of
the traverse classified as 06 by the primary call was considered moderate to low
confidence and had an alternate site series call of 01. The traverse proportion of
site series 01 was therefore increased by 14% and the traverse proportion for site
series 06 was decreased by 14%. This re-allocation and recalculation increases the
overlap for site series 01–50% without reducing the overlap of the 06 site series.
The alternate call overlap was therefore 75%.

27.3 Results

27.3.1 Results from the PEM Modeling

PEM maps, at a scale of 1:20,000, were completed and delivered for an area of over
8.2 million ha in the former Cariboo Forest Region of B.C (Fig. 27.4). The mapping
was planned and executed as a number of separately contracted projects beginning
in October, 2003 and ending in April, 2008 (see Fig. 27.4 and Table 27.3).
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Fig. 27.4 Location of individual annually-staged project areas relative to TSA boundaries

The project was carried out by a relatively small team that consisted of a knowl-
edge engineer and PEM modeler (the first author), a project technical monitor (the
second author), a local ecological expert (the third author), and a project manager
(the fourth author) (see Fig. 27.6). Specific contributions were also made by a num-
ber of contractors hired to prepare input data layers, collect field accuracy data and
produce final cartographic map products.

The total cost for all project activities was Can $ 2.8 million or 34 cents per
ha. The rate of progress was approximately 2 million ha per year for the two per-
son modeling team. The final maps were prepared and delivered in both raster and
labelled vector format.

27.3.2 Accuracy Assessment of the PEM Model

Initially, assessments of accuracy were computed and reported for individual project
areas, at the end of each staged project, as illustrated in Fig. 27.4. Upon final com-
pletion of all six individual projects, a single, seamless PEM map was prepared for
the entire extent of the former Cariboo Forest Region. The accuracy assessment data
were then re-evaluated to re-compute the accuracy by Timber Supply Area (TSA)
and for the region as a whole (Table 27.3). The lower accuracy computed for the
full Quesnel TSA reflected a particular problem with difficulties encountered in
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Table 27.4 Complete itemization of all costs for all components of the Cariboo PEM project

Project component Cost ($) Percent (%) $/ha

Project management $295, 000.00 10.40 $0.036
BGC localization (big BEC) $437, 278.00 15.41 $0.053
Manual materials & exceptions mapping $186, 326.00 6.57 $0.023
Mandated structural stage modeling $46, 963.00 1.66 $0.006
DEM preparation $7, 200.00 0.25 $0.001
PEM knowledge base development and modeling $900, 000.00 31.72 $0.109
Accuracy assessment data collection and analysis $773, 314.00 27.26 $0.094
Final submission to the spatial data warehouse $191, 050.00 6.73 $0.023

$2, 837, 131.00 100.00 $0.344

differentiating two very similar ecological classes in one particular BGC unit within
the eastern portion of the Quesnel TSA.

27.3.3 Complete Costs for all Activities

Table 27.4 lists and itemizes all final costs for all components of the Cariboo PEM
project for the entire 8.2 million ha. Costs for accuracy assessment were increased
due to a fire that destroyed a full field season’s worth of field observations that
then had to be re-collected. Costs for final submission of the digital products to the
provincial spatial data warehouse include work to generalize the raw raster data and
convert it to smoother vector polygons that were large enough to receive and display
textual labels. All costs are fully accounted for with no free, donated labor or in-kind
contributions.

27.4 Discussion

To summarize and generalize our experiences we recast them in the form of several
principles adapted from pedometrics, modeling and other literature. We offer these
principles in the hope that they may prove useful to others with a need to undertake
operational predictive mapping. These principles (see McBratney et al., 2002 for 1
and 2) are:

1. Principle No. 1: Efficiency – Do not predict something that is easier to measure
or map than the predictor. Mathematically, Efficiency of Predicted/ Efficiency
of Predictor > 1.

2. Principle No 2: Uncertainty – Do not make DSM predictions unless you can
evaluate their uncertainty, and for a given problem, if a set of alternative DSM
predictions is available, use the one with minimum variance.

3. Principle No 3: Parsimony – Use as few input variables as possible to make
DSM predictions but equally, use as many as are absolutely necessary to achieve
success.
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4. Principle No 4: Simplicity – Keep it simple. Increased precision in description
of predicted entities leads to decreased accuracy of the predictions. Splitting
increases error.

5. Principle No 5: Rigor – Question everything. Test all assumptions. Don’t
assume that your assumptions are correct. Devise and apply rigorous, objective
tests to evaluate all assumptions.

6. Principle No 6: Continuity – Embrace the future but value the past. Respect
and use existing knowledge and data to its maximum but don’t let it impede
progress.

7. Principle No 7: Ambition – Go big or go home. The bigger the area mapped the
greater the potential economies of scale. But do the work in small, incremental
stages.

8. Principle No 8: Stratification – Divide and conquer. Turn one big, complex
problem into many smaller, simpler problems. Define homogeneous domains
where rules can apply.

9. Principle No 9: Teamwork – Organize for success. Don’t try to have one per-
son do everything and do not give control of schedule and budget to the main
implementer.

10. Principle No 10: Client supremacy – Give the client what they want and need.
If the client tells you they want something then find a way to give it to them.

27.4.1 Efficiency

We believe that DSM practitioners have a tendency to lose track of principle No 1;
this being that one should not try to predict anything that is easier, faster or more
accurate to map directly and manually. It is common to get overly preoccupied with
the elegance of predictive models and to put unwarranted effort into trying to model
something that could be mapped directly more rapidly and accurately. In this project,
we unashamedly used manual visual interpretation and digitizing to identify and
capture information on the spatial distribution of broad patterns of variation in parent
material texture and depth and of non-forested exceptions areas.

Table 27.4 indicates that the exercise to manually interpret and digitize informa-
tion about the spatial patterns of variation in parent material texture and depth and of
the locations of major non-forested areas cost less than 2.5 cents per ha. Any effort
to model these distributions using digital data sets would have to cost less than this
and produce results that were of equal or greater accuracy in order to represent a
viable alternative to the manual mapping procedures (see Chapters 4, 13, 21, 22,
28, 31, 32 for other studies that reported on advantages of using manually prepared
input maps).

27.4.2 Uncertainty

We contend that principle No 2, the requirement to measure and report on the uncer-
tainty of any predictions, is also frequently under-represented in DSM projects (see
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also Lagacherie, 2008). Perhaps the most important aspect of this project was that,
from the onset, it had a clear definition of what the clients agreed would constitute
success and also had an agreed-upon, relatively objective method for measuring
that success. Assessment of uncertainty is considered by many other chapters in this
book using either separate, independent validation data sets (Chapters 14, 18, 19)
or, more frequently, some form of leave one out or out of the bag cross validation
(Chapters 15, 17, 20, 22, 27).

The amount of effort and expense directed towards measuring and quantifying
the uncertainty (or accuracy) of the maps was almost as great as the effort that
went into producing the maps in the first place (Table 27.4). This was a highly
valuable exercise that provided much opportunity to identify and speculate upon
reasons for differences between predicted and observed patterns of spatial variation
in ecological classes.

27.4.3 Parsimony

With respect to principle No. 3, the project consistently tried to adhere to the prin-
ciple of parsimony. The construction of knowledge-based rules proceeded in a step-
wise fashion, starting with very simple rules that used as few predictor variables
as possible. New input variables were only added to the initial KB rules if the
results produced by the initial rules were deemed to be incorrect or insufficient.
Carefully adding one new predictor variable at a time to a specific KB rule provided
an opportunity to assess the impact of the new consideration on the resulting output
and to maintain control over, and understanding of, the interactions at work in the
rules. Stepwise selection of predictor variables or other similar measures adopted to
ensure parsimony are reported on in Chapters 3, 4, 16, 21, 30.

27.4.4 Simplicity

Our experiences also confirmed a pattern in which increases in precision were seen
to result in decreases in accuracy. The more precise the definition and description
of a particular map entity, the less likely that entity was to be correctly mapped.
In the language of soil survey, the more splits that a mapper makes and the finer
these splits are, the more difficult it becomes to successfully predict these precisely
defined entities using predictive modeling. We refer to principal No. 4 and suggest
that predictive modelers make a point of not being overly ambitious in terms of
defining precise entities.

27.4.5 Rigor

We learned early on not to trust our assumptions blindly or base our decisions auto-
matically on acceptance of expert opinions or judgment. All major decisions were
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made after devising and implementing measures designed to test assumptions using
objective criteria. We provide here one example of testing an assumption that field
accuracy determinations represented truth.

Assessments of class map error using field observations made by a local expert
assume that the local expert is always correct and the predictive map incorrect in
all cases of non-agreement. We undertook some efforts to evaluate the degree to
which different local experts could agree upon the correct classification for exactly
the same locations in the field. We considered this to provide an assessment of mea-
surement error. We had four different experts traverse and classify exactly the same
four accuracy transects at different times and with no opportunity to converse or
discuss their respective assessments. The results of this comparison are listed in
Table 27.5.

Local experts could not agree with each other on the correct proportion of classes
along the tested traverses at more than 64% average agreement, 71% if credit was
given for alternate calls. The highest level of overlap agreement between any two
experts was 86% and the lowest was 37%. In terms of exact agreement of classifica-
tions at exact locations (spatially congruent accuracy) average agreement between
any two experts was only 42% with the lowest exact agreement between any two
experts being 23% and the highest exact agreement being 73%. All four experts
agreed with each other at exact locations on average 21% of the time with a low of
11% exact agreement for one traverse and a high of 30% for the best. This small test
appears to suggest that it would be unrealistic to expect any predictive map to agree
with the proportions of classes observed by local experts along transects in the field
at any better than 64–71%.

Table 27.5 Tabulation of results of an evaluation of measurement error among four local experts

Type of Agreement or Error Assessment

Exact Class at Exact
Locations Spatially
Congruent Agreement

Proportions of Classes in
Transect Compositional
Agreement

Average Primary Call Agreement (any 2
experts)

42% 64%

Minimum Primary Call Agreement (any
2 experts)

23% 37%

Maximum Primary Call Agreement (any
2 experts)

73% 86%

Average Primary Call Agreement (all 4
experts)

21% Not Reported

Minimum Primary Call Agreement (all 4
experts)

11% Not Reported

Maximum Primary Call Agreement (all 4
experts)

30% Not Reported

Average Alternate Call Agreement (any 2
experts)

Not Reported 71%

Minimum Alternate Call Agreement (any
2 experts)

Not Reported 43%

Maximum Alternate Call Agreement
(any 2 experts)

Not Reported 95%
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27.4.6 Continuity

Notwithstanding our recognition of the need to rigorously test all assumptions and
question all expert opinions, we came to recognize the benefits of valuing and using
existing expert knowledge and data. It is important to respect and value existing
expert knowledge and data while simultaneously not letting it impede adoption of
new or improved methods.

Our experience led us to conclude that the knowledge-based approach to predic-
tive mapping used here is probably the only viable approach for mapping very large
areas efficiently. It does not require the collection of vast numbers of field observa-
tions to support data mining to build rule bases. It is clearly parsimonious in that
expert knowledge can be used to select and limit the type and number of predictor
data sets. It is efficient in that it makes maximum possible use of previously acquired
local expert knowledge and ecological understanding. Similar conclusions about
the value of using local expert knowledge are given in Chapters 4, 13, 14, 24, 25,
28, 31.

We provide here one example of continuity between existing and new methods.
Portions of the Cariboo map area were covered by traditional, manually-prepared,
Terrestrial Ecosystem Maps (TEM) as well as the new PEM. The TEM and PEM
maps were independent and neither had been considered in the preparation of the
other. Overlaying the vector polygon boundaries of the TEM maps on top of colored
hillshaded PEM maps provided an opportunity to compare and contrast the similar-
ities and differences between manually prepared TEM maps and automated PEM
maps (Fig. 27.5).

The most striking aspect of any comparison of the TEM and PEM maps is how
closely similar they were in terms of the identification and location of boundaries
between the main ecological entities. At a gross level, both sets of maps were obvi-
ously trying to partition the landscape in a similar fashion, with major boundaries
tied to slope breaks which were interpreted as being the locations for major changes
in moisture regimes and other significant site features. Both sets of maps clearly
attempted to delineate similar toposequences beginning at the top with thin dry
ridges and progressing down-slope through dry to mesic steep to moderate upper
to mid slopes, moister, moderate to gentle mid to lower slopes, imperfectly drained,

Fig. 27.5 Comparison of 1:50,000 (left) and 1:20,000 (right) vector TEM vs. gridded PEM maps
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gentle to level toe-slopes, and more poorly drained level or sloping valley bottoms.
The most obvious difference between the TEM and PEM maps was that, for the
most part, the TEM maps did not provide as much spatially-explicit detail about
within-polygon variation in ecological classes or site conditions. See Chapters 27
and 28 for discussions of similarities and differences between conventional manual
maps and digital soil maps. Comparison of the two sets of maps reveals the strong
degree of continuity in conceptualization of ecological spatial entities between the
conventional TEM and new PEM maps.

27.4.7 Ambition (Go Big or Go Home)

Our experiences strongly support the notion that thinking big and daring to under-
take mapping of very large areas yields benefits related to achieving economies of
scale. Both rates of progress and measured map accuracy increased as this project
progressed and knowledge-based rules were defined and iteratively improved. A
library of existing rules that had been applied and tested in previous areas proved
useful to have to use as a starting point for developing new rules in similar areas. It
was evident that the way to complete large projects successfully was to break them
up into a number of smaller areas and complete one smaller area at a time.

27.4.8 Stratification

Our experiences led us to recognize the vital importance of establishing regional
physiographic and geomorphic context to define meaningful classification domains
within which particular sets of rules could be developed and applied. Stratification
of landscapes to improve predictive modeling is also discussed in Chapters 4, 16,
24, 25 and 28. The ability to sub-divide an entire map area into smaller, and more
environmentally homogeneous, sub-areas makes it much easier to identify and apply
classification rules that produce consistent and reasonable results. It also means that
one big problem can be addressed as a series of smaller, and more tractable, prob-
lems. We developed and applied approaches to define and delineate classification
domains automatically. However, we also recognized that there was considerable
room for improvement in defining these domains.

27.4.9 Teamwork

We felt that there were advantages gained in partitioning responsibilities and build-
ing a team of individual contributors with clearly delimited responsibilities and tasks
apportioned according to skills and capabilities (see Fig. 27.6). In contrast to many
traditional soil survey map projects, this project did not have a single individual
charged with doing the majority of the project tasks. Responsibilities were assigned
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Fig. 27.6 Schematic
illustration of project
organization and division of
responsibilities

based on identifying individuals with both the capabilities and the time to fully
address each task. No one person was expected to possess all required expertise or
to have the time to complete all tasks in the most efficient way. Ours was a true team
approach with each participant contributing specific deliverables according to their
skills and experience.

The private sector business model adopted by the project established clearly
defined contracted deliverables with clearly defined and enforceable deadlines and
defined measures of acceptable quality. An important element of this organization
was the fact that the main implementer (the knowledge engineer) was not given
control over the project schedule or budget. This rested with the project manager
and the external auditors. This approach kept the project on time and on budget and
ensured that the clients received what they required at a cost they could count on.

27.4.10 Client Supremacy

Finally, it should be self evident that mapping projects are undertaken for clients
and that the clients should receive what they ask for and what they need when they
need it. The principal responsibility of the project technical monitor in Fig. 27.6 was
to ensure that the clients got what they paid for and that all deliverables represented
the best effort to get them what they needed at the best possible cost and within the
shortest time frame that was feasible. We describe below one example of generation
of products that the client requested that were not originally envisaged or produced.
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Fig. 27.7 Illustration of a final, cartographically-enhanced 1:20,000 scale vector map product

Upon completion of the initial PEM modeling, it became very apparent that there
was a high demand, among some of the forest industry clients, for relatively tradi-
tional vector map products with neat polygonal boundaries and informative carto-
graphic labels. A considerable amount of time, effort and money was consequently
expended in smoothing and generalizing the original raster PEM, in converting these
generalized raster maps to vector polygons that did not have excessive amounts of
small polygons or jagged lines and finally in assigning and placing neat cartographic
labels in each vector polygon (see Fig. 27.7). It goes to show that there is still some
need for traditional cartographic products and that not all users are comfortable with,
and want to use, digital maps in raster format. It also shows that the clients should
always get what they want.

27.5 Conclusions

27.5.1 Successes and Accomplishments

We completed operational predictive mapping for a very large area (8.2 million
ha) successfully, achieving acceptable levels of predictive accuracy (69%) while
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simultaneously dramatically lowering costs (from $1.50-$3.50 to $0.34 per ha) and
increasing rates of map production.

We collected and analyzed a very large and statistically valid data set of
field observations that conclusively demonstrated the level of predictive accuracy
achieved by the maps and revealed many of the conditions and probable causes
linked to errors and inaccuracies in the maps.

We achieved enthusiastic acceptance and use of the predictive maps by both the
private sector forestry clients and the relevant government ministries. At the begin-
ning of the project, many people were skeptical about the usefulness and reliability
of the predictive maps produced by this method and had a preference for the more
traditional terrestrial ecosystem maps (TEM) that they were familiar with. This pref-
erence changed dramatically to favor the final PEM maps.

The PEM maps were sufficiently general in design that they were able to respond
to a dramatic change in major intended use from providing information to support
efforts to increase the annual allowable harvest to providing information useful for
planning salvage and remediation activities to address the catastrophic effects of the
mountain pine beetle infestation.

27.5.2 Opportunities for Improvement

Obviously, we would have liked to have achieved higher levels of accuracy in pre-
dicting both the proportions of ecological classes within small areas and the exact
ecological class at exact point locations. Our studies showed, however, that there is
an upper limit (65–71%) to the levels of accuracy that we can hope to achieve when
predicting ecological classes.

We conclude that it would be desirable to investigate and adopt new methods for
improving the input layers that provide geomorphic, physiographic and lithological
context to classification rules. If you know that a point is located on a flood plain
or fan or that the parent material texture is sand or gravel and not medium textured
till, you greatly improve the ability to successfully predict the correct spatial entity
at that location. Context is critical in predictive mapping.

We are less sure of our ability to improve prediction of exact classes at exact point
locations. In theory, improved spatial resolution provided by new technologies for
acquiring and producing fine resolution digital elevation models (LiDAR, Radar,
and digital imagery), should lead to an improved ability to predict exact classes at
exact point locations. Our efforts to use finer resolution DEMs (5 and 10 m) did
not lead to improvements in predictive accuracy. Finer resolution DEM data present
challenges for separating information into short range and longer range signals. Pre-
dictive procedures will have to adopt explicit procedures to analyze fine resolution
data at multiple scales in order to profit from the more detailed information.
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Chapter 28
Building Digital Soil Mapping Capacity
in the Natural Resources Conservation Service:
Mojave Desert Operational Initiative

A.C. Moore, D.W. Howell, C. Haydu-Houdeshell, C. Blinn, J. Hempel,
and D. Smith

Abstract The Natural Resources Conservation Service (NRCS), within the con-
text of the U.S. National Cooperative Soil Survey (NCSS), is working to integrate
digital soil mapping methods with existing soil survey procedures. As this effort
moves forward, it must address technological, managerial, and political challenges.
To better understand these challenges and potential solutions, NRCS is establish-
ing Digital Soil Mapping Operational Initiatives. These projects aim to demonstrate
the utility of digital soil mapping in a production setting, provide training to soil
scientists in digital soil mapping methods, contribute to completion of the initial
soil survey or update of existing surveys, develop detailed instructions for imple-
menting digital soil mapping methods, provide useful soil information products
to complement existing soil survey data, and document methods and results. The
first Operational Initiative was initiated at the Victorville, California Major Land
Resource Area (MLRA) Soil Survey Office (SSO), which is responsible for the soil
survey of Mojave Desert region. The immediate focus of this office is completing the
initial soil survey for Joshua Tree National Park and adjacent private lands. Under
the operational initiative umbrella, detailed digital data sets including IFSAR digital
elevation models and an ASTER mosaic have been compiled. Derivatives from these
and other data sets are being used to stratify the project area for sampling and mod-
eling, and as inputs into continuous soil property predictive models. Model outputs
will be used to develop Soil Survey Geographic (SSURGO) data products. Techni-
cal support for this project is provided by digital soil mapping soil scientists at the
MLRA SSO the California State Office, and the National Geospatial Development
Center, as well as other NRCS staff and NCSS cooperators.
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28.1 Introduction

In spite of significant advances in the development and application of digital soil
mapping methods within the academic community, implementation of digital soil
mapping in large and small organizations remains a challenging prospect. The Natu-
ral Resources Conservation Service (NRCS), within the context of the U.S. National
Cooperative Soil Survey (NCSS), is working to integrate digital soil mapping meth-
ods with existing soil survey procedures. We define digital soil mapping as the use of
digital representations of soil-forming factors, soil field data, soil maps, and a variety
of statistical modeling and classification methods to produce maps of soil features.
At this time, NRCS uses digital soil mapping products as pre-maps of soil variation
over the landscape to guide field work and improve efficiency. In the future, digital
soil mapping products may also provide potential new soil survey products showing
the distribution of meaningful soil properties or interpretations of soil functions.

In order to successfully integrate digital soil mapping methods into the soil sur-
vey program, NRCS and the NCSS must address technological, managerial, and
political challenges. To better understand these challenges and potential solutions,
NRCS is establishing Digital Soil Mapping Operational Initiatives. These projects
aim to demonstrate the utility of digital soil mapping in a production setting, provide
training to soil scientists in digital soil mapping methods, develop detailed instruc-
tions for implementing digital soil mapping methods, provide useful soil informa-
tion products to complement existing soil survey data, and document methods and
results while contributing to the completion of initial soil surveys or update of exist-
ing soil surveys. In particular, our goal is to use these initiatives to make digital soil
mapping methods part of NCSS’s normal operating procedures.

Each operational initiative will be housed in a Major Land Resource Area
(MLRA) Soil Survey Office (SSO) and will be integrated with the activities of that
office. Soil scientists with skills in digital soil mapping, GIS, remote sensing, and/or
statistics will be placed in MLRA SSOs to support operational initiative efforts.
These soil scientists may be current employees with additional training or new hires.

The first formal NCSS Digital Soil Mapping Operational Initiative in the United
States has been located at the Victorville Soil Survey Office in southern California.
However, there are many ongoing digital soil mapping activities within the National
Cooperative Soil Survey. The personnel involved in the Mojave Desert Operational
Initiative project will attempt to incorporate lessons learned from these activities and
from other digital soil mapping efforts around the world. The framework developed
for this initiative may be used in future Operational Initiatives.

A founding principle of these projects is collaboration with the digital soil map-
ping community. This initiative depends on the active involvement and innovation
of the research community. International collaboration and communication is also
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an important part of this initiative. The collaboration network and communication
infrastructure developed for this initiative will provide a foundation for a permanent
international clearing house for digital soil mapping data, methods, and results.

This paper focuses on the physical characteristics of the Mojave Desert Opera-
tional Initiative study area, the operational initiative framework, and the progress to
date. See Chapter 29 for a discussion of sampling and modeling procedures imple-
mented in the Mojave Desert Operational Initiative, as well as for a comparison of
results from traditional and digital soil mapping procedures.

28.2 Materials and Methods

28.2.1 Study Area

Our initial study area includes Joshua Tree National Park (JOTR) and the adjacent
private lands, which comprise approximately 388,500 ha in the southern portion
of the Mojave Desert Ecosystem (Fig. 28.1). Subsequent work will focus on the
Mojave Desert National Preserve in the central portion of the Mojave Desert Ecosys-
tem. The JOTR area is characteristic of the basin and range province with broad
coalescing alluvial fans, internally-drained playas, and uplifted mountain ridges.
Vegetation is dominated by low, widely spaced shrubs (NPS, 2008). Mean annual air
temperature is about 22◦C and mean annual precipitation is about 110 mm, though
temperature decreases and precipitation increases as elevation increases in the west-
ern portion of the study area. The soil temperature regime ranges from hyperthermic
to mesic and the soil moisture regime ranges from typic-aridic to xeric-aridic. The
parent materials are mainly granitoid and metamorphic rocks. A typical JOTR land-
scape is depicted in Fig. 28.2.

Fig. 28.1 Location of the
Mojave desert national
operational initiative project
within the contiguous United
States
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Fig. 28.2 Typical landscape
within Joshua tree national
park, including the park’s
namesake species, Joshua
tree (Yucca brevifolia
Engelm.) (Blinn, 2008,
Personal communication)

28.2.2 Project Plan

Soil scientists in NRCS-California have a long tradition of using digital soil map-
ping concepts to develop digital products that support soil survey activities (Howell
et al., 2007, 2008). This project builds on that work, and aims to fully develop
those methods while integrating the process into existing soil survey operations.
A detailed project plan outlining key steps in a “digital soil mapping soil survey”
project was developed jointly by project participants (NRCS Staff, 2007). This
project plan may serve as a template for future operational initiatives.

The original project plan spans approximately 2 years, and coincides with the
timeline for completion of the initial soil survey of JOTR. Key phases of the project
include:

• Knowledge Acquisition: This phase involves documenting existing knowledge of
soils and landscapes for the project area and identifying key soil properties. A set
of soil properties considered important for soil management and classification in
JOTR were identified and a hierarchical decision tree documenting the environ-
mental conditions under which particular soil series or map units occur is being
developed.

• Geospatial Database Development: This phase involves the acquisition and pro-
cessing of geospatial data. Key data layers and processing steps for the Mojave
Desert initiative are identified in Section 28.2.3.

• Landscape Stratification: This phase involves the subdivision of the project area
into physiographically similar regions in order to determine major landscape
breaks and model domains, find representative areas for model development, and
guide sampling procedures. See Section 24.4 for a discussion of an analogous
concept (soilscapes).

• Sampling – Phase I: This phase involves sampling to build digital soil mapping
models and document soil map units. The JOTR sampling plan was designed to
utilize existing observations collected over the course of the soil survey. Gaps in
existing observations were identified (see Section 28.2.3.3) and additional sam-
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ples were taken. A minimum data set was identified based on soil properties
slated for modeling as well as the needs of the soil survey.

• Statistical Modeling: This phase involves the selection and implementation of
appropriate models to predict selected soil properties. We will evaluate current
and past statistical modeling efforts in California and select modeling methods
based on landscape, available data, and other factors. The focus will be on devel-
opment of soil class and property models from terrain and spectral data using
multivariate statistics.

• Sampling – Phase II: This phase involves iterative sampling to improve model
performance and accuracy as well as collection of an independent dataset for
accuracy assessment.

• Accuracy Assessment and Documentation: This phase involves the selection and
application of quantitative accuracy assessment methods to the digital soil map-
ping product(s) and the integration of these methods into NCSS quality assurance
standards. Accuracy assessment and documentation phases will be iterative with
each annual mapping cycle.

• Product Development: This phase involves the production of soil information
products. In accordance with National Cooperative Soil Survey guidelines, one
product that will be produced for JOTR will be area-class soil maps that meet the
current Soil Survey Geographic Database (SSURGO) standard. However, staff
will also work to develop additional soil information products for the project area
including maps of selected soil properties (e.g., depth to and presence/absence of
carbonates, argillic horizon, and duripans), a decision tree model or knowledge
base to capture soil-landscape relationships, sampling protocols for assessing
existing soil observations and determining where additional observations may
be needed, quantitative landscape models for key soil properties, and accuracy
assessment procedures for continuous raster datasets. Detailed written instruc-
tions for completing successful methods will also be developed.

28.2.3 Geospatial Database Development

Key digital data layers for the area include a 5 m resolution IFSAR-derived digital
elevation model (DEM), 10 and 30 m resolution DEMs from the National Elevation
Dataset, a spring season ASTER Mosaic, and leaf off, leaf on, and spring season
Landsat 7 ETM+ mosaics. The goal with these data is to produce derivatives that
are significant model covariates and that cover the entire Operational Initiative area.
See Sections 29.2.2 and 29.2.3.2 for more information about the selection and devel-
opment digital data layers used in this project.

28.2.3.1 Digital Elevation Models

The IFSAR DEM data were resampled to 10 m resolution to reduce file size. Two
example terrain derivatives are slope position (Fig. 28.3) and fuzzy land element
classification (Fig. 28.4).

Slope position was computed from the IFSAR DEM using an Arc Macro Lan-
guage (AML) script developed by Hatfield (1996) (using the following settings:
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Fig. 28.3 Slope position computed from Hatfield’s (1996) slopeposition AML

sink and peak fill z limit – 10 m, valley and ridge minimum accumulation – 4,000
cells). Slope position is valuable because it is calculated on localized base lev-
els and shows relative position within nested soil catenas (Fig. 28.3). Other use-
ful terrain derivatives in this area include multiresolution valley bottom flatness
index (Gallant and Dowling, 2003), terrain ruggedness index (Riley et al., 1999),
and compound topographic index (Beven and Kirkby, 1979). Other correlates are
identified in Table 29.1.

Fuzzy land elements were computed from the IFSAR DEM using methods devel-
oped by Schmidt and Hewitt (2004). A 100 m2 (1 ha) neighborhood provided the
best results. Fuzzy land element classification was used to classify landform ele-
ments in an objective, explicit, and reproducible manner. These landform elements
provide a new and useful set of mountain landform terms and depict elements
that can be related to soil components within map units. Names for the elements
within mountain landforms have been overlooked in most landform terminologies.
An example classification shows the 15 landform elements (Fig. 28.4).

These data along with the satellite imagery and field data described in
Sections 28.2.3.2 and 28.2.3.3 are available for download from https://sharepoint.
ngdc.wvu.edu/sites/digital_soils.

28.2.3.2 Satellite Imagery

Preliminary ASTER mosaics of the study area were created from the US Geo-
logical Survey AST14DMO product, which consists of a DEM and orthorectified
imagery, is terrain-corrected and contains calibrated radiance for each of the 14
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Fig. 28.4 Fuzzy land elements computed from Schmidt and Hewitt’s (2004) AMLs merged into a
single landform layer

bands. Ten ASTER scenes from five dates were required to cover the entire study
area (Fig. 28.5). Separate images were created for visible near-infrared (VNIR),
shortwave infrared (SWIR), and thermal infrared (TIR) wavelengths. Prior to
mosaicking, three VNIR and six SWIR bands were converted to top of atmosphere
reflectance and five TIR bands were converted to true radiance. Variation within
the mosaic due primarily to phenological stage of vegetation is evident; however,

Fig. 28.5 ASTER VNIR
mosaic with study area
outline
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future work will focus on minimizing these variations which can affect subsequent
classifications. (Blinn, 2008).

Landsat mosaics for three seasons (leaf-off, leaf-on, and spring) were also
developed for the study area from the Multi-Resolution Land Characterization
(MRLC) consortium’s 2001 National Land Cover Database (NLCD). For each
season, several images were produced including normalized difference vegeta-
tion index (NDVI); tasseled-cap (TC) transformation; gypsic band ratio (Neild
et al., 2007); and natric band ratio (Blinn, 2008; Neild et al., 2007). See Chap-
ter 2 for further discussion of uses of remotely sensed imagery in digital soil map-
ping and Chapter 10 for additional discussion of ASTER imagery in digital soil
mapping.

28.2.3.3 Field Data

Field data are being collected concurrently with the soil survey of JOTR in accor-
dance to NRCS field data collection protocols. Approximately 487 soil observations
for JOTR were collected prior to the beginning of this project. Additional observa-
tions were located using stratified random sampling (see Section 29.2.2). These data
include depth to and presence/absence of carbonates, depth to and presence/absence
of argillic horizon, depth to and presence/absence of duripan, depth to paralithic
contact, depth to lithic contact, particle-size class, particle-size class, surface texture,
and other attributes.

Initial field verification of digital data layers developed for JOTR indicate the
potential for good correlations between environmental covariates and soil distribu-
tions. Fuzzy land element data layers will be used to evaluate and model individual
soil components and to plan field sampling. The ASTER SWIR image may be useful
for locating pediment areas. Other relationships are being evaluated.

28.2.4 Staffing and Training

Perhaps the most critical component of this project has been the development of
digital soil mapping-savvy Major Land Resource Area (MLRA) Soil Survey Office
teams. This development occurs by training existing soil scientists in digital soil
mapping concepts and methods and by hiring new soil survey staff with skills in
GIS, remote sensing, and statistics. Our goal is for digital soil mapping methods
combined with strong field soil mapping knowledge to become standard practice in
MLRA Soil Survey Offices.

As part of this initiative, a new soil scientist with a strong academic background
in GIS, remote sensing, terrain analysis, and statistics as well as field skills in
describing and mapping soils was hired by NRCS-California for the Victorville Soil
Survey Office.

Collaboration with NCSS and other partners is another important way to build
skills within soil survey office teams. To supplement in-house expertise, a post-
doctoral research associate with expertise in remote sensing was contracted to assist
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with the acquisition of satellite imagery and development of mosaics and deriva-
tive products as well as to advise survey members on issues related to remote
sensing.

28.3 Results and Discussion

Results from this initial sampling and modeling cycle are discussed in detail in
Section 29.3. We will focus our discussion in this paper on the process of insti-
tutionalizing new procedures.

Balancing the adoption of new methods, including digital soil mapping methods,
with high production goals is necessary if those methods are to be integrated into
the workflow of a typical soil survey office. Gradual implementation of digital soil
mapping methods allows soil survey staff time to learn new methods and determine
how they can best be applied, while still permitting them to meet challenging pro-
duction goals. As always, the long term goal of implementing digital soil mapping
methods in a coordinated manner is to improve the quality of soil survey data and
increase the efficiency of soil survey operations. However, these improvements may
not be seen until new methods are well integrated into current workflows. An excel-
lent example of the development of a digital soil mapping process tied directly to
an organization’s workflow is presented in Chapter 31 (Sections 31.1 and 31.3 in
particular).

Support from agency employees with expertise in digital soil mapping, including
state, regional, and national GIS and soil specialists as well as other MLRA soil sci-
entists, facilitates technology transfer within the soil survey program. Collaboration
with NCSS and other partners ensures access to individuals with skills we may not
yet have within NRCS and exposes us to new ideas that may benefit the soil survey
program in the future. However, we believe that digital soil mapping methods will be
more quickly and effectively integrated into day to day soil survey operations when
MLRA Soil Survey Offices have individuals with expertise in digital soil mapping
on site.

Development of a detailed project plan, while time-consuming, provides an
opportunity for each collaborator to contribute to the development of the project,
and ensures that all project participants understand the project goals and timeline.
In addition, these plans meet NRCS Soil Survey Division requirements for project
plans and can be incorporated into an MLRA Soil Survey Office’s annual work plan
and long range plan.

To become accepted, new methods must enhance a soil surveyor’s understand-
ing of soil-landscape relationships and improve the ways these relationships can be
extrapolated and represented. In the context of this operational initiative, the soil
survey team is documenting their understanding of soil-landscape relationships in
JOTR via a detailed mapping key. Digital data layers such as fuzzy land elements
and ASTER VNIR and SWIR images are being used to assist with the extrapolation
of these relationships across the study area.
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Further discussion of factors in the successful implementation of operational dig-
ital soil mapping is presented in Section 27.4, where 10 guidelines are proposed.

28.4 Conclusions

Integration of digital soil mapping methods into existing NCSS soil survey protocols
is a challenging task. Digital soil mapping activities ranging from simple GIS exer-
cises to sophisticated statistical models are occurring in soil survey offices around
the US on an ad hoc basis; our goal with this and future operational initiatives is to
formalize the application of digital soil mapping methods and provide a framework
within which digital soil mapping can grow.

After this first year of implementation, model outputs, sampling protocols, and
accuracy assessments from the Mojave Desert Operational Initiative are being eval-
uated and publicized. With each cycle of the soil survey, the MLRA SSO will
gradually incorporate more digital soil mapping methods into their workflow. Soil
survey in the U.S. has always developed in these annual cycles: soil scientists are
trained in new methods during the office season and apply these methods dur-
ing the field season. As digital soil mapping methods are added to the annual
sequence of soil survey operations, the soil survey program changes. The opera-
tional initiatives will provide a framework to coordinate and communicate these
advancements.
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Chapter 29
A Qualitative Comparison of Conventional Soil
Survey and Digital Soil Mapping Approaches

S.M. Roecker, D.W. Howell, C.A. Haydu-Houdeshell, and C. Blinn

Abstract Research in digital soil mapping has indicated that its methodologies
could be successfully extended to a field setting where it could enhance the quality
and scientific foundation of soil surveys, as well as save time and money. These
assumptions are being put to the test in the Mojave Desert of California as part of
a continuing effort within ongoing soil surveys. One of the questions being posed
in this study is how comparable is a third-order soil map created by the conven-
tional soil survey approach to one created via digital soil mapping. To compare the
two mapping approaches the subgroup level of Soil Taxonomy was chosen as the
response variable and the map unit as the unit of comparison. Within each map
unit the proportion and number of subgroups predicted by each mapping approach
was qualitatively compared. Within the intermontane basins the predictive model
used for digital soil mapping, estimated a smaller proportion and number of soil
subgroups associated with fan remnants. Whereas within the mountains the conven-
tional approach predicted fewer soil subgroups, and a different composition of soil
subgroups.

Keywords Soil survey · Digital soil mapping · Soil Taxonomy · Random forest ·
Mojave Desert

29.1 Introduction

Research in digital soil mapping has indicated that its methodologies (i.e., pedomet-
ric techniques) could be successfully extended to a field setting, where they could
enhance the quality and scientific foundation of soil surveys, as well as save time
and money. As part of a continuing effort within ongoing soil surveys in the Mojave
Desert of California, USA, pedometric techniques are being explored so as to hope-
fully realize such benefits (Howell et al., 2007, 2008). One of the questions posed
in this study, is how comparable are maps of soil types created by conventional soil
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survey to digital soil mapping? Fundamentally both approaches to soil mapping are
similar in that they make use of relationships between the soil and more readily
observable land surface properties, such as shape, position, and reflectance. Beyond
this, both can take different approaches to all aspects of soil mapping, including
project planning and preparation, sampling design, field operation, soil measure-
ment, predictive modeling, and geographic representation. Ultimately these differ-
ences mean that any comparison between these two approaches cannot be wholly
quantitative, unless based on an estimate of the amount of variance explained by
each of these methods for predicting soil properties. No such dataset existed for this
study. Still a qualitative comparison of mapping approaches is warranted so as to
determine what benefits or challenges might be realized from adopting pedometric
techniques within a production soil survey setting.

Although much has been written on the benefits of digital soil mapping
relative to conventional soil survey, few studies have directly compared the accu-
racy of both approaches for predicting soil classes. One of the earlier studies done
by Skidmore et al. (1996) reported comparable levels of forest soil map accuracy
between the conventional approach (74%) and a Bayesian expert system coupled
with a geographic information system (GIS) (70%). In two case studies in differing
terrain, Zhu et al. (2001) reported that soil maps produced by conventional soil
survey were less accurate (61 and 67%) than soil maps produced by the soil-land
inference model (SoLIM) (81 and 84%), which is a similarity representation based
on GIS and expert-knowledge. When predicting ecological classes for the Cariboo
Forest Region (8.2 million ha) within British Columbia, Canada, MacMillan et al.
(see Table 3 in Chapter 27) achieved accuracies of 65–70%, by formalizing the
existing expert knowledge using a fuzzy Semantic Import model and a series of
terrain attributes, multispectral imagery, and manually interpreted layers. In con-
trast, MacMillan et al. (see Section 27.4.5) reported only 64% agreement among
the assessors when examining the same transects. Thompson and Kolka (2005)
found that topsoil organic carbon estimated from published soil surveys were about
half that estimated by linear regression using terrain attributes. For predicting soil
drainage class, Bell et al. (1994) found general agreement (67%) between a soil
survey and a quantitative soil-landscape model based on parent material, terrain
attributes, and surface drainage feature proximity.

First, these studies demonstrate that regardless of the soil mapping approach a
large amount of unexplained variability remains, which is to be expected given the
limitations of our pedogenic models (Wilding, 1994). Second, many authors assume
that they would expect greater accuracies with better spatial data for model develop-
ment. However in our experience (Howell et al., 2008), simply increasing the spatial
and spectral resolution of our spatial data has not dramatically improved our results.
Third, digital soil mapping provides more spatially explicit and detailed estimates
of soil spatial variability. While digital soil mapping is limited by the resolution
of the spatial data, the conventional approach is limited by the scale of the base
map and the inability to represent continuous spatial variation. It is worth noting
that most approaches to digital soil mapping are limited by the availability of soil
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data, and therefore can not readily incorporate the existing pedogenic knowledge of
soil scientists (McKenzie et al., 2000). In light of these considerations, the objective
of this study was to compare third-order soil maps produced by conventional soil
survey to digital soil mapping in a study area in the Mojave Desert, USA.

29.2 Materials and Methods

29.2.1 Study Area

The 150-km2 study area was the 7.5’ Joshua Tree South quadrangle in the West-
ern Mojave Desert of Southern California (Fig. 29.1), which overlaps the northern
boundary of Joshua Tree National Park. Access to both the national park and pri-
vate lands was limited due to the area’s rough terrain and trespass issues on private
lands. The study area is part of two ongoing soil surveys that are mandated to be
finished in less than 5 years. The survey areas together encompass approximately
710,000 ha of land. These areas occur within the Basin and Range Physiographic
Province, which is characterized by small isolated mountain ranges that protrude
from large alluvial-filled intermontane basins (Peterson, 1981). Within the Mojave
Desert sub-province the soil temperature regime is predominantly thermic, while
the soil moisture regime is predominantly aridic.

Fig. 29.1 Location of the project area in the southwestern United States
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29.2.2 Sampling

Following the example of McKenzie et al. (2000), a combination of stratified-
random and purposive sites were sampled (Fig. 29.2). This approach was chosen
to reduce sampling bias while ensuring that areas of known pedogenic significance
were not overlooked.

A limited set of stratifying variables were chosen that conformed to the existing
pedogenic knowledge of the area. The foremost stratifying variable was the multi-
resolution valley bottom flatness (MRVBF) index (Gallant and Dowling, 2003),
which was used to separate the mountains and intermontane basins within the study
area. This index provides a suitable separation of both mountains and intermontane
basins, as it estimates both flatness and lowness by combining measures of slope
gradient and elevation percentile (Gallant and Wilson, 2000) computed over multi-
ple digital elevation model (DEM) resolutions.

Upon separating the mountains and intermontane basins, each of these domains
was stratified further by a combination of terrain attributes and band ratios. Specif-
ically within the mountains, tangential curvature (Kt) (Gallant and Wilson, 2000)
was separated into three classes using Jenks optimization method (Jenks, 1967), also
known as natural breaks within ArcGIS. This local measure of flow convergence
and divergence was meant to roughly separate out land elements such as spurs,
backslopes and hollows.

Within the intermontane basins, catchment slope (CS) (Gallant and Wil-
son, 2000) was separated into four quantile classes. Here catchment slope was inter-
preted as distinguishing between stable and active land elements.

For both domains the band ratios used for stratification were derived from Land-
sat Enhanced Thematic Mapper Plus (ETM+), and designed to enhance iron (3/7),
carbonates (3/2), and clay (5/7). To harness the three band ratios simultaneously

Fig. 29.2 Illustration of
sampling plan. (MRVBF =
Multiresolution valley bottom
flatness; Kt = tangential
curvature; CS = Catchment
slope)
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a hierarchical unsupervised classification was derived from a thousand point ran-
dom sample of each domain for the entire National Park using Ward’s method
(Ward, 1963). This classification suggested five classes for each domain, which were
then used to create a signature file and classify the remaining study area using max-
imum likelihood classification. When visually examined the classification appeared
to distinguish between distinctly different parent materials and vegetation commu-
nities. When examined within the study area’s intermontane basins, only one class
was interpreted as meaningful, therefore the five image classes for this domain were
merged into one.

The intersection of these variables produced sixteen strata. After a series of
exclusion rules were used to mask unrepresentative and inaccessible areas, a total
of 62 random sites were generated using Hawth’s Analysis Tools for ArcGIS
(Hawthorne, 2009), and apportioned amongst the strata proportional to area. To
mask unrepresentative areas, a series of exclusion rules were designed to eliminate
areas within <10 m of a road, and individual strata that were < 1 acre (<0.4 ha)
within the mountains and <10 acres (<4 ha) with the intermontane basins. To
mask inaccessible areas, elusion rules were designed to eliminate areas >2 miles
(>3.2 km) from a road or a cost distance (based on slope) >27,000. The Soil Survey
Project Leader determined that several distinct landforms were under-represented,
thus 16 additional purposive sites was also sampled. At all sites, a soil pit was
excavated to 150 cm or a limiting layer, described according to Schoeneberger
et al. (2002), and classified according to Soil Taxonomy (Soil Survey Staff, 2006).

29.2.3 Soil Mapping Approaches

29.2.3.1 Conventional Soil Survey

The 1-m National Agriculture Imagery Program (NAIP) aerial photography of the
study area was examined using a stereoscope. Map units were delineated mainly
on observable similarities in landforms or groups of landform components (USDA-
NRCS, 2008). Once delineated, the percentage of major and minor (<15% of unit)
landform components of each soil mapping unit were estimated by visually studying
the imagery or by field reconnaissance. After field descriptions were completed
for all locations within all mapping units, profiles were classified (Soil Survey
Staff, 2006), soil information correlated and compiled and assembled into map unit
descriptions. All map units were derived prior to observing the results from the
random forest to avoid biasing the conventional mapping approach.

29.2.3.2 Digital Soil Mapping

The statistical model used for soil spatial prediction was random forests
(Breiman, 2001), which was implemented in the statistical computing environment
R (R Development Core Team, 2009) using the randomForest package. (Liaw and
Wiener, 2002). To train the model, 500 trees were grown each with a minimum
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terminal node size of seven. To construct each individual tree, a bootstrap sample
of approximately two thirds of the observations and only 6 variables were used.
Using the observations omitted from the bootstrap sample within each tree, termed
the “out of bag” data, an average error rate was computed to assess the good-
ness of fit of the model. Also using the “out of bag” data, estimates of variable
importance were generated to determine the most influential variables within the
model.

The environmental covariates used in this study included a wide range of pre-
dictive variables, listed in Table 29.1. The primary data sources for these covariates
were a 5-m DEM derived from interferometric synethic aperature radar (IFSAR),
multispectral imagery acquired from Landsat ETM+ on the 6th of July 2000 from
path 39 and row 36, and climate data interpolated by Michaelsen (2002a, b, c, d).
Prior to computing the terrain attributes, the DEM was resampled from its original
horizontal resolution of 5–15-m using the nearest neighbor method and hydrologi-
cally corrected using the impact reduction technique implemented within the Terrain
Analysis System (TAS) (Lindsay, 2005). To compute the geometric terrain attributes
Landserf (Wood, 2008) was used, while for the hydrologic and topo-climatic terrain
attributes SAGA (Bock et al., 2008) was used. For the purposes of spatial analysis
all of the environmental covariates, other than the terrain attributes were resampled
to common grid size of 15-m by cubic convolution.

29.2.4 Qualitative Comparison Between Conventional and Digital
Soil Mapping Approaches

To assess the two soil mapping approaches a qualitative comparison was made of
the proportion and number of soil types estimated by each mapping approach within
the map units delineated by the conventional approach. For the digital soil mapping
approach this was estimated by intersecting the output of the random forest with the
map unit polygons. The soil type estimated within each map unit was the subgroup
level of Soil Taxonomy. This taxonomic level was chosen because it has a good bal-
ance between its overall number of classes and the amount of information contained
within them.

29.3 Results and Discussion

29.3.1 Results of the Conventional Soil Survey and Digital Soil
Mapping Approaches

Within the study area a total of sixteen soil subgroups were observed (Table 29.2).
While sites were sampled across the entire study area only seven map units
(Table 29.4) were developed for approximately 75% of the study area, using 51
observations. More map units have yet to be developed, but it was decided that the
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Table 29.2 Contingency table of the number of soil observations by soil subgroup and map unit

Map units

Physiographic domain Intermontane basins Mountains

Soil subgroup / component CH06 DHCH1 DHCH2 DW JS5 JS4 SMR3 Other Total

Arenic Haplargids 0 2 0 0 0 0 0 0 2
Arenic Paleargids 0 0 0 0 1 0 0 0 1
Cambidic Haplodurids 0 0 0 0 0 0 0 1 1
Lithic Xeric

Haplocambids
0 0 0 0 0 0 1 0 1

Lithic Torriorthents 0 0 0 0 0 1 2 2 5
Lithic Torripsamments 0 0 0 0 0 1 3 1 5
Torriorthentic

Haploxerolls
0 0 0 0 0 3 1 2 6

Torripsammentic
Haploxerolls

0 0 0 0 1 2 1 0 4

Typic Haplargids 0 1 1 0 1 0 0 3 6
Typic Haplocalcids 1 0 0 0 0 0 0 1 2
Typic Haplocambids 1 0 0 0 0 0 0 0 1
Typic Torriorthents 0 0 0 0 0 0 2 2 4
Typic Torripsamments 4 1 2 2 7 1 3 7 27
Xeric Torriorthents 0 0 0 0 0 1 0 2 3
Xeric Torripsamments 0 0 0 0 0 3 1 6 10

Total 6 4 3 2 10 12 14 27 78

sampling strategy did not provide adequate documentation to develop map units
for some areas. In comparison the random forest was trained on all 78 observa-
tions, which would seem to suggest that digital soil mapping can make more effi-
cient use of soil observations. This would be a naïve interpretation though, as soil
scientists often take into account soil-landscape relationships observed elsewhere,
assuming that similar soil-forming factors exist. Extrapolation of soil-landscapes
relationships within soil survey is practiced when dealing with inaccessible lands
in remote areas, which is a common problem within the western United States. For
this reason many within soil survey perceive digital soil mapping to be of potential
value.

The results of the random forest using all 78 observations gave an OOB error
estimate of 51% or conversely an OOB overall accuracy of 49% (Table 29.3).
Due to the low frequency of most classes, those with less than five observations
were incorrectly classified. However in many cases the incorrect class was a simi-
lar soil or occurred in a similar landscape position. Stum et al. (see Section 15.3)
has interpreted this to indicate the occurrence of areas that might best be mapped
as associations or complexes, and therefore best be handled by attaching multiple
membership to such classes. According to the variable importance measure, mean
decrease in accuracy, the most important ten variables listed in order of importance
were as follows FASG, MRVBF, FA, TWI, SPI, CH SG, JANTEMP, JULTEMP, and
MRRTF. Amongst the top ten variables over half were hydrologic terrain attributes.
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29.3.2 Comparison Between Mapping Approaches

Within the intermontane basins six map units were delineated (Table 29.4;
Fig. 29.3). The majority of soil subgroups within this physiographic domain are
either characterized as having a sandy particle-size throughout (i.e., Typic Torrip-
samments), or as having an argillic horizon (i.e., Typic Haplargids) (Soil Survey
Staff, 2006). The presence of an argillic or other diagnostic subsurface horizon
within this environment is inferred as the result of an older land surface, which is
referred to as a fan remnant. In comparing the results of the two mapping approaches
within Table 29.4, it is apparent that both methods predicted predominately Typic
Torripsamments and Typic Haplargids. Discrepancies between the two approaches
exist in the absolute composition and number of components predicted. For the ran-
dom forest all soil subgroups associated within fan remnants were classified as Typic
Haplargids. Meanwhile, the conventional approach recognized an additional number
of soil subgroups associated with fan remnants, but each were estimated to be less
than 5% for all but one map unit (DHCH1). The conventional approach consistently
estimated more soil subgroups and soil components than did the random forest,
particularly in those map units with good visible expression of fan remnants such
as DHCH1 and DHCH2. Given that the correspondence between the random forest
and soil observations within these map units appears no less accurate than the overall
map, it is unclear whether the random forest underestimates the true proportion of
soil subgroups associated with fan remnants. It may be that the spatial resolution
of the environmental covariates failed to accurately portray the fan remnants, but
our experience has shown that increasing the spatial resolution, of terrain attributes
in particularly, creates the alternative problem of increasing the amount of noise
present in the spatial data (see Chapter 5).

Within the mountains two map units were delineated (Table 29.4; Fig. 29.3).
There are no dominant soil subgroups within either map unit. To simplify the map
unit design in response to the amount of taxonomic diversity observed, similar
soil subgroups were correlated in the conventional approach. In comparison the
random forest predicted a different composition and greater number of soil sub-
groups. Between the two map units, JS4 has the most agreement between the two
mapping approaches. In both map units the conventional approach predicted Lithic
Torripsamments and Torripsammentic Haploxerolls (sandy particle-size through-
out), whereas the random forest predicted predominantly Lithic Torriorthents and
Torriorthentic Haploxerolls (no sandy particle-size throughout). This discrepancy
between the two mapping approaches may be the result of the sampling plan,
which from the outset evenly distributed the sampling locations across the study
area, but not the eventual map units. Although we expected to capture any uneven
sampling with our additional purposive samples. Therefore the random forest may
have exploited soil-landscape relationships that cut across map unit lines, by pooling
the additional soil observations from across the study area. This suggests that the
map units developed by the conventional approach, maybe over-specified to the soil
observations made within the map unit.
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Fig. 29.3 Subgroup prediction from the random forest overlaid with the soil map unit lines. Those
polygons which are not labeled were predelineated, but not finalized

Further complicating the interpretation of these results is the inclusion of rock
outcrop and riverwash within the composition of the conventional map unit esti-
mates. Estimates of miscellaneous areas, such as rock outcrop, are often included as
components within map units, but are visually estimated and not sampled directly.
As the size of rock outcrops within the study area fall well below the spatial resolu-
tion of the environmental covariates, their proportion within each pixel might best
be estimated separately.

Last but not least, the difference between the two soil mapping approaches geo-
graphic representation is unmistakable. Both approaches resulted in a crisp sepa-
ration between the mountains and intermontane basins within the study area, but
the random forest provided much additional detail by predicting an individual soil
component for each pixel. The conventional approach also provides spatial informa-
tion on the location of its soil components, but this information is descriptive only
and requires the map user to infer the location of the components within each map
unit. Although the random forest neglected to predict the occurrence of some soil
components, this does not imply they are absent, but rather improbable within any
given pixel.
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29.4 Conclusions

This study presents a qualitative comparison between third-order soil maps pro-
duced by conventional soil survey and digital soil mapping methodologies. On the
one hand the digital soil mapping methodology used – random forest – predicted
an individual soil subgroup for each pixel, with which also came an estimate of
the uncertainty associated with that prediction. The conventional approach on the
other hand delineated areas of land within which exist a complex of dissimilar soil
subgroups. The location of soil subgroups within a map unit were described by their
landscape position. No estimate of uncertainty was given, but the map unit purity
was reflected by the number and proportion of soil components. In comparison both
approaches produced not only differing amounts of spatial detail, but also differing
compositions and numbers of soil components within map units. The difference
between these two approaches suggests that further investigation is required in this
study area.

For the time being the question remains: how should soil scientists use the out-
puts of digital soil mapping methodologies? Given the current set of soil survey stan-
dards within the USA we see the results of digital soil mapping methodologies as an
instrument to help estimate map unit compositions and guide delineations. In addi-
tion they could also be used to provide a new form of map unit documentation and as
a tool to educate soil information users as to the variable composition of map units.
In the future the question will likely be determined by whatever mapping approach is
called for by the map user. MacMillan et al. (see Section 27.5.1) reported that in his
experience map users were initially skeptical of digital soil mapping methodologies,
but after some introduction displayed enthusiastic acceptance. A similar example of
operational digital soil mapping in the wilderness areas of Washington State by
Rodgers (2000), Briggs (2004), and Frazier et al. (2009) further demonstrate the
success of geographic information technologies for predicting soil series.
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Chapter 30
Applying the Optimum Index Factor to Multiple
Data Types in Soil Survey

S. Kienast-Brown and J.L. Boettinger

Abstract Digital soil mapping requires simple, straight-forward methods that can
be easily implemented into daily activities of soil survey. The Optimum Index Factor
(OIF) was developed by Chavez et al. (1982, 1984) as a method for determining the
three-band combination that maximizes the variability in a particular multispectral
scene. The OIF is based on the amount of total variance and correlation within and
between all possible band combinations in the dataset. Although the OIF method
was developed for Landsat TM data, the concept and methodology are applicable to
any multilayer dataset. We used the OIF method in a subset area of the initial soil
survey of the Duchesne Area, Utah, USA, to help determine which combination of
data layers would be most useful for modeling soil distribution. Unique multiband
images created from layers of multiple data types (elevation and remote sensing
derivatives) were evaluated using the OIF method to determine which data layers
would maximize the biophysical variability in the study area. A multiband image
was created from the optimum combinations of data layers and used for classifi-
cation and modeling in ERDAS Imagine. The output from the classification and
modeling are being evaluated as pre-maps for soil mapping activities in the study
area.

Keywords Correlation · Remote sensing · Digital elevation model · Pre-mapping ·
Unsupervised classification

30.1 Introduction

Over the past decade, digital soil mapping techniques have been incorporated into
soil survey activities and used in combination with traditional soil survey methods.
As technology, data availability, and knowledge of digital soil mapping techniques
continually improve, digital soil mapping is more prevalent in the daily activities of
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production soil survey where a soil map must be produced and delivered in a rela-
tively short period of time. Digital soil mapping has become operational in several
NRCS soil survey offices, and several NRCS soil survey projects have implemented
digital soil mapping to complete soil surveys (see also Chapter 28).

Cole and Boettinger (2007) developed a raster-based classification methodology
for mapping soils in the Powder River Basin, Wyoming, USA. This methodology
applied Jenny’s (1941) model for soil development to digital data layers for classi-
fication and modeling of soil map unit distribution. This methodology was refined
by Saunders and Boettinger (2007) in the Green River Basin of Wyoming, USA,
with the addition of classification and regression trees to predict soil map unit distri-
bution. Kienast-Brown and Boettinger (2007) used Landsat classification to refine
wet and saline soil map units along the eastern margin of the Great Salt Lake, Utah,
USA, as an update to existing soil surveys. Howell et al. (2007) used digital soil
mapping to model soil genetic features to increase understanding of soil-landscape
relationships and guide field data collection in the Mojave Desert, USA, soil survey
area. Howell et al. (2008) refined this work by implementing higher spatial resolu-
tion data for predicting soil genetic features, and found that the higher resolution
data did not significantly improve the understanding of soil-landscape relationships
in the Mojave Desert, USA, soil survey area.

Derivatives of remotely-sensed spectral data and digital elevation models are
widely used as environmental covariates in modeling soil-landscape relationships
(McBratney et al., 2003). Landsat spectral band ratios 3/2, 3/7, and 5/7 have
been interpreted to enhance carbonate radicals, ferrous iron, and hydroxyl radicals,
respectively, in surface soil and geologic materials (Amen and Blaszczynski, 2001).
Cole and Boettinger (2007) and Saunders and Boettinger (2007) combined these soil
enhancement ratios with elevation-derived data to predict soil map unit distribution
in the Powder River Basin and Green River Basin of Wyoming, respectively. The
normalized difference ratio of Landsat bands 5 and 2 can be diagnostic for calcare-
ous sedimentary rocks: (5 − 2)/(5 + 2), and is useful for distinguishing sedimentary
from igneous parent material (Boettinger et al., 2008).

Elevation derivatives commonly considered for modeling soil-landscape rela-
tionships are slope steepness, slope curvature, and terrain ruggedness index, which
measures average elevation change between any point on a grid and its surround-
ing area (Riley et al., 1999). Howell et al. (2008) considered these variables for
modeling soil-landscape relationships in the Mojave Desert, USA, soil survey area.
Compound topographic index (Beven and Kirby, 1979) primarily reflects hydro-
logic accumulation processes and is commonly used in soil-landscape modeling
(McBratney et al., 2003).

The optimum index factor (OIF) is a method for determining the three band com-
bination that maximizes the variability in a particular scene and was developed by
Chavez et al. (1982, 1984). The optimum three band combination is useful for visu-
alization purposes, but may also be useful in analysis. An OIF value is calculated
for each of the 20 possible three-band combinations that can be created from the
six bands of Landsat TM data (excluding the thermal band). Chavez et al. (1982)
indicates that although the OIF method was developed for Landsat TM data, it is
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applicable to any multispectral remote sensing dataset or geophysical/geochemical
dataset. OIF is based on the amount of total variance and correlation within and
between the possible band combinations. The three band combinations are ranked,
and those with the largest OIF values contain the most information (measured by
variance) with the least amount of duplication (measured by correlation) and are
the best choices for maximizing the variability in a particular scene (Jensen, 2005).
Nield et al. (2007) used the OIF method to select Landsat TM band combinations of
1, 5, 7 for visually analyzing areas with gypsic soils, and 4, 5, 7 for areas with natric
soils in the Emery County, Utah, USA, soil survey area. This analysis was used to
refine distribution of soil map units containing gypsic or natric soils.

Successful implementation of digital soil mapping requires simple, straight-
forward methods that can be easily implemented into daily activities of soil map-
ping. Howell et al. (2008) stated “Tools for analyzing soil-landscape relationships
need to be developed for easy application by field soil scientists using standard soil
survey office software.” Pre-mapping an area before beginning the field work is
commonly completed using digital soil mapping techniques. Pre-mapping involves
selecting digital data layers that represent environmental covariates, and using the
layers to stratify the landscape and aid in soil map unit development.

We evaluated the OIF method as a simple, straight-forward method for deter-
mining which data layers, derived from elevation data and remote-sensing images,
would best represent the full range of biophysical characteristics in a diverse study
area with semi-desert to high-mountain climate conditions and broad alluvial and
glacial landforms to steep mountain landforms. The optimum data layers were com-
bined into a multiband image used for classification and modeling, and ultimately
to create a pre-map for the study area.

30.2 Materials and Methods

30.2.1 Study Area

The study area is located in north-eastern Utah, USA, in Duchesne County on the
south side of the Uinta mountain range (Fig. 30.1). The study area is approximately
44,515 ha and ranges in elevation from 1,635 to 3,150 m from south to north. The
area receives approximately 230 mm of precipitation at the lower elevations and up
to 710 mm at the higher elevations. The vegetation ranges from semi-desert shrub
land in the southern portion to high-mountain alpine forest in the northern portion.

The geology is a mix of Quaternary alluvial, colluvial, and glacial deposits and
Tertiary sedimentary deposits. The alluvial and colluvial deposits are dominantly
found on alluvial fans and terraces, and the glacial deposits are dominantly found
on broad gently sloping outwash terraces, moraines, and steep escarpments. The
Tertiary sedimentary deposits are dominantly found on hill slopes and steep moun-
tain slopes. The mountains are located in the northern portion of the study area and
give way to alluvial fans, glacial outwash terraces, and moraines at their base to the
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Fig. 30.1 Study area location in Duchesne County Soil Survey Area, Utah, USA

south. Glacial and alluvial landforms intermix from the base of the mountains and
extend to the southern boundary of the study area (Fig. 30.2).

30.2.2 Digital Data

Elevation and remote-sensing derivatives were created and combined into multiband
images, and input to the OIF calculation. Elevation derivatives were calculated from
10 m National Elevation Dataset (NED) data that had been clipped to the study
area. Pre-processing to create a hydrologically correct DEM was completed in ESRI
ArcGIS 9.2 ArcInfo before calculating the following derivatives: profile curvature,
plan curvature, percent slope, solar radiation, terrain ruggedness index, and com-
pound topographic index. This set of elevation derivatives was chosen as a standard
set of variables that are easily calculated in ArcGIS and widely used in digital soil
mapping. Table 30.1 shows details on the calculation method, covariate represented,
and value range for each elevation derivative.

Landsat 7 imagery from Path 37, Row 32 June 6, 2006 was used for all remote-
sensing derivatives. All image processing was completed in ERDAS Imagine 9.2.
The Landsat image was standardized using the COST atmospheric correction
method (Chavez, 1996) and then resampled to 10 m spatial resolution for use with
the elevation derivatives using bilinear interpolation resample method. The resulting
10 m resolution image was then subset to the study area.

A series of normalized band ratios targeting mineralogical properties of surface
materials were calculated from the processed Landsat imagery (see Sections 15.2.2
and 29.2.2). All normalized ratios were calculated using this basic formula:
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Fig. 30.2 Geology and 10 m hillshade of the study area showing major geologic and landform
patterns. Qg = Quaternary surficial glacial deposits; Qa = Quaternary surficial alluvium and
colluvium; Qao = Quaternary surficial older alluvium and colluvium; T3 = Tertiary Duchesne
River, Uinta, Bridger, Crazy Hollow and other formations; T4 = Tertiary Salt Lake Formation and
other valley-filling alluvial, lacustrine, and volcanic units

Normalized Difference Ratio = (Band A − Band B)/(Band A + Band B). The Nor-
malized Difference Vegetation Index (NDVI) was also calculated. Table 30.1 shows
details on specific band ratios used, calculation method, covariate represented, and
value range for each remote-sensing derivative.

Prior to calculating OIF, the elevation derivative layers and the remote-sensing
derivative layers were stacked into two separate six layer multiband images using the
Layer Stack utility in ERDAS Imagine 9.2. OIF can be calculated on an image with
any number of layers, but there were six elevation derivatives and six remote-sensing
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derivates we wished to consider for the study area. The six-band elevation derivative
image consisted of the following layers: profile curvature (layer 1), plan curvature
(layer 2), percent slope (layer 3), solar radiation (layer 4), terrain ruggedness index
(layer 5), and compound topographic index (layer 6). The six-band remote-sensing
derivative image consisted of the following layers: band 3/band 2 (layer 1), band
3/band 7 (layer2), band 5/band 2 (layer 3), band 5/band 4 (layer 4), band 5/band 7
(layer 5), and NDVI (layer 6).

30.2.3 Optimum Index Factor (OIF) Calculation

OIF is based on the amount of total variance and correlation within and between the
possible three-band combinations in an image. The elevation derivative image and
the remote-sensing derivative image each contain six layers; therefore, twenty pos-
sible three-band combinations were evaluated for each image using OIF. Variance
was measured by the standard deviation of each layer, and correlation was measured
by the correlation matrix for each image.

Once the two multiband images were created, the following steps were completed
for each image: The correlation matrix was calculated for the image using ERDAS
Imagine 9.2 Model Maker. The correlation coefficients from the correlation matrix
and the standard deviation values for each layer were imported into a spreadsheet
where the OIF values were calculated for the twenty possible three-band combina-
tions. The following equation was used to calculate OIF:

OIF =
∑3

k=1 sk
∑3

j=1 Abs(r j )

where sk is the standard deviation for band k, and r j is the absolute value of
the correlation coefficient between any two of the three bands being evaluated
(Jensen, 2005). The OIF values were then ranked to show which three-band combi-
nation had the highest OIF value, and therefore, should contain the most information
with the least amount of duplication.

30.2.4 Classification

After the optimum three-band combination for the elevation derivative image and
the remote-sensing derivative image were calculated using OIF, a six layer image
was created from the layers in the top ranked three-band combination for each
image. Before creating the multiband image, the solar radiation and three remote-
sensing derivative data layers were transformed by either dividing or multiplying
the layer by a constant value (i.e., 10 or 100) to bring the data ranges for the lay-
ers closer together. This was done in anticipation of normalizing the values over a
common data range before the classification step, so each layer has equal influence
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in the classification. After transforming the necessary layers, the six layers were
stacked into a multiband image. The image was then normalized over the common
data range of minimum value = 1 and maximum value = 40 using the Rescale
utility in ERDAS Imagine 9.2. No data ranges were compressed in this process,
only stretched to fit the range of 1–40. The resulting normalized six layer image
was used as input for unsupervised classification.

Unsupervised classification was completed in ERDAS Imagine 9.2 using the
ISODATA algorithm. Based on variability of the study area determined from visual
interpretation of the digital geology map and the 2004 Southwest Regional GAP
land cover data (2008), seven to ten final classes were expected. Therefore, a start-
ing number of 15 classes was chosen for the unsupervised classification based on a
standard rule to start with twice the number of desired classes. Transformed diver-
gence and spectral signatures were used to evaluate separability between classes.
Classes that had low separability were combined or eliminated to create the final
set of class signatures. The final class signatures were used for supervised classifi-
cation of the study area using the minimum distance to means classification algo-
rithm. Clump and eliminate processes were applied to the final classified image
to smooth the classification for pre-mapping activities. Patterns identified between
classes in the final classification were used as a guide for digitizing pre-map units
in the study area. All pre-map unit polygons were attributed with geology, land-
form, and dominant vegetation. A digital geology map and the 2004 Southwest
Regional GAP land cover data (2008) (see Section 6.2.2) were used to assign geol-
ogy and dominant vegetation to the pre-map units. Landform was assigned by the
analyst by evaluating a classified slope map and 1 m spatial resolution color aerial
photography.

30.3 Results and Discussion

30.3.1 Optimum Index Factor (OIF) Calculation

Table 30.2 contains the correlation matrix, standard deviation values, and top six
ranked OIF values and three-band combinations for both the elevation derivative
and remote-sensing derivative images. The top ranked band combination for the ele-
vation derivative image was layer 1 (profile curvature), layer 4 (solar radiation), and
layer 5 (terrain ruggedness index). The second ranked band combination contained
profile curvature and solar radiation, but percent slope instead of terrain ruggedness
index. The top two band combinations were very similar; especially considering
terrain ruggedness index is an expression of slope. The top ranked band combination
for the elevation derivative image met our expectations, containing solar radiation,
a curvature variable, and either slope or terrain ruggedness index. This set of ele-
vation derivatives are often used to represent environmental covariates for digital
soil mapping activities in landscapes of the western United States. Solar radiation
seems to be an important digital layer for capturing climate variability due to aspect.
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The effects of aspect on soil development can be quite pronounced in the semi-arid,
high-elevation landscapes of Utah.

The top ranked band combination for the remote-sensing derivative image was
layer 3 (band 5/band2, calcareous sedimentary rocks), layer 4 (band 5/band 4, fer-
rous materials), and layer 5 (band 5/band 7, hydroxyl radicals). The second ranked
band combination was layer 1 (band 3/band2, carbonate radicals), layer 2 (band
3/band 7, ferrous iron), and layer 4 (band 5/band 4, ferrous materials). The top two
ranked band combinations indicated sediments containing ferrous and calcareous or
carbonate minerals are common in the study area which was expected due to the
mineralogy of the sedimentary deposits. Hydroxyls also appeared to be an impor-
tant variable, and can indicate the presence of clay minerals. This characteristic
could be linked to the glacial deposits in the study area. NDVI was not included
in the optimum band combinations. Variables related to mineralogy dominated the
optimum band combinations, showing the influence of the parent material covariate
in the study area. From this, we conclude parent material is influencing variability
in the study area to a greater degree than vegetation. The Landsat middle infrared
band 5 was present in all three bands of the optimum band combination and appears
to be very important in characterizing parent material in the study area. This is
consistent with findings in other studies in semi-arid landscapes (Boettinger et al.,
2008).

30.3.2 Classification

A six layer image was created from the layers in the top ranked three-band combi-
nation for the elevation derivative image and the remote-sensing derivative image
for classification. The multiband image contained profile curvature (layer 1), solar
radiation (layer 2), terrain ruggedness index (layer 3), normalized band 5/band 2;
calcareous sedimentary rocks (layer 4), normalized band 5/band 4; ferrous minerals
(layer 5), and normalized band 5/band 7; hydroxyl radicals (layer 6). The six lay-
ers included in the multiband image, the original minimum and maximum values,
the transformed minimum and maximum values, the original data range, and the
normalized data range are all listed in Table 30.3. The minimum and maximum
values for profile curvature (layer 1) and terrain ruggedness index (layer 3) were not
transformed, and the data range for solar radiation (layer 2) determined the common
data range (1–40) over which to normalize all other data layers.

The classification process started with a 15-class unsupervised classification. The
resulting signature set was evaluated using transformed divergence. The original fif-
teen classes had an average transformed divergence value of 1930 with a minimum
of 1,406. After merging or eliminating classes with low transformed divergence val-
ues, the resulting 10 classes had an average transformed divergence value of 1,944
with a minimum of 1,499. The final 10 classes seemed to capture the variability
in the study area to the desired degree for pre-mapping activities. The 10-class
signature set was used in supervised classification with the minimum distance to
means algorithm to produce a classified image of the study area. After applying
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clump and eliminate processes to the resulting classification, it was used as a guide
for developing pre-map units based on geology, landform, and dominant vegetation.

The classification was useful for identifying major patterns on the landscape
throughout the study area. Some of the variability captured by the classification
was generalized in the pre-map units because the intent of the pre-map units was
to capture major changes on the landscape. However, the full variability of the
classification will be useful for refining final map units and determining map unit
composition during the actual field work. The final pre-map and classification for
the study area are shown in Fig. 30.3. The pre-map will be used by the Bureau
of Indian Affairs (BIA) for range studies during the 2008 field season. During the
2009 field season, NRCS soil scientists will use the pre-map to develop a sampling

Fig. 30.3 Final classification (background) and pre-map units for the study area (yellow polygons)
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plan and refine final map units for the study area. The resulting mapping will be
published as part of the Duchesne Area, Utah Soil Survey.

30.4 Conclusions

Although the OIF method was originally developed and tested on remotely-sensed
spectral data, we successfully applied it to both remote-sensing and digital elevation
model-derived data to determine which data layers would maximize the biophysical
variability in the study area. The OIF method was useful for narrowing the many
choices of data layers into a manageable set of meaningful environmental covari-
ates to use in classification, and ultimately to create a pre-map of the study area.
Using the OIF method for selecting a set of environmental covariate data layers
expedited the process of stratifying the landscape and developing pre-map units.
A method that maximizes the biophysical variability in a particular area based on
statistical relationships between data layers is desirable for soil survey activities,
and lends validity to the final map product. A pre-map was the desired result in this
case study, but the OIF method for selecting data layers could be applied to many
other situations that involve choosing a set of data layers that represent meaningful
environmental covariates.

Successful implementation of digital soil mapping in soil survey requires simple,
straight-forward methods that can be easily implemented into daily activities of soil
mapping using readily available resources. The OIF method was easily incorporated
into the pre-mapping process and proved to be a simple, straight-forward method
for determining which data layers, derived from elevation data and remote-sensing
images, would maximize the biophysical variability in the study area.
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Chapter 31
U.S. Department of Agriculture (USDA)
TEUI Geospatial Toolkit: An Operational
Ecosystem Inventory Application

Haans Fisk, Robert Benton, Corey Unger, Timothy King,
and Sharie Williamson

Abstract The TEUI-Geospatial Toolkit (Toolkit) is an operational ecological inven-
tory application used by the U.S. Department of Agriculture (USDA) Forest Service
and other land management agencies. This resource mapping tool complements tra-
ditional inventory methods by streamlining the collection and analysis of inventory
information in a digital environment. The Toolkit is based on the USDA Forest Ser-
vice Terrestrial Ecological Unit Inventory Technical Guide, which complies with the
National Cooperative Soil Survey (NCSS) standards. It is intended for resource spe-
cialists with a strong background in terrestrial mapping and intermediate geographic
information system (GIS) skills. This Environmental Systems Research Institute,
Inc. (ESRI) ArcGISTMmapping tool guides the user through the TEUI mapping
process, helps stratify landscapes and analyze environmental characteristics with
geospatial data. Products derived with this operational mapping application comply
with corporate data standards and are stored in corporate database systems. Design,
development and operational support are performed by the USDA Forest Service
Remote Sensing Application Center (RSAC). RSAC provides technical assistance to
field units and increases application awareness at various meetings, workshops and
conferences. Staying connected with the TEUI soil mapping community establishes
an essential feedback loop for gathering new ideas and enhancing application func-
tionality. This paper provides an overview of the current application and highlights
specific mapping and data analysis functionality. It also identifies specific benefits
that are realized through geospatial technologies as the Toolkit is implemented in
the pre-map phase of a TEUI project.

Keywords Operational ecological inventory · Resource mapping tool · Landscape
stratification
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31.1 Introduction

Terrestrial Ecological Unit Inventory (TEUI) is the land survey system used by the
U.S. Department of Agriculture (USDA) Forest Service for classifying and mapping
ecological types. Ecological types are defined by abiotic and biotic environmental
factors that incorporate combinations of climate, physiography, geology, soil and
vegetation. The purpose of TEUI is to classify ecosystem types and map land areas
that have similar management capabilities (Cleland et al., 1997).

The TEUI Technical Guide (Winthers et al., 2005) provides methods and proce-
dures for inventorying lands administered by the agency. The process involves three
primary activities that include classification, mapping and sampling (Fig. 31.1). Ide-
ally, this process begins with identifying taxonomic units within the survey area
(classification), then determining where those types occur spatially (mapping) and
finally estimating individual components to determine the number of acres compris-
ing ecological types (sampling). In practice, the inventory progresses in cycles, so
that the inventory product becomes refined through successive iterations.

TEUI products include maps, spatial and tabular databases, map unit descrip-
tions, ecological-type descriptions and interpretations. These data are stored and
managed by the USDA Forest Service Natural Resource Information System Terres-
trial Module (NRIS-Terra). This information provides basic land-unit information
for land planners to assess ecosystem capabilities, determine sustainable production
levels and make informed and practical management decisions. For example, it sup-
ports ecological and watershed assessments, burned-area emergency rehabilitation
(BAER), range-allotment updates, forest-plan revisions and project-level planning
and analysis.

Traditional TEUI or Soil Resource Inventory (SRI) methods rely heavily on inter-
pretation of aerial photography using a stereoscope (USDA Soil Conservation Ser-
vice, 1993). Although this platform has been used for decades, there are drawbacks

Fig. 31.1 The Terrestrial Ecological Unit Inventory process is iterative and involves three primary
activities that include classification, mapping and sampling. As provided by the USFS TEUI Tech-
nical Guide, these elements provide the foundation for identifying taxonomic units, determining
their location and estimating total acres of ecological types
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when applying it across large survey areas. Assembling and preparing hundreds of
photographs is time consuming and cumbersome. Characterizing land unit areas
and consistently applying map unit delineation criteria may reflect the ability and
bias of the individual photo interpreter which compromises the value of the TEUI
products. Moreover, once the landscape delineations have been created on hard-copy
photographs, additional effort is necessary to transfer line work into a GIS.

As of 2007, 55 million acres of USDA Forest Service land lacked modern TEUI
or SRI. An additional 18 million acres, although mapped, did not meet standards of
the National Cooperative Soil Survey (NCSS). Given the high cost of traditional
TEUI surveys (US$2 to US$3 an acre); the USDA Forest Service is leveraging
new technology to complete ecological-unit inventory faster and more economically
(Fallon et al., 1994; Lane and Fisk, 2002). Remote sensing, geospatial technologies
and raw computing power have dramatically improved over the last few years affect-
ing our ability to visualize entire landscapes and stratify repeating patterns more
consistently and efficiently. In searching for less expensive ways to conduct TEUI,
the USDA Forest Service designed and developed the TEUI-Geospatial Toolkit
application to streamline the mapping process and provide resource management
a cost-effective alternative to traditional methods.

31.2 TEUI-Geospatial Toolkit

The TEUI-Geospatial Toolkit (Toolkit) implements the mapping standards pre-
scribed in the TEUI Technical Guide and directly supports field units. The appli-
cation is designed for resource specialists with a strong background in terrestrial
mapping and intermediate GIS skills. The results of research and available geospa-
tial technology are integrated into this digital mapping application as push-button
solutions that simplify complex data processing procedures. Example procedures
include multi-layer trait analysis (Map Unit Statistics), polygon attribution (Reas-
sign Map Unit Polygons) and field map generation. Thus, end-users can accomplish
their tasks more efficiently and increase overall workforce productivity. Built as an
ESRI ArcMap extension, the Toolkit gives non-technical resource specialists the
ability to access geospatial data, visualize landscapes, design and delineate ecolog-
ical map units, validate map criteria and generate field maps (Fig. 31.2). Resulting
output products comply with USDA Forest Service GIS Data Dictionary standards
and can be transferred to NRIS-Terra.

31.2.1 Geospatial Data Acquisition

The Toolkit provides a solution for creating consistent and continuous geospatial
data layers and delivering standard products to resource specialists.1 The standard

1 It is not required that one request data via the data provisioning system in order to take advantage
of the Toolkit application.
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Fig. 31.2 The TEUI-Geospatial Toolkit implements the mapping protocols provided by the USFS
TEUI Technical Guide. The integrated mapping activities consist of data acquisition, map unit
design, landscape stratification, map unit validation, map generation, and standard products. This
process uses iterative workflows to provide and refine standard products that can be retained in
enterprise corporate databases

TEUI geospatial data package (TEUI GDP) contains 32 raster (pixel-based) and 16
vector (point, line and polygon) layers, which provide a foundation for conducting
TEUI in a digital environment (Fig. 31.3).

Raster data include topographic, climate and spectral indices, as well as multi-
spectral and multi-resolution backdrop imagery (see Chapter 2 for examples of
DEM-derived attributes used to represent topography and climate in DSM appli-
cations). Vector layers include USFS cartographic feature files, standard USGS 7.5
and 3.75-min quadrangles and natural segments.2 To access these standard products,

2 Natural segments are custom polygon layers that divide the landscape into relatively homoge-
neous polygons, based on topographic products (e.g., fully-illuminated hillshade, slope, elevation)
and spectral imagery (e.g., Landsat Thematic Mapper and digital orthophoto quadrangle resolution
merge imagery). The production routine involves the use of Definiens Developer and a standard
multi-resolution segmentation process to create seven hierarchical polygon levels. In the absence
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Fig. 31.3 The TEUI GDP provides a foundation for conducting resource inventory in a digital
environment. Shown above are samples of analytic, vector and backdrop layers in the TEUI GDP

the requestor simply submits a survey area (polygon file) to the TEUI Data Coor-
dinator, who in turn generates the TEUI GDP, compresses it and delivers it to the
requestor.

31.2.2 Map Unit Design

Map unit design involves assessing and conceptualizing repeating landscape pat-
terns. As defined in the TEUI Technical Guide (Winthers et al., 2005), map unit
design is the “process establishing the relationship between classifications and the
products depicting them.” It further states that classification is the “grouping of sim-
ilar types according to criteria considered significant for this purpose. The rules for
classification must be clarified before identifying the types within the classification
standard. The classification methods should be clear, precise, quantitative (where
possible) and based on objective criteria so that the outcome would be the same
whoever performs the definition (or description).” (See Section 27.2.4 for a discus-
sion of attributes used to represent ecological classes. See also Section 24.4 for a
discussion of an analogous concept (soilscapes)).

of existing line work (such as no previous soil survey for the area), the natural segments are used
as a starter set of line work. Observation suggests that it is easier to modify this line work than it is
to create new line work from scratch.
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Fig. 31.4 The Toolkit uses ArcScene interactive visualization capabilities to display landscapes
using a variety of data at multiple scales (a blended ETMDOQ merge. These capabilities enable
resource specialists to see landscape patterns and develop mapping criteria. Shown above is a 3-m
ETMDOQ merge draped over a 10-m DEM surface: Left – natural color composite (RGB – band
3, band 2, band 1); Right – false color infrared composite (RGB – band 4, band 5, band 3)

The Toolkit offers resource scientists three interactive capabilities to develop
and capture preliminary map unit concepts: viewing landscapes at multiple scales,
viewing landscapes in 3-D and defining map unit properties. Viewing the landscape
at multiple scales and in 3-D allows users to develop mapping criteria, identify
individual components and establish a strategy for delineating ecological resources
(Fig. 31.4). Once map unit criteria are identified, map unit characteristics are doc-
umented using the Define Map Unit utility. This interface stores and organizes key
information such as map unit symbol, map unit name, as well as lengthier map unit
descriptions.

31.2.3 Landscape Stratification

Landscape stratification is the process of dividing a survey area into repeating eco-
logical landscape units with similar abiotic and biotic soil forming properties. The
Toolkit provides two ways to accelerate and enhance the stratification process: (1)
digitizing polygons directly into GIS and (2) attributing those polygons with appro-
priate map unit symbols. Polygons that segment the survey area can be generated
through basic heads-up digitizing with the aid of backdrop imagery which provides
spatial and contextual reference. The resulting polygons are an expression of the
map unit design (classification scheme). Also, map unit polygons can be imported
from existing data layers using the Import Map Unit Polygons utility and refined
using standard ArcMapTMediting utilities to reflect map unit concepts. Using this
method, polygon attributes are documented manually. Alternatively, the Connota-
tive Legend tool may be used. This tool uses polygons as zones for calculating
statistics (zonal majority) for selected layers (e.g., slope, aspect, elevation). The
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Fig. 31.5 The connotative legend feature helps organize landscape properties and applies user-
defined criteria to predict spatial landscape patterns. The backdrop is ETMDOQ merge imagery
(RGB – band 3, band 2, band 1)

concatenated statistics are used to label each polygon (Fig. 31.5). This compact
label is a symbol that repeats over the landscape giving the resource specialist an
appreciation for the representation of the specific map unit across the study area.

31.2.4 Map Unit Validation

Map unit validation is the process of evaluating attributed polygons and assessing
the homogeneity of the characterization criteria. This activity is part of a process
in which (a) outliers in the classification are identified; (b) adjustments to the clas-
sification scheme or landscape stratification are implemented; and (c) the effects
of the adjustments are observed and reevaluated. The resource specialist iterates
through this process until s/he is satisfied that all polygons adhere to the classifica-
tion scheme.

The Toolkit provides three features to help evaluate map units: computing tab-
ular statistics, analyzing unit properties and comparing map units. Together, these
features provide a quantitative assessment of how closely the landscape delineation
corresponds to ideal concept underpinning the classification scheme.

Unique to the Toolkit are its analytical charting utilities that allow users to gen-
erate, display and summarize a variety of statistical measures used to delineate
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Fig. 31.6 The analytical charting tools help validate delineation and characterization criteria as
well as assess overall map consistency. In the background above, preliminary map units are overlaid
on a blended ETMDOQ merge and fully illuminated hillshade. In the foreground, the Map Unit
Chart shows: (in the upper left corner) that map unit 32571 is comprised of nine polygons, 451
through 459; (in the lower left) that one of those polygons, 459, has a Gaussian distribution of
values for percent slope; (in the upper right) that the range of values and the mean value for
percent slope in polygon 459 are consistent with values for other polygons in the map unit; and
(in the lower right) that the distribution of values for this map unit differs as compared to the
distribution of another map unit, in this case 32371

terrestrial ecological units (Fig. 31.6). These interactive charts provide a new way to
integrate environmental raster data into the validation process and better understand
the relationships between spatial and tabular data. Overall these utilities help spe-
cialists consistently stratify landscapes, quantify landscape properties and improve
the resulting map products.

31.2.5 Map Generation

Hard-copy field maps are important tools for collecting field documentation and
validating map unit delineation. The Toolkit streamlines the process for generating
field maps and provides four standard map templates that simplify and increase the
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efficiency of map production. Map templates provide the capability to create maps
at scales of 1:9,000, 1:12,000, 1:24,000 and a variably scaled map that includes the
extent of the study area.

Map layers are automatically symbolized, but can be updated to reflect project
specific conditions. Users can also specify an assortment of backdrop imagery and
vector layers, as well as include map unit boundaries and representative field sample
locations. These maps can be printed as hardcopy or exported to other electronic
formats such as PDF. The map template technology is based on Map Books, an
ESRI application.

31.3 Discussion

Since the TEUI-Geospatial Toolkit application is founded on a GIS, a number of
advantages are available immediately to the resource specialist. First, the GIS can
enforce standards assuring the needs of both the project and the organization are
met. Second, attribution is assured. In this way, the value of the corporate database
will increase with each project undertaken. Third, data integrity rules are explicit
within the geodatabase so that topology and attribution rules are reinforced. This
greatly increases the utility of the data to researchers and other third-party users of
the products produced from the project.

The Toolkit provides a convenient link to ESRI’s ArcSceneTMapplication3 that
supports and enhances initial reconnaissance efforts of pre-mapping. The Navigate
and Flyover tools provide insight regarding the logistics facing the field teams.
By draping assorted backdrop imagery (e.g., multispectral Landsat ETM or high-
resolution NAIP) over a digital elevation model (DEM), the resource specialist can
have a virtual tour of those areas that may present hazards or challenges to a ground
crew. If these areas must be visited, adequate provision can be made to support
the team and ensure its safety. Alternatively, it may be that landscape delineation
revealed that such areas are well represented in areas that present fewer challenges
to access. Under such a situation, the priority to visit difficult terrain can be lowered
and perhaps avoided altogether.

In the pre-mapping phase of the project, it is expected that the soil scientist will
define some preliminary delineation. S/he has a number of options for creating
the initial set of polygons – a) digitize polygons from scratch, b) import existing
line work, or c) make use of the generated natural segments. Without regard to
the method chosen, one of the benefits of using a GIS is immediately apparent.
Landscape delineations can be visually inspected and assessed right at the worksta-
tion. For example, by draping the preliminary polygons over high resolution back-
drop imagery, the soil scientist can observe whether image patterns align with soil
delineations. A great degree of alignment suggests that the classification scheme

3 ArcScene is licensed separately from ArcMap. In order to access ArcScene functionality, a
license must be secured.
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used to delineate the landscape is also expressed by other measures that serve as
proxies for soils. The degree to which there is disagreement or conflict between
the preliminary polygons and other soil proxies can cause the resource specialist to
reflect on the tentative classification scheme and consider changes that may bring
about better alignment. This refinement can be completed in a GIS environment in
a fraction of the time it would take to replicate the process using traditional aerial
photography.

Finally, the prospect exists to develop more than one classification scheme and
associated delineations during the part of the season that is not suitable for field
work. When the field conditions improve, early field samples can quickly reveal
which of the classifications is likely to best represent the ground conditions. Should
sampling requirements differ significantly between the schemes, field teams could
be deployed with greater efficiency resulting in a savings in both salary and travel
expense.

In a typical TEUI project, the methods and techniques described above are
sequenced to define a workflow. The most obvious characteristic of the workflow is
the iterative or cyclic pattern in which the methods are used for various phases of the
project. For example, the sequence of Map Unit Design → Landscape Stratification
→ Map Unit Validation applies equally well whether in the pre-mapping phase or
in the data reduction phase following a field season. What needs to be recognized
is that nothing material has changed regarding the workflow as compared to tradi-
tional surveys that do not use the Toolkit. The application simply brings technology
to bear on certain activities within the existing conceptual workflow. In addition
to improving the efficiency and effectiveness of the resource specialist, there is
an increased likelihood that the resource management organizational structure will
support a transition to automated methods.

Development of the TEUI-Geospatial Toolkit and technical transfer/deployment
is handled by the Remote Sensing Applications Center (RSAC) which is guided by
the TEUI soil mapping community. RSAC is a detached Washington Office staff
unit of the USDA Forest Service located in Salt Lake City, Utah. A variety of sup-
port materials exist to promote organizational awareness including short illustrative
publications, lengthier reports, posters and presentations. A user guide describes
application functionality in a step-by-step fashion that is intended to support the
resource specialist in the day-to-day use of the Toolkit. Finally, a USDA Forest
Service internal website provides key awareness information and training materials
on demand as well as a number of useful links to related websites. These support
materials provide the backbone and infrastructure to service customer needs.

Institutionalizing the Toolkit involves sharing awareness materials with different
audiences. RSAC increases awareness about the application to national and regional
TEUI program managers by giving presentations at key meetings, workshops and
conferences. The USDA Forest Service also shares the application and support
materials with interagency partners, cooperates in a number of interagency activities
and works directly with other national technical centers to make the application
more widely available.

To prepare the technical resource specialists for the transition to automated meth-
ods, RSAC develops and provides instructor-led and self-led trainings complete with
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lecture presentations, hands-on exercises and exercise data sets. RSAC conducts
on-site training in regions where major projects are about to launch; delivers for-
mal classroom training for individuals from different administrative units; and hosts
web-enabled training for specialists that may not be able to schedule time away
from the office. RSAC also provides the use of a web-based self-led tutorial. This
tutorial provides a great alternative to the instructor-led formats for managers and
specialists who need to understand the application beyond a conceptual level and
want to do so at their convenience.

Now that the Toolkit is deployed to the field, RSAC maintains the application
and its functionality on certified USDA Forest Service computer operating sys-
tems. RSAC uses a software maintenance philosophy called continuous integration
which helps isolate and track the software defects. It allows them to effectively
manage changes to the application and adapt to evolving enterprise and commercial
architectures. This maintenance approach requires RSAC to document application
defects (e.g., software “bugs”) and track potential enhancements received through
customer feedback. As the Toolkit application periodically evolves, they update user
documentation and redistribute materials using the dedicated website.

In addition, RSAC coordinates with program management and directly supports
end users by building geospatial data packages and providing real time support to
individual projects (see Section 31.2.1). Customers can call or e-mail RSAC staff to
discuss workflow strategies or resolve application issues. If necessary, RSAC may
link directly to the customer’s computer and troubleshoot the problem together.

To better inform the reader on how the Toolkit is being used by soil scientists,
the following example is provided. In the winter of 2006 and spring of 2007, the
Caribou-Targhee National Forest (NF) used the Toolkit to complete TEUI at the land
type level in a previously unmapped portion of the forest. This was completed by
an interdisciplinary team who collaboratively borrowed concepts from adjacent soil
surveys and used the Toolkit to implement the TEUI pre-mapping process. A local
soil scientist on the Caribou Targhee NF, a corporate data steward from the Inter-
mountain Regional Office and staff from the RSAC comprised the interdisciplinary
team.

In this project, the team integrated the core activities of the TEUI pre-mapping
process: Map Unit Design, Landscape Stratification and Map Unit Validation. They
defined map unit concepts for the study area based on fundamental soil-forming
factors: climate, organisms, relief, parent material and time that originated from
completed and adjacent soil surveys. Geospatial data streamlined the delineation of
initial landscape stratification and labeling of polygons according to the map unit
definitions. The resulting map unit polygons were visually inspected against topo-
graphic and multi-spectral imagery and evaluated more rigorously against geospa-
tial data layers to assure consistency within the study area. The local soil scientist
associated connotative legend map units (map unit names derived from the values
of the trait data used to delineate the units) to adjacent soil survey map units (map
units named using established conventions). These products of the TEUI pre-map
were used to plan the field work and to direct collection of necessary field inventory
data. The costs to develop and execute this study were about one-third the costs of
traditional pre-mapping methods.
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31.4 Conclusions

The USDA Forest Service needs soil or basic terrestrial resource information to
practice sustainable resource management. The TEUI-Geospatial Toolkit supports
resource management by integrating geospatial technology with USDA Forest Ser-
vice TEUI protocols and is used by the agency and its partners as a cost-effective
and credible alternative for consistently collecting natural-resource information. It
bridges an important technology gap that exists for many resource specialists and
streamlines their workflow by enabling them to access geospatial data, design eco-
logical map units, delineate landscape patterns, analyze map unit properties and
generate standard field maps. Products derived using the Toolkit comply with cor-
porate information-system standards.
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Chapter 32
Predictive Soil Maps Based on Geomorphic
Mapping, Remote Sensing, and Soil Databases
in the Desert Southwest
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Abstract We present an expert based system to rapidly predict the shallow soil
attributes that control dust emissions in the arid southwest U.S. Our system’s frame-
work integrates geomorphic mapping, remote sensing, and the assignment of soil
properties to geomorphic map units using a soil database within a geographic infor-
mation systems (GIS) framework. This expert based system is based on soil state
factor-forming model parameters that include: (1) climate data, (2) landform, (3)
parent material, and (4) soil age. The four soil-forming data layers are integrated
together to query the soil database. To validate the accuracy of the expert based
model and resultant predictive soil map, a blind test was performed at Cadiz Valley
in the Mojave Desert, California. The desert terrain in Cadiz Valley consists of allu-
vial fans, fan remnants, sand dunes, and playa features. The test began with three
users independently mapping an area of over 335 km2 using 1:40,000-scale base
maps to rapidly create geomorphic and age class layers, and then integrating these
with climate and parent material layers. The results of the four data layers were then
queried in the soil data base and soil attributes assigned to map unit layers. The
soil-forming model presented here is geomorphic-based, and considers soil age as
a significant factor in accurately predicting soil conditions in hyper arid to mildly
arid regions. This work comprises a successful first step in the development of an
expert-based system to map shallow soil conditions in support of dust emission
models in remote desert regions.

Keywords Predictive soil map · Terrain hazard map · Arid soils · Geomorphology ·
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32.1 Introduction

Knowledge of terrain elements with high dust emission potential has numerous
beneficial applications from supporting a variety of military operations in desert
environments to mitigating construction impacts near urban areas in the desert
southwest USA to maintaining or improving local air quality. Avoiding locations
susceptible to extreme dust emissions and other terrain-related hazards requires
the ability to predict soil and terrain conditions, often from limited information
(Scull et al., 2005). The goal of this paper is to show one example of the appli-
cation of an integrated, predictive tool for forecasting desert terrain conditions,
such as those that contribute to the dust emission potential of particular landscape
elements.

The technical approach of this application relies on the systematic integra-
tion of desert landform parameters in geomorphic models for predicting ter-
rain conditions in a GIS framework (e.g., Carré and Girard, 2002; McBratney
et al., 2003). Advances in earth science research have established that unique, pre-
dictable relations exist among landscape position, soils, vegetation, and geology
(e.g., Birkeland, 1999). Further, new instrumentation allows the collection of a
wide range of environmental information to characterize surface and subsurface
conditions in arid regions, for example tension infiltrometers, ground penetration
radar, portable wind tunnels, and hyperspectral and multispectral imagery (e.g.,
Caldwell et al., 2008; Meadows et al., 2006; Sweeney et al., 2008; see section 8.1
and section 9.2).

By integrating models and methods from geomorphology, soil science, climatol-
ogy, and atmospheric science with remote sensing and other technologies, a pre-
dictive model can be developed. The intent of this predictive model is to rapidly
generate the boundaries of discrete landforms and the assignment of soil attributes
in order to classify the landscape into specific terrain hazards. The soil-forming
model presented here is geomorphic-based, and considers soil age as a signifi-
cant factor in accurately predicting soil conditions in hyper arid to mildly arid
regions (see Section 4.3). Dependent on particular input criteria, a variety of ter-
rain hazards can be predicted, ranging from dust emission potential to vehicle
trafficability. The following objectives need to be executed to ensure the perfor-
mance of the predictive model: (1) application of advance knowledge of surface
processes, assessment of remote sensing technologies, and compilation of exist-
ing data for predictive assessment of desert terrain conditions, (2) integration of
this knowledge to develop a dynamic GIS platform for predicting desert terrain
conditions and potential hazards by assigning soil attributes to terrain features
from a soil database, and (3) validation of the predictive model across diverse
desert terrains. Implementation of this new tool represents a first attempt to rapidly
describe surface soil characteristics simultaneously with landform identification,
thereby creating a delivery format readily usable to predict a variety of terrain
hazards.
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32.2 Materials and Methods

32.2.1 Study Area

To validate the accuracy of the expert based model and integration of a soil database
to generate a predictive soil map, we performed a blind test at Cadiz Valley in the
Mojave Desert, California (Fig. 32.1 inset). The desert terrain in Cadiz Valley con-
sists of Basin and Range physiography, which includes mountain highlands and
pediments, composed principally of Mesozoic granitic rocks that are separated by
large areas of alluvial fans, sand dunes, and playa features (Fig. 32.1). The climate
of Cadiz Valley is primarily semi-arid desert with areas at the valley floor as arid
desert (PRISM Group, 2007).

Fig. 32.1 Inset map showing the study area within Cadiz Valley, California (white box). LAND-
SAT ETM+ imagery showing the distribution of mountain highlands, alluvial fans, sand dunes, and
playa features within the map area
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32.2.2 Rationale and Significance of Landform-based
Terrain Predictions

Existing geographic data sources (e.g., digital elevation models, satellite and aerial
imagery, and geologic maps) can provide some information regarding general ter-
rain conditions, but are insufficient for predicting dust emission or identifying other
terrain hazards because they lack detailed spatial information on soil conditions.
By systematically integrating the observational knowledge about the distribution,
age, and geology of desert landforms and associated soil and surface conditions,
geomorphic-based models provide an essential platform for predicting terrain con-
ditions. Using these models, knowledge of how desert landscapes evolve, and of
the principal surficial processes that drive surface evolution and soil formation, can
provide a powerful means to assess dust emission or trafficability.

The concept of this geomorphic model simply refers to the integration of sur-
face observations with models of landscape evolution to predict what lies below the
immediate surface. In other words, years of research have demonstrated that sys-
tematic relationships exist between landscape position and soil formation processes
that account for the observed distribution of soils across desert terrains. This knowl-
edge can be essentially applied in reverse: knowledge of soil forming processes can
now be applied to identify landforms to develop predictive soil maps. Prediction
of critical surface and subsurface conditions can be further augmented (in terms
of time and quality) by linking the inversion of geomorphic models with surface
characteristics, most of which are identified from remotely sensed imagery from
satellites.

32.2.3 Model for Predicting Terrain Conditions

The conceptual procedure for predicting soil and terrain conditions is based on two
concepts. First, a soil evolves from a preexisting parent material (i.e., lithology of
rock) into a well-defined soil closely related to discrete and identifiable landforms.
This relation allows the ability to reasonably predict soil types if general knowledge
of overall climate (especially precipitation), landform age and type, and soil parent
material can be identified or surmised. This approach follows the soil-forming factor
concept of Jenny (1941) that includes: Time, Parent Material, Topography, Climate,
and Organisms. Second, most landforms can be easily identified using available
aerial imagery (Jayko et al., 2005).

Application of this approach represents the idea of geomorphic model inversion.
Predictions of subsurface conditions are based on the integration of conceptual mod-
els involving how the desert surface and soils evolve, with observation of existing
surface characteristics (e.g., landform morphology, surface cover, microtopogra-
phy). The process of generating the predictive soil attributes in Cadiz Valley was
based on the following geomorphic-based model parameters and the use of a soil
database (see Fig. 32.2) as follows:
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Fig. 32.2 Flowchart
summarizing GIS platform
designed for dynamic
predictions of desert terrain
conditions. Diagram shows
relative position of three
fundamental components or
products (image analysis, soil
or terrain property mapping,
and output in maps or
visualizations) and associated
degrees of data integration
and application
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(1) Image Analysis: The expert-based identification of landform or geomorphic
surfaces was made using 15-m resolution LANDSAT ETM+ imagery com-
bined with a 10-m resolution digital elevation model (DEM). Line work was
performed at a fixed scale of 1:40,000 to rapidly create geomorphic map units
within a GIS framework.

(2) Determine Soil Setting: The soil setting was estimated by integrating the fol-
lowing soil-forming factors, excluding organisms:

Climatic Data: Annual precipitation was used to determine the aridity of a
region to establish the climate parameter. To do this, the ∼ 4 km horizontal
resolution digital grid estimates of Parameter-elevation Regressions on Inde-
pendent Slopes Model (PRISM) data were applied to the map area (Prism
Group: http://www.prism.oregonstate.edu/).

Parent Material: The parent material of the soil of each landform map unit
was determined by integrating published geologic maps (Howard, 2002) and
image classification techniques within remote sensing applications of a sub-
set of ASTER multispectral data. The classification was based on the analysis
of reflectance (AST07XT) and emissivity (AST05) of rock/soil compositions
(Fig. 32.3). The resulting product consists of a GIS layer representing parent
material.

Landform Surface Age (Time and Topography): The assignment of relative age
classes to each landform or geomorphic surface map unit was based on cross-
cutting relations, surface morphology and roughness, and topographic relief
observable on the multispectral imagery. Soil age was assigned to Quaternary
aged (less than 1.8 million years old) deposits only, and is represented by
labels, for example, Quaternary alluvial landforms are labeled Qf1 to Qf5,
from oldest to youngest (Fig. 32.4).

(3) Soil Database and Predictive Soil Map: Principal soil and surface attributes were
assigned to geomorphic map units using soil data supplied through a linked
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Fig. 32.3 Remote sensing
mapping results of mountain
highlands, alluvial fans, as
well as sand dunes and playa
parent material map units
within Cadiz Valley based on
ASTER multispectral data

database using the four soil-forming data layers. These four layers were inte-
grated together to query the soil database through the use of an interactive GIS
tool with pull-down menus that search the database for the most representative
soil attributes. The database, created and maintained by the Desert Research
Institute (DRI), currently contains descriptions of 813 georeferenced soil obser-
vation sites, amounting to 4,116 pedological horizon descriptions from the
Mojave and Sonoran Deserts, U.S., Negev Desert, Israel, and selected sites
in southwest Asia. The sources of information are primarily from published
peer-reviewed journal articles and the U.S. Department of Agriculture (USDA)
Natural Resource Conservation Service soil databases or published soil surveys
in the southwest U.S.

(4) Terrain Hazard Map: The spatial distribution of terrain hazards across the
landscape was based on soil attributes from the predictive soil map. The soil
attributes of each soil map unit can be numerically modeled or qualitatively
represented dependent on a specific terrain hazard of interest, and shown on a
map by a six-fold hazard class system (None, Very Low, Low, Moderate, High,
and Very High).
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Fig. 32.4 Geomorphic mapping was conducted independently by three users (mappers) through
the analysis of several digital data sources (i.e., imagery and DEM). Thirteen geomorphic map
units representing the relative age of landform surfaces were delineated from satellite image inter-
pretation by all three users. The assignment of a relative age for each map unit is based on further
interpretation of cross-cutting relations and surface morphology characteristics observable on the
imagery. Quaternary landform descriptors are the following: Qpl – playa; Qd – dune; Qss – sand
sheet; Qal – alluvium; Qf1 to Qf4 – alluvial fan, older to younger, respectively; Qpd – pediment;
Bx – bedrock. Each map unit includes a parent material/lithology descriptor derived from a USGS
geologic map (e.g., g = granitic; m = meta-sedimentary), and correlation with the landform and
parent material map generated from ASTER imagery (see Fig. 32.3)

32.3 Results and Discussion

32.3.1 Results of the Predictive Soil Maps and Model

We performed a test at Cadiz Valley in the Mojave Desert, California to assess the
viability of the expert based model to generate a predictive soil map and resultant
dust emission potential map. The test began with three users independently mapping
an area of over 335 km2 using 1:40,000-scale base maps to rapidly create geomor-
phic and age class layers, and then integrating these with climatic and parent mate-
rial data layers. The results of the four data layers were then queried in the soil data
base and soil attributes assigned to the geomorphic map unit layers, which resulted
in a predictive soil map. The time taken by each of the three users to complete the
predictive soil map was 8.5, 14, and 24 h respectively (Fig. 32.4).

Rapid identification and mapping of the soils and their parent bedrock sources
continues to be an important step in developing a predictive model of soil and terrain
attributes due to the fact that soil properties are highly dependent on the properties
of the soil parent material, whether it is bedrock or sediment. In support of the
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test of the predictive mapping model, the parent material in the Cadiz Valley area of
California was mapped, at the same time as the geomorphic mapping was being per-
formed, based on combinations of VIS/SWIR/TIR bands collected on 4 July 2005
by ASTER spectral imagery. The area is challenging as it is composed primarily
of granitic and meta-granitic rocks, lithologies that can appear spectrally similar.
The map was produced “blind,” meaning those producing the map had no previous
knowledge of the rock composition in the area nor did they consult any outside
sources, such as geologic maps. We continue to refine our parent material mapping
techniques and plan to apply them to areas with even greater parent material and
landform diversity than Cadiz Valley.

32.3.2 Accuracy Assessment of Model

Current project results include success in establishing linkages between common
desert landforms and soil properties, and developing a GIS-based platform linking
expert-based analysis of desert terrain imagery with derived terrain property maps
that can be used in predicting dust emission. To test the accuracy of the predictive
mapping, we collected field data by describing and sampling test pits on eight geo-
morphic surfaces, and compared the image-based delineation of map unit bound-
aries with field observations thereof. Soil pits were dug to a depth of ∼ 0.5 m to
describe the shallow subsoil. Soil profiles were described using the conventions of
the USDA, per Soil Survey Staff (1998) as modified by Birkeland (1999), which
divides the soil profile into genetic horizons. Age determinations were made in the
field based on correlating the degree of soil development and surface morphology
of landforms in Cadiz Valley to other landforms in the Mojave Desert that have
numerical age control.

The accuracy assessment of the soil predictions was achieved by comparing the
field data with the predicted soil attributes (see Section 29.2) from the soil database

Fig. 32.5 Eight soil pits were
described as part of the field
validation of each mapper’s
soil predictions. The soil pit
from alluvial fan unit (Qf4g)
is included as an example.
Here, the late Holocene soil
was correctly predicted by
mapper #2 (3 of 3), whereas
mapper #1 was 2 of 3, and
incorrectly predicted the
master horizons. Mapper #3
was 1 of 3, and incorrectly
predicted the master horizons
and soil age
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using three validation criteria (Fig. 32.5) as follows: (1) correct prediction of master
horizon name and horizon boundary depth (to within 10 cm), (2) correct prediction
of particle size to within one textural class shown on the USDA textural triangle,
and (3) correct prediction of soil age. Of the 24 total possible validation criteria
combinations, each of the three users had prediction accuracies of 79, 83, and 64%
respectively (Fig. 32.6).

32.3.3 Resultant Dust Emission Potential Map

The dust emission potential map of Cadiz Valley was generated by assigning a dust
potential rating class based on (1) a worst-case scenario where a combination of
dry soil conditions and anthropogenically disturbed surfaces would allow for the
greatest degree of dust emission, (2) the general terrain characteristics of each geo-
morphic map unit, including relief and surface morphology and their ability to limit
dust emission, and (3) the estimated potential dust concentration (clay, silt, and
fine sand) within a typical soil profile of each predicted soil map unit. A six-fold
rating class system ranging from Very High to None was developed to categorize
the disturbed (anthropogenic) dust potential during the dry season (Fig. 32.7). The
degree of dust emission potential of specific geomorphic surfaces is evident across
the valley, with playa and sand sheets being Very High, sand dunes as High, alluvial
fans ranging from High to Low, which is primarily dependent on surface age and
parent material, pediments being Very Low, and bedrock as None. Although there
were some differences with the accuracy of predicting soil attributes, as well as the
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Map Unit

Horizon
Particle

Size
Particle

Size
Soil
Age

Soil
Age

Horizon
Particle

Size
Soil
Age

Horizon

Qf1g X X X
Qf2g X X X
Qf3g

Qf3m X X
Qf4g X X X
Qf4m X X X X
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Qpl X X X
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(63%)
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Soil Prediction Results
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19 of 24
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20 of 24
(83%)
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Fig. 32.6 Results of the blind test following the assignment of soil attributes from DRI’s soil
database, and field validation of these attributes based on the validation of master horizon, particle
size (textural class), and soil age. The time involved to make the predictive soil maps is also shown.
Gold = 3 of 3 criteria were correctly predicted; Green = 2 of 3 criteria were correctly predicted;
and Blue = 1 of 3 criteria was correctly predicted
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Fig. 32.7 Predictive terrain hazard map showing dust emission potential of the upper 50 cm of the
soil profile under dry conditions. Results are based on the integration of geomorphic mapping and
assignment of soil attributes from DRI’s soil database. The spatial distribution and percent area of
the hazard rating classes on individual maps are generally in good agreement between the three
mappers

boundaries of geomorphic units between the three independent mappers, the spatial
distribution and percent area of the hazard rating classes are similar.

32.4 Conclusions

Data integration through use of the GIS framework during the past year has resulted
in significant advances in desert terrain characterization and predictive soil map-
ping. New tools developed to link the DRI-generated soil database with existing
GIS technologies created a means whereby geomorphologists can efficiently and
rapidly identify landforms and assign soil characteristics. Implementation of this
new tool represents a first attempt to describe surface soil characteristics simultane-
ously with landform identification. The new tool creates a delivery format readily
usable for the prediction of terrain hazards. The soil-forming model presented here
is geomorphic-based, and considers soil age as a significant factor in accurately
predicting soil conditions, which differs from most pedometric derived predictive
soil mapping techniques (e.g., McBratney et al., 2000; Scull et al., 2003).

This work comprises a successful initial step in the development of a rapid and
efficient expert based system to map shallow soil conditions associated with dis-
tinct geomorphic features, which will be capable of producing cost-effective and
high resolution predictive soil maps to support dust emission models in remote and



32 Geomorphic Mapping, Remote Sensing, and Soil Databases 421

poorly characterized desert regions. Future efforts will incorporate information from
unmanned airborne vehicles operating remote sensing instruments to quickly link
surface observables to subsurface conditions over a wider scale in near real-time.
Integration of climatic information and weather forecasts with knowledge of soil
hydrologic properties will provide additional predictive capability, thereby refining
our approach and the capability of integrating seasonal information into the model’s
framework.
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Chapter 33
GlobalSoilMap.net – A New Digital
Soil Map of the World
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Abstract Knowledge of the world soil resources is fragmented and dated. There is a
need for accurate, up-to-date and spatially referenced soil information as frequently
expressed by the modelling community, farmers and land users, and policy and
decision makers. This need coincides with an enormous leap in technologies that
allow for accurately collecting and predicting soil properties. We work on a new
digital soil map of the world using state-of-the-art and emerging technologies for
soil mapping and predicting soil properties. The global land surface will be mapped
in 5 years and the map consists of the primary functional soil properties at a grid
resolution of 90 by 90 m. It will be freely available, web-accessible and widely dis-
tributed and used. The maps will be produced by a global consortium with centres in
each of the continents: NRCS for North America, Embrapa for Latin America, JRC
for Europe, TSBF-CIAT for Africa, ISSAS for parts of Asia and CSIRO for Oceania.
This new global soil map will be supplemented by interpretation and functionality
options that aim to assist better decisions in a range of global issues like food pro-
duction and hunger eradication, climate change, and environmental degradation. In
November 2008, a grant has of US$ 18 million has been obtained from the Bill &
Melinda Gates foundation to map most parts in Sub-Sahara Africa, and make all
Sub-Saharan Africa data available. From this grant there are funds for coordinating
efforts in the global consortium.
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33.1 Introduction

There is no comprehensive, digital map of the world’s soils. This lack of easy-to-use
information results in adverse or insufficient policies at the district, national, and
continental levels that affect food production and result in unnecessary land degra-
dation and increased greenhouse gas emissions (McBratney et al., 2003). Organisa-
tions involved in research at the global scale need accurate and geo-referenced soil
information to assess and/or predict the environmental impact of different land-use
scenarios. A digital fine-resolution global soil map would enable climatologists,
hydrologists, crop modelers, foresters and agricultural scientists, among others, to
better predict the effects of climate change or new technologies on food production
and environmental health. In some instances, crop failure due to drought or exces-
sive wetness could be identified in early-warning systems in ways that are relevant
to policymakers.

Within the last decade, we have witnessed remarkable progress in Earth obser-
vation techniques and prediction of soil properties from data generated by remote
and on-the-ground sensors (e.g. Ben-Dor et al., 2006; Gomez et al., 2008; Hengl
et al., 2007). At the same time, statistical techniques have been developed that
allow for prediction of soil properties in areas with little or no information (See
Chapter 12) as well as indicating the uncertainty of such predictions (see for exam-
ple Chapter 19). Soil spectral analysis is becoming a robust and cheap tool for iden-
tifying soil functional attributes (Shepherd and Walsh, 2002; Vasques et al., 2008;
and Chapter 7). The digital revolution that has transformed many of the sciences is
waiting to be applied to create global soil maps (Sanchez et al., 2009).

33.2 The Existing Soil Maps

Soils have been mapped by systematic field observations complimented with labora-
tory analysis and analogue cartographic methods in many countries but in less detail
in poorer countries (Hartemink, 2008). Most soil maps are polygon maps showing
the characteristics of soil types. These maps have a long history of being useful for
generalized land use planning and management. However, they have some major
drawbacks:

• They are static. The maps do not provide direct information on the dynamics of
soil condition (e.g. rates of nutrient depletion) whereas such information is of
great interest to farmers and policymakers.

• They are inflexible for quantitative studies. Such studies (e.g. food production,
erosion hazard, carbon balance) generally require information on the functional
properties of a soil (e.g. available water capacity, permeability, nutrient supply)
rather than a soil name (e.g. a polygon labeled “Kikuyu red loam” tells very little
about how much nitrogen it can supply to a maize crop for the following season).

• Information is lost. The traditional map and report presents a highly summarized
account of the soils of a region. The loss occurs because the reporting format
requires information to be condensed and data to be classified



33 GlobalSoilMap.net – A New Digital Soil Map of the World 425

• The information is often presented at a scale that is seldom useful for the partic-
ular question.

• The data model implicit in polygon maps is difficult to integrate with most other
forms of natural resource data that are grid based (e.g. satellite imagery, digital
elevation models, climate data).

Polygon mapping was a sensible solution in the pre-digital era but digital
methods allow for completely new ways of acquiring, disseminating and using
soil information. Online geographic information systems, in particular, allow us to
dramatically improve access to information on the functional properties of soils
(McKenzie and Austin, 1993).

The current state of affairs is dire. There is one global soil map at a scale of
1:5 million (FAO UNESCO) that was produced between 1971 and 1981 (Dudal
and Batisse, 1978). Based on soil surveys conducted between the 1930s and the
1970s, these class maps show the distribution of soil types using FAO terminology.
Inevitably, the information behind the map is uneven and little-to-no information
was available from several important regions. The FAO-UNESCO maps were digi-
tized in vector format in 1984. In the mid 1990s, a 9-km raster version was produced
by FAO, but with no improvement in the content. A digitized map does not consti-
tute a digital map. However, these maps are an important data layer in digital soil
mapping (see for example the Chapters 16 and 24).

33.3 Objectives of GlobalSoilMap.net

GlobalSoilMap.net is being developed to provide primary soil data in a form that
will meet the demands of a broad range of users including governments, natural
resource managers, educational institutions, planners, researchers and agricultur-
alists. The online system will provide access to the best available soil and land
resource information in a consistent format across the globe – the level of detail
and reliability will depend on the survey coverage and field data available in each
region.

The GlobalSoilMap.net project has two principal objectives:

Objective 1: To compile the digital soil properties map
Objective 2: To provide a soil information system to the global scientific

community that can be used for modelling and evaluation studies
and that will aid in improved policy making at all levels of
governance.

The process will also enable scientists, particularly from all parts of the world to
exchange information and benefit from the rapid changes in technology.

A global consortium has been formed with coordinating institutes and centres in
each continent (Fig. 33.1). The methodology for the global digital soil map is being
developed (Chapter 34).
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Fig. 33.1 Coordinating and supporting institutes of GlobalSoilMap.net

33.4 Some Outputs of GlobalSoilMap.net

GlobalSoilMap.net will provide access to fine grain data on a consistent set of soil
functional properties that define soil depth, water storage, permeability, fertility,
and carbon. Users will be able access and apply GlobalSoilMap.net in a variety
of ways to suit their purposes. They may want to simply view and manipulate the
data online (e.g. compare the soil patterns with satellite imagery or maps of land
use). They may then compose and print local maps by combining several sources of
online data (e.g. soil, climate, terrain and infrastructure). More sophisticated users
may have portable computers with online geographic information systems that give
field investigators access to useful information for their work. High-end users may
take the outputs from GlobalSoilMap.net and supply them as inputs to sophisticated
computer models for estimating food production or carbon dynamics.

GlobalSoilMap.net will provide users with an estimate of the uncertainty of each
attribute for each grid cell. In the longer term, new sources of data will feed auto-
matically into GlobalSoilMap.net and the uncertainties for attributes will decrease.
While the information on uncertainty provides useful qualitative advice to a user, the
real benefit will be for scientists, engineers and planners who need to translate their
analyses of food security, impacts of climate change and so forth, into assessments
of risk for decision makers. The final results may be expressed in a relatively simple
form (e.g. the farming districts of Region A will fail to produce sufficient grain for
local communities in 1 year out of 5) but the underlying computations will have
been sophisticated.

Worldwide, millions of decisions are made every day on how to use soil and
land. These range from specific on-site judgments with immediate actions, like for
example, a farmer deciding to fertilize a field, or a forester establishing plantations
for firewood – through decisions by governments on policy (e.g. carbon trading)
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that may affect every part of their jurisdictions. Whatever the context, informa-
tion is needed for sound decisions. Decisions and policies made in the absence of
such information lead to inefficient use of resources and environmental degradation.
GlobalSoilMap.net will help us assess what resources we have, their quality, and
how to manage it to produce food and fiber, to secure water supplies and to conserve
valuable assets (e.g. biodiversity within the soil).
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Chapter 34
Methodologies for Global Soil Mapping

B. Minasny and A.B. McBratney

I have here only made a bouquet of other people’s flowers,
having brought nothing of my own but the string that binds
them together

Michel de Montaigne

Abstract The Global Digital Soil Properties Map consortium (www.GlobalSoilMap.
net) has been formed with an objective to create a digital map of the world’s soil
properties. The methods for mapping soil properties globally are not straightfor-
ward as different parts of the world have varying data sources of varying qualities.
This paper presents a set of methodologies for global digital soil mapping. The first
stage involves a set of methodologies based on legacy soil data. The second stage
comprises a set of methodologies to obtain new soil samples based on the available
information or soil data. We present two decision trees for the methodologies and
discuss each of the methods.

Keywords Regression kriging · Soil sampling · Legacy soil data · Map
extrapolation · Data mining · Quality assessment

34.1 Introduction

The Global Digital Soil Properties Map consortium (www.globalsoilmap.net) has
been formed and comprises representatives from universities, research centres,
development organisations and private enterprises around the world (See Chap-
ter 33). This is a response to the urgent need for accurate, up-to-date and spa-
tially referenced soil information as expressed by the modelling community, farmers
and land users, and policy and decision makers (e.g. European Commission, 2006;
UNEP, 2007). The objective of this consortium is to create a digital map of the
world’s soil properties at a resolution of 90 m × 90 m to a depth of 1 m based
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on legacy and newly collected soil data. Pressures on land resources are fuelling
the immediate need for soil information to make informed decisions about the
soil resource. While the consortium has been established to begin the process, the
methodology for global soil mapping needs to be developed to accomplish this
ambitious plan.

Making a global soil map is not an easy task, and the methods for mapping
soil properties globally are not straightforward as different parts of the world have
varying data sources of varying qualities. The soil information can be from legacy
soil profile data, existing soil maps, and data from reflectance spectra. The soil-
landscape model will vary from place to place. Knowledge and techniques for
regional soil mapping may not be applicable at a global scale.

This paper will present methodologies for digital soil mapping. We approach it
based on a two stage process: stage 1 is mapping based on available soil information,
and stage 2 focuses on how and where we should get new soil observations.

34.2 Stage 1 – A Set of Methodologies Based on Legacy Data

The methodology for global digital soil mapping based on legacy soil data is sum-
marised in Fig. 34.1. For an area of interest, we assemble all the scorpan or envi-
ronmental covariates and existing soil data. The second step is to check how the soil
data cover the covariate space, and to select possible training areas.

Which soil data are available?

Define an area of interest

Detailed soil maps
with legends

-Spatially weighted mean
-Spatial disaggregation

Extrapolation from
reference areas
Spatially weighted mean

Full Cover? Homologue

Detailed soil maps
with legends
and Soil Point data

Soil Point data No data

No Yes 

scorpan
kriging

Assemble environmental covariates

Soil maps:
-Spatially weighted mean
-Spatial disaggregation
Soil data:
-scorpan kriging

Extrapolation from
reference areas:
-Soil maps
-Soil point data

Full Cover?

No Yes 

Increase uncertainty in prediction 

(depends on the quality of data and complexity of soil cover )

Assign quality of soil data and coverage in the covariate space

Fig. 34.1 A decision tree for digital soil mapping based on legacy soil data
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The methods used for digital soil mapping depends on the availability of soil
data. The possibilities in the order from the richest to the poorest soil information
are:

1. Detailed soil maps with legends and soil point data
This is the richest information that can give the best prediction of soil proper-
ties. Soil properties can be derived from both soil maps and soil point data. The
available methods are: extracting soil properties from soil map using a spatially
weighted measure of central tendency, e.g. the mean, spatial disaggregation of
soil maps, scorpan kriging (see explanation below) and combination of these.
An example of such an application is Henderson et al. (2001, 2005) in Australia
and Chapter 24 in New Zealand.

2. Soil point data
When soil point data are available, soil properties can be interpolated and
extrapolated to the whole area by using a combination of empirical deterministic
modelling and a stochastic spatial component. We have called this the scorpan
kriging approach.

3. Detailed soil maps with legends
When only soil maps are available, we need to extract soil properties from soil
maps using some central and distributional concepts of soil mapping units.

4. No data
When no data or soil maps exist in area, we will use an approach we call
homosoil, which means that we need to estimate the likely soil properties under
the observed soil-forming factors or scorpan factors.

The details of the methods are:

• Extracting information from soil maps.
When a soil map is the only information available for an area, soil properties
need to be derived from the map. The quality of the map depends on the scale
and the sampling effect and variation of soil cover. A detailed map with scale
1:100,000 or better with a legend is assumed to be the most appropriate for use
in global mapping. The information contained in soil maps is encapsulated in
the definition of its soil map units, which collectively comprise the map legend,
and in the spatial arrangement of the map units (Bui, 2004). The basis of soil
prediction is the central concept of soil mapping unit. A soil property at a location
is assumed to be the sum of the mean or median or mode mapping unit and a
spatially independent noise term. The noise term accounts for the within-map
variability. Bregt et al. (1987) showed that properties derived from soil survey
maps have the same quality as maps obtained using spatial interpolation (kriging)
of the properties. However studies also have shown that the accuracy or purity of
conventional soil maps is around 60–65% (Marsman and de Gruijter, 1986).

The current Australian Soil Resource Information System (ASRIS) estimated
the soil properties based on percentage area covered by a mapping unit. Estimate
of uncertainty is performed based on the proportion of the area covered and its
assumed distribution (McKenzie et al., 2005).
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Bui and Moran (2001) disaggregated soil associations mapped at reconnaissance
scale (1:500,000–1:250,000) into pixels using the legend description and envi-
ronmental variables to allocate the soils described for a particular unit into their
respective landscape position. This adds detailed information to existing soil
maps and can improve (increase) their scale. Their studies also showed that dig-
ital soil mapping techniques can reproduce an average of 73% of the soils series
from the maps based on the environmental covariates at the resolution of 250 m ×
250 m. Chapter 29 shows a comparison between conventional and pedometric
approaches for mapping soil classes.

• Extrapolation based on reference areas.
Lagacherie et al. (2001) proposed the computation of a taxonomic distance
between the local soilscapes and those in a reference area. Soilscapes are rep-
resented by a cover frequency vector of elementary landscape classes (combi-
nations of soil-forming factor classes) calculated within an area defined around
the site under consideration. Another method which is commonly used is the
modelling method of Bui and Moran (2001, 2003) where decision-tree rules are
built in training areas where detailed soil maps are available, and the rules are
extrapolated to larger areas where detailed mapping is unavailable. However both
methods are used for extrapolation to areas within a given region and have not
been tested on areas that are not geographically continuous and may be far apart.
When a soil map is the only information available for an area, soil properties
need to be derived from the map. The quality of the map depends on the scale of
the map and the surveyor who prepared it. A detailed map with scale 1:100,000
or better with a legend is assumed to be the most appropriate. The information
contained in soil maps is encapsulated in the definition of its soil map units, which
collectively comprise the map legend, and in the spatial arrangement of the map
units (Bui, 2004). Grinand et al. (2008) tested the idea of extrapolating regional
soil landscapes from an existing soil map. They observed marked differences in
accuracy between the training area and the extrapolated area. Sampling intensity
did not appear to influence the accuracy of prediction. Spatial context integration
by the use of a mean filtering algorithm on the covariates increased the accuracy
of the prediction on the extrapolated area.

Soil properties prediction from soil classes are usually based on the central
concept of a soil mapping unit. A soil property at a location is assumed to be the
sum of the mean or median or mode of the mapping unit to which it belongs and a
spatially independent noise term. The noise term accounts for the within-mapping
unit variability.

• Scorpan kriging.
This method is used for interpolation and limited extrapolation of spatial soil
point data. The assumption is that the spatial “trend” can be described by
f (s, c, o, r, p, a, n) and the residuals e modelled by variograms and a form of
kriging. The final prediction is the sum of f () and e. Scorpan or regression
kriging (McBratney et al., 2003) allows incorporation of both deterministic and
stochastic components in kriging:



34 Methodologies for Global Soil Mapping 433

S(x) = f (Q, x) + e′(x)

where f (Q, x) is a function describing the structural component of S as a func-
tion of Q at x, e′(x) is the locally varying, spatially dependent residuals from
f (Q, x).

In regression kriging the soil property S at unvisited site is first predicted by
f (), and followed by kriging of the residuals of the model. A generalised least-
squares approach can be adapted to refine the estimation of the parameters of the
deterministic model and the spatial random process. See Chapters 18, 20, and 21
for application of regression kriging in digital soil mapping.

• Combination of soil maps and soil point data.
Heuvelink and Bierkens (1992) showed that using information from soil maps
and soil data together produces a more accurate map than using either of them
separately. The procedure is done by taking a weighted average of soil map
predictions and predictions obtained from spatial interpolation (kriging). The
existing soil maps can be used as predictors as well; this usually increases the
prediction accuracy (Henderson et al., 2001).

• Homosoil.
This approach is required when no detailed map or soil observation is avail-
able in a region of interest. The method is based on the assumed homology of
soil forming factors between a reference area and the region of interest. This
includes: climate, physiography, parent materials of the area. This novel approach
involves seeking the smallest taxonomic distance of the scorpan factors between
the region of interest and other reference areas (with soil data) in the world. The
rules calibrated in the reference area are applied in the region of interest realis-
ing its limitations and extrapolation consequences. This is discussed in detail in
Chapter 12.

34.3 Quality Assessments

The maps produced can be assessed in terms of the uncertainty of prediction,
and also the relative importance. The pixel-by-pixel adequacy of the map can be
written as:

Adequacy = 1/(Uncertainty × relative importance)

The uncertainty of the prediction is quantified in terms of the input data, and
prediction model. The quality of the input data depends on the laboratory analysis,
surveyors experience, date of sampling, etc. Bui and Moran (2003) built a number
of predictive tree models by randomly sampling over a training area, the models
can be used to build up a map of consistency of predictions (or they called it as
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“uncertainty”). This can be used to guide sampling in areas where the predictions
are variable from tree to tree.

The greatest problem is the use of legacy soil data, as there are no statisti-
cal criteria for traditional soil sampling, and this may lead to biases in the areas
being sampled. The challenge is to assess the reliability and quality of the legacy
soil databases, and if there is a possibility of additional funding for sampling, to
determine where new sampling units should be located. One solution is the use of
hypercube sampling algorithm of Carré et al. (2007) to check the occupancy of the
legacy sampling units in the hypercube of the probability distribution of the envi-
ronmental covariates. This is to determine whether legacy soil survey data occupy
the hypercube uniformly or if there is over- or under- observation in the partitions
of the hypercube. The second part of the uncertainty is in the prediction models.
Statistical measure needs to be incorporated in each of the method mentioned above;
it is also able to handle the case of extrapolation. The other component of adequacy
is the relative importance of an area. This is related to the target mapping; areas of
the importance include identification of areas of food security problems, where soil
information is urgently needed to increase food production, land degradation, and
soil pollution. All of these are incorporated as a measure of adequacy of the soil
property prediction. The adequacy measure will be important for targeting future
sampling efforts.

34.4 Stage 2 –Methodologies to Obtain New Soil Data

When there is a possibility of obtaining funding for improving soil information,
we need a good sampling design to determine where new sampling units should be
located. The main issue is that existing legacy data have been sampled at different
times in order to answer various questions. In this case, soil samples can have dif-
ferent soil variable descriptions and some areas of interest can be relatively over-
or under- sampled. A general decision tree is given in Fig. 34.2, where the number
and areas to be sampled depend on the type of available soil data and adequacy of
the prediction model. Based on the availability of soil data, in the order from less to
more soil samples required are:

– Detailed soil maps with point soil observations.
The hypercube evaluation sampling method (Carré et al., 2007) can be applied to
inspect the coverage of the scorpan variables. New sampling units are first placed
in the strata with no sampling units and considering the density of covariates, to
ensure that the hypercube is as maximally occupied as possible.

– Soil point data.
The method of Brus and Heuvelink (2007) selects sites that minimises the vari-
ance of universal kriging using simulated annealing. This method assumes that
the predictors are linearly related to the target variable, and that the variogram
of the residuals is known. This method optimises sampling in both predictor
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Which soil data are available?

Define an area of interest

Detailed soil maps
with legends

-Spatial & scorpan
coverage
-Adequacy

-Spatial & scorpan
coverage

-Adequacy

Detailed soil maps
with legends
and Soil Point data

Soil Point data No data

Model based
Geostatistical sampling

Assemble environmental (scorpan) covariates

Latin hypercube sampling
of scorpan variables

-spatial & scorpan
coverage
-Adequacy

Full Cover?

No Yes 

Increase number of samples

(depends on the quality of data and complexity of soil cover )

What is the adequacy of prediction?

Fig. 34.2 A decision tree for soil sampling strategies

space and geographic space. However this method can be limited in practice as
it assumed linearity of the prediction function and knowledge of the residual
variogram.

– Detailed soil maps.
Soil samples are needed to cover both representation of the soil mapping
units and scorpan variables. The conditioned Latin hypercube sampling (cLHS)
method (Minasny and McBratney, 2006) can be used in this instance. cLHS
attempts to cover the range of values of each of the scorpan factors.

– No soil data
The Latin hypercube sampling method (Minasny and McBratney, 2006) or fuzzy
k-means clustering can be applied to cover both the spatial coverage and scorpan
variables. The fuzzy k-means method (De Gruijter et al., 2008) classifies the scor-
pan variables into k classes, with k equals to the number of sampling units. The
pixel with the largest membership for each class is selected as the sampling unit.

34.5 Conclusions

Here we present two sets of methodologies corresponding to two stages of global
soil mapping. These are based on methods that have been successfully applied in
large areas. A protocol and software need to be developed to perform this task.
A working program can adapt itself into these environments resulting in the best
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predictions and their uncertainties. There are many other aspects of global soil
mapping that need to be addressed, such as: (1) Which method is the most robust in
particular areas or situations? (2) Which are the crucial data layers? (3) What is the
most appropriate way of modelling and depicting uncertainties?
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